WorldWideScience

Sample records for instrument ii indentation

  1. Standard practice for instrumented indentation testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice defines the basic steps of Instrumented Indentation Testing (IIT) and establishes the requirements, accuracies, and capabilities needed by an instrument to successfully perform the test and produce the data that can be used for the determination of indentation hardness and other material characteristics. IIT is a mechanical test that measures the response of a material to the imposed stress and strain of a shaped indenter by forcing the indenter into a material and monitoring the force on, and displacement of, the indenter as a function of time during the full loading-unloading test cycle. 1.2 The operational features of an IIT instrument, as well as requirements for Instrument Verification Annex A1), Standardized Reference Blocks (Annex A2) and Indenter Requirements (Annex A3) are defined. This practice is not intended to be a complete purchase specification for an IIT instrument. 1.3 With the exception of the non-mandatory Appendix X4, this practice does not define the analysis necessary...

  2. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  3. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  4. Hardness and elasticity of abrasive particles measured by instrumented indentation

    Czech Academy of Sciences Publication Activity Database

    Hvizdoš, P.; Zeleňák, Michal; Hloch, Sergej

    2016-01-01

    Roč. 8, č. 1 (2016), s. 869-871 ISSN 1805-0476 Institutional support: RVO:68145535 Keywords : abrasive * garnet * hardness * elasticity * instrumental indentation Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201601.pdf

  5. Local density measurement of additive manufactured copper parts by instrumented indentation

    Science.gov (United States)

    Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego

    2018-05-01

    Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.

  6. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  7. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  8. Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique

    International Nuclear Information System (INIS)

    Lee, K-W; Kim, K-H; Kim, J-Y; Kwon, D

    2008-01-01

    In this study, a method for deriving the tensile flow characteristics of austenitic materials from an instrumented indentation technique is presented along with its experimental verification. We proposed a modified algorithm for austenitic materials that takes their hardening behaviour into account. First, the true strain based on sine function instead of tangent function was adapted. It was proved that the sine function shows constant degrees of hardening which is a main characteristic of the hardening of austenitic materials. Second, a simple and linear constitutive equation was newly suggested to optimize indentation flow curves. The modified approach was experimentally verified by comparing tensile properties of five austenitic materials from uniaxial tensile test and instrumented indentation tests

  9. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    International Nuclear Information System (INIS)

    Hou, X D; Jennett, N M

    2017-01-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed. (paper)

  10. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    Science.gov (United States)

    Hou, X. D.; Jennett, N. M.

    2017-11-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.

  11. Evaluation of the material’s damage in gas turbine rotors by instrumented spherical indentation

    Directory of Open Access Journals (Sweden)

    D. Nappini

    2014-10-01

    Full Text Available Experimental indentations are carried out on items of two different materials, taken in several location of various components from high pressure gas turbine rotor which have seen an extensive service. The components object of investigation consisted in 1st and 2nd high pressure turbine wheels made in nickel-base superalloy (Inconel 718, the spacer ring (Inconel 718 and the compressor shaft made in CrMoV low alloy steel (ASTM A471 type10. Aim of the work is to set up the capability of the instrumented spherical indentation testing system to evaluate variations in the material properties due to damage, resulting from temperature field and stresses acting on components during service. To perform this task load-indentation depth curves will be acquired in various zones of the above mentioned components. The analysis of the results has allowed to identify an energy parameter which shows a linear evolution with the mean temperature acting on the components.

  12. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    Science.gov (United States)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  13. Instrumented indentation for characterization of irradiated metals at room and high temperatures

    International Nuclear Information System (INIS)

    Sacksteder, Irene

    2011-01-01

    The reliability and sustainability of future fusion power plants will highly depend on the aptitude of materials to withstand severe irradiation conditions induced by the burning plasma in reactors. The so-called reduced-activation ferritic-martensitic (RAFM) steels are the current promising candidates for the structural applications considering the reactor's first wall. These steels exhibit irradiation embrittlement and hardening for defined irradiation conditions that are mainly characterized by the irradiation temperature and the irradiation dose. A proper characterization of such irradiated steels implies the use of adapted mechanical testing tools. In the present study, the instrumented indentation technique makes use of a post-processing tool based on neural networks. This technique has been selected for its ability to examine tensile properties by multistage indents on miniaturized irradiated metallic samples. The steel specimens studied in this project have been neutron-irradiated up to a dose of 15 dpa. They have been subsequently tested at room temperature in a Hot Cell by means of an adapted commercial indentation device. The significant irradiation-induced hardening effect present in the range of 250-350 deg C could be observed in the hardness and material's strength parameters. These two material parameters show a similar evolution with increasing irradiation temperatures. Post-irradiation annealing treatments of Eurofer97 have been realized and leads to a partial recovery of the irradiation damage. Considering the demands for characterization in irradiated steels at high temperature and for post-irradiation annealing experiments, the existing instrumented indentation device has been further developed during this work. A conceptual design has been proposed for an indentation testing machine, operating at up to 650 deg C, while remaining the critical temperature limit for tensile strength of the newly developed oxide dispersion strengthening ferritic

  14. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser

    International Nuclear Information System (INIS)

    Britto Junior, Francisco Meira

    2004-01-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  15. Irradiation-induced hardening/softening in SiO2 studied with instrumented indentation

    International Nuclear Information System (INIS)

    Nakano, Shinsuke; Muto, Shunsuke; Tanabe, Tetsuo

    2005-01-01

    To understand the plastic deformation mechanism of SiO 2 polytypes, we measured the mechanical parameters of He + -irradiated crystalline SiO 2 (α-quartz, c-SiO 2 ) and vitreous SiO 2 (silica glass, v-SiO 2 ) as functions of the irradiation dose, by using the instrumented indentation method combined with a finite-element analysis. We extracted the effects of local rotation and bending of the SiO 4 framework (the degree of local structural freedom), which play key roles in the plastic deformation, and expressed the hardness change with a simple formula. For v-SiO 2 , the changes in the density and the number of broken bonds correlated well with the change in the degree of freedom. In contrast, for c-SiO 2 the present formulation was insufficient to fully express the hardness change in the structural disordering regime. The structure change by irradiation peculiar to this material is discussed, based on the theoretical formulation

  16. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  17. On the use of Raman spectroscopy and instrumented indentation for characterizing damage in machined carbide ceramics

    Science.gov (United States)

    Groth, Benjamin Peter

    Machining is a necessary post-processing step in the manufacturing of many ceramic materials. Parts are machined to meet specific dimensions, with tight tolerances, not attainable from forming alone, as well as to achieve a desired surface finish. However, the machining process is very harsh, often employing the use of high temperatures and pressures to achieve the wanted result. In the case of silicon carbide, a material with extremely high hardness and stiffness, machining is very difficult and requires machining conditions that are highly aggressive. This can leave behind residual stresses in the surface of the material, cause unwanted phase transformations, and produce sub-surface deformation that can lead to failure. This thesis seeks to determine the effect of various machining conditions on the Raman spectra and elastic properties of sintered silicon carbide materials. Sample sets examined included hot-pressed silicon carbide tiles with four different surface finishes, as well as "ideal" single crystal silicon carbide wafers. The surface finishes studied were as follows: an as-pressed finish; a grit blast finish; a harsh rotary ground finish; and a mirror polish. Each finish imparts a different amount, as well as type, of deformation to the sample and are each utilized for a specific application. The sample surfaces were evaluated using a combination of Raman spectroscopy, for phase identification and stress analysis, and nanoindentation, for obtaining elastic properties and imparting uniform controlled deformation to the samples. Raman spectroscopy was performed over each sample surface using 514- and 633-nm wavelength excitation, along with confocal and non-confocal settings to study depth variation. Surfaces stresses were determined using peak shift information extracted from Raman spectra maps, while other spectral variations were used to compare levels of machining damage. Elastic modulus, hardness, and plastic work of indentation maps were generated

  18. On the determination of representative stress–strain relation of metallic materials using instrumented indentation

    International Nuclear Information System (INIS)

    Fu, Kunkun; Chang, Li; Zheng, Bailin; Tang, Youhong; Wang, Hongjian

    2015-01-01

    Highlights: • A method to convert indentation load–depth curve into representative stress–strain curve is presented. • Representative stress–strain curves of six metals are obtained using finite element analysis. • Different representative strain definitions are compared using finite element method. • Representative stress–strain curve of molybdenum films is obtained by nanoindentation tests. - Abstract: In this study, attempts have been made to estimate the representative stress–strain relation of metallic materials from indentation tests using an iterative method. Finite element analysis was performed to validate the method. The results showed that representative stress–strain relations of metallic materials using the present method were in a good agreement with those from tensile tests. Further, this method was extended to predict representative stress–strain relation of ultra-thin molybdenum films with a thickness of 485 nm using nanoindentation. Yielding strength and strain hardening exponent of the films were therefore obtained, which showed a good agreement with the published data

  19. A contribution to understanding the results of instrumented indentation on thermal spray coatings - Case study on Al2O3 and stainless steel

    Czech Academy of Sciences Publication Activity Database

    Nohava, J.; Mušálek, Radek; Matějíček, Jiří; Vilémová, Monika

    2014-01-01

    Roč. 240, February (2014), s. 243-249 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Instrumented indentation * Al2O3 * Stainless steel * Scale effect Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.998, year: 2014 http://www.sciencedirect.com/science/article/pii/S0257897213011869#

  20. Advanced neutron instrumentation at FRM-II

    International Nuclear Information System (INIS)

    Petry, Winfried

    2003-01-01

    The construction of the new German high flux neutron source FRM-II is finished and FRM-II is waiting for its licence to start nuclear operation. With the beginning of the routine operation 22 instruments will be in action, including 5 irradiation facilities and 17 beam tube instruments, most of them use neutron scattering techniques. Additional instruments are under construction. Some of these instruments are unique, others are expected to be the best of their kind, all instruments are based on innovative techniques. (author)

  1. Evaluation by instrumented indentation of the damage caused by gamma radiation on polymeric materials; Avaliacao por indentacao instrumentada dos danos causados pela radiacao gama em materiais polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.P.; Azevedo, E.C.; Miquelin, C.A.; Soboll, D.S., E-mail: helunica@yahoo.com.b [Universidade Tecnologica Federal do Parana (DAFIS/UTFPR), Curitiba, PR (Brazil). Dept. Academico de Fisica

    2010-07-01

    Several materials with densities close to water are used as phantoms in dosimetry. Such materials are damaged because they are exposed to radiation, the surface layers suffer the largest changes. This damage can be assessed by instrumented indentation. This paper investigates the variations in hardness and elastic modulus of samples of polymethyl-methacrylate, polyvinyl chloride, polyacetal and polypropylene before and after being irradiated with gamma radiation dose 500 Gy, using a Nanoindeter XP, with applied loads between 1 mN and 400 mN. The results are discussed correlating the variations in the mechanical properties of polymers with their applications. (author)

  2. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  3. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  4. New instruments at IPNS: POSY II and SAD II

    International Nuclear Information System (INIS)

    Crawford, R.K.; Felcher, G.P.; Kleb, R.; Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Three new instruments are currently in varying degrees of development/construction at IPNS. One of these, the Glass, Liquid, and Amorphous Materials Diffractometer (GLAD) is the subject of a separate paper in these Proceedings, and so will not be discussed further here. The other two, a second neutron reflectometer (POSY II) and a second small-angle diffractometer (SAD II) are described briefly below. 5 refs., 1 fig., 1 tab

  5. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  6. LAr instrumentation for Gerda phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently the commissioning of Gerda Phase II is ongoing. To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  7. LCLS-II New Instruments Workshops Report

    Energy Technology Data Exchange (ETDEWEB)

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC

    2012-08-08

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and

  8. LCLS-II New Instruments Workshops Report

    International Nuclear Information System (INIS)

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim

    2012-01-01

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and

  9. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Milman, Yu V

    2008-01-01

    A dimensionless parameter δ H = ε p /ε t (where ε p and ε t are the average values of plastic and total deformation of material on the contact area indenter-specimen) may be used as the plasticity characteristic of materials, which made it possible to characterize the plasticity of materials that are brittle in standard mechanical tests. δ H may be calculated from the values of microhardness HM, Young's modulus E and Poisson's ratio ν. In instrumented indentation the plasticity characteristic δ A = A p /A t (A p and A t are the work of plastic and total deformation during indentation) may be calculated. δ A ∼ δ H for materials with δ H > 0.5, i.e. for all metals and the majority of ceramic materials. In this case, the theoretical equation δ A ∼ δ H = 1-10.2 · (1 - ν - 2ν 2 )(HM/E) is satisfied in experiments with the Berkovich indenter. The influence of the temperature and structural parameters (dislocation density and grain size including nanostructured materials) on δ H is discussed

  10. Virtual Sensor Test Instrumentation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum has started the development of virtual sensor test instrumentation in Phase I for characterization and measurement of ground testing of propulsion systems....

  11. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  12. Novel Instrumentation for Rocket Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase II program is to develop, deploy and deliver novel laser-based instruments that provide rapid, in situ, simultaneous...

  13. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser; Avaliacao in vitro' de ensaios instrumentados de dureza em esmalte de dente bovino, antes e apos clareamento dental a laser

    Energy Technology Data Exchange (ETDEWEB)

    Britto Junior, Francisco Meira

    2004-07-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  14. Science Driven Instrumentation for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bergmann, Uwe [SLAC National Accelerator Lab., Menlo Park, CA (United States); Brunger, Axel [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bozek, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cocco, Daniele [SLAC National Accelerator Lab., Menlo Park, CA (United States); Devereaux, Tom [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Yuantao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, Hermann [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, Kelly [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galayda, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, Julia [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guhr, Markus [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, Jerome [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, Philip [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hodgson, Keith [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Zirong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kelez, Nicholas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Montanez, Paul [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-24

    The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.

  15. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    Science.gov (United States)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  16. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  17. Analysis of indentation creep

    Science.gov (United States)

    Don S. Stone; Joseph E. Jakes; Jonathan Puthoff; Abdelmageed A. Elmustafa

    2010-01-01

    Finite element analysis is used to simulate cone indentation creep in materials across a wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling reveals that the commonly held assumption of the hardness strain rate sensitivity (mΗ) equaling the flow stress strain rate sensitivity (mσ...

  18. Fatigue Life of Postbuckled Structures with Indentation Damage

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  19. Fatigue Life of Postbuckled Structures with Indentation Damages

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  20. Instrument Front-Ends at Fermilab During Run II

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  1. Instrument front-ends at Fermilab during Run II

    International Nuclear Information System (INIS)

    Meyer, T; Slimmer, D; Voy, D

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  2. Instrument Front-Ends at Fermilab During Run II

    International Nuclear Information System (INIS)

    Meyer, Thomas; Slimmer, David; Voy, Duane

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  3. Instrument front-ends at Fermilab during Run II

    Science.gov (United States)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  4. Experimental installations and instruments at the FRM-II

    International Nuclear Information System (INIS)

    Steichele, E.

    1999-01-01

    The new research reactor FRM-II of the Technical University Munich will be the strongest neutron source in Germany when going into operation in 2001/2002. From the beginnings on it was designed as a multipurpose research reactor based on local traditions, recent experience and new ideas. The reactor will be used for neutron scattering and material science, for fundamental physics with cold and ultracold neutrons, for isotope production, fission fragment acceleration, medical tumor treatment and for a manifold of technical and practical applications like computer tomography with fast and cold neutrons. According to the wide spectrum of applications the reactor needs a manifold of special installations and instruments, which will be introduced in the present paper. The reactor will be equipped with a liquid-D 2 cold source for high resolution neutron scattering and a solid-D 2 UCN source for fundamental physics, with a graphite hot source for high-Q neutron diffraction and a 'converter', which is a U-235 target in the thermal flux maximum to produce fast fission neutrons for medical applications and technical tomography. A series of irradiation plants is designed for production and study of radio-isotopes with half-lives as short as seconds and for phosphor-doping of semiconductor silicon crystals with diameters up to 8 inch. The reactor will be equipped with ten horizontal, one vertical and two inclined beam-tubes, one of the latter ones will take up a most intense, newly developed positron source for solid state physics. Three horizontal beam tubes will look onto the cold source, one of which will take up six neutron guides going into a neutron guide hall 50 x 25 m 2 . Most of the neutron guides will be coated with super-mirror which allows to build effective beam switches for many end-position experiments. The first generation of about 20 instruments and experimental installations as recommended by the instruments committee will be financed by the Federal and

  5. Cable indenter aging monitor

    International Nuclear Information System (INIS)

    Shook, T.A.; Gardner, J.B.

    1988-07-01

    This project was undertaken to develop a hand-held, nondestructive test device to assess the aged condition of electrical cable by in situ measurement of mechanical properties of polymeric jackets and insulations. The device is an indenter similar to those used to make hardness measurements. Comparison of measurements made on installed cables with previous measurements serving as baseline aging/mechanical property data will determine the state of aging of the field cables. Such a device will be valuable in nuclear and fossil plant life extension programs. Preliminary laboratory tests on cables covered with ethylene propylene rubber (EPR) and chlorosulfated polyethylene (CSPE) point to the measurement of the rate of force increase resulting from constant rate deformation as having the best correlation with progressive thermal aging. This first phase of the work has demonstrated the technical feasibility of the method. A second phase will include the generation of additional groundwork data and the design of the portable indenter for in situ plant measurements

  6. Workshop on instrumentation of the disassembled BER II

    International Nuclear Information System (INIS)

    Jauch, W.; Steiner, M.

    1982-01-01

    A workshop on the instrumentation of a disassembled BER II-reactor took place in the Hahn-Meitner-Institute in Berlin on April 19 and 20, 1982. Invited were all groups that are promoted by the associations 'Neutron Scattering for Investigation of Condensed Substance' and 'Neutron Scattering and Complementary Methods in Chemistry and Biology', along with experts for neutron spectrometers. 40 foreign scientists from 22 different institutes had accepted the invitation. The actual questions were treated in 13 presentations and a certain number of posters, with the latter also comprising activation analysis. The present report contains the presentations submitted, the final discussion minutes and a summary from HMI-view. (orig./RW) [de

  7. Indentation size effects in the nano- and micro-hardness of a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, F., E-mail: xufu@xtu.edu.cn; Ding, Y.H.; Deng, X.H.; Zhang, P.; Long, Z.L.

    2014-10-01

    Hardness of a Fe-based bulk metallic glass (BMG) was evaluated by both atomic force microscopy (AFM) nanoindentation (nano-hardness) and instrumented indentation with a traditional indenter setup (micro-hardness) under different maximum loads at room temperature. The nano-hardness and the micro-hardness were found to be comparable. For both of the indentation methods, indentation size effect (ISE) is detected as increase in hardness with decrease in indentation peak load. It is proposed that strain rate dependent softening, loading history and the lag between free volume creation and mechanical softening should be responsible for the ISE in this BMG. Furthermore, ISE is found to be more significant in AFM nanoindentation than in instrumented indentation. This can be explained by taking into account the effect of exerted peak load and the face angle of the indenter in a qualitative manner.

  8. Quantitative assessment and prediction of the contact area development during spherical tip indentation of glassy polymers.

    NARCIS (Netherlands)

    Pelletier, C.G.N.; Toonder, den J.M.J.; Govaert, L.E.; Hakiri, N.; Sakai, M.

    2008-01-01

    This paper describes the development of the contact area during indentation of polycarbonate. The contact area was measured in situ using an instrumented indentation microscope and compared with numerical simulations using an elasto-plastic constitutive model. The parameters in the model were

  9. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials; Medicion del modulo de elasticidad en materiales de ingenieria utilizando la tecnica de indentacion instrumentada y de ultrasonido

    Energy Technology Data Exchange (ETDEWEB)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-07-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs.

  10. Adhesion studies by instrumental indentation testing

    NARCIS (Netherlands)

    Hangen, U.D.; Downs, S.; Kranenburg, J.M.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The miniaturization of devices and the advances in nanotechnol.-enabled products has led to the requirement of an increased understanding of the various interactions present in nanoscale contacts - including adhesion and surface tension. It is well known that adhesion plays an important role in the

  11. Novel Instrumentation for Lunar Regolith Oxygen Production Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop, test and deploy three novel compact, rugged and easy-to-use multi-gas analysis instruments, based...

  12. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1991-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related instrumentation and control systems is described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shut down systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (author). 4 refs, 18 tabs

  13. Planck 2015 results: II. Low Frequency Instrument data processings

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Ashdown, M.

    2016-01-01

    We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release...

  14. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  15. Planck 2013 results. II. The Low Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.

    2013-01-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44, and 70 GHz. In particular, we discuss the various steps involved in reducing the data......) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the approximate to-20 dB level...

  16. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  17. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1990-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related i- and c-systems are described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shutdown systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (orig.)

  18. Planck 2013 results. II. Low Frequency Instrument data processing

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cappellini, B; Cardoso, J -F; Catalano, A; Chamballu, A; Chen, X; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Cruz, M; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falvella, M C; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Laureijs, R J; Lawrence, C R; Leach, S; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Lindholm, V; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Salerno, E; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; White, S D M; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44 and 70 GHz. In particular, we discuss the various steps involved in reducing the data, starting from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least square map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated...

  19. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  20. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  1. Cathodoluminescence study of vickers indentations in magnesium ...

    African Journals Online (AJOL)

    Vickers diamond pyramid indentations made in single crystal of magnesium oxide (MgO) were examined in an environmental scanning electron microscope interfaced with an AVS-2000 spectrophotometer for luminescence. Three distinct zones around the indentations were identified to exhibit cathodoluminescence, which ...

  2. Discrete dislocation modelling of submicron indentation

    NARCIS (Netherlands)

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  3. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  4. Analysis of the Indented Cylinder by the use of Computer Vision

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen

    and two journal papers. These three papers, referred to as Paper I, Paper II, and Paper III can be found in Appendix A, B, and C, respectively. These three papers represent the very first examples of published/submitted work that thoroughly analyse and verify the separation ability of the indented...... in system identification of the indented cylinder. The technical solutions developed are currently novel and represent an ideal platform for future applied research into empirical model development. Finally, this work should also be considered as an early step toward a paradigm shift where the best...... parameters for the indented cylinder are not mainly determined by “rule of thumb” and other forms of heuristics, but are instead optimized parameters tied to an actual theory of seed separation in the indented cylinder....

  5. Concept and structure of instrumentation and control of the Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Garzon, D.; Roca, J.L.

    1987-01-01

    The general structure of instrumentation and control of Atucha II nuclear power plant as well as the technologies used, are described: concepts of functional decentralization and physical centralization; concept of functional group and functional complex; description of the technologies used (physical support) in the project of plant instrumentation and control; description of the different automation levels on the basis of concepts of control interface, automatism, regulation, group and subgroup controls; principles of signal conditioning; concept of announcement of alarms and state: supervisory computer, description of HAS (Hard wired Alarm System) and CAS (Computer Alarm System); application of the above mentioned structure to the project of another type of plants. (Author)

  6. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  7. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  8. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries

    Science.gov (United States)

    Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun

    2017-01-01

    The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649

  9. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  10. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  11. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  12. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  13. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  14. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  15. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  17. The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters

    International Nuclear Information System (INIS)

    Zarudi, I.; Zhang, L.C.; Cheong, W.C.D.; Yu, T.X.

    2005-01-01

    This study analyses the microstructure of monocrystalline silicon after indentation with a Berkovich and spherical indenter. Transmission electron microscopy on cross section view samples was used to explore the detailed distributions of various phases in the subsurfaces of indented silicon. It was found that an increase of the P max would promote the growth of the crystalline R8/BC8 phase at the bottom of the deformation zone. Microcracks were always generated in the range of the P max studied. It was also found that the deformation zones formed by the Berkovich and spherical indenters have very different phase distribution characteristics. A molecular dynamics simulation and finite element analysis supported the experimental observations and suggested that the distribution of the crystalline phases in the transformation zone after indentation was highly stress-dependent

  18. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  19. Radiation protection instruments based on tissue equivalent proportional counters: Part II of an international intercomparison

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.; Guldbakke, S.; Kluge, H.; Schumacher, H.

    1988-04-01

    This report describes the irradiation conditions and procedures of Part II of an international intercomparison of tissue-equivalent proportional counters used for radiation protection measurements. The irradiations took place in monoenergetic reference neutron fields produced by the research reactor and accelerator facilities of the PTB Braunschweig in the range from thermal neutrons to 14.8 MeV. In addition measurements were performed in 60 Co and D 2 O-moderated 252 Cf radiation fields. Prototype instruments from 7 European groups were investigated. The results of the measurements are summarized and compared with the reference data of the irradiations. (orig.) [de

  20. Evaluation of the quality of guidelines for myasthenia gravis with the AGREE II instrument.

    Directory of Open Access Journals (Sweden)

    Zhenchang Zhang

    Full Text Available Clinical practice guidelines (CPGs are systematically developed statements to assist practitioners in making decisions about appropriate healthcare in specific clinical circumstances. The methodological quality of CPGs for myasthenia gravis (MG are unclear.To critically evaluate the methodological quality of CPGs for MG using AGREE II instrument.A systematical search strategy on PubMed, EMBASE, DynaMed, the National Guideline Clearinghouse (NGC and the Chinese Biomedical Literature database (CBM was performed on September 20th 2013. All guidelines related to MG were evaluated with AGREE II. The software used for analysis was SPSS 17.0.A total of 15 CPGs for MG met the inclusion criteria (12 CPGs in English, 3 CPGs in Chinese. The overall agreement among reviews was moderate or high (ICC >0.70. The mean scores (mean ± SD for al six domains were presented as follows: scope and purpose (60.93% ± 16.62%, stakeholder involvement (40.93% ± 20.04%, rigor of development (37.22% ± 30.46%, clarity of presentation (64.26% ± 16.36%, applicability (28.19% ± 20.56% and editorial independence (27.78% ± 28.28%. Compared with non-evidence-based CPGs, evidence-based CPGs had statistically significant higher quality scores for all AGREE II domains (P0.05. The quality scores of CPGs developed by NGC/AAN were higher than the quality scores of CPGs developed by other organizations for all domains. The difference was statistically significant for all domains with the exception of clarity of presentation (P = 0.07.The qualities of CPGs on MG were generally acceptable with several flaws. The AGREE II instrument should be adopted by guideline developers, particularly in China.

  1. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  2. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  3. Voice tuning with new instruments for type II thyroplasty in the treatment of adductor spasmodic dysphonia.

    Science.gov (United States)

    Sanuki, Tetsuji; Yumoto, Eiji; Toya, Yutaka; Kumai, Yoshihiko

    2016-10-01

    Adductor spasmodic dysphonia is a rare voice disorder characterized by strained and strangled voice quality with intermittent phonatory breaks and adductory vocal fold spasms. Type II thyroplasty differs from previous treatments in that this surgery does not involve any surgical intervention into the laryngeal muscle, nerve or vocal folds. Type II thyroplasty intervenes in the thyroid cartilage, which is unrelated to the lesion. This procedure, conducted with the aim of achieving lateralization of the vocal folds, requires utmost surgical caution due to the extreme delicacy of the surgical site, critically sensitive adjustment, and difficult procedures to maintain the incised cartilages at a correct position. During surgery, the correct separation of the incised cartilage edges with voice monitoring is the most important factor determining surgical success and patient satisfaction. We designed new surgical instruments: a thyroid cartilage elevator for undermining the thyroid cartilage, and spacer devices to gauge width while performing voice monitoring. These devices were designed to prevent surgical complications, and to aid in selecting the optimal size of titanium bridges while temporally maintaining a separation during voice monitoring. We designed new surgical instruments, including a thyroid cartilage elevator and spacer devices. Precise surgical procedures and performing voice tuning during surgery with the optimal separation width of the thyroid cartilage are key points for surgical success. We introduce the technique of voice tuning using these surgical tools in order to achieve a better outcome with minimal surgical complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Procedures and instrumentation for sodium boiling experiments in EBR-II

    International Nuclear Information System (INIS)

    Crowe, R.D.

    1976-01-01

    The development of instrumentation capable of detecting localized coolant boiling in a liquid metal cooled breeder reactor (LMFBR) has a high priority in fast reactor safety. The detection must be rapid enough to allow corrective action to be taken before significant damage occurs to the core. To develop and test a method of boiling detection, it is desirable to produce boiling in a reactor and thereby introduce a condition in the reactor the original design concepts were chosen to preclude. The proposed boiling experiments are designed to safely produce boiling in the subassembly of a fast reactor and provide the information to develop boiling detection instrumentation without core damage or safety compromise. The experiment consists of the operation of two separate subassemblies, first, a gamma heated boiling subassembly which produces non-typical but highly conservative boiling and then a fission heated subassembly which simulates a prototypical boiling event. The two boiling subassemblies are designed to operate in the instrumentation subassembly test facility (INSAT) of Experiment Breeder Reactor II

  5. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  6. Technological considerations in emergency instrumentation preparedness. Phase II-D. Evaluation testing and calibration methodology for emergency radiological instrumentation

    International Nuclear Information System (INIS)

    Bramson, P.E.; Andersen, B.V.; Fleming, D.M.; Kathren, R.L.; Mulhern, O.R.; Newton, C.E.; Oscarson, E.E.; Selby, J.M.

    1976-09-01

    In response to recommendations from the Advisory Committee on Reactor Safeguards, the Division of Operational Safety, U.S. ERDA has contracted with Battelle, Pacific Northwest Laboratories to survey the adequacy of existing instrumentation at nuclear fuel cycle facilities to meet emergency requirements and to develop technical criteria for instrumentation systems to be used in assessment of environmental conditions following plant emergencies. This report, the fifth in a series, provides: (1) calibration methods to assure the quality of radiological measurements and (2) testing procedures for determining whether an emergency radiological instrument meets the performance specifications. Three previous reports in this series identified the emergency instrumentation needs for power reactors, mixed oxide fuel plants, and fuel reprocessing facilities. Each of these three reports contains a Section VI, which sets forth applicable radiological instrument performance criteria and calibration requirements. Testing and calibration procedures in this report have been formatted in two parts: IV and V, each divided into three subsections: (1) Power Reactors, (2) Mixed Oxide Fuel Plants, and (3) Fuel Reprocessing Facilities. The three performance criteria subsections directly coincide with the performance criteria sections of the previous reports. These performance criteria sections have been reproduced in this report as Part III with references of ''required action'' added

  7. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 °C...... for 1 h and nuclei were identified. It is found that the indentations are preferential nucleation sites. With EBSD maps around indentation tips, the orientation relationship between nuclei and matrix is analyzed. Finally, effects of rolling reduction and indentation load on local misorientations...... and stored energy distributions and thus on nucleation are discussed....

  8. Indentation Behavior of Permanently Densified Oxide Glasses

    DEFF Research Database (Denmark)

    Bechgaard, Tobias Kjær; Januchta, Kacper; Kapoor, Saurabh

    -induced changes in density, structure, and indentation behavior of a range of oxide glasses, including silicates, borates, and phosphates. The effect of compression on the structure is analyzed through both Raman and NMR spectroscopy, while the mechanical properties are investigated using Vickers micro......Hot isostatic compression can be used as a post treatment method to tune the properties of glass materials as well as to obtain improved understanding of the pressure-induced structural changes and densification mechanisms, e.g., during sharp contact loading. Here, we review the pressure......-indentation. The magnitude of the changes in all macroscopic properties (e.g., density, hardness, and crack resistance) is found to correlate well with the magnitude and type of structural change induced by hot compression. We show that the structural changes depend largely on the type of network former, the coordination...

  9. Optimisation of the PGAA instrument at FRM II for low background and 2D measurements

    International Nuclear Information System (INIS)

    Canella, Lea

    2011-01-01

    At the beginning of 2008, the new Prompt Gamma-ray Activation Analysis (PGAA) facility started operation at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). The main characteristic of this facility is the relatively intense cold neutron beam. This property is due to the special construction of the neutron beam guide; the last 7m are elliptically tapered, which means that the neutrons are focused on the sample. This arrangement allows for a max. neutron flux of 6.07 . 10 10 cm -2 s -1 , which is currently the highest cold neutron flux worldwide. Due to this high flux, the main problem encountered was the beam background, i.e. the radiation background created from irradiation of construction materials. The first part of this work was dedicated to the optimisation of the instrument. The goal achieved was a reduction of the background by a factor of 15. Once the instrument was optimised, measurements were dedicated to special elements like Cd, Sm, Eu, and Gd, that have very good characteristics for this method and to archaeological samples (old greek coins). Another improvement of the instrument was the development of a 2D imaging system. A new setup was installed in order to obtain spacial information about the distribution of elements inside samples. This imaging method was first applied to a small piece of the Allende meteorite with a different setup developed in the frame of the European Project ANCIENT CHARM. This setup was thought for 3D imaging, so the conditions were not optimal for 2D mapping. With this insight a second setup was built later specially dedicated for this application. In particular, the neutron field was reduced to a small spot of about 2 x 2 mm 2 and a two stage motor was built in order to allow the movement of the sample in two dimensions. Moreover, the possibility to evacuate the sample chamber was added. With this second setup the measurements on the Allende meteorite were repeated for a comparison. The 2D-setup was also applied

  10. Direct observations of dislocation substructures formed by nano-indentation of the α-phase in an α/β titanium alloy

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Lee, Eunha; Maher, Dennis M.; Banerjee, Srikumar; Fraser, Hamish L.

    2005-01-01

    Nano-indentation has been used to assess the hardness of equiaxed grains of α-Ti as a function of orientation. Surface normals of these grains in metallographic sections were assessed using orientation imaging microscopy. Thin membranes of material from below a series of nano-indentations were excised by use of a dual-beam focused ion beam instrument. In this way, the dislocation substructures beneath individual indentations were characterized using transmission electron microscopy, permitting an identification of both statistically stored and geometrically necessary dislocations

  11. Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium

    International Nuclear Information System (INIS)

    Sánchez-Martín, R.; Pérez-Prado, M.T.; Segurado, J.; Molina-Aldareguia, J.M.

    2015-01-01

    Tensile twinning is a key deformation mode in magnesium and its alloys, as well as in other hcp metals. However, the fundamentals of this mechanism are still not fully understood. In this research, instrumented nanoindentation and crystal plasticity finite element simulations are utilized to investigate twin formation and propagation in pure Mg. With that purpose, several nanoindentations at different indentation depths were performed in pure Mg single crystals with a wide range of crystallographic orientations. A careful analysis of the deformation profile, by atomic force microscopy, and of the microtexture, by electron backscatter diffraction, in areas around and underneath the indents, reveals that twinning is subjected to strong size effects, i.e., that the relative activity of twinning increases dramatically with the indentation depth. Furthermore, the twin volume fraction is found to be related to the pile-up or sink-in areas close to the indentations. A decrease in hardness in orientations where the twinning activity is high was confirmed both experimentally and by crystal plasticity finite element simulations. Finally, our results support the thesis that twin activation is an energetic process that demands a concentration of high stresses in a certain activation volume

  12. A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Wan, W.; Berghaus, A.; Schaff, O.

    2013-01-01

    In Part I we described a new design for an aberration-corrected Low Energy Electron Microscope (LEEM) and Photo Electron Emission Microscope (PEEM) equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control of the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length. In this Part II we discuss details of microscope operation, how the microscope is set up in a systematic fashion, and we present typical results. - Highlights: ► The C c and C 3 aberrations of a LEEM/PEEM instrument are corrected with an electrostatic electron mirror. ► The mirror provides independent control over C c , C 3 and focal length in close agreement with theory. ► A detailed alignment procedure for the corrected microscope is given. ► Novel methods to measure C c and C 3 of the objective lens and the mirror are presented. ► We demonstrate a record spatial resolution of 2 nm

  13. Clinical practice guidelines for treatment of acne vulgaris: a critical appraisal using the AGREE II instrument.

    Science.gov (United States)

    Sanclemente, Gloria; Acosta, Jorge-Luis; Tamayo, Maria-Eulalia; Bonfill, Xavier; Alonso-Coello, Pablo

    2014-04-01

    A significant number of clinical practice guidelines (CPGs) about the treatment of acne vulgaris in adolescents and adults have been published worldwide. However, little is known about the quality of CPGs in this field. The aim of this study was to appraise the methodological quality of published acne vulgaris CPGs. We performed a systematic review of published CPGs on acne vulgaris therapy from July 2002 to July 2012. Three reviewers independently assessed each CPG using the AGREE II instrument. A standardized score was calculated for each of the six domains. Our search strategy identified 103 citations but just six met our inclusion criteria. Agreement among reviewers was very good: 0.981. The domains that scored better were: "scope and purpose" and "clarity and presentation". Those that scored worse were "stakeholder involvement", "rigor of development", and "applicability". The European and the Malaysian CPGs were the only recommended with no further modifications. In addition, the Mexican, Colombian and the United States guidelines were recommended with provisos, with lower scores regarding stakeholder involvement, rigor of development and applicability. Only two guidelines clearly reported outcome measures for evaluating efficacy or included quality of life outcomes. CPGs varied regarding the consideration of light/laser therapy or consideration of complementary/alternative medicines. None of them included cost considerations of drugs such as systemic isotretinoin. In conclusion, published acne vulgaris CPGs for acne therapy vary in quality with a clear need to improve their methodological rigor. This could be achieved with the adherence to current CPGs development standards.

  14. Sound production in recorder-like instruments : II. a simulation model

    NARCIS (Netherlands)

    Verge, M.P.; Hirschberg, A.; Causse, R.

    1997-01-01

    A simple one-dimensional representation of recorderlike instruments, that can be used for sound synthesis by physical modeling of flutelike instruments, is presented. This model combines the effects on the sound production by the instrument of the jet oscillations, vortex shedding at the edge of the

  15. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  16. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  17. Long-Term Instrumentation, Information, and Control Systems (II and C) Modernization Future Vision and Strategy

    International Nuclear Information System (INIS)

    Thomas, Kenneth

    2012-01-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I and C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I and C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I and C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II and C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II and C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant

  18. The determination of flow distribution by analysis of indentation geometry

    International Nuclear Information System (INIS)

    Jayakumar, M.; Lucas, G.E.

    1984-01-01

    The purpose of this study was to investigate a means of characterizing localized plastic flow in irradiated metals with indentation hardness. Seven alloys, heat treatable to a range of strengths and ductilities, were investigated in both uniaxial tension and static indentation hardness tests. Deformation surfaces were examined by replication and by multiple beam and differential interference techniques. It was observed that specimens exhibiting very coarse slip produced quite asymmetric pile-ups around the indentations, whereas specimens exhibiting fine slip produced indentations which were symmetric in their pile-up. (orig.)

  19. The effect of friction on indentation test results

    International Nuclear Information System (INIS)

    Harsono, E; Swaddiwudhipong, S; Liu, Z S

    2008-01-01

    A smooth contact analysis is commonly adopted in simulated indentation. Limited studies have been performed to investigate the possibility of deviation due to this simplification. This study involves the finite element simulation of indentation by conical indenters and the Berkovich family of indenters with three different apex angles of indenter tips of 50°, 60° and 70.3°. Loading curvatures and the ratio of the remaining work done to the total work done of the load-indentation curves resulting from the simulated indentation tests considering friction and smooth contact surfaces were compared and discussed. A wide range of elasto-plastic materials obeying the power law strain hardening model were considered in this study. The results as presented herein demonstrate that the effect of friction on the two essential basic parameters from the load–indentation curves, namely, the loading curvatures and the ratio of the work done, varies depending on both mechanical properties of the target materials and the geometries of the indenter tips adopted in the investigation

  20. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  1. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    International Nuclear Information System (INIS)

    Brinckmann, Stephan A.; Frensemeier, Mareike; Laursen, Christopher M.; Maier, Hans J.; Britz, Dominik; Schneider, Andreas S.; Mücklich, Frank; Frick, Carl P.

    2016-01-01

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M f ) to above the austenite finish temperature (A f ) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M f or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  2. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brinckmann, Stephan A. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Frensemeier, Mareike [INM - Leibniz Institute for New Materials, Saarbrücken (Germany); Laursen, Christopher M. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Maier, Hans J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), Garbsen (Germany); Britz, Dominik [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Schneider, Andreas S. [AG der Dillinger Hüttenwerke, Department for Research, Development and Plate-Design, Dillingen (Germany); Mücklich, Frank [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Frick, Carl P., E-mail: cfrick@uwyo.edu [University of Wyoming, Mechanical Engineering Department, Laramie (United States)

    2016-10-15

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M{sub f}) to above the austenite finish temperature (A{sub f}) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M{sub f} or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  3. V4: The Small Angle Scattering Instrument (SANS at BER II

    Directory of Open Access Journals (Sweden)

    Uwe Keiderling

    2016-11-01

    Full Text Available V4 is a small-angle neutron scatting instrument with an accessible range of scattering vector 0.01 nm-1 < Q < 8.5 nm-1. Outstanding features of the instrument are the polarized neutron option and the list mode data acquisition, allowing for time-resolved measurements with µs time resolution.

  4. Feedback to Managers, Volume II: A Review and Comparison of Sixteen Multi-Rater Feedback Instruments.

    Science.gov (United States)

    Van Velsor, Ellen; Leslie, Jean Brittain

    "Feedback to Managers" is a two-volume report. Volume 2 compares 16 of the better feedback instruments available. The following are the instruments: (1) ACUMEN Group Feedback; (2) BENCHMARKS; (3) the Campbell Leadership Index; (4) COMPASS: the Managerial Practices Survey; (5) the Executive Success Profile; (6) Leader Behavior Analysis…

  5. A New Method for Evaluating the Indentation Toughness of Hardmetals

    Directory of Open Access Journals (Sweden)

    Prem C. Jindal

    2018-05-01

    Full Text Available This paper proposes a new method of evaluating the indentation toughness of hardmetals using the length of Palmqvist cracks (C and Vickers indentation diagonal size (di. Indentation load “P” is divided into two parts: Pi for plastic indentation size and Pc for Palmqvist cracks. Pi depends upon the square of the indentation size (di2 and Pc depends upon (C3/2. The new method produces a very good linear relationship between the calculated indentation toughness values and the standard conventional linear elastic fracture mechanics toughness values with the same cemented carbide materials for a large number of standard Kennametal grades for both straight WC-Co carbide grades and grades containing cubic carbides. The new method also works on WC-Co hardmetal data selected from recently published literature. The technique compares the indentation toughness values of WC-Co materials before and after vacuum annealing at high temperature. The indentation toughness values of annealed carbide samples were lower than for un-annealed WC-Co hardmetals.

  6. Phase field modeling of twinning in indentation of transparent crystals

    International Nuclear Information System (INIS)

    Clayton, J D; Knap, J

    2011-01-01

    Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory

  7. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  8. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  9. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  10. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  11. Neutron scattering-instrumentation at the upgraded research reactor BER II

    International Nuclear Information System (INIS)

    1991-01-01

    The Berlin Neutron Scattering Centre (BENSC) is a newly created special department of the Hahn-Meitner-Institut, in the framework of which the BER II neutron beam reactor is made available to external users. BENSC is devoted to development, continuous modernisation and maintenance of the scientific instrumets at the BER II and to the support of their users. (orig./HSI)

  12. Autonomous acquisition systems for TJ-II: controlling instrumentation with a fourth generation language

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A.B.; Vega, J.; Agudo, J.M.; McCarthy, K.J.; Ruiz, M.; Barrera, E.; Lopez, S.

    2004-01-01

    Recently, 536 new acquisition channels, made-up of three different channel types, have been incorporated into the TJ-II data acquisition system (DAQ). Dedicated software has also been developed to permit experimentalists to program and control the data acquisition in these systems. The software has been developed using LabView and runs under the Windows 2000 operating system in both personal computer (PC) and PXI controllers. In addition, LabView software has been developed to control TJ-II VXI channels from a PC using a MXI connection. This new software environment will also aid future integration of acquisition channels into the TJ-II remote participation system. All of these acquisition devices work autonomously and are connected to the TJ-II central server via a local area network. In addition, they can be remotely controlled from the TJ-II control-room using Virtual Network Computing (VNC) software

  13. Analytical method for establishing indentation rolling resistance

    Directory of Open Access Journals (Sweden)

    Gładysiewicz Lech

    2018-01-01

    Full Text Available Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  14. Analytical method for establishing indentation rolling resistance

    Science.gov (United States)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  15. AFM indentation study of breast cancer cells

    International Nuclear Information System (INIS)

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-01-01

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis

  16. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  17. Nano indentation of particulate and polymer films

    International Nuclear Information System (INIS)

    Akram, Aisha

    2001-01-01

    A detailed knowledge of the formation and rupture mechanisms of agglomerates is essential when seeking to model equipment designed to produce and process such agglomerated particulate solids. In the work to be described the nano-indentation of two-dimensional agglomerate films was carried out in order to establish a means of identifying the generic breakage mechanisms of agglomerated systems. Data analysis techniques are developed that enable the individual inter-particle junction strengths to be calculated for a model system consisting of rather mono-dispersed colloidal silica particles (20-24 nm diameter) bound with a poly(methyl methacrylate). Applied load and penetration depth data in the range (10 mN and 500 nm respectively) are provided as a function of loading time during a continuous loading. It is argued that these data enable the sequence of the discrete binder bridge failures to be observed thus giving a quantitative indication of the breakage mechanism of this agglomerate system as well as reflect the agglomerate structure. The secondary objective of this work was to produce a range of agglomerates with different mechanical properties, without changing the type and amount of binder or prime particles used in the system. This was achieved by altering the mechanical properties of the binder, poly(methyl methacrylate), by the use of a variety of solvents. From data obtained using nano-indentation on thin films of the treated polymer, brittle and ductile forms of poly(methyl methacrylate) could be distinguished. These trends are reflected, to some degree, in the mechanical response of the agglomerated layers. (author)

  18. Experience with agreements as instruments in climate policies - phase II; Erfaringer med avtaler som klimapolitisk virkemiddel - fase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Norway, a project has been done to study the use of agreements as an environmental instrument. The subjects discussed in this report are (1) a mapping and assessment of the recently established system for agreements in Germany between the authorities and the industry on reduced CO{sub 2} emission, (2) a mapping and assessment of the status of agreements in the European Community, (3) an updating of the development of the agreements in New Zealand and Denmark and (4) an assessment of issues in the agreement between the Dutch authorities and the Sep group of electricity companies on reduced SO{sub 2} and NOx emissions that are relevant for Norway. The emphasis is on the new German agreement system. Attention is also given to the agreement system in New Zealand because it comprises some of the sectors that are relevant for agreements in Norway. 7 refs.

  19. An Instrument for Inspecting Aspheric Optical Surfaces and Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a Phase II SBIR proposal to develop an extremely versatile optical inspection tool for aspheric optical components and optics that are not easily inspected...

  20. On indentation and scratching of thin films on hard substrates

    International Nuclear Information System (INIS)

    Larsson, Per-Lennart; Wredenberg, Fredrik

    2008-01-01

    Indentation and scratching of thin film/substrate structures, using sharp conical indenters, are studied theoretically and numerically and discussed in particular with material characterization in mind. For simplicity, but not out of necessity, the material behaviour is described by classical elastoplasticity accounting for large deformations. Explicit material parameters are chosen in order to arrive at representative results as regards material behaviour and indenter geometry. The main efforts are devoted towards an understanding of the influence from the film/substrate boundary on global indentation (scratching) properties at different material combinations. Global quantities to be investigated include indentation and scratching hardness, contact area and apparent coefficient of friction at scratching. A comparison of the mechanical behaviour at normal indentation and at scratching is also included. In addition, the behaviour of different field variables is studied and in this case the discussion is focused on fracture initiation governed by a critical stress criterion. The numerical investigation is performed using the finite element method and the numerical strategy is discussed in some detail. Throughout the analysis it is assumed that the substrate is considerably harder than the indented film and consequently the deformation of the substrate is neglected

  1. Indigenous instrumentation for mass spectrometry: Part II - development of plasma source mass spectrometers. PD-5-3

    International Nuclear Information System (INIS)

    Nataraju, V.

    2007-01-01

    The growing demands from analytical community, for a precise isotope ratio and ultra trace concentration measurements, has lead to significant improvement in mass spectrometer instrumentation development with respect to sensitivity, detection limits, precision and accuracy. Among the many analytical techniques available, plasma source mass spectrometers like Inductively Coupled Plasma Mass Spectrometry (ICPMS), multi collector (MC) ICPMS and Glow Discharge Mass Spectrometry (GDMS), have matured into reliable tools for the above applications. Where as ICPMS is by far the most successful method for aqueous solutions, GDMS is being applied for bulk and impurity analysis of conducting as well non-conducting solids. VPID, BARC has been developing mass spectrometers for different inorganic applications of DAE users. Over the years expertise has been developed in all the aspects of mass spectrometry instrumentation. Part 1 of this indigenous instrumentation on mass spectrometry gives details of magnetic sector instruments with either EI or TI source for isotopic ratio analysis. The present paper is a continuation of that on plasma source and quadrupole mass spectrometers. This paper covers i) ICP-QMS, ii) MC-ICPMS, iii) GDMS and iv) QMS

  2. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    DEFF Research Database (Denmark)

    Wright, G. S.; Wright, David; Goodson, G. B.

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 µm. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar...... in terms of the "as-built" instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements....

  3. [Historical Archives of Italian Nephrology. The history of instrumentation in nephrology. Part II: microscope and haemodialyzer].

    Science.gov (United States)

    Timio, M

    2003-01-01

    Medicine in the technological era acquired many of the characteristics that concurrently marked other fields. So, by adopting procedures based on information obtained with instruments and devices, medicine developed an approach to illness that transformed it into a special form of technology. The collective effect of instrumentation deserves consideration and offers the historian opportunities for interpreting the interaction between physician and his patients in other than scientific and technological terms. The very construction of instruments and devices depends on the Author's ideas assembled with the basic theories of the time. For instance, at the end of the nineteenth century, when medical instruments became essential, the bacterial origin of diseases revolutionised their construction and application. In this context, the invention and use of the microscope became an outstanding feature of the clinical approach by disclosing the cellular universe. The microscope had become crucial in locating some major causes of physical suffering and death in man, and was considered the pre-eminent diagnostic instrument in medicine. In the nephrological field, the microscope drew the physician into a universe of physical changes that were concealed to the naked eye. The microscope made possible the verification of some of Bright's brilliant ideas, something that helped physicians classify glomerulonephritis. Many nephrologists confessed "how few things are established in this subject (nephrology) and how many more difficulties are established, we have learned by experience with the microscope". The modesty of this claim is striking. In nephrology, as in other fields, the admission of ignorance proved to be the beginning of wisdom. This wisdom, based on the admission of ignorance and assembled through the commitment and ingenuity of the pioneers of the dialysis treatment, led to the treatment of end-stage renal disease and the guarantee of success. The technique of

  4. A new generation of x-ray spectrometry UHV instruments at the SR facilities BESSY II, ELETTRA and SOLEIL

    Energy Technology Data Exchange (ETDEWEB)

    Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.; Hönicke, P.; Müller, M.; Pollakowski, B.; Ulm, G.; Weser, J.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Bogovac, M.; Kaiser, R. B.; Karydas, A. G.; Leani, J. J.; Migliori, A.; Sghaier, H. [Nuclear Science and Instrumentation Laboratory, IAEA Laboratories, A-2444, Seibersdorf (Austria); Boyer, B.; Lépy, M. C.; Ménesguen, Y. [CEA, LIST, Laboratoire National Henri Becquerel, Bât. 602 PC 111, CEA-Saclay 91191 Gif-sur-Yvette c. (France); Detlefs, B. [CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble (France); Eichert, D. [Elettra - Sincrotrone Trieste (EST) S.C.p.A., 34149 Basovizza, Trieste (Italy); and others

    2016-07-27

    A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors such as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.

  5. The mechanical response of tetragonal zirconia polycrystal to conical indentation

    International Nuclear Information System (INIS)

    Asif, S.A.S.; Biswas, S.K.

    1994-01-01

    Blocks of 3Y-TZP were indented with conical diamond indenters. Indentation caused tetragonal to monoclinic phase transformation in a subsurface. Of the cracks generated in the subsurface, radial and lateral cracks can be accounted for by a continuum model of the indented subsurface, built using a combination of the Boussinesq and blister stress fields. Additional ring, median and cone cracks were also observed. It is hypothesized that the latter are motivated by the reduction in blister strength or residual energy brought about by the material damage caused by the phase transformation. This damage reduces the load bearing capacity of the material progressively with increasing normal load. (author). 13 refs., 5 figs., 2 tabs

  6. Indentation and needle insertion properties of the human eye.

    Science.gov (United States)

    Matthews, A; Hutnik, C; Hill, K; Newson, T; Chan, T; Campbell, G

    2014-07-01

    Characterization of the biomechanical properties of the human eye has a number of potential utilities. One novel purpose is to provide the basis for development of suitable tissue-mimicking material. The purpose of this study was to determine the indentation and needle insertion characteristics on human eye globes and tissue strips. An indenter assessed the elastic response of human eye globes and tissue strips under increasing compressive loads. Needle insertion determined the force (N) needed to penetrate various areas of the eye wall. The results demonstrated that globes underwent slightly greater indentation at the midline than at the central cornea, and corneal strips indented twofold more than scleral strips, although neither difference was significant (P=0.400 and P=0.100, respectively). Significant differences were observed among various areas of needle insertion (Phuman eye construct with potential utility as a model for use in ophthalmology research and surgical teaching.

  7. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  8. Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S. [School of Civil Engineering, University of Sydney, Sydney NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia); Bocciarelli, Massimiliano, E-mail: massimiliano.bocciarelli@polimi.it [Department of Structural Engineering, Technical University of Milan (Politecnico di Milano), 20133 Milan (Italy); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia); Ranzi, Gianluca [School of Civil Engineering, University of Sydney, Sydney NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia)

    2011-11-25

    Highlights: {yields} Identification of mechanical properties by indentation test and inverse analysis. {yields} Pile-up height is also considered as experimental information. {yields} Inverse problem results to be well posed also in the case of mystical materials. {yields} 2024 Al alloy samples prepared using different age-hardening treatments are studied. - Abstract: This paper outlines an inverse analysis approach aimed at the identification of the mechanical properties of metallic materials based on the experimental results obtained from indentation tests. Previous work has shown the ill-posed nature of the inverse problem based on the load-penetration curve when dealing with mystical materials, which exhibit identical indentation curves even if possessing different yield and strain-hardening properties. For this reason, an additional measurement is used in the present study as input for the inverse analysis which consists of the maximum pile-up height measured after the indentation test. This approach lends itself for practical applications as the load-penetration curve can be easily obtained from commonly available micro-indenters while the pile-up present at the end of the test can be measured by different instruments depending on the size of the indented area, for example by means of an atomic force microscope or a laser profilometer. The inverse analysis procedure consists of a batch deterministic approach, and conventional optimization algorithms are employed for the minimization of the discrepancy norm. The first part of the paper outlines how the inclusion of both the maximum height of the pile-up and the indentation curve in the input data of the inverse analysis leads to a well-defined inverse problem using parameters of mystical materials. The approach is then applied to real experimental data obtained from three sets of 2024 Al alloy samples prepared using different age-hardening treatments. The accuracy of the identification process is validated

  9. Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests

    International Nuclear Information System (INIS)

    Moy, Charles K.S.; Bocciarelli, Massimiliano; Ringer, Simon P.; Ranzi, Gianluca

    2011-01-01

    Highlights: → Identification of mechanical properties by indentation test and inverse analysis. → Pile-up height is also considered as experimental information. → Inverse problem results to be well posed also in the case of mystical materials. → 2024 Al alloy samples prepared using different age-hardening treatments are studied. - Abstract: This paper outlines an inverse analysis approach aimed at the identification of the mechanical properties of metallic materials based on the experimental results obtained from indentation tests. Previous work has shown the ill-posed nature of the inverse problem based on the load-penetration curve when dealing with mystical materials, which exhibit identical indentation curves even if possessing different yield and strain-hardening properties. For this reason, an additional measurement is used in the present study as input for the inverse analysis which consists of the maximum pile-up height measured after the indentation test. This approach lends itself for practical applications as the load-penetration curve can be easily obtained from commonly available micro-indenters while the pile-up present at the end of the test can be measured by different instruments depending on the size of the indented area, for example by means of an atomic force microscope or a laser profilometer. The inverse analysis procedure consists of a batch deterministic approach, and conventional optimization algorithms are employed for the minimization of the discrepancy norm. The first part of the paper outlines how the inclusion of both the maximum height of the pile-up and the indentation curve in the input data of the inverse analysis leads to a well-defined inverse problem using parameters of mystical materials. The approach is then applied to real experimental data obtained from three sets of 2024 Al alloy samples prepared using different age-hardening treatments. The accuracy of the identification process is validated against the mechanical

  10. Recent advances in the instrumental techniques for the analysis of modern materials (II)

    International Nuclear Information System (INIS)

    Ahmed, M.

    1990-01-01

    Inductively Coupled Plasma Mass Spectrometry ICP-MS a logical development of equally established sister technique of ICP-AEA discussed in part-1 of this series of article on modern analytical techniques. The rapid adaptation of argon plasma as ion source for time of flight quadrupole mass analyser has led to the development of truly integrated instrumental technique for analysis of solutions and slurries. The powerful combination with laser ablation device has made the direct analysis of geological, geochemical and other complex conducting and non conducting samples possible in days rather months at sub ppm levels. Parallel development in computer hardware and software has made the instrumental optimization easy enabling the generation of meaningful analytical data a matter of routine. The limitations imposed by spectroscopic and non restricted the variety of matrices and materials covered by ICP-MS of LA-ICP-MS. The technique has provided it formidable analytical power in wide areas of industrial environmental, social, biological and break through advanced materials used in space mass communication, transportation and general areas of advanced analytical chemistry. It is expected that in combination with other instrumental methods as HPLC, ETC, ion chromatography. ICP-MS shall continue to dominate well into the 21st century. (author)

  11. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    Science.gov (United States)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  12. Study of the interaction between the indentation size effect and Hall-Petch effect with spherical indenters on annealed polycrystalline copper

    International Nuclear Information System (INIS)

    Hou, X D; Bushby, A J; Jennett, N M

    2008-01-01

    Methods to obtain tensile stress-strain properties of materials from a practically non-destructive indentation test are of great industrial interest. Nanoindentation is a good candidate. However, to do this successfully, indentation size effects must be accounted for. An indentation size effect with spherical indenters has been shown for a range of fcc metals with relatively large grain size (Spary et al 2006 Phil. Mag. 86 5581-93); the increase in yield stress being proportional to the inverse cube root of indenter radius. Here, we investigate these differences further and present results for the indentation size effect with spherical indenters on Cu samples with a range of different grain sizes from 1 μm to single crystal. The important experimental control parameter, of the relative size of the indentation compared with the grain size, is also explored by using indenters of different radii on the different grain sized samples. When the grain size, d, is less than 6 times the radius of the projected contact area, a, a Hall-Petch-like behaviour is observed superimposed on the indentation size effect. For d > 6a the indentation size effect dominates. The two effects may be combined by addition in quadrature. This new parametric function is able to predict the indentation pressure in annealed copper given input values of indenter radius and grain size

  13. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  14. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  15. Determination of area reduction rate by continuous ball indentation test

    International Nuclear Information System (INIS)

    Zou, Bin; Guan, Kai Shu; Wu, Sheng Bao

    2016-01-01

    Rate of area reduction is an important mechanical property to appraise the plasticity of metals, which is always obtained from the uniaxial tensile test. A methodology is proposed to determine the area reduction rate by continuous ball indentation test technique. The continuum damage accumulation theory has been adopted in this work to identify the failure point in the indentation. The corresponding indentation depth of this point can be obtained and used to estimate the area reduction rate. The local strain limit criterion proposed in the ASME VIII-2 2007 alternative rules is also adopted in this research to convert the multiaxial strain of indentation test to uniaxial strain of tensile test. The pile-up and sink-in phenomenon which can affect the result significantly is also discussed in this paper. This method can be useful in engineering practice to evaluate the material degradation under severe working condition due to the non-destructive nature of ball indentation test. In order to validate the method, continuous ball indentation test is performed on ferritic steel 16MnR and ASTM (A193B16), then the results are compared with that got from the traditional uniaxial tensile test.

  16. Indentation of a floating elastic sheet: geometry versus applied tension.

    Science.gov (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A

    2017-10-01

    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  17. A program for the a priori evaluation of detection limits in instrumental neutron activation analysis using a SLOWPOKE II reactor

    International Nuclear Information System (INIS)

    Galinier, J.L.; Zikovsky, L.

    1982-01-01

    A program that permits the a priori calculation of detection limits in monoelemental matrices, adapted to instrumental neutron activation analysis using a SLOWPOKE II reactor, is described. A simplified model of the gamma spectra is proposed. Products of (n,p) and (n,α) reactions induced by the fast components of the neutron flux that accompanies the thermal flux at the level of internal irradiation sites in the reactor have been included in the list of interfering radionuclides. The program calculates in a systematic way the detection limits of 66 elements in an equal number of matrices using 153 intermediary radionuclides. Experimental checks carried out with silicon (for short lifetimes) and aluminum and magnesium (for intermediate lifetimes) show satisfactory agreement with the calculations. These results show in particular the importance of the contribution of the (n,p) and (n,α) reactions in the a priori evaluation of detection limits with a SLOWPOKE type reactor [fr

  18. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    International Nuclear Information System (INIS)

    Ridha Roslan; Nik Mohd Faiz Khairuddin

    2013-01-01

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  19. Indentation techniques in nuclear applications: a review paper

    International Nuclear Information System (INIS)

    Spino, J.; Goll, W.; Toscano, E.H.

    2005-01-01

    Indentation testing, in particular micro-indentation tests, is a straightforward method to determine several properties of irradiated materials. In fact, with this type of tests, material constants and fracture properties can be deduced from measurements performed on a relatively small surface, which constitutes an important advantage when dealing with highly radioactive specimens. On the other hand, since the material response to indentation is complex, with the occurring elastic and plastic deformations being affected by radiation damage, impurities and temperature variations, careful analysis of the data is required. In the nuclear field, materials of direct interest range from carbide-, nitride- and oxide-fuels, to diverse ceramic and glasses utilized for the immobilization of high level nuclear waste, as well as simulated fuels and fuel-rod cladding materials, the later which are tested to analyze the loss of ductility after irradiation and its recovery after high temperature annealing. This paper describes the most common indentation techniques and the essential properties that can be determined by these techniques. A review of the main results obtained by indentation testing in fuels, waste glasses and cladding materials is also provided. (Author)

  20. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  1. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  2. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  3. A critical appraisal of chronic kidney disease mineral and bone disorders clinical practice guidelines using the AGREE II instrument.

    Science.gov (United States)

    Sekercioglu, Nigar; Al-Khalifah, Reem; Ewusie, Joycelyne Efua; Elias, Rosilene M; Thabane, Lehana; Busse, Jason W; Akhtar-Danesh, Noori; Iorio, Alfonso; Isayama, Tetsuya; Martínez, Juan Pablo Díaz; Florez, Ivan D; Guyatt, Gordon H

    2017-02-01

    Patients with chronic kidney disease mineral and bone disorders (CKD-MBD) suffer high rates of morbidity and mortality, in particular related to bone and cardiovascular outcomes. The management of CKD-MBD remains challenging. The objective of this systematic survey is to critically appraise clinical practice guidelines (CPGs) addressing CKD-MBD. Data sources included MEDLINE, EMBASE, the National Guideline Clearinghouse, Guideline International Network and Turning Research into Practice up to May 2016. Teams of two reviewers, independently and in duplicate, screened titles and abstracts and potentially eligible full text reports to determine eligibility and subsequently appraised the guidelines using the Advancing Guideline Development, Reporting and Evaluation in Health Care instrument II (AGREE). Sixteen CPGs published from 2003 to 2015 addressing the diagnosis and management of CKD-MBD in adult patients (11 English, two Spanish, one Italian, one Portuguese and one Slovak) proved eligible. The National Institute for Health and Care Excellence guideline performed best with respect to AGREE II criteria; only three other CPGs warranted high scores on all domains. All other guidelines received scores of under 60% on one or more domains. Major discrepancies in recommendations were not, however, present, and we found no association between quality of CPGs which was not associated with resulting recommendations. Most guidelines assessing CKD-MBD suffer from serious shortcomings using AGREE criteria although limitations with respect to AGREE criteria do not necessarily lead to inappropriate recommendations.

  4. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  5. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  6. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  7. Force-deflection analysis of offset indentations on pressurised pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2007-01-01

    The indenter force vs. deflection characteristics of pressurised pipes with long offset indentations under plane strain conditions have been investigated using finite element (FE) and analytical methods with four experimental tests performed on aluminium rings. Two different materials and five different geometries were used to investigate their effects on the elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results indicates that the analytical formulation developed in this paper, for predicting the force-deflection curves for pressurised pipes with offset indenters, is reasonably accurate. Also, all of the analyses presented in this paper indicate that by using a representative flow stress, which is defined as the average of the yield and ultimate tensile stresses, the analytical method can accurately predict the force-deflection curves

  8. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  9. Master-slave robotic system for needle indentation and insertion.

    Science.gov (United States)

    Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan

    2017-12-01

    Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.

  10. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  11. FaNGaS: a New Instrument for Fast Neutron Gamma Spectroscopy at FRM II Research Reactor at Garching

    Energy Technology Data Exchange (ETDEWEB)

    Randriamalala, T.; Rossbach, M.; Genreith, C. [Institute of Energy and Climate Research, IEK-6: Nuclear Waste and Reactor Safety Fuel Cycle, Forchungszentrum Juelich GmbH in der Helmholtz-Gemeinshaft, 52428 Juelich (Germany); Revay, Zs.; Kudejova, P.; Soellradl, S.; Wagner, F.M. [Heinz Maier-Leibnitz Zentrum - MLZ, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85748 Garching (Germany)

    2015-07-01

    For the identification and quantification of actinides in radioactive packages, the non-destructive method of Prompt-Gamma Activation Analysis (PGAA) is applied. To investigate the inelastic (n, n 'γ) scattering, a new instrumentation was installed at the FRM II research reactor. It is designed to exploit the 10{sup 8} cm{sup -2}s{sup -1} neutrons at an average neutron energy of 1.9 MeV delivered by the SR10 beam line. The outgoing prompt γ-rays are measured utilizing a 50% efficiency HPGe detector. Since the cross sections are expected to be low for such a process, two related factors had to be taken into account for the design of the instrumentation: the high beam intensity at the sample position and the high signal-to-background ratio seen by the detector. Eventual low energy neutrons due to the multiple scatterings through the beam line can be minimized using collimators in the beam tube. This has also an effect to a prior neutrons and photons background reduction of the experimental environment. A higher efficiency of the counting can be achieved by the lowering of background at the detector. In this case, a heavy shielding for both neutrons and photons, is designed around the detector while optimizing the sample-detector distance. Monte-Carlo simulation studies were conducted to effectively design the fast neutron beam collimators and the detector shield. A detailed description of the setup characterization and results from simulations and experimental measurements will be discussed through this contribution. (authors)

  12. High School and Beyond. 1980 Senior Coort. Third-Follow-Up (1986). Data File User's Manual. Volume II: Survey Instruments. Contractor Report.

    Science.gov (United States)

    Sebring, Penny; And Others

    Survey instruments used in the collection of data for the High School and Beyond base year (1980) through the third follow-up surveys (1986) are provided as Volume II of a user's manual for the senior cohort data file. The complete user's manual is designed to provide the extensive documentation necessary for using the cohort data files. Copies of…

  13. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  14. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  15. Strain mapping under spherical indentations using transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Cackett, A.; Hardie, C.; Wilkinson, A.; Dicks, K.

    2015-01-01

    Due to restrictions on both the specimen volumes available and the activity levels research facilities can handle, testing techniques on the micron-scale are very attractive for the study of irradiated material. However, the results of such small tests are convoluted by plasticity size-effects. Spherical nano-indentation is increasingly used to probe irradiated material, but to characterise the area of plastic deformation surrounding indentations a method capable of providing crystallographic information at extremely high spatial resolution is required. Transmission Kikuchi Diffraction (TKD) is a novel diffraction technique that can be performed in a scanning electron microscope. Using this technique, spatial resolutions below 10 nm have been achieved. Initial results, shown here, demonstrate the use of TKD in mapping the lattice rotations caused by indentation produced with a spherical diamond tip. With the addition of strain mapping software the plastic zone size was also evaluated for the first time using diffraction patterns generated via TKD. For a tip of radius 15 μm, inserted into Fe to a strain of 0.07, the plastic zone was observed to extend 1.3 μm to either side of the incident location of indentation and the deformation depth was approximately 0.5 μm. (authors)

  16. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    constitutive length parameters to model sizeeffects. The problem is studied numerically using a strain gradient crystal visco-plasticity theory formulated along the lines proposed by Fleck andWillis (2009). It is shown how the force-indentation relation is affected due to size-dependence in the material. Size...

  17. Competing indentation deformation mechanisms in glass using different strengthening methods

    Directory of Open Access Journals (Sweden)

    Jian Luo

    2016-11-01

    Full Text Available Chemical strengthening via ion exchange, thermal tempering, and lamination are proven techniques for strengthening of oxide glasses. For each of these techniques, the strengthening mechanism is conventionally ascribed to the linear superposition of the compressive stress profile on the glass surface. However, in this work we use molecular dynamics simulations to reveal the underlying indentation deformation mechanism beyond the simple linear superposition of compressive and indentation stresses. In particular, the plastic zone can be dramatically different from the commonly assumed hemispherical shape, which leads to a completely different stress field and resulting crack system. We show that the indentation-induced fracture is controlled by two competing mechanisms: the compressive stress itself and a potential reduction in free volume that can increase the driving force for crack formation. Chemical strengthening via ion exchange tends to escalate the competition between these two effects, while thermal tempering tends to reduce it. Lamination of glasses with differential thermal expansion falls in between. The crack system also depends on the indenter geometry and the loading stage, i.e., loading vs. after unloading. It is observed that combining thermal tempering or high free volume content with ion exchange or lamination can impart a relatively high compressive stress and reduce the driving force for crack formation. Therefore, such a combined approach might offer the best overall crack resistance for oxide glasses.

  18. Indentation deformation and fracture of thin polystyrene films

    International Nuclear Information System (INIS)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W.

    2002-01-01

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 μm were studied. It was difficult to induce delamination in the 2-μm film while the 3.5-μm film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m 2 for the 3.5-μm PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass

  19. Indentation deformation and fracture of thin polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W

    2002-09-02

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 {mu}m were studied. It was difficult to induce delamination in the 2-{mu}m film while the 3.5-{mu}m film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m{sup 2} for the 3.5-{mu}m PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass.

  20. Image analysis of moving seeds in an indented cylinder

    DEFF Research Database (Denmark)

    Buus, Ole; Jørgensen, Johannes Ravn

    2010-01-01

    inspection in seed cleaning equipment. A prototype of an indented cylinder will be constructed. To make it more dynamic, the cylinder itself will be manufactured using 3D printing technology. The input will come either from 3D scans of existing cylinders or by defining their topology using parametric B...

  1. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  2. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  3. Poroviscoelastic cartilage properties in the mouse from indentation.

    Science.gov (United States)

    Chiravarambath, Sidharth; Simha, Narendra K; Namani, Ravi; Lewis, Jack L

    2009-01-01

    A method for fitting parameters in a poroviscoelastic (PVE) model of articular cartilage in the mouse is presented. Indentation is performed using two different sized indenters and then these data are fitted using a PVE finite element program and parameter extraction algorithm. Data from a smaller indenter, a 15 mum diameter flat-ended 60 deg cone, is first used to fit the viscoelastic (VE) parameters, on the basis that for this tip size the gel diffusion time (approximate time constant of the poroelastic (PE) response) is of the order of 0.1 s, so that the PE response is negligible. These parameters are then used to fit the data from a second 170 mum diameter flat-ended 60 deg cone for the PE parameters, using the VE parameters extracted from the data from the 15 mum tip. Data from tests on five different mouse tibial plateaus are presented and fitted. Parameter variation studies for the larger indenter show that for this case the VE and PE time responses overlap in time, necessitating the use of both models.

  4. Application of Indenting Method for Calculation of Activation Energy

    International Nuclear Information System (INIS)

    Kim, Jong-Seog; Kim, Tae-Ryong

    2006-01-01

    For the calculation of activation energy of cable materials, we used to apply the break-elongation test in accordance with ASTM D412(Stand Test Methods for Rubber Properties in Tension). For the cable jacket and insulation which have regular thickness, break-elongation test had been preferred since it showed linear character in the activation energy curve. But, for the cable which has irregular thickness or rugged surface of cable inside, break-elongation test show scattered data which can not be used for the calculation of activation energy. It is not easy to prepare break-elongation specimen for the cable smaller than 13mm diameter in accordance with ASTM D412. In the cases of above, we sometime use TGA method which heat the specimen from 50 .deg. C to 700 .deg. C at heating rates of 10, 15, 20 .deg. C/min. But, TGA is suspected for the representative of natural aging in the plant since it measure the weight decreasing rate during burning which may have different aging mechanism with that of natural aging. To solve above problems, we investigated alternatives such as indenter test. Indenter test is very convenient since it does not ask for a special test specimen as the break-elongation test does. Regular surface of cable outside is the only requirement of indenter test. Experience of activation energy calculation by using the indenter test is described herein

  5. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-05-15

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method.

  6. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    International Nuclear Information System (INIS)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-01-01

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method

  7. The effect of adhesion on the contact radius in atomic force microscopy indentation

    International Nuclear Information System (INIS)

    Sirghi, L; Rossi, F

    2009-01-01

    The effect of adhesion on nanoscale indentation experiments makes the interpretation of force-displacement curves acquired in these experiments very difficult. The indentation force results from the addition of adhesive and elastic forces at the indenter-sample contact. The evolution of the two forces during the indentation is determined by the variation of the indenter-sample contact radius. In the present work the variation of contact radius during atomic force microscopy (AFM) indentation of elastic and adhesive samples with conical indenters (AFM tips) is indirectly determined by measurements of the contact dynamic stiffness. For weak sample deformations, the contact radius is determined mainly by the adhesion force and indenter apex radius. For strong sample deformations, the contact radius increases linearly with the increase of the indenter displacement, the slope of this linear dependence being in agreement with Sneddon's theory of indentation (Sneddon 1965 Int. J. Eng. Sci. 3 47). Based on these results, a theoretical expression of indentation force dependence on displacement is found. This expression allows for determination of the thermodynamic work of adhesion at the indenter-sample interface and the sample elasticity modulus.

  8. The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation

    International Nuclear Information System (INIS)

    Lankford, J.; Davidson, D.L.

    1979-01-01

    The threshold for indentation cracking is established for a range of ceramic materials, using the techniques of scanning electron microscopy and acoustic emission. It is found that by taking into account indentation plasticity, current theories may be successfully combined to predict threshold indentation loads and crack sizes. Threshold cracking is seen to relate to radial rather than median cracking. (author)

  9. Selective-catalyst formation for carbon nanotube growth by local indentation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, T. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)], E-mail: yst@mech.nagaokaut.ac.jp; Nakai, Y.; Onozuka, Y. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2008-01-15

    We studied the selective formation of Co catalyst particles as a function of indentation pressure. We subjected a Co (8 nm thickness)/Si substrate pre-annealed at 600 deg. C to indentation processing. The catalytic function was confirmed in the indentations by the selective growth of carbon nanotubes (CNTs) at 800 deg. C. The number density of CNTs against the indentation pressure was investigated against indentation loads for two types of indenter: a Berkovich indenter with a ridge angle of 115{sup o} and a Berkovich indenter with a ridge angle of 90{sup o}. The pressures above 7 GPa applied by the former indenter enhanced Co atomization acting as a catalyst function for CNT growth (35 CNTs in one indentation). In contrast to this, the number of CNTs was markedly reduced when the latter indenter was used with pressures less than 3 GPa. The pop-out phenomenon was observed in unloading curves at pressures above 7 GPa. These results indicate that metastable Si promotes the self-aggregation of catalyst particles (Co) leading to the selective growth of CNTs within indentations at pressures above 7 GPa.

  10. A preliminary study of archaeological ceramic from the Sao Paulo II, Brazil, archaeological site by Instrumental Neutron Activation Analysis (INAA)

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio B.; Munita, Casimiro S.; Oliveira, Paulo M.S.; Neves, Eduardo G.; Tamahara, Eduardo K.

    2011-01-01

    The determination of trace elements plays an important role in the characterization of archaeological ceramics. It is well established that ceramics can be grouped based on similarities/dissimilarities derived from chemical data. Different analytical methods can be applied to determine the sample composition. Instrumental neutron activation analysis (INAA) is the method preferred because present several advantages in relation to the other techniques. In this work, the elements determined were As, K, La, Lu, Na, Nd, Sb, Sm, U, Yb, Ba, Ce, Co, Cr, Cs, I, Fe, Hf, Rb, Sc, Ta , Tb, Th and Zn to carry out a preliminary chemical characterization in 44 ceramic samples from Sao Paulo II archaeological site by INAA. The site is located in Coari city, 363 km from Manaus, Amazonas state (AM). The elementary concentration results were studied using multivariate statistical methods. The similarity/dissimilarity among the samples was studied by means of discriminant analysis. The compositions group classification was done through cluster analysis, showing the formation of the three distinct groups of the ceramics. (author)

  11. The wavelength frame multiplication chopper system for the ESS test beamline at the BER II reactor—A concept study of a fundamental ESS instrument principle

    International Nuclear Information System (INIS)

    Strobl, M.; Bulat, M.; Habicht, K.

    2013-01-01

    Contributing to the design update phase of the European Spallation Source ESS–scheduled to start operation in 2019–a test beamline is under construction at the BER II research reactor at Helmholtz Zentrum Berlin (HZB). This beamline offers experimental test capabilities of instrument concepts viable for the ESS. The experiments envisaged at this dedicated beamline comprise testing of components as well as of novel experimental approaches and methods taking advantage of the long pulse characteristic of the ESS source. Therefore the test beamline will be equipped with a sophisticated chopper system that provides the specific time structure of the ESS and enables variable wavelength resolutions via wavelength frame multiplication (WFM), a fundamental instrument concept beneficial for a number of instruments at ESS. We describe the unique chopper system developed for these purposes, which allows constant wavelength resolution for a wide wavelength band. Furthermore we discuss the implications for the conceptual design for related instrumentation at the ESS

  12. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  13. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  14. Evaluation of material property of austenitic stainless steel using nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Takeshi [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to evaluate some material properties of very small area on small specimens which are sampled from components in service and to predict macroscopic material properties from the data of the small specimens, nano-indentation is considered to be quite effective. However, there are few reports formularize the dependence of load on hardness values evaluated from the results of indentation tests with loads from 10 mg to 100 g. In this study, systematic tests of indentation were conducted to specimens of austenitic stainless steel SUS304 using a Berkovich indenter and a Vickers indenter with loads varying from 10 mg to 100 g. From these results numerical formulae which relate the calculated hardness values to the loads were made. In addition, the relation between Vickers hardness and nano-indentation hardness was obtained. As a result, it became possible to predict Vickers hardness from nano-indentation with loads as low as about 100 mg. (author)

  15. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  16. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  17. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    Science.gov (United States)

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (pstrength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Characterization of Rubbers from Spherical Punch - Plate Indentation Tests

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2016-12-01

    Full Text Available Rubber plates with different compositions and hardness were tested by continuous indentation, using a spherical punch and hysteretic phenomenon was evidenced. The experimental data interpolation with polynomial functions is accurate and permits estimation of the lost work during loading cycles. The interpolation by power law functions is more convenient by using less parameters and having a form accepted in literature. From the rubbers tested, two were considered to present good damping properties.

  19. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  20. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  1. Extrinsic stretching narrowing and anterior indentation of the rectosigmoid junction

    International Nuclear Information System (INIS)

    Schulman, A.; Fataar, S.

    1979-01-01

    Thirty-five cases of extrinsic narrowing or anterior indentation of the rectosigmoid junction (RSJ) have been studied. The RSJ lies directly behind the pouch of Douglas which is a favoured site for peritoneal metastasis, abscess and endometriosis. Any space-occupying lesion of sufficient size at this site will indent the anterior aspects of the RSJ. Causes include distension or tumour of the ileum or sigmoid colon, gross ascites (when the patient is erect), and tumours below the pelvic peritonium, such as gynaecological neoplasm and internal iliac artery aneurysm. When a desmoplastic metastasis in the pouch of Douglas infiltrates the outer layers of the RSJ, the fibrosis produces an eccentric shortening on its anterior aspect, which in turn causes a pleating of the mucosa with the folds radiating towards the shortened area. This is also seen with primary pelvic carcinomas directly adherent to the rectum, endometriosis with repeated bleeding and increasing eccentric, submucosal fibrosis, and chronic abscess in the pouch of Douglas. Not all extrinsic narrowing of the RSJ are pathological. One case of anterior indentation followed operation for rectal prolapse. Ten additional cases showed narrowing due to a technical artefact air-distended colon rising into the upper abdomen to cause stretching at the RSJ. As with ascites, this narrowing due to 'high-rise sigmoid' disappeared when the patients became recumbent and the colonic air redistributed. (author)

  2. Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter

    International Nuclear Information System (INIS)

    Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome

    2013-01-01

    The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)

  3. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xue; Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn

    2016-01-30

    Graphical abstract: Nanoscale adhesion induced response in terms of re-indentation was directly observed. During unloading (start from B), the re-indentation phenomenon with the displacement sudden drop and the external loading force change from tension (C) to compression (D) within 0.1 s was captured by in situ TEM nanoindentation. - Highlights: • In situ TEM nanoindentation was performed on carbon coating. • Adhesion induced nano-response of re-indentation was directly observed. • Adhesive forces were measured from the load–displacement curves. • Adhesion energies released for re-indentation were quantitatively analyzed. • Carbon coating reduced the impact of adhesion for silicon substrate. - Abstract: We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load–displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.

  4. A dual triangular pyramidal indentation technique based on FEA solutions for Material property evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo; Hyun, Hong Chul [Sogana Univ., Seoul (Korea, Republic of); Lee, Jin Haeng; Lee, Hyungyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this study, we suggest a method for material property evaluation by dual triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load displacement curves. From this, we established property evaluation formula using dual triangular pyramidal indenters having two different half included angles. The approach provides the values of elastic modulus, yield strength and strain hardening exponent within an average error of 3% for various materials.

  5. Investigation of the mechanical properties of silica glasses by indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Voeroes, G. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Somogyi, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary)); Szoellosi, J. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary))

    1993-11-01

    Soda lime silica glasses were investigated by continuous indentation tests. The load indentation depth curves were taken during the loading as well as the unloading period by a computer controlled MTS machine. It was found that the loading force is a quadratic function of the indentation depth during both the loading and unloading stage of the deformation. The validity of the quadratic relationship in the case of the unloading stage seems to be characteristic only for glasses. Taking into account the elastic relaxation of the indentation depth an estimation is given for the size of the hydrostatic core which is necessary to symmetrize the stress field around the indenter. Using the measured length of the radial cracks started from the corners of the Vickers indentation pattern the K[sub IC] values were calculated. (orig.).

  6. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    OpenAIRE

    Ronald Machaka; Trevor E. Derry; Iakovos Sigalas; Mathias Herrmann

    2011-01-01

    The Vickers microhardness measurements of boron suboxide (B6O) ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs) in the microhardness measurements of hot-pressed B6O discussed using existing models, th...

  7. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  8. Twin pattern evolution in a fine-grained Mg alloy subjected to indentation

    International Nuclear Information System (INIS)

    Liu, Zhe; Xin, Renlong; Yu, Hongni; Guo, Changfa; Liu, Qing

    2016-01-01

    A Vickers diamond pyramid indenter was impressed on a fine-grained polycrystalline Mg–3Al–1Zn alloy. Serial polishing in combination with quasi-in-situ electron backscatter diffraction (EBSD) examinations revealed the presence and the 3D spatial distributions of {10–12} extension twins around the indent. Twin chains and completely twinned areas were found in some regions close to the indent. A model of twin pattern evolution around the indent was proposed based on the experimental observations and local strain accommodation analysis.

  9. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  10. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  11. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  12. Inclined indentation of smooth wedge in rock mass

    Science.gov (United States)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  13. Taxonomic code, physical, and other data collected from NOAA Ship DELAWARE II and other platforms in New York Bight from net casts and other instruments; 1973-02-20 to 1975-12-16 (NODC Accession 7601402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Taxonomic Code, physical, and other data were collected using net casts and other instruments in the New York Bight from NOAA Ship DELAWARE II and other platforms....

  14. Indentation analysis of active viscoelastic microplasmodia of P. polycephalum

    Science.gov (United States)

    Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther

    2018-01-01

    Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.

  15. Characterization of sandwich panels for indentation and impact

    International Nuclear Information System (INIS)

    Shazly, M; Salem, S; Bahei-El-Din, Y

    2013-01-01

    The integrity of sandwich structures which are susceptible to impact may deteriorate significantly due to collapse of the core material and delamination of the face sheets. The integration of a thin polyurethane interlayer between the composite face sheet and foam core is known to protect the core material and substantially improve the resistance to impact. The objective of the present work is to characterize the response of sandwich panels, as well as that of the constituents to impact. In particular, the response of polyurethane and foam samples under a range of quasi-static and dynamic loading rates is determined experimentally. Furthermore, the response of sandwich panels to quasi-static indentation and low velocity impact is examined to quantify the extent of damage and how it is affected by the integration of polyurethane interlayers in their construction. This information is useful in the modelling of high velocity impact of sandwich panels; an effort which is currently underway. The results illustrate the benefit of using polyurethane interlayers within the construction of sandwich panels in enhancing their performance under quasi-static indentation and impact loads

  16. Ceramic tools insert assesment based on vickers indentation methodology

    Science.gov (United States)

    Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.

    2018-05-01

    In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.

  17. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  18. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  19. Failure in lithium-ion batteries under transverse indentation loading

    Science.gov (United States)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  20. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  1. Development of a switchless sorption compressor for the cryogenic refrigeration within the METIS instrument : Part II. Experimental demonstration

    NARCIS (Netherlands)

    Wu, Y.; Vermeer, C. H.; Holland, H. J.; Benthem, B.; ter Brake, H. J.M.

    2017-01-01

    Due to its vibration-free feature, sorption-based refrigeration technology has been proposed for the cryogenic cooling of the Mid-infrared E-ELT Imager and Spectrograph (METIS) instrument in the European Extremely Large Telescope. Sorption compressor is the most critical component in the METIS

  2. Analysis of the equivalent indenter concept used to extract Young’s modulus from a nano-indentation test: some new insights into the Oliver–Pharr method

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2017-01-01

    is initially used to prove that the shape of the axisymmetric equivalent indenter can be regarded as a material property, provided that size-effects are negligible. Subsequently, it is shown that such shape can effectively be employed to describe the nano-indentation unloading stage by means of Sneddon....... This provides a new physical explanation for the relatively good accuracy of the method even in presence of a non-negligible residual contact impression on the sample....

  3. Indentations and Starting Points in Traveling Sales Tour Problems: Implications for Theory

    Science.gov (United States)

    MacGregor, James N.

    2012-01-01

    A complete, non-trivial, traveling sales tour problem contains at least one "indentation", where nodes in the interior of the point set are connected between two adjacent nodes on the boundary. Early research reported that human tours exhibited fewer such indentations than expected. A subsequent explanation proposed that this was because…

  4. Review of fracture properties of nuclear materials determined by Hertzian indentation

    International Nuclear Information System (INIS)

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters

  5. Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones

    International Nuclear Information System (INIS)

    Mateus, Jefferson; Saavedra, Nestor Fernando; Calderon Carrillo, Zuly; Mateus, Darwin

    2007-01-01

    A new way to characterize the perforated formation strength has been implemented using the indentation test. This test can be performed on irregular cuttings mounted in acrylic resins forming a disc. The test consists of applying load on each sample by means of a flat and indenter. A graph of the load applied VS penetration of the indenter is developed, and the modules of the test, denominated indentation modulus (IM) and Critical Transition Force (CTF) are obtained (Ringstad et al., 1998). Based on the success of previous studies we developed correlations between indentation and mechanical properties for some Colombian sandstone. These correlations were obtained using o set of 248 indentation tests and separate compression fasts on parallel sandstone samples from the same depth. This analysis includes Barco Formation, Mirador Formation, and Tambor Formation. For the correlations, IM-UCS and CTF-UCS, the correlation coefficient is 0.81 and 0.70 respectively. The use of the correlations and the indentation test is helpful for in-situ calibration of the geomechanical models since the indentation test can be performed in real time thus reducing costs and time associated with delayed conventional characterization

  6. Effect of Properties and Turgor Pressure on the Indentation Response of Plant Cells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2018-01-01

    The indentation of plant cells by a conical indenter is modeled. The cell wall is represented as a spherical shell consisting of a relatively stiff thin outer layer and a softer thicker inner layer. The state of the interior of the cell is idealized as a specified turgor pressure. Attention...

  7. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    Science.gov (United States)

    Yujie Meng; Siqun Wang; Zhiyong Cai; Timothy M. Young; Guanben Du; Yanjun Li

    2012-01-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of nonembedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic...

  8. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. II. HIPPARCOS STARS OBSERVED IN 2010 JANUARY AND JUNE

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Gomez, Shamilia C.; Anderson, Lisa M.; Sherry, William H.; Howell, Steve B.; Ciardi, David R.; Van Altena, William F.

    2011-01-01

    The results of 497 speckle observations of Hipparcos stars and selected other targets are presented. Of these, 367 were resolved into components and 130 were unresolved. The data were obtained using the Differential Speckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.) Since the first paper in this series, the instrument has been upgraded so that it now uses two electron-multiplying CCD cameras. The measurement precision obtained when comparing to ephemeris positions of binaries with very well known orbits is approximately 1-2 mas in separation and better than 0. 0 6 in position angle. Differential photometry is found to be in very good agreement with Hipparcos measures in cases where the comparison is most relevant. We derive preliminary orbits for two systems.

  9. Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM

    Science.gov (United States)

    Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.

    2005-01-01

    The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.

  10. Nondestructive/in-situ evaluation of the tensile properties in industrial facilities using indentation system

    International Nuclear Information System (INIS)

    Jang, Jae Il; Choi, Yeol; Son, Dong Il; Kwon, Dong Il

    2001-01-01

    Exact reliability evaluation and lifetime prediction through the in-field diagnosis of materials properties is needed for safe usage of degraded industrial structures. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property. Therefore, an advanced indentation technique was proposed for simple and non-destructive testing of in-field structures and for selected testing of local range such as heat affected zone and weldment. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  11. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  12. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    Science.gov (United States)

    Chen, Kanghua

    2002-08-01

    A constitutive law for fused silica accounting for its permanent densification under large compressive stresses is presented. The implementation of the constitutive equations in the general-purpose finite element code ABAQUS via user subroutine is proposed and carefully verified. The three-dimensional indentation mechanics under Berkovich, Vickers and Knoop indenters is extensively investigated based on the proposed constitutive relation. The results of stress distribution and plastic zone for both densifying and non-densifying optical glasses are systematically compared. These numerical results are in good agreement with the experimental observations of optical manufacturing. That is, fused silica shows lower material removal rate, smaller surface roughness and subsurface damage in contrast to non-densifying optical glasses under the same grinding condition. Material densification of fused silica is thoroughly studied through numerical simulations of indentation mechanics. The exact amount of densification and shear strain of fused silica under Berkovich indentation is calculated to show the deformation mechanism of glass materials under three-dimensional indentations. The surface profiles show the material "pile-up" around the indenter tip for non-densifying glasses and "sink-in" for fused silica after the indentation load is removed. An important inverse problem is studied: estimation of abrasive size and indentation load through the examination of residual indentation footprints. A series of 2D axisymmetric spherical indentation simulations generate a wide range of relationships among the indentation load, indenter size, residual indentation depth and size of residual indentation zone for the five selected brittle materials: glass fused silica (FS), BK7, semiconductor Si, laser glass LHG8, and optical crystal CaF2.. The application of the inverse problem is verified by the good agreement between the estimated abrasive size and the actual abrasive size found

  13. Modeling of the Indentation of Fiber Reinforced Materials Using Spherical Indenters

    International Nuclear Information System (INIS)

    Gountsidou, V.; Polatoglou, H. M.

    2010-01-01

    Following the enormous development of the technology there is a great need for complex engineering materials to be studied in multilayered films at the nano-level. Careful modeling of the structure of engineering materials, using finite element analysis may reveal specific behavior of the component materials and the filling materials, such as mortars, which are the important boundaries of all the engineering materials. The instruments used for experiments are expensive and their utilization is hindered by many unexpected factors. With the help of computer programs it is possible to achieve virtual nanoindentation, a widely known non-destructive method. It is easy to model structures in whatever shape or dimensions we wish, with one or more layers and with linear or nonlinear materials in order to obtain stress, strain, displacement curves, study microhardness, etc. The purpose of this paper is to model the nanoindentation process for fiber-reinforced concrete and to study the mechanical properties as a function of the distance of a particular fibre.

  14. Topographic evolution of a continental indenter: The eastern Southern Alps

    Science.gov (United States)

    Robl, Jörg; Heberer, Bianca; Prasicek, Günther; Neubauer, Franz; Hergarten, Stefan

    2017-04-01

    The topographic evolution of the eastern Southern Alps (ESA) is controlled by the Late Oligocene - Early Miocene indentation of the Adriatic microplate into an overthickened orogenic wedge emplaced on top of the European plate. Rivers follow topographic gradients that evolve during continental collision and in turn incise into bedrock counteracting the formation of topography. In principle, erosional surface processes tend to establish a topographic steady state so that an interpretation of topographic metrics in terms of the latest tectonic history should be straightforward. However, a series of complications impede deciphering the topographic record of the ESA. The Pleistocene glaciations locally excavated alpine valleys and perturbed fluvial drainages. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified and a number of questions regarding the interaction of crustal deformation, erosion and climate in shaping the present-day topography remain. We demonstrate the expected topographic effects of each mechanism in a 1-dimensional model and compare them with observed channel metrics. Modern uplift rates are largely consistent with long-term exhumation in the ESA and with variations in the normalized steepness index (ksn) indicating a stable uplift and erosion pattern since Miocene times. We find that ksn increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and magnitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease towards the east. Most knickpoints probably evolved during Pleistocene glaciation cycles, but may represent the incrementally

  15. Indentation damage and mechanical properties of human enamel and dentin.

    Science.gov (United States)

    Xu, H H; Smith, D T; Jahanmir, S; Romberg, E; Kelly, J R; Thompson, V P; Rekow, E D

    1998-03-01

    Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.

  16. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  18. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  19. A systematic critical appraisal for non-pharmacological management of osteoarthritis using the appraisal of guidelines research and evaluation II instrument.

    Science.gov (United States)

    Brosseau, Lucie; Rahman, Prinon; Toupin-April, Karine; Poitras, Stéphane; King, Judy; De Angelis, Gino; Loew, Laurianne; Casimiro, Lynn; Paterson, Gail; McEwan, Jessica

    2014-01-01

    Clinical practice CPGs (CPGs) have been developed to summarize evidence related to the management of osteoarthritis (OA). CPGs facilitate uptake of evidence-based knowledge by consumers, health professionals, health administrators and policy makers. The objectives of the present review were: 1) to assess the quality of the CPGs on non-pharmacological management of OA; using a standardized and validated instrument--the Appraisal of Guidelines Research and Evaluation (AGREE II) tool--by three pairs of trained appraisers; and 2) to summarize the recommendations based on only high-quality existing CPGs. Scientific literature databases from 2001 to 2013 were systematically searched for the state of evidence, with 17 CPGs for OA being identified. Most CPGs effectively addressed only a minority of AGREE II domains. Scope and purpose was effectively addressed in 10 CPGs on the management of OA, stakeholder involvement in 12 CPGs, rigour of development in 10 CPGs, clarity/presentation in 17 CPGs, editorial independence in 2 CPGs, and applicability in none of the OA CPGs. The overall quality of the included CPGs, according to the 7-point AGREE II scoring system, is 4.8 ± 0.41 for OA. Therapeutic exercises, patient education, transcutaneous electrical nerve stimulation, acupuncture, orthoses and insoles, heat and cryotherapy, patellar tapping, and weight control are commonly recommended for the non-pharmacological management of OA by the high-quality CPGs. The general clinical management recommendations tended to be similar among high-quality CPGs, although interventions addressed varied. Non-pharmacological management interventions were superficially addressed in more than half of the selected CPGs. For CPGs to be standardized uniform creators should use the AGREE II criteria when developing CPGs. Innovative and effective methods of CPG implementation to users are needed to ultimately enhance the quality of life of arthritic individuals.

  20. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-11-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  1. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-05-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  2. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    Science.gov (United States)

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located.

  3. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    Science.gov (United States)

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  4. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study

    International Nuclear Information System (INIS)

    Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P

    2009-01-01

    Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage

  5. Modelling of excavation depth and fractures in rock caused by tool indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A. [Luleaa Univ. of Technology (Sweden)

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  6. Modelling of excavation depth and fractures in rock caused by tool indentation

    International Nuclear Information System (INIS)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A.

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  7. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat

    2014-07-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  8. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    Science.gov (United States)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  9. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  10. Quality assessment of recent evidence-based clinical practice guidelines for management of type 2 diabetes mellitus in adults using the AGREE II instrument.

    Science.gov (United States)

    Anwer, Muhammad A; Al-Fahed, Ousama B; Arif, Samir I; Amer, Yasser S; Titi, Maher A; Al-Rukban, Mohammed O

    2018-02-01

    Type 2 diabetes mellitus (T2DM) is a worldwide and national public health problem that has a great impact on the population in Saudi Arabia. High-quality clinical practice guidelines (CPGs) are cornerstones in improving the health care provided for patients with diabetes. This study evaluated the methodological rigour, transparency, and applicability of recently published CPGs. Our group conducted a systematic search for recently published CPGs for T2DM. The searching and screening for Source CPGs were guided by tools from the ADAPTE methods with specific inclusion/exclusion criteria. Five reviewers using the second version of the Appraisal of Guidelines for Research and Evaluation (AGREE II) Instrument independently assessed the quality of the retrieved Source CPGs. Domains of Scope and purpose and Clarity of presentation received the highest scores in all CPGs. Most of the assessed CPGs (86%) were considered with high overall quality and were recommended for use. Rigour of development and applicability domains were together highest in 3 CPGs (43%). The overall high quality of DM CPGs published in the last 3 years demonstrated the continuous development and improvement in CPG methodologies and standards. Health care professionals should consider the quality of any CPG for T2DM before deciding to use it in their daily clinical practice. Three CPGs have been identified, using the AGREE criteria, as high-quality and trustworthy. Ideally, the resources provided by the AGREE trust including the AGREE II Instrument should be used by a clinician to scan through the large number of published T2DM CPGs to identify the CPGs with high methodological quality and applicability. © 2017 John Wiley & Sons, Ltd.

  11. Tyre-road grip coefficient assessment - Part II: online estimation using instrumented vehicle, extended Kalman filter, and neural network

    Science.gov (United States)

    Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi

    2013-12-01

    The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.

  12. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  13. Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique

    Science.gov (United States)

    Hasan, Md. Fahad; Wang, James; Berndt, Christopher

    2015-06-01

    The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.

  14. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    International Nuclear Information System (INIS)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; Wang, Yanli; Singler, Timothy

    2017-01-01

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments of spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.

  15. In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film

    Science.gov (United States)

    Guo, Qianying; Thompson, Gregory B.

    2018-04-01

    In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.

  16. Achieving a predictable 24-hour return to normal activities after breast augmentation: part II. Patient preparation, refined surgical techniques, and instrumentation.

    Science.gov (United States)

    Tebbetts, John B

    2006-12-01

    The goal of this study was to develop practices that would allow patients undergoing subpectoral augmentation to predictably return to full normal activities within 24 hours after the operation, free of postoperative adjuncts. Part I of this study used motion and time study principles to reduce operative times, medication dosages, perioperative morbidity, and recovery times in augmentation mammaplasty. Part II of the study focuses on details of patient education, preoperative planning, instrumentation, and surgical technique modifications that were identified, modified, and implemented to achieve the results reported in part I. Two groups of 16 patients each (groups 1 and 2) were studied retrospectively for comparison to a third group of 627 patients (group 3) studied prospectively. Patients in group 1 had axillary partial retropectoral breast augmentations in 1982-1983, using dissociative anesthesia, blunt instrument implant pocket dissection, and Dow Corning, double-lumen implants containing 20 mg of methylprednisolone and 20 cc of saline in the outer lumen of the implants. Patients in group 2 (1990) had inframammary, retromammary augmentations by using a combination of blunt and electrocautery dissection, Surgitek Replicon polyurethane-covered, silicone gel-filled implants, and general endotracheal anesthesia. Patients in group 3 (1998 to 2001, n = 627) had inframammary partial retropectoral, inframammary retromammary, and axillary partial retropectoral augmentations under general endotracheal anesthesia. Refined practices and surgical techniques from studies of groups 1 and 2 were applied in group 3. Videotapes from operative procedures of groups 1 and 2 were analyzed with macromotion and micromotion study principles, and tables of events were formulated for each move during the operation for all personnel in the operating room. Extensive details of surgical technique were examined and reexamined in 13 different stages by using principles of motion and time

  17. Plastic Indentation Analysis Used in Study of Colliding Robotic Elements

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2014-06-01

    Full Text Available In robotic system there are frequent situations when on the robotic parts percutions develop. The impact plastic imprints are unique source of data remaining after collision, but complications occur in the analysis and the work models a general impact and presents the manner of processing the experimental data. The paper presents the characteristics occurring in the analysis of the indentation remnant after the oblique impact between a free falling ball and the surface of an inclined metallic prism. A series of difficulties arise while trying to approximate the collision’s imprint profile with a parabola having oblique symmetry axis. Both these impediments and the manner of surmounting them are presented. Finally, the impasse that takes place in the actual analysis of an imprint profile is presented. A first method of surpassing this aspect uses the intrinsic characteristics of osculating circle in a point of the profile is applicable only for smooth signals. The second proposed method is applied to the real signal and provides fine results.

  18. Indentation damage and crack repair in human enamel.

    Science.gov (United States)

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Indentation Damage and Crack Repair in Human Enamel*

    Science.gov (United States)

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  20. Defect formation by pristine indenter at the initial stage of nanoindentation

    International Nuclear Information System (INIS)

    Chen, I-Hsien; Hsiao, Chun-I; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-01-01

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation

  1. Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter

    OpenAIRE

    HERVAS , Isabel; MONTAGNE , Alex; Van Gorp , Adrien; BENTOUMI , M.; THUAULT , A.; IOST , Alain

    2016-01-01

    International audience; Numerous methods have been proposed to estimate the indentation fracture toughness Kic for brittle materials. These methods generally uses formulæ established from empirical correlations between critical applied force, or average crack length, and classical fracture mechanics tests. This study compares several models of fracture toughness calculation obtained by using Vickers indenters. Two optical glasses (Crown and Flint), one vitroceramic (Zerodur) and one ceramic (...

  2. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    Science.gov (United States)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  3. Annealing-induced recovery of indents in thin Au(Fe bilayer films

    Directory of Open Access Journals (Sweden)

    Anna Kosinova

    2016-12-01

    Full Text Available We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments. This annealing-induced evolution of nanoindents was interpreted in terms of annihilation of dislocation loops generated during indentation, accompanied by the formation of nanopores at the grain boundaries and their subsequent dissolution. The application of the processes uncovered in this work show great potential for the patterning of thin films.

  4. Determination Plastic Properties of a Material by Spherical Indentation Base on the Representative Stress Approach

    Science.gov (United States)

    Budiarsa, I. N.; Gde Antara, I. N.; Dharma, Agus; Karnata, I. N.

    2018-04-01

    Under an indentation, the material undergoes a complex deformation. One of the most effective ways to analyse indentation has been the representative method. The concept coupled with finite element (FE) modelling has been used successfully in analysing sharp indenters. It is of great importance to extend this method to spherical indentation and associated hardness system. One particular case is the Rockwell B test, where the hardness is determined by two points on the P-h curve of a spherical indenter. In this case, an established link between materials parameters and P-h curves can naturally lead to direct hardness estimation from the materials parameters (e.g. yield stress (y) and work hardening coefficients (n)). This could provide a useful tool for both research and industrial applications. Two method to predict p-h curve in spherical indentation has been established. One is use method using C1-C2 polynomial equation approach and another one by depth approach. Both approach has been successfully. An effective method in representing the P-h curves using a normalized representative stress concept was established. The concept and methodology developed is used to predict hardness (HRB) values of materials through direct analysis and validated with experimental data on selected samples of steel.

  5. Method to determine the optimal constitutive model from spherical indentation tests

    Directory of Open Access Journals (Sweden)

    Tairui Zhang

    2018-03-01

    Full Text Available The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang’s modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study. Keywords: Optimal constitutive model, Spherical indentation test, Finite Element calculations, Yang’s modulus

  6. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels

    International Nuclear Information System (INIS)

    Campos, I.; Ramirez, G.; VillaVelazquez, C.; Figueroa, U.; Rodriguez, G.

    2008-01-01

    In this work, we analyzed the roughness morphology of indentation microcracks produced by the Vickers microindentation in the iron boride Fe 2 B. Using the paste boriding process, the boride layers were formed at the surface of AISI 1045 steels. The diffusion processes were carried out with 5 mm of boron paste thickness over the substrate surface at three different temperatures (1193, 1223 and 1273 K) with two different time exposures. The indentations in each Fe 2 B layer were made using a constant load of 200 g at four different distances from the surface. The fracture behavior of the Fe 2 B borided phase is found to be brittle in nature. The profiles of microcracks formed at the corners of the indentations were obtained using the scanning electronic microscopy and were analyzed within the framework of fractal geometry. We found that all indentation microcracks display a self-affine invariance characterized by the same roughness (Hurst) exponent H = 0.8 ± 0.1. The effect of the self-affine roughness of indentation microcracks on the measured fracture toughness is discussed within the framework of the mechanics of self-affine cracks. It is pointed out that the arrest of indentation microcracks is controlled by the fractal fracture toughness, which for the Fe 2 B borided phase is found to be K fc = 0.42 ± 0.02 MPa m 0.75 at all distances from the surface

  7. Assessment and management of ageing of major nuclear power plant components important to safety: In-containment instrumentation and control cables. Volume II

    International Nuclear Information System (INIS)

    2000-12-01

    and technical support organizations dealing with specific plant components addressed in the reports. The component addressed in the present report is the in-containment instrumentation and control (I and C) cables. The report presents, in two volumes, results of a Co-ordinated Research Project (CRP) on the Management of Ageing of In-containment Instrumentation and Control cables. Part I, Volume 1 presents information on current methods for assessing and managing ageing degradation of Instrumentation and Control cables in real NPP environments prepared by the CRP team. An important complement of this information is user perspectives on the application of these methods which are presented in Part II, Volume 1. Volume 2 contains annexes supporting the guidance of Volume 1 with more detailed information and examples provided by individual CRP participants. For a quick overview, readers should see Section 8 of Part I, Volume 1, which describes a systematic ageing management programme for Instrumentation and Control cables utilizing methods presented in the report; Section 9 of Part I, Volume 1, which presents CRP conclusions and recommendations; and Part II providing the application guidance from the user's perspective

  8. Alternate approach for calculating hardness based on residual indentation depth: Comparison with experiments

    Science.gov (United States)

    Ananthakrishna, G.; K, Srikanth

    2018-03-01

    It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic

  9. Systematic evaluation program review of NRC Safety Topic VI-7.3 associated with the electrical, instrumentation and control portions of the ECCS actuation system for the Dresden II Nuclear Power Plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-7.A.3, associated with the electrical, instrumentation, and control portions of the classification of the ECCS actuation system for the Dresden II nuclear power plant, using current licensing criteria

  10. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  11. Evaluation of the degradation characteristics of CF-8A cast stainless steel using EDS and nano-indentation

    International Nuclear Information System (INIS)

    Baek, Seung; Koo, Jae Mean; Seok, Chang Sung

    2004-01-01

    Cast austenitic stainless steel piping pump, valve casings, and elbows are susceptible to reductions in toughness and ductility because of long term exposure at the operating temperatures in LWR(Light Water Reactor). In this paper, we have measured the material properties of long term aged CF-8A cast stainless steel, accelerated aging at 400 .deg. C. These studies have been carried out using indentation tests(automated ball indentation and nano-indentation) and EDS(Energy Dispersive Spectroscopy). The fracture toughness of Cf-8A cast stainless steel was also determined by using standard fracture toughness and automated ball indentation

  12. Evaluation of deformation and fracture characteristics of nuclear reactor materials using ball indentation test technique

    International Nuclear Information System (INIS)

    Byun, T. S.; Hong, J. H.; Lee, B. S.; Park, D. G.; Kim, J. H.; Oh, Y. J.; Yoon, J. H.; Chi, S. H.; Kuk, I. H.; Kwon, D. I.; Lee, J. H.

    1998-05-01

    The present report describes the automated ball indentation test techniques and the results of their applications. The ball indentation test technique is an innovative method for evaluating the key mechanical properties from the indentation load-depth data. In the 1st chapter, the existing technique for evaluating basic deformation (tensile) properties is described in detail, and also the application result of the technique is presented. The through-thickness variations of mechanical properties in SA 508 C1.3 reactor pressure vessel steels were measured using an automated ball indentation (ABI) technique. In the 2nd chapter, a method under development, which is similar to that in the 1st chapter, is new method is based on the theoretical solutions rather than experimental relationships. The result of the application showed that the stress-strain curves of various metals were successfully determined with the method. In the 3rd chapter, a new theoretical model was proposed to estimate the fracture toughness of ferritic steels in the transition temperature region. The key concept of the model is that the indention energy to a critical load is related to the fracture energy of the material. The theory was applied to the reactor pressure vessel (RPV) base and weld metals. (author). 24 refs., 3 tabs., 6 figs

  13. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    International Nuclear Information System (INIS)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.

    2009-01-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  14. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)

    2009-11-15

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  15. Site-controlled fabrication of silicon nanotips by indentation-induced selective etching

    Science.gov (United States)

    Jin, Chenning; Yu, Bingjun; Liu, Xiaoxiao; Xiao, Chen; Wang, Hongbo; Jiang, Shulan; Wu, Jiang; Liu, Huiyun; Qian, Linmao

    2017-12-01

    In the present study, the indentation-induced selective etching approach is proposed to fabricate site-controlled pyramidal nanotips on Si(100) surface. Without any masks, the site-controlled nanofabrication can be realized by nanoindentation and post etching in potassium hydroxide (KOH) solution. The effect of indentation force and etching time on the formation of pyramidal nanotips was investigated. It is found that the height and radius of the pyramidal nanotips increase with the indentation force or etching time, while long-time etching can lead to the collapse of the tips. The formation of pyramidal tips is ascribed to the anisotropic etching of silicon and etching stop of (111) crystal planes in KOH aqueous solution. The capability of this fabrication method was further demonstrated by producing various tip arrays on silicon surface by selective etching of the site-controlled indent patterns, and the maximum height difference of these tips is less than 10 nm. The indentation-induced selective etching provides a new strategy to fabricate well site-controlled tip arrays for multi-probe SPM system, Si nanostructure-based sensors and high-quality information storage.

  16. Method to determine the optimal constitutive model from spherical indentation tests

    Science.gov (United States)

    Zhang, Tairui; Wang, Shang; Wang, Weiqiang

    2018-03-01

    The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.

  17. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  18. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  19. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  20. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  1. Evaluation of eyes with relative pupillary block by indentation ultrasound biomicroscopy gonioscopy.

    Science.gov (United States)

    Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka

    2004-03-01

    To investigate changes in anterior chamber angle configuration with indentation ultrasound biomicroscopy gonioscopy of relative pupillary block (RPB). Cross-sectional study. This study included 26 eyes of 26 patients with RPB. We determined angle opening distance 500 and angle recess area using indentation ultrasound biomicroscopy gonioscopy and compared a small-sized standard eye cup with a new eye cup with an area for inducing pressure. Indentation ultrasound biomicroscopy images documented concavity of the iris in eyes with RPB. Both the new and the small standard eye cups widened the anterior chamber angle significantly (P gonioscopy is a useful technique for observation and diagnosis of RPB. Using a small standard or the newly designed eye cup, the procedure can be performed easily and without causing corneal damage.

  2. Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hee; Lee, Wan Kyu; Jeong, In Hyeon; Nahm, Seung Hoon [KRISS, Daejeon (Korea, Republic of)

    2008-04-15

    A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

  3. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination

    International Nuclear Information System (INIS)

    Marshall, D.B.; Evans, A.G.

    1984-01-01

    A fracture analysis of indentation-induced delamination of thin films is presented. The analysis is based on a model system in which the section of film above the delaminating crack is treated as a rigidly clamped disc, and the crack extension force is derived from changes in strain energy of the system as the crack extends. Residual deposition stresses influence the cracking response by inducing buckling of the film above the crack and by providing an additional crack driving force once buckling occurs. A relation for the equilibrium crack length is derived in terms of the indenter load and geometry, the film thickness and mechanical properties, the residual stress level and the fracture toughness of the interface. The analysis provides a basis for using controlled indentation cracking as a quantitative measure of interface toughness and for evaluating contact-induced damage in thin films

  4. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2011-01-01

    Full Text Available The Vickers microhardness measurements of boron suboxide (B6O ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs in the microhardness measurements of hot-pressed B6O discussed using existing models, that is, the classical Meyer's law, Li and Bradt's proportional specimen resistance model (PSR, the modified proportional specimen resistance model (MPSR, and Carpinteri's multifractal scaling law (MFSL. The best correlation between literature-cited load-independent Vickers microhardness values, the measured values, and applied models was achieved in the case of the MPSR and the MFSL models.

  5. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  6. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  7. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    Science.gov (United States)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  8. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    DEFF Research Database (Denmark)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.

    2018-01-01

    -viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical......A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling...

  9. Incipient plasticity and indentation response of MgO surfaces using molecular dynamics

    Science.gov (United States)

    Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua

    2018-05-01

    The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.

  10. Polarity influence on the indentation punching of thin {111} GaAs foils at elevated temperatures

    International Nuclear Information System (INIS)

    Patriarche, G; Largeau, L; Riviere, J P; Bourhis, E Le

    2005-01-01

    Thin {111} GaAs substrates were deformed by a Vickers indenter at 350 deg. C-370 deg. C under loads ranging between 0.4 and 1.9 N. Optical microscopy and interferometry were used to observe the indented and opposite faces of the thin foils and hence to investigate the plastic flow through the samples. Attention was paid to the polarity (A or B) of the specimen surface, as GaAs is known to show a large difference between α and β dislocations mobilities. A model considering the influence of polarity is proposed to describe the material flow throughout thin samples

  11. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks : An observational study

    NARCIS (Netherlands)

    Ham, Wietske H W; Schoonhoven, Lisette; Schuurmans, Marieke J; Leenen, Luke P H

    OBJECTIVES: To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain

  12. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks: An observational study

    NARCIS (Netherlands)

    Ham, W.H.; Schoonhoven, L.; Schuurmans, M.J.; Leenen, L.P.

    2016-01-01

    OBJECTIVES: To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain

  13. Evaluation and comparison of indentation ultrasound biomicroscopy gonioscopy in relative pupillary block, peripheral anterior synechia, and plateau iris configuration.

    Science.gov (United States)

    Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka

    2004-12-01

    To evaluate and compare the findings and changes of the anterior chamber angle configuration with indentation ultrasound biomicroscopy (UBM) gonioscopy in relative pupillary block (RPB), peripheral anterior synechia (PAS), and plateau iris configuration (PIC). This study included 73 eyes of 52 patients with RPB (n = 26), PAS (n = 21), or PIC (n = 26). First, a conventional UBM scan was performed using a normal size standard eye cup before indentation. Then, for indentation UBM gonioscopy, scans were performed using a new eye cup that we designed. For evaluation of the angle, angle opening distance 500 and angle recess area were recorded and evaluated with regard to the effect of expansion on the anterior chamber angle. Indentation UBM gonioscopy showed the characteristic images in each of the eyes. The angle of all examined eyes was significantly widened with indentation (P gonioscopy is a very useful method for observing the angle and diagnosis of RPB, PAS, and PIC.

  14. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  15. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  16. PENETRATION OF CONICAL INDENTER INTO FOUNDATION MATERIAL AT COMBINED PERCUSSION AND SUBSEQUENT ULTRASONIC IMPACTS

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2012-01-01

    Full Text Available The aim of this paper is theoretical and experimental studys of a percussion and subsequent ultrasonic impacts on the indenter depth penetration into material of rigid-plastic foundation.The obtained results allow us to estimate an influence of percussion (low-frequency and ultrasound (high-frequency component parameters on a charging process.

  17. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates

    Science.gov (United States)

    Ji, Zhaojie; Guan, Zhidong; Li, Zengshan

    2017-10-01

    In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

  18. Nanoscale indent formation in shape memory polymers using a heated probe tip

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States); Wornyo, E [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gall, K [Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); King, W P [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-07-18

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a heated atomic force microscope (AFM) cantilever at various temperatures near or above the glass transition (between 84 and 215 deg. C) and a range of heating durations from 100 {mu}s to 8 ms. The images of the indents were obtained with the same probe tip at room temperature. The contact pressure, a measure of transient hardness, was derived from the indentation height data as a function of time and temperature for different polymers. With increasing crosslinker molecular weight and decreasing crosslinker concentration, the contact pressures decreased at a fixed maximum load due to increased crosslink spacing in the polymer system. The results provide insight into the nanoscale response of these novel materials.

  19. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    Science.gov (United States)

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve.

  20. Stick-slip behaviour of a viscoelastic flat sliding along a rigid indenter

    NARCIS (Netherlands)

    Budi Setiyana, Budi; Ismail, Rifky; Jamari, J.; Schipper, Dirk Jan

    2016-01-01

    The sliding contact of soft material surface due to a rigid indenter is different from metal and some other polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft material as low damping viscoelastic material, this study proposes an analytical model to

  1. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  2. Assessing the mechanical properties of nuclear materials using spherical nano-indentation

    International Nuclear Information System (INIS)

    Hickey, J.; Hardie, C.

    2015-01-01

    This paper reports on the assessment of a nano-indentation test, using tips of spherical geometry, to calculate the mechanical properties of nuclear materials at the micron-scale. The test method is based on incrementally loading and unloading the tip into a sample of material with unknown mechanical properties. The incremental indentation stress, strain and elastic modulus are calculated by analysing each increment's unload curve. Two samples of iron and tungsten were used with a spherical indenter tip with an apparent radius of 30 μm. The method for calculating the mechanical properties is based on two markers that define the top and bottom of each load increment's unload curve. As such, the bottom marker can be moved down the unload curve to increase the proportion of data included in the results. This simulates increasing the percent unloaded from just one data set. The results showed that increasing the percent unloaded during each increment was beneficial as it reduced the effects of creep at the top of the unload curve and pile-up of material around the indenter tip as the test progressed. However, it is likely that increasing the percentage unloaded results in the inclusion of a higher proportion of reverse plasticity effects in the calculated results. (authors)

  3. Determination of the individual phase properties from the measured grid indentation data

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Materna, A.; Kocmanová, L.; Matějíček, Jiří

    2016-01-01

    Roč. 31, č. 22 (2016), s. 3538-3548 ISSN 0884-2914 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Composite * Tungsten * Steel * indentation Subject RIV: JI - Composite Materials Impact factor: 1.673, year: 2016 http://dx.doi.org/10.1557/jmr.2016.375

  4. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  5. Pengembangan Indentation Size Effect (ISE Dalam Penentuan Koefisien Pengerasan Regang Baja

    Directory of Open Access Journals (Sweden)

    I Nyoman Budiarsa

    2016-07-01

    Full Text Available Abstrak: Hubungan antara sifat material konstitutif dengan indentasi kekerasan (Hardness Indentation termasuk ISE (Indentation Size Effect telah dikembangkan dan dievaluasi dengan indentasi Vickers, hal Ini akan menjadi alat yang berguna dalam mengevaluasi kelayakan penggunaan nilai kekerasan dalam memprediksi parameter bahan konstitutif dengan mengacu pada syarat akurasi pada rentang semua potensi bahan. ISE dapat konsisten diukur dan dapat berpotensi dihubungkan dengan H/E rasio. Skala ISE dari sampel yang diuji menunjukkan pengulangan yang konsisten dan berhubungan kuat dengan sifat material secara signifikan. Hal Ini berpotensi memberikan set data eksperimen yang mencerminkan sifat material yang terkait dengan ketegangan gradien dan kerapatan dislokasi selama proses indentasi Konsep untuk menggunakan data ukuran indentasi Vickers telah dikembangkan untuk meningkatkan akurasi sifat invers pemodelan berdasarkan kekerasan menggunakan baja sebagai sistem bahan. Penelitian ini menunjukkan bahwa ada ISE signifikan dalam tes kekerasan Vickers dimana skala dan reliabilitas ISE dianalisis dengan fitting data mengikuti Power law and proportional resistance model Sebuah konsep baru menggunakan data ISE untuk memperkirakan Koefisien Pengerasan Regang (n nilai-nilai dari baja telah dievaluasi dan menunjukkan hasil yang baik untuk mempersempit kisaran sifat material yang diprediksi berdasarkan nilai-nilai kekerasan. . Kata kunci: ISE, H/E rasio, Koefisien Pengerasan Regang (n Abstract: The relationship between the constitutive material properties with Hardness indentation including ISE (indentation Size Effect has been developed and evaluated by Vickers indentation. This provided a useful tool in evaluating the feasibility of using of hardness value in predicting the constitutive material parameters with reference to the terms of accuracy in the all the potential materials range. ISE can be consistently measured and may potentially be associated with H

  6. Fracture properties of ThO2-UO2 pellets by Hertzian indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Rath, B.N.; Balakrishnan, K.S.

    2005-01-01

    Fracture toughness (K Ic ) and fracture surface energy (γ s ) of ThO 2 -UO 2 pellets with varying UO 2 contents were measured using Hertzian indentation technique. The knowledge of fracture toughness (K Ic ) and fracture surface energy values are important for fuel designers since these values are used in fuel modeling. Cracks in nuclear fuel act as a path for fission gas release and enhances fuel cladding mechanical interaction. Microstructural features like grain size and presence of second phase play a significant role in controlling the fracture behavior. Since the fracture properties of nuclear materials are of primary design consideration, it is important that these properties should be evaluated with good precision. There have been several attempts to use Hertzian indentation for evaluating the fracture toughness of brittle materials. The main principle of this method depends on the interaction of the elastic stress field with a pre-existing surface flaw of the sample. One significant advantage of Hertzian indentation over that of Vickers is that the substrate's deformation is entirely elastic until fracture occurs. This avoids the complications arising from the ill-defined residual stress that is normally associated with indentations brought about by pointed indenters like that of Vickers. The material properties that may be determined by this test include (a) fracture toughness and fracture surface energy of the near surface material, (b) the densities and sizes of surface cracks, and (c) residual stresses in the near surface material. This paper deals with experimental procedure for the evaluation of fracture properties of ThO 2 -UO 2 of varying U content and results thus obtained are also presented. The K Ic values thus obtained are explained in terms of their microstructures and the U content. (author)

  7. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Science.gov (United States)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  8. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  9. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues

    International Nuclear Information System (INIS)

    Huang, Yan-Ping; Zheng, Yong-Ping; Wang, Shu-Zhe; Huang, Qing-Hua; Chen, Zhong-Ping; He, Yong-Hong

    2009-01-01

    A novel noncontact indentation system with the combination of an air jet and optical coherence tomography (OCT) was presented in this paper for the quantitative measurement of the mechanical properties of soft tissues. The key idea of this method is to use a pressure-controlled air jet as an indenter to compress the soft tissue in a noncontact way and utilize the OCT signals to extract the deformation induced. This indentation system provides measurement and mapping of tissue elasticity for small specimens with high scanning speed. Experiments were performed on 27 silicone tissue-mimicking phantoms with different Young's moduli, which were also measured by uniaxial compression tests. The regression coefficient of the indentation force to the indentation depth (N mm −1 ) was used as an indicator of the stiffness of tissue under air jet indentation. Results showed that the stiffness coefficients measured by the current system correlated well with the corresponding Young's moduli obtained by conventional mechanical testing (r = 0.89, p < 0.001). Preliminary in vivo tests also showed that the change of soft tissue stiffness with and without the contraction of the underlying muscles in the hand could be differentiated by the current measurement. This system may have broad applications in tissue assessment and characterization where alterations of mechanical properties are involved, in particular with the potential of noncontact micro-indentation for tissues

  10. Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests

    International Nuclear Information System (INIS)

    Nishikawa, Masaaki; Soyama, Hitoshi

    2011-01-01

    Highlights: → The sensitivity to residual stress was improved by selecting the depth parameter. → Residual stress could be obtained while determining the effect of unknown parameters. → The estimated residual stress agreed well with those of X-ray diffraction. -- Abstract: The present study proposed a method to evaluate the equibiaxial compressive residual stress of a metal surface by means of a depth-sensing indentation method using a spherical indenter. Inverse analysis using the elastic-plastic finite-element model for an indentation test was established to evaluate residual stress from the indentation load-depth curve. The proposed inverse analysis utilizes two indentation test results for a reference specimen whose residual stress is already known and for a target specimen whose residual stress is unknown, in order to exclude the effect of other unknown mechanical properties, such as Young's modulus and yield stress. Residual stress estimated by using the indentation method is almost identical to that measured by X-ray diffraction for indentation loads of 0.49-0.98 N. Therefore, it can be concluded that the proposed method can effectively evaluate residual stress on metal surface.

  11. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  12. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    Science.gov (United States)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  13. Physical, chemical, and other data from bottle casts and other instruments from the ATLANTIS II as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 08 March 1974 to 25 April 1978 (NODC Accession 7600744)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts and other instruments from the ATLANTIS II from 08 March 1974 to 25 April 1978. Data were...

  14. The cross-cultural generalizability of Axis-II constructs: an evaluation of two personality disorder assessment instruments in the People's Republic of China.

    Science.gov (United States)

    Yang, J; McCrae, R R; Costa, P T; Yao, S; Dai, X; Cai, T; Gao, B

    2000-01-01

    We examined the reliability, cross-instrument validity, and factor structure of Chinese adaptations of the Personality Diagnostic Questionnaire (PDQ-4+; N = 1,926) and Personality Disorders Interview (PDI-IV; N = 525) in psychiatric patients. Comparisons with data from Western countries suggest that the psychometric properties of these two instruments are comparable across cultures. Low to modest agreement between the PDQ-4+ and PDI-IV was observed for both dimensional and categorical personality disorder evaluations. When the PDI-IV was used as the diagnostic standard, the PDQ-4+ showed higher sensitivity than specificity, and higher negative predictive power than positive predictive power. Factor analyses of both instruments replicated the four-factor structure O'Connor and Dyce (1998) found in Western samples. Results suggested that conceptions and measures of DSM-IV personality disorders are cross-culturally generalizable to Chinese psychiatric populations.

  15. Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy

    Science.gov (United States)

    Das, Jayashree; Robi, P. S.; Sankar, M. Ravi

    2018-04-01

    The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.

  16. Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer

    Directory of Open Access Journals (Sweden)

    Rajesh Patra

    2016-03-01

    Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.

  17. Deformation mechanism in graphene nanoplatelet reinforced tantalum carbide using high load in situ indentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Boesl, Benjamin [Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Silvestroni, Laura; Sciti, Diletta [Institute of Science and Technology for Ceramics (ISTEC), CNR-ISTEC, Via Granarolo 64, 48018 Faenza (Italy); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-09-30

    High load in-situ indentation testing with real time SEM imaging was carried out on spark plasma sintered graphene nanoplatelets (GNP) reinforced TaC composites. The prime goal of this study was to understand the deformation behavior and the reinforcing mechanisms of GNPs. The results suggest that addition of GNPs had significant effect on dissipating indentation energy and confining the overall damage area to a localized region of TaC. The average crack length reduced by 26% whereas total damage area shrunk by 85% in TaC-5 vol% GNP sample as compared to pure TaC. TEM analysis concluded that well dispersed GNPs result in a strong and clean interface between TaC and GNP with trace amount of amorphous layer that leads to improved energy dissipation mechanism.

  18. A Numerical Framework for Self-Similar Problems in Plasticity: Indentation in Single Crystals

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Niordson, Christian Frithiof; Nielsen, Kim Lau

    A new numerical framework specialized for analyzing self-similar problems in plasticity is developed. Self-similarity in plasticity is encountered in a number of different problems such as stationary cracks, void growth, indentation etc. To date, such problems are handled by traditional Lagrangian...... procedures that may be associated with severe numerical difficulties relating to sufficient discretization, moving contact points, etc. In the present work, self-similarity is exploited to construct the numerical framework that offers a simple and efficient method to handle self-similar problems in history...... numerical simulations [3] when possible. To mimic the condition for the analytical predictions, the wedge indenter is considered nearly flat and the material is perfectly plastic with a very low yield strain. Under these conditions, [1][2] proved analytically the existence of discontinuities in the slip...

  19. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  20. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    International Nuclear Information System (INIS)

    Shin, Hong Gue; Kwon, Jong Tae; Seo, Young Ho; Kim, Byeong Hee

    2008-01-01

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 μm were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications

  1. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)]. E-mail: duo.liu@mail.uh.edu; Chelf, M. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States); White, K.W. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2006-10-15

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {l_brace}110{r_brace}{sub pc}<11-bar 0>{sub pc}. The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed.

  2. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    International Nuclear Information System (INIS)

    Liu, D.; Chelf, M.; White, K.W.

    2006-01-01

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {110} pc pc . The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed

  3. Atomic force microscopy indentation of fluorocarbon thin films fabricated by plasma enhanced chemical deposition at low radio frequency power

    International Nuclear Information System (INIS)

    Sirghi, L.; Ruiz, A.; Colpo, P.; Rossi, F.

    2009-01-01

    Atomic force microscopy (AFM) indentation technique is used for characterization of mechanical properties of fluorocarbon (CF x ) thin films obtained from C 4 F 8 gas by plasma enhanced chemical vapour deposition at low r.f. power (5-30 W) and d.c. bias potential (10-80 V). This particular deposition method renders films with good hydrophobic property and high plastic compliance. Commercially available AFM probes with stiff cantilevers (10-20 N/m) and silicon sharpened tips (tip radius < 10 nm) are used for indentations and imaging of the resulted indentation imprints. Force depth curves and imprint characteristics are used for determination of film hardness, elasticity modulus and plasticity index. The measurements show that the decrease of the discharge power results in deposition of films with decreased hardness and stiffness and increased plasticity index. Nanolithography based on AFM indentation is demonstrated on thin films (thickness of 40 nm) with good plastic compliance.

  4. Quantitative Imaging of the Stress/Strain Fields and Generation of Macroscopic Cracks from Indents in Silicon

    Directory of Open Access Journals (Sweden)

    Brian K. Tanner

    2017-11-01

    Full Text Available The crack geometry and associated strain field around Berkovich and Vickers indents on silicon have been studied by X-ray diffraction imaging and micro-Raman spectroscopy scanning. The techniques are complementary; the Raman data come from within a few micrometres of the indentation, whereas the X-ray image probes the strain field at a distance of typically tens of micrometres. For example, Raman data provide an explanation for the central contrast feature in the X-ray images of an indent. Strain relaxation from breakout and high temperature annealing are examined and it is demonstrated that millimetre length cracks, similar to those produced by mechanical damage from misaligned handling tools, can be generated in a controlled fashion by indentation within 75 micrometres of the bevel edge of 200 mm diameter wafers.

  5. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  6. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  7. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  8. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    International Nuclear Information System (INIS)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10"−"4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  9. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  10. Modelling of hardness distribution curves obtained on two-phase materials by grid indentation technique

    Czech Academy of Sciences Publication Activity Database

    Buršík, Jiří

    2011-01-01

    Roč. 105, - (2011), s. 660-663 ISSN 0009-2770. [Lokálne mechanické vlastnosti 2010. Smolenice, 10.11.2010-12.11.2010] R&D Projects: GA ČR(CZ) GA106/09/0700 Institutional research plan: CEZ:AV0Z20410507 Keywords : grid indentation * hardness * modelling Subject RIV: JG - Metallurgy Impact factor: 0.529, year: 2011

  11. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    International Nuclear Information System (INIS)

    Iurchenko, Anton; Borc, Jarosław; Sangwal, Keshra; Voronov, Alexei

    2016-01-01

    The Vickers microhardness H_V of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H_V of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H_0, is 2337 MPa for LDP, and (4) the value of fracture toughness K_C of LDP crystals lies between 4.7 and 12 MPa m"1"/"2. The load-independent hardness H_0 of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K_C is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H_V was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K_C from the radial cracks was calculated.

  12. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    OpenAIRE

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...

  13. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Science.gov (United States)

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  14. The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models

    Science.gov (United States)

    2011-09-01

    cracking patterns ob- served in spherical indentation data indirectly quantify microheterogeneity. The evolution of damage in ceramics due to projectile...Kayenta model’s damage evolution and variability parameters. Figure 5 illustrates the relationship between the model implementation of variability...Materials by Design, ed., J. W. McCauley. Vol. 134, 11–18. Ceramic Transactions, Cocoa Beach, FL, 2002. 3. G. E. Hauver, et al. Interface Defeat of Long-Rod

  15. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  16. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Directory of Open Access Journals (Sweden)

    Ashrafi H.

    2016-06-01

    Full Text Available Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods: In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results: Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion: To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  17. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments.

    Science.gov (United States)

    Ashrafi, H; Shariyat, M

    2016-06-01

    Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant-rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  18. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials

    Directory of Open Access Journals (Sweden)

    Seyed Saeid Rahimian Koloor

    2018-06-01

    Full Text Available The nanoindentation test is frequently used as an alternate method to obtain the mechanical properties of ductile materials. However, due to the lack of information about the effects of the sample and indenter physical configurations, the accuracy of the extracted material properties in nanoindentation tests requires further evaluation that has been considered in this study. In this respect, a demonstrator ductile material, aluminum 1100, was tested using the Triboscope nanoindenter system with the Berkovich indenter. A 3D finite element simulation of the nanoindentation test was developed and validated through exact prediction of the structural response with measured data. The validated model was then employed to examine the effects of various test configurations on the load–displacement response of the sample material. These parameters were the different indenter edge-tip radii, different indentation depths, different sample tilts, and different friction conditions between the indenter and the material surface. Within the range of the indenter edge-tip radii examined, the average elastic modulus and hardness were 78.34 ± 14.58 and 1.6 ± 0.24 GPa, respectively. The different indentation depths resulted in average values for the elastic modulus and hardness of 77.03 ± 6.54 and 1.58 ± 0.17 GPa, respectively. The uneven surface morphology, as described by the inclination of the local indentation plane, indicated an exponential increase in the extracted values of elastic modulus and hardness, ranging from 71.83 and 1.47 GPa (for the reference case, θ = 0° to 243.39 and 5.05 GPa at θ = 12°. The mechanical properties that were obtained through nanoindentation on the surface with 6° tilt or higher were outside the range for aluminum properties. The effect of friction on the resulting mechanical response and the properties of the material was negligible.

  19. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  20. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks: An observational study.

    Science.gov (United States)

    Ham, Wietske H W; Schoonhoven, Lisette; Schuurmans, Marieke J; Leenen, Luke P H

    2016-09-01

    To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain was explored. Observational. Level one trauma centre in the Netherlands. Adult trauma patients admitted to the Emergency Department in an extrication collar combined with headblocks. Between January and December 2013, 342 patients were included. Study outcomes were incidence and severity of pressure ulcers, indentation marks and pain. The following dependent variables were collected: time in the cervical collar and headblocks, Glasgow Coma Scale, Mean Arterial Pressure, haemoglobin, Injury Severity Score, gender, age, and Body Mass Index. 75.4% of the patients developed a category 1 and 2.9% a category 2 pressure ulcer. Indentation marks were observed in 221 (64.6%) patients; 96 (28.1%) had severe indentation marks. Pressure ulcers and indentation marks were observed most frequently at the back, shoulders and chest. 63.2% experienced pain, of which, 38.5% experienced severe pain. Pain was mainly located at the occiput. Female patients experienced significantly more pain (NRS>3) compared to male patients (OR=2.14, 95% CI 1.21-3.80) None of the investigated variables significantly increased the probability of developing PUs or indentation marks. The high incidence of category 1 pressure ulcers and severe indentation marks indicate an increased risk for pressure ulcer development and may well lead to more severe PU lesions. Pain due to the application of the extrication collar and headblocks may lead to undesirable movement (in order to relieve the pressure) or to bias clinical examination of the cervical spine. It is necessary to revise the current practice of cervical spine immobilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The use of field indentation microprobe in measuring mechanical properties of welds

    International Nuclear Information System (INIS)

    Haggag, F.M.; Wong, H.; Alexander, D.J.; Nanstad, R.K.

    1989-01-01

    A field indentation microprobe (FIM) was conceived for evaluating the structural integrity of metallic components (including base metal, welds, and heat-affected zones) in situ in a nondestructive manner. The FIM consists of an automated ball indentation (ABI) unit for determining the mechanical properties (yield strength, flow properties, estimates of fracture toughness, etc.) and a nondestructive evaluation (NDE) unit (consisting of ultrasonic transducers and a video camera) for determining the physical properties such as crack size, material pileup around indentation, and residual stress presence and orientation. The laboratory version used in this work performs only ABI testing. ABI tests were performed on stainless steel base metal (type 316L), heat-affected zone, and welds (type 308). Excellent agreement was obtained between yield strength and flow properties (true-stress/true-plastic-strain curve) measured by the ABI tests and those from uniaxial tensile tests conducted on 308 stainless steel welds, thermally aged at 343/degree/C for different times, and on the base material. 4 refs., 17 figs

  2. Indenting a Thin Floating Film: Force and First-fold Formation

    Science.gov (United States)

    Ripp, Monica; Paulsen, Joseph

    2017-11-01

    When a thin elastic sheet is gently pushed into a liquid bath, a pattern of radial wrinkles is generated where the film is locally compressed. Despite the simplicity of this setting, basic questions remain about the mechanics and morphology of indented thin films. Recent work shows that traditional post-buckling analysis must be supplanted with an analysis where wrinkles completely relax compressive stresses. Support for this ``far-from-threshold'' theory has been built on measurements of wrinkle extent and wavelength, but direct force measurements have been absent. Here we measure the force response of floating ultrathin ( 100 nm) polystyrene films in indentation experiments. Our measurements are in good agreement with recent predictions for two regimes of poking: Early on force depends on film properties (thickness and Young's modulus) and later is independent of film properties, simply transferring forces from the substrate (gravity and surface tension) to the poker. At larger indentations compression localizes into a single fold. We present scaling arguments and experiments that show the existing model of this transition must be modified. NSF IGERT, NSF CAREER.

  3. TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm

    Science.gov (United States)

    Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.

    2018-04-01

    Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ dislocation loop number density.

  4. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    Science.gov (United States)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  5. Critical aspects of nano-indentation technique in application to hardened cement paste

    International Nuclear Information System (INIS)

    Davydov, D.; Jirasek, M.; Kopecky, L.

    2011-01-01

    Several open questions related to the experimental protocol and processing of data acquired by the nano-indentation (NI) technique are investigated. The volume fractions of mechanically different phases obtained from statistical NI (SNI) analysis are shown to be different from those obtained by back-scattered electron (BSE) image analysis and X-ray diffraction (XRD) method on the same paste. Judging from transmission electron microscope (TEM) images, the representative volume element of low-density calcium-silicate hydrates (C-S-H) can be considered to be around 500 nm, whereas for high-density C-S-H it is about 100 nm. This raises the question how the appropriate penetration depth for NI experiments should be selected. Changing the maximum load from 1 mN to 5 mN, the effect of penetration depth on the experimental results is studied. As an alternative to the SNI method, a 'manual' indentation method is proposed, which combines information from BSE and atomic-force microscopy (AFM), coupled to the NI machine. The AFM allows to precisely indent a high-density C-S-H rim around unhydrated clinkers in cement paste. Yet the results from that technique still show a big scatter.

  6. Indentation stiffness does not discriminate between normal and degraded articular cartilage.

    Science.gov (United States)

    Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle

    2007-08-01

    Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.

  7. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    Science.gov (United States)

    Meng, Yujie; Wang, Siqun; Cai, Zhiyong; Young, Timothy M.; Du, Guanben; Li, Yanjun

    2013-02-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of non-embedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic material during nano-indentation can modify cell-wall properties. This leads to structural and chemical changes in the cell-wall constituents, changes that may significantly alter the material properties. Further investigation was carried out to detect the influence of different vacuum times on the cell-wall mechanical properties during the embedding procedure. Interpretation of the statistical analysis revealed no linear relationships between vacuum time and the mechanical properties of cell walls. The quantitative measurements confirm that low-viscosity resin has a rapid penetration rate early in the curing process. Finally, a novel sample preparation method aimed at preventing resin diffusion into lignocellulosic cell walls was developed using a plastic film to wrap the sample before embedding. This method proved to be accessible and straightforward for many kinds of lignocellulosic material, but is especially suitable for small, soft samples.

  8. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The measurement of Ksub(IC) in single crystal SiC using the indentation method

    International Nuclear Information System (INIS)

    Henshall, J.L.; Brookes, C.A.

    1985-01-01

    The present work has concentrated on investigating the underlying fracture toughness behaviour of SiC single crystals. This material was chosen because of the commercial importance of the various polycrystalline forms of SiC and the relative ready availability of reasonably sized single crystals. This study has examined the feasibility of using the indentation technique to determine Ksub(IC) in SiC single crystals. This requires much more less complex experimentation and also affords the possibility of being able to use this method to study the orientation dependence of Ksub(IC) in a similar manner to that used to investigate anisotropy in indentation hardness behaviour. A single crystal of 6H-SiC was used for all the hardness and conventional Ksub(IC) results reported here. The particular polytype and orientation were determined using the Laue X-ray method. All the measurements were made under ambient conditions. Three-point bend tests, with a 6 mm span on single edge notched beams, SENB, orientated such that the plane of the notch was brace 112-bar0 brace and the crack propagation direction were used for the conventional Ksub(IC) tests. The hardness indentations were all made on one particular SENB test piece after it had been fractured. The results are discussed. (author)

  10. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    International Nuclear Information System (INIS)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-01-01

    Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of the Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  11. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  12. Study of the Tool Geometry Influence in Indentation for the Analysis and Validation of the New Modular Upper Bound Technique

    Directory of Open Access Journals (Sweden)

    Carolina Bermudo

    2016-07-01

    Full Text Available Focusing on incremental bulk metal forming processes, the indentation process is gaining interest as a fundamental part of these kinds of processes. This paper presents the analysis of the pressure obtained in indentation under the influence of different punch geometries. To this end, an innovative Upper Bound Theorem (UBT based solution is introduced. This new solution can be easily applied to estimate the necessary force that guarantees plastic deformation by an indentation process. In this work, we propose an accurate analytical approach to analyse indentation under different punches. The new Modular Upper Bound (MUB method presents a simpler and faster application. Additionally, its complexity is not considerably increased by the addition of more Triangular Rigid Zones. In addition, a two-dimensional indentation model is designed and implemented using the Finite Element Method (FEM. The comparison of the two methods applied to the indentation process analysed—the new Modular Upper Bound technique and the Finite Element Method—reveal close similarities, the new Modular Upper Bound being more computationally efficient.

  13. Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys

    Directory of Open Access Journals (Sweden)

    Carolina Bermudo

    2017-05-01

    Full Text Available The application of incremental processes in the manufacturing industry is having a great development in recent years. The first stage of an Incremental Forming Process can be defined as an indentation. Because of this, the indentation process is starting to be widely studied, not only as a hardening test but also as a forming process. Thus, in this work, an analysis of the indentation process under the new Modular Upper Bound perspective has been performed. The modular implementation has several advantages, including the possibility of the introduction of different parameters to extend the study, such as the friction effect, the temperature or the hardening effect studied in this paper. The main objective of the present work is to analyze the three hardening models developed depending on the material characteristics. In order to support the validation of the hardening models, finite element analyses of diverse materials under an indentation are carried out. Results obtained from the Modular Upper Bound are in concordance with the results obtained from the numerical analyses. In addition, the numerical and analytical methods are in concordance with the results previously obtained in the experimental indentation of annealed aluminum A92030. Due to the introduction of the hardening factor, the new modular distribution is a suitable option for the analysis of indentation process.

  14. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    Science.gov (United States)

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue

  15. Fluidos supercríticos em química analítica. II. Cromatografia com fluido supercrítico: instrumentação Supercritical fluid in analytical chemistry. II. Supercritical fluid chromatography: instrumentation

    Directory of Open Access Journals (Sweden)

    Emanuel Carrilho

    2003-10-01

    Full Text Available The first paper in this series discussed the basic theory involved in supercritical fluid chromatography (SFC and how the technique progressed from gas and liquid chromatography. The first SFC instruments were simple adaptations of the commercially available liquid chromatographs with packed columns followed by modifications in gas chromatographs using open tubular capillary columns. In this paper, the most important aspects regarding instrumentation are covered, including practical, simple, and the most important, inexpensive solutions to build a home-made SFC system.

  16. Analysis for trace mercury concentration. I. Critical evaluation of current procedures. II. A proposed method for determination by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Litman, R.

    1975-01-01

    Current methods of sample pretreatments, digestion, lyophilization and extraction, have been found to lead to considerable loss of mercury, at an initial mercury concentration of 1 μg/g, and less. Storage of solutions of mercury at concentrations of less than 1 μg/ml, in glass, Teflon and polyethylene containers, leads to losses by adsorption. Electrochemical reduction of mercury to the metal, and subsequent volatilization, is postulated as the mechanism of loss from the samples studied during lyophilization. A method of instrumental neutron activation analysis, which obviates the above pretreatments, has been developed for mercury concentrations as low as 1 ng/ml

  17. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  18. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  19. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields.

    Science.gov (United States)

    Hahn, David W; Omenetto, Nicoló

    2012-04-01

    The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy

  20. A HRXRD and nano-indentation study on Ne-implanted 6H–SiC

    International Nuclear Information System (INIS)

    Xu, C.L.; Zhang, C.H.; Li, J.J.; Zhang, L.Q.; Yang, Y.T.; Song, Y.; Jia, X.J.; Li, J.Y.; Chen, K.Q.

    2012-01-01

    Specimens of 6H–SiC single crystal were irradiated at room temperature with 2.3 MeV neon ions to three successively increasing fluences of 2 × 10 14 , 1.1 × 10 15 and 3.8 × 10 15 ions/cm 2 and then annealed at room temperature, 500, 700 and 1000 °C, respectively. The strain in the specimens was investigated with a high resolution XRD spectrometer with an ω-2θ scanning. And the mechanical properties were investigated with the nano-indentation in the continuous stiffness measurement (CSM) mode with a diamond Berkovich indenter. The XRD curves of specimens after irradiation show the diffraction peaks arising at lower angles aside of the main Bragg peak Θ Bragg , indicating that a positive strain is produced in the implanted layer. In the as-implanted specimens, the strain increases with the increase of the ion fluence or energy deposition. Recovery of the strain occurs on subsequent thermal annealing treatment and two stages of defects evolution process are displayed. An interpretation of defects migration, annihilation and evolution is given to explain the strain variations of the specimens after annealing. The nano-indentation measurements show that the hardness in as-implanted specimens first increases with the increase of the ion fluence, and a degradation of hardness occurs when the ion fluence exceeds a threshold. On the subsequent annealing, the hardness variations are regarded to be a combined effect of the covalent bonding and the pinning effect of defect clusters.

  1. Indentation in the Right Ventricle by an Incomplete Pericardium on 3-Dimensional Reconstructed Computed Tomography

    Directory of Open Access Journals (Sweden)

    Hak Ju Kim

    2017-08-01

    Full Text Available We report the case of a 17-year-old girl who presented with an indentation in the right ventricle caused by an incomplete pericardium on preoperative 3-dimensional reconstructed computed tomography. She was to undergo surgery for a partial atrioventricular septal defect and secundum atrial septal defect. Preoperative electrocardiography revealed occasional premature ventricular beats. We found the absence of the left side of the pericardium intraoperatively, and this absence caused strangulation of the diaphragmatic surface of the right ventricle. After correcting the lesion, the patient’s rhythm disturbances improved.

  2. Direct observation of asperity deformation of specimens with random rough surfaces in upsetting and indentation processes

    DEFF Research Database (Denmark)

    Azushima, A.; Kuba, S.; Tani, S.

    2006-01-01

    The trapping behavior of liquid lubricant and contact behavior of asperities at the workpiece-tool interface during upsetting and indentation are observed directly using a compression subpress which consists of a transparent die made of sapphire, a microscope with a CCD camera and a video system....... The experiments are carried out without lubricant and with lubricant. Specimens used are commercially pure A1100 aluminum with a random rough surface. From these observations, the change in the fraction of real contact area is measured by an image processor. The real contact area ratios in upsetting experiments...

  3. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil

    Science.gov (United States)

    Yan, Yuping; Lv, Jiajiang; Liu, Sheng

    2018-04-01

    We investigate chirality and grain boundary (GB) effects on indentation mechanical properties of graphene coated on nickel foil using molecular dynamics simulations. The models of graphene with different chirality angles, different numbers of layers and tilt GBs were established. It was found that the chirality angle of few-layer graphene had a significant effect on the load bearing capacity of graphene/nickel systems, and this turns out to be more significant when the number of layers is greater than one. The enhancement to the contact stiffness, elastic capacity and the load bearing capacity of graphene with tilt GBs was lower than that of pristine graphene.

  4. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method.

    Science.gov (United States)

    Hayashi-Sakai, Sachiko; Sakai, Jun; Sakamoto, Makoto; Endo, Hideaki

    2012-09-01

    The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.

  5. A model of high-rate indentation of a cylindrical striking pin into a deformable body

    Science.gov (United States)

    Zalazinskaya, E. A.; Zalazinsky, A. G.

    2017-12-01

    Mathematical modeling of an impact and high-rate indentation to a significant depth of a flat-faced hard cylindrical striking pin into a massive deformable target body is carried out. With the application of the kinematic extreme theorem of the plasticity theory and the kinetic energy variation theorem, the phase trajectories of the striking pin are calculated, the initial velocity of the striking pin in the body, the limit values of the inlet duct length, and the depth of striking pin penetration into the target are determined.

  6. Strain gradient effects in periodic flat punch indenting at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, J. W.

    2014-01-01

    Experiments on soft polycrystalline aluminum have yielded evidence that, besides the required punch load, both the size and shape of imprinted features are affected by the scale of the set-up, e.g. substantial details are lost when the characteristic length is on the order of 10μm. The objective...... are employed. During a largely non-homogeneous deformation, the material is forced up in between the indenters so that an array of identical imprinted features is formed once the tool is retreated. It is confirmed that the additional hardening owing to plastic strain gradients severely affects both the size...

  7. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measurement of diabetic wounds with optical coherence tomography-based air-jet indentation system and a material testing system.

    Science.gov (United States)

    Choi, M-C; Cheung, K-K; Ng, G Y-F; Zheng, Y-P; Cheing, G L-Y

    2015-11-01

    Material testing system is a conventional but destructive method for measuring the biomechanical properties of wound tissues in basic research. The recently developed optical coherence tomography-based air-jet indentation system is a non-destructive method for measuring these properties of soft tissues in a non-contact manner. The aim of the study was to examine the correlation between the biomechanical properties of wound tissues measured by the two systems. Young male Sprague-Dawley rats with streptozotocin-induced diabetic were wounded by a 6 mm biopsy punch on their hind limbs. The biomechanical properties of wound tissues were assessed with the two systems on post-wounding days 3, 7, 10, 14, and 21. Wound sections were stained with picro-sirius red for analysis on the collagen fibres. Data obtained on the different days were charted to obtain the change in biomechanical properties across the time points, and then pooled to examine the correlation between measurements made by the two devices. Qualitative analysis to determine any correlation between indentation stiffness measured by the air-jet indentation system and the orientation of collagen fibres. The indentation stiffness is significantly negatively correlated to the maximum load, maximum tensile stress, and Young's modulus by the material testing system (all pair-jet indentation system to evaluate the biomechanical properties of wounds in a non-contact manner. It is a potential clinical device to examine the biomechanical properties of chronic wounds in vivo in a repeatable manner.

  9. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  10. Sub-micron indent induced plastic deformation in copper and irradiated steel; Deformation plastique induite par l'essai d'indentation submicronique, dans le cuivre et l'acier 316L irradie

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ch

    1999-07-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu (001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg. C - 600 deg. C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  11. Depth-sensing nano-indentation on a myelinated axon at various stages

    International Nuclear Information System (INIS)

    Huang, Wei-Chin; Liao, Jiunn-Der; Lin, Chou-Ching K; Ju, Ming-Shaung

    2011-01-01

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  12. A study on the evaluation of material degradation using ball indentation method

    International Nuclear Information System (INIS)

    Kim, Jeong Pyo; Seok, Chang Sung; Ahn, Ha Neul

    2000-01-01

    As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree

  13. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  14. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential

    International Nuclear Information System (INIS)

    Zhao, Yinbo; Peng, Xianghe; Fu, Tao; Huang, Cheng; Feng, Chao; Yin, Deqiang; Wang, Zhongchang

    2016-01-01

    Highlights: • We optimize Tersoff potential to simulate the cBN better under nanoidentation. • Dislocations slip more easily along and directions on the {111} plane. • Shuffle-set dislocation slip along direction on {111} plane first. • A tetrahedron structure is found in the initial stage of the indentation. - Abstract: We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the {111} and {111} systems are relatively smaller, indicating that dislocations slip more easily along and directions on the {111} plane.

  15. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinbo [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Peng, Xianghe, E-mail: xhpeng@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); Fu, Tao; Huang, Cheng; Feng, Chao [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Yin, Deqiang [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Wang, Zhongchang, E-mail: zcwang@wpi-aimr.tohoku.ac.jp [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-09-30

    Highlights: • We optimize Tersoff potential to simulate the cBN better under nanoidentation. • Dislocations slip more easily along <110> and <112> directions on the {111} plane. • Shuffle-set dislocation slip along <112> direction on {111} plane first. • A tetrahedron structure is found in the initial stage of the indentation. - Abstract: We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along <112> direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along <110> direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the <112>{111} and <110>{111} systems are relatively smaller, indicating that dislocations slip more easily along <110> and <112> directions on the {111} plane.

  16. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals

    International Nuclear Information System (INIS)

    Chien, F.R.; Ubic, F.J.; Prakash, V.; Heuer, A.H.

    1998-01-01

    The stress-induced tetragonal to monoclinic (t → m) martensitic transformation, stress-induced ferroelastic domain switching, and dislocation slip were induced by Vickers microindentation at elevated temperatures in polydomain single crystals of 3 mol%-Y 2 O 3 -stabilized tetragonal ZrO 2 single crystals (3Y-TZS). Chemical etching revealed traces along t directions adjacent to indentations, and Raman spectroscopy and TEM have shown that these traces are caused by products of the martensitic transformation, i.e. the monoclinic product phase forms primarily as thin, long plates with a habit plane approximately on (bar 301) m . This habit plane and the associated shear strain arising from the transformation, visible in TEM micrographs at the intersection of crystallographically equivalent martensite plates, were successfully predicted using the observed lattice correspondence and the phenomenological invariant plane strain theory of martensitic transformations. The extent of the martensitic transformation increased with increasing temperature from room temperature up to 300 C, but then decreased at higher temperatures. Ferroelastic deformation of tetragonal ZrO 2 has been observed at all temperatures up to 1,000 C. At the highest temperature, only ferroelastic domain switching and dislocation slip occurred during indentation-induced deformation

  17. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  18. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component & Systems Analysis; Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Transportation System Analysis

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  19. An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature

    Science.gov (United States)

    Ye, Jiping

    2012-08-01

    Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.

  20. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  1. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    Science.gov (United States)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  2. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.

    2011-08-10

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.

  3. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  4. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  5. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  6. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  7. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  8. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  9. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks

    NARCIS (Netherlands)

    Arbabi, Vahid; Pouran, B; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-01-01

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element

  10. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    International Nuclear Information System (INIS)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-01-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone

  11. Influence of loading path and precipitates on indentation creep behavior of wrought Mg–6 wt% Al–1 wt% Zn magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Madhya Pradesh 482005 (India); Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Jain, Jayant [Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-05

    This study reports the effect of loading path and precipitates on indentation induced creep behavior of AZ61 magnesium alloy. Indentation creep tests were performed on solution-treated and peak-aged extruded AZ61 magnesium alloy, and Atomic Force Microscopy (AFM) investigations were carried out to study deformation mechanisms. Twinning is the dominant creep mechanism for indentation along the extrusion direction (ED) in solution-treated alloy. A combination of slip and twinning appears to be the prominent mechanisms for indentation creep perpendicular to ED. Creep flow is arrested for indentation perpendicular to ED, due to slip–twin interactions. Influence of precipitates on creep deformation was also studied. Aged specimen exhibited higher creep resistance than solution-treated specimen. Unlike solution-treated specimens, twinning was not observed in aged alloy. Creep in aged specimen was attributed to slip.

  12. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  13. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  14. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  15. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  16. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  17. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ruestes, C.J., E-mail: cjruestes@hotmail.com [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina); Stukowski, A. [Technische Universität Darmstadt, Darmstadt 64287 (Germany); Tang, Y. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China); Tramontina, D.R. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); Erhart, P. [Chalmers University of Technology, Department of Applied Physics, Gothenburg 41296 (Sweden); Remington, B.A. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Urbassek, H.M. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, E.M. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina)

    2014-09-08

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.

  18. Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect

    Science.gov (United States)

    Wu, F.; Wu, T.-H.; Li, X.-Y.

    2018-03-01

    This article aims to present a systematic indentation theory on a half-space of multi-ferroic composite medium with transverse isotropy. The effect of sliding friction between the indenter and substrate is taken into account. The cylindrical flat-ended indenter is assumed to be electrically/magnetically conducting or insulating, which leads to four sets of mixed boundary-value problems. The indentation forces in the normal and tangential directions are related to the Coulomb friction law. For each case, the integral equations governing the contact behavior are developed by means of the generalized method of potential theory, and the corresponding coupling field is obtained in terms of elementary functions. The effect of sliding on the contact behavior is investigated. Finite element method (FEM) in the context of magneto-electro-elasticity is developed to discuss the validity of the analytical solutions. The obtained analytical solutions may serve as benchmarks to various simplified analyses and numerical codes and as a guide for future experimental studies.

  19. Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic state

    NARCIS (Netherlands)

    Breemen, van L.C.A.; Engels, T.A.P.; Pelletier, C.G.N.; Govaert, L.E.; Toonder, den J.M.J.

    2009-01-01

    Flat-tip micro-indentation tests were performed on quenched and annealed polymer glasses at various loading speeds. The results were analyzed using an elasto-viscoplastic constitutive model that captures the intrinsic deformation characteristics of a polymer glass: a strain-rate dependent yield

  20. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    International Nuclear Information System (INIS)

    Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.

    2014-01-01

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory

  1. Probing the structure and mechanical properties of the graphite nodules in ductile cast irons via nano-indentation

    DEFF Research Database (Denmark)

    Andriollo, Tito; Fæster, Søren; Winther, Grethe

    2018-01-01

    Little is known today about the mechanical properties of the graphite nodules, despite the key influence these particles have on the performance of ductile cast irons. To address this issue, nano-indentation tests were performed on the cross-section of a nodule whose sub-surface morphology...

  2. Influence of tip indentation on the adhesive behavior of viscoelastic polydimethylsiloxane networks studied by atomic force microscopy

    NARCIS (Netherlands)

    Pickering, J.P.; Vancso, Gyula J.

    2001-01-01

    A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation,

  3. Mechanical evaluation of linear friction welds in titanium alloys through indentation experiments

    International Nuclear Information System (INIS)

    Corzo, M.; Casals, O.; Alcala, J.; Mateo, A.; Anglada, M.

    2005-01-01

    This article shows the results of a project that focuses on the characterization of the weld interface region of dissimilar joints between titanium alloys for aeronautical applications, specifically Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-2Sn-4Zr-2Mo. The uniaxial flow stress and hardening response of the material containing the weld were analyzed following the finite elements simulations and mathematical formulations to correlate hardness and the amount of pile-up and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. This allows to accurately stablishing the influence that welding process has on the mechanical response of the parts. Tests performed on these friction-welded specimens showed that the fine grained microstructures in the welds exhibited better properties than the base materials. (Author) 12 refs

  4. Analysis of the Indented Cylinder by the use of Computer Vision

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen

    -groups: (1) “long” seeds and (2) “short” seeds (known as length-separation). The motion of seeds being physically manipulated inside an active indented cylinder was analysed using various computer vision methods. The data from such analyses were used to create an overview of the machine’s ability to separate...... as a cite-aware imagery data set. The work summarised in this thesis is very much related to the task of constructing models from observed data. This field is known as empirical model development or more specifically as “system identification”. System v identification deals specifically with estimating...... mathematical models from observed dynamic states (time series) of inputs and outputs to and from some physical system under investigation. The contribution of the work is to be found primarily within the problem domain of experimentation for system identification. Computer vision techniques were used...

  5. Investigation on the Interface Characteristics of the Thermal Barrier Coating System through Flat Cylindrical Indenters

    Directory of Open Access Journals (Sweden)

    Shifeng Wen

    2014-01-01

    Full Text Available Thermal barrier coating (TBC systems are highly advanced material systems and usually applied to insulate components from large and prolonged heat loads by utilizing thermally insulating materials. In this study, the characteristics of the interface of thermal barrier coating systems have been simulated by the finite-element method (FEM. The emphasis was put on the stress distribution at the interface which is beneath the indenter. The effect of the interface roughness, the thermally grown oxide (TGO layer's thickness, and the modulus ratio (η of the thin film with the substrate has been considered. Finite-element results showed that the influences of the interface roughness and the TGO layer's thickness on stress distribution were important. At the same time, the residual stress distribution has been investigated in detail.

  6. Microstructure of AZ31 Magnesium Alloy deformed by indentation-flattening compound deformation technology

    Science.gov (United States)

    Wang, Minghao; Wang, Zhongtang; Yu, Xiaolin

    2018-03-01

    Characteristic of indentation-flattening compound deformation technology (IFCDT) is discussed, and the parameters of IFCDT are defined. Performance of magnesium alloy AZ31 sheet deformed by IFCDT is researched. The effect of IFCDT coefficient, temperature and reduction ratio on the microstructure of magnesium alloy sheet is analyzed. The research results show that the volume fraction of the twin crystal decreases gradually and the average grain size increases with increasing of coefficient of IFCDT. With increase of the reduction ratio, the volume fraction of the twin crystal gradually increases, and the average grain size also increases. With increase of deformation temperature, the volume fraction of the twin crystal decreases gradually, and the twin crystal grain size increases.

  7. A modified bonded-interface technique with improved features for studying indentation damage of materials

    International Nuclear Information System (INIS)

    Low, I.M.

    1998-01-01

    A modified 'bonded-interface' technique with improved features for studying contact damage of ceramic (Al 2 O 3 graded Al 2 TiO 5 /Al 2 O 3 , Ti 3 SiC 2 ) and non-ceramic (epoxy, tooth) materials is developed and compared with the conventional method. This technique enables the surface damage around and below an indentor to be studied. When used in conjunction with Nomarski illumination and atomic force microscopy, this technique can reveal substantial information on the topography of indentation surface damage. In particular, it is ideal for monitoring the evolution of deformation-micro fracture damage of quasi-plastic materials. The technique is much less sophisticated, less time consuming, and user-friendly. It does not require a highly experience user to be proficient in the procedure. When compared with the conventional tool- clamp method, this modified technique gives similar, if not, identical results. Copyright (1998) Australasian Ceramic Society

  8. Mechanical properties of metallic ribbons investigated by depth sensing indentation technique

    International Nuclear Information System (INIS)

    Pesek, Ladislav; Dobrzanski, Leszek A.; Zubko, Pavol; Konieczny, Jaroslaw

    2006-01-01

    The paper presents mechanical properties of two kinds of Co-based and one Fe-based metallic ribbons by the depth sensing indentation (DSI) technique. Investigations were carried out on two kinds ternary alloy Co 77 Si 11,5 B 11,5 and Fe 78 Si 13 B 9 and multicomponent Co 68 Fe 4 Mo 1 Si 13,5 B 13,5 , which are so-called 'zero-magnetostriction' materials. Metallic ribbons were investigated in amorphous state and partially crystallized state after annealing in 400deg. C in argon atmosphere. Heating of ribbons obtained by melt spinning technique was performed to check its effect on changes of mechanical properties

  9. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  10. Vortex Matter dynamics in a thin film of Nb with columnar indentations

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.S. [Grupo de Supercondutividade e Magnetism, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: julianakapp@gmail.com; Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetism, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C.M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Patino, E.J.; Blamire, M.G. [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Ortiz, W.A. [Grupo de Supercondutividade e Magnetism, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    A superconducting film with columnar defects constitutes a rich scenario for studying Vortex Matter dynamics. This paper reports on the magnetic response of a 200 nm thick Nb film, pierced with a set of 900 columnar indentations of nearly triangular cross section, forming a square lattice. The column diameter is 1 {mu}m and the distance between columns is 10 {mu}m. To probe the interaction of Vortex Matter with the array of antidots, we have excited the sample with a significantly large AC-field, so that flux originally trapped by the columns could be unpinned and admitted into the superconducting sea surrounding the defects. The melting line of this system has a kink separating two different regimes, suggesting a crossover from the efficient pinning regime, at lower temperatures, to a temperature-induced depinning.

  11. Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks

    International Nuclear Information System (INIS)

    Basu, D.; Sarkar, B.K.

    1996-01-01

    Short surface cracks were generated by Vickers indentation on the polished surface of alumina and different zirconia toughened alumina (ZTA) specimens, and their morphology was studied by serial sectioning. These cracks were grown in three-point bend tests under stepwise loading, and variation of toughness with crack extension was plotted to graphically separate the contributions from residual stress intensity and applied stress intensity factors. The plateau toughness determined from the intercept height of the crack extension plots exhibited an upward trend with zirconia content up to 15 vol% ZrO 2 addition in the composition, which was proportional to the fraction of transformable tetragonal grains contributing to transformation toughening. copyright 1996 Materials Research Society

  12. Vortex Matter dynamics in a thin film of Nb with columnar indentations

    International Nuclear Information System (INIS)

    Nunes, J.S.; Zadorosny, R.; Oliveira, A.A.M.; Lepienski, C.M.; Patino, E.J.; Blamire, M.G.; Ortiz, W.A.

    2008-01-01

    A superconducting film with columnar defects constitutes a rich scenario for studying Vortex Matter dynamics. This paper reports on the magnetic response of a 200 nm thick Nb film, pierced with a set of 900 columnar indentations of nearly triangular cross section, forming a square lattice. The column diameter is 1 μm and the distance between columns is 10 μm. To probe the interaction of Vortex Matter with the array of antidots, we have excited the sample with a significantly large AC-field, so that flux originally trapped by the columns could be unpinned and admitted into the superconducting sea surrounding the defects. The melting line of this system has a kink separating two different regimes, suggesting a crossover from the efficient pinning regime, at lower temperatures, to a temperature-induced depinning

  13. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  14. Effect of composition and radiation on the Hertzian indentation behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Matzke, H.; Kahl, L.; Routbort, J.L.; Saidl, J.

    1983-01-01

    The Hertzian indentation technique has been used to determine the fracture toughness, K/sub Ic/ of two borosilicate glasses developed to contain high-level nuclear waste. For the product VG 98/12, adding selected groups of fission products leaves K/sub Ic/ unchanged, but addition of Pb lowers K/sub Ic/ by approx. 20%. Radiation with 77 MeV α-particles to a dose of approx. 10 15 α/cm 2 increases K/sub Ic/ by approx. 75%. For the product SM 58 LW 11, the fracture toughness was measured on pieces taken from different parts of a large cylinder to investigate the effects of segregation phenomena and of partial crystallization and formation of small cristobalite inclusions which decrease K/sub Ic/ by approx. 25%

  15. Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2018-01-01

    Full Text Available Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical indentation. Tabor empirically determined the stress constraint factor (stress CF, ψ, and strain constraint factor (strain CF, β, but the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can fit better with nominal stress-strain curve than those using Tabor’s constraint factors.

  16. Indentation recovery in GdPO4 and observation of deformation twinning

    Directory of Open Access Journals (Sweden)

    Taylor M. Wilkinson

    2016-09-01

    Full Text Available A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. The presence of a twin along the (100 orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO4 is the collapse of deformation twins during unloading.

  17. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Pardoen, T.; Favache, A. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities – signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  18. Indentation studies on Y2O3-stabilized ZrO2

    International Nuclear Information System (INIS)

    Dransmann, G.W.; Steinbrech, R.W.; Pajares, A.; Guiberteau, F.; Dominguez-Rodriguez, A.; Heuer, A.H.

    1994-01-01

    Stable indentation cracks were grown in four-point bend tests to study the fracture toughness of two Y 2 O 3 -stabilized ZrO 2 ceramics containing 3 and 4 mol% Y 2 O 3 . By combining microscopic in situ stable crack growth observations at discrete stresses with crack profile measurements, the dependence of toughness on crack extension was determined from crack extension plots, which graphically separate the crack driving residual stress intensity and applied stress intensity factors. Both materials exhibit steeply rising R-curves, with a plateau toughness of 4.5 and 3.1 MPa·m 1/2 for the 3- and 4-mol% materials, respectively. The magnitude of the plateau toughness reflects the fraction of tetragonal grain contributing to transformation toughening

  19. On the origin of the mixed alkali effect on indentation in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, J. C.

    2014-01-01

    The compositional scaling of Vickers hardness (Hv) in mixed alkali oxide glasses manifests itself as a positive deviation from linearity as a function of the network modifier/modifier ratio, with a maximum deviation at the ratio of 1:1. In this work, we investigate the link between the indentation...... deformation processes (elastic deformation, plastic deformation, and densification) and Hv in two mixed sodium–potassium silicate glass series. We show that the mixed alkali effect in Hv originates from the nonlinear scaling of the resistance to plastic deformation. We thus confirm a direct relation between...... the resistance to plastic flow and Hv in mixed modifier glasses. Furthermore, we find that the mixed alkali effect also manifests itself as a positive deviation from linearity in the compositional scaling of density for glasses with high alumina content. This trend could be linked to a compaction of the network...

  20. Mechanical properties of cancer cells depend on number of passages: Atomic force microscopy indentation study

    Science.gov (United States)

    Dokukin, Maxim E.; Guz, Natalia V.; Sokolov, Igor

    2017-08-01

    Here we investigate one of the key questions in cell biology, if the properties of cell lines depend on the number of passages in-vitro. It is generally assumed that the change of cell properties (phenotypic drift) is insignificant when the number of passages is low (cell body and parameters of the pericellular brush layer from indentation force curves, which are recorded by means of atomic force microscopy (AFM). Using this method, we tested the change of the cell properties of human cancer breast epithelial cell line, MCF-7 (ATCC® HTB-22™), within the passages between 2 and 10. In contrast to the previous expectations, we observed a substantial transient change of the elastic modulus of the cell body during the first four passages (up to 4 times). The changes in the parameters of the pericellular coat were less dramatic (up to 2 times) but still statistically significant.

  1. Development of lowdrag aerodynamically stable with indented processing; Indento kako wo hodokoshita seishin keburu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hojo, T.; Yamazaki, S.; Okada, H.

    1998-10-29

    A wind-resistant design of cables for large cable-stayed bridges is required as a measure against rain-wind induced vibration. In such bridges, many cables are arranged in a short pitch, which causes a large drag force on the cables. Therefore, reduction of drag force on cables is essential for rationalizing bridge design, as well as restraint of vibration. This paper describes studies on a new cable having both a low drag co-efficient force and rain-vibration suppressing effects. Through many investigations using wind tunnel tests, an indented cable was developed as a countermeasure against rain-wind induced vibration, and finally it was applied to the Tatara Bridge which is the largest cable-stayed bridge in the world. (author)

  2. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    Science.gov (United States)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  3. Severe Hemifacial Spasm is a Predictor of Severe Indentation and Facial Palsy after Microdecompression Surgery.

    Science.gov (United States)

    Na, Boo Suk; Cho, Jin Whan; Park, Kwan; Kwon, Soonwook; Kim, Ye Sel; Kim, Ji Sun; Youn, Jinyoung

    2018-04-27

    Hemifacial spasm (HFS) is mostly caused by the compression of the facial nerve by cerebral vessels, but the significance of spasm severity remains unclear. We investigated the clinical significance of spasm severity in patients with HFS who underwent microvascular decompression (MVD). We enrolled 636 patients with HFS who underwent MVD between May 2010 and December 2013 at Samsung Medical Center (SMC), Seoul, Korea. Subjects were divided into two groups based on spasm severity: severe (SMC grade 3 or 4) and mild (SMC grade 1 or 2). We compared demographic, clinical, and surgical data between these two groups. The severe-spasm group was older and had a longer disease duration at the time of MVD compared to the mild-spasm group. Additionally, hypertension and diabetes mellitus were more common in the severe-spasm group than in the mild-spasm group. Regarding surgical findings, there were more patients with multiple offending vessels and more-severe indentations in the severe-spasm group than in the mild-spasm group. Even though the surgical outcomes did not differ, the incidence of delayed facial palsy after MVD was higher in the severe-spasm group than in the mild-spasm group. Logistic regression analysis showed that severe-spasm was correlated with longer disease duration, hypertension, severe indentation, multiple offending vessels, and delayed facial palsy after MVD. Spasm severity does not predict surgical outcomes, but it can be used as a marker of pathologic compression in MVD for HFS, and be considered as a predictor of delayed facial palsy after MVD. Copyright © 2018 Korean Neurological Association.

  4. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

    Science.gov (United States)

    Seyfi, Behzad; Fatouraee, Nasser; Imeni, Milad

    2018-01-01

    In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relaxation test scenario with different depths and preloads was designed to capture the mechanical characteristics of the tissue in different regions of the medial and lateral menisci. Thereafter, a FE simulation was performed considering experimental conditions. Constitutive parameters were optimized by solving a FE-based inverse problem using the heuristic Simulated Annealing (SA) optimization algorithm. These parameters were ranged according to previously reported data to improve the optimization procedure. Based on the results, the mechanical properties of meniscus were highly influenced by both superficial and main layers. At low indentation depths, a high percentage relaxation (p < 0.01) with a high relaxation rate (p < 0.05) was obtained, due to the poroelastic and viscoelastic nature of the superficial layer. Increasing both penetration depth and preload level involved the main layer response and caused alterations in hyperelastic and viscoelastic parameters of the tissue, such that for both layers, the shear modulus was increased (p < 0.01) while the rate and percentage of relaxation were decreased (p < 0.01). Results reflect that, shear modulus of the main layer in anterior region is higher than central and posterior sites in medial meniscus. In contrast, in lateral meniscus, posterior side is stiffer than central and anterior sides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  6. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  7. Life management of Zr 2.5% Nb pressure tube through estimation of fracture properties by cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Rama Rao, A.

    2015-01-01

    In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes. Pressure tubes made up of Zr 2.5 wt% Nb undergo degradation during in-service environmental conditions. Measurement of mechanical properties of degraded pressure tubes is important for assessing its fitness for further service in the reactor. The only way to accomplish this important objective is to develop a system based on insitu measurement technique. Considering the importance of such measurement, an In-situ Property Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed indigenously. The remotely operable system is capable of carrying out indentation trial on the inside surface of the pressure tube and to estimate important mechanical properties like yield strength, ultimate tensile strength, hardness etc. It is known that fracture toughness is one of the important life limiting parameters of the pressure tube. Hence, five spool pieces of Zr 2.5 wt% Nb pressure tube of different mechanical properties have been used for estimation of fracture toughness by ball indentation method. Curved Compact Tension (CCT) specimens were also prepared from the five spool pieces for measurement of fracture toughness from conventional tests. The conventional fracture toughness values were used as reference data. A methodology has been developed to estimate the fracture properties of Zr 2.5 wt% Nb pressure tube material from the analysis of the ball indentation test data. This paper highlights the comparison between tensile properties measured from conventional tests and IProMS trials and relates the fracture toughness parameters measured from conventional tests with the IProMS estimated fracture properties like Indentation Energy to Fracture. (author)

  8. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing

    Energy Technology Data Exchange (ETDEWEB)

    Buijnsters, J.G. [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Shankar, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Enckevort, W.J.P. van [Solid State Chemistry, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Schermer, J.J. [Experimental Solid State Physics III, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Meulen, J.J. ter [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)]. E-mail: htmeulen@sci.kun.nl

    2005-03-01

    Diamond films have been grown by hot-filament chemical vapour deposition (CVD) on molybdenum substrates under different growth conditions. The films grown with increasing substrate temperatures show a higher interconnection of diamond grains, whereas increasing methane concentrations in the 0.5-4.0% range lead to a transition from micro- towards nanocrystalline films. X-ray diffraction analysis shows Mo{sub 2}C interlayer formation. Indentation, scratch and sand erosion tests are used to evaluate the adhesion strength of the diamond films. Using steel ball indenters (diameter 750 {mu}m), indentation and scratch adhesion tests are performed up to final loads of 200 N. Upon indentation, the load values at which diamond film failure such as flaking and detachment is first observed, increase for increasing temperatures in the deposition temperature range of 450-850 deg C. The scratch adhesion tests show critical load values in the range of 16-40 N normal load for films grown for 4 h. In contrast, diamond films grown for 24 h at a methane concentration of 0.5% do not show any failure at all upon scratching up to 75 N. Film failure upon indenting and scratching is also found to decrease for increasing methane concentration in the CVD gas mixture. The sand abrasion tests show significant differences in coating failure for films grown at varying CH{sub 4}/H{sub 2} ratios. In contrast to the other tests, here best coating performance is observed for the films deposited with a methane concentration of 4%.

  9. Systematic evaluation program review of NRC Safety Topic VI-10.A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-10.A, associated with the electrical, instrumentation, and control portions of the testing of reactor trip systems and engineered safety features including response time for the Dresden II nuclear power plant, using current licensing criteria

  10. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  11. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  12. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  13. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  14. Four Existing Instruments for Assessing Personality Disorders (Study II)%四种人格障碍检测工具效度的比较研究——人格障碍检测工具系列研究Ⅱ

    Institute of Scientific and Technical Information of China (English)

    卢宁; 刘协和; 朱昌明; 杨彦春; 曹丽萍; 岳振雷

    2001-01-01

    Objective: To compare and study the validity of the four instruments for assessment of personality disorders in Chinese subjects. Method: 42 patients with psychosis in remission, 41 patients with neurosis in stable state, 29 subjects with personality disorder and 41 normal control were evaluated using the four instruments: IPDE (International Personality Disorder Examination), SCID-II (Structured Clinical Interview for DSM-III-R Personality Disorder), SCID-II PQ (SCID-II Patient Questionnaire), PDI-IV (Personality Disorder Interview for DSM-IV). Their validities in Chinese subjects were tested. Result: It was found that obsessive-compulsive, avoidant, dependent, histrionic, borderline, antisocial, schizoid, paranoid personality disorders had better specificity. Except item 7 with invalid item-differentiation, IPDE had better validity. Conclusion: Obsessive-compulsive, avoidant, dependent, histrionic, borderline, antisocial, schizoid, paranoid personality disorders had better inner homogeneity and discerning diagnose function. IPDE had better diagnostic value.%目的:对四种来自西方的人格障碍检测工具的效度进行比较研究。方法:本研究将四种人格障碍检测工具IPDE(国际人格障碍检查)、SCID-Ⅱ(DSM-Ⅲ-R人格障碍临床定式检测)、SCID-ⅡPQ(DSM-Ⅲ-R人格障碍筛查问卷)、PDI-Ⅳ(DSM-Ⅳ人格障碍检测)在中国大陆人群中抽样测试并进行效度检验。结果:在四个检测工具中强迫型、回避型、依赖型、表演型、边缘型、反社会型、分裂样型和偏执型等8个人格障碍型别具有较好的效度;IPDE较其他检测工具的效度更为完善。IPDE的不足之处:项目8、9结构稳定性差;项目2、3、8、24、25、29、52的区分度较差。结论:强迫型、回避型、依赖型、表演型、边缘型、反社会型、分裂样型和偏执型等8个人格障碍型别有较好的独特性和鉴别诊断效能;IPDE较其他检测工具有更好的可操作性。

  15. Post-collisional deformation of the Anatolides and motion of the Arabian indenter: A paleomagnetic analysis

    International Nuclear Information System (INIS)

    Piper, J; Tatar, O; Gursoy, H; Mesci, B L; Kocbulut, F; Huang, B

    2008-01-01

    In the Anatolides of Turkey the neotectonic (post collisional) phase of deformation embraces the period since final closure of the southern arm of Neotethys in mid-Miocene times. The Arabian Shield indenter has continued to deform into the weak Anatolian accretionary collage resulting from subduction of this ocean by a combination of differential movement relative to the African Plate and counterclockwise (CCW) rotation. Much of resulting deformation has been accommodated by slip along major transforms comprising the North Anatolian Fault Zone (NAFZ), the East Anatolian Fault Zone (EAFZ) and the northward extension of the Dead Sea Fault Zone (DSFZ) but has also been distributed as differential block rotations through the zone of weak crust in between. Facets of this deformation comprise crustal thickening and uplift to produce the Anatolian Plateau, establishment of transform faults and tectonic escape as Arabia has continued to impinge into the Anatolian collage. Paleomagnetic analysis of this deformation is facilitated by the widespread distribution of neotectonic volcanism and graben infills, and rotations relative to the Eurasian reference frame are recognised on two scales. Rapid rotation (up to 5 0 /10,000 years) of small fault blocks is identified between master faults along the intracontinental transforms but deformation does not extend away from these zones and shows that seismogenic upper crust is decoupled from a lower continental lithosphere undergoing continuum deformation. The broad area of weak accreted crust between the transforms is dissected into large fault blocks which exhibit much lower rotation rates (mostly 0 /100,000 years) that vary systematically across the Anatolides. Large CCW rotations near the Arabian indenter diminish westwards to become zero then CW near the limit of tectonic escape in western Turkey. The view that the collage has rotated anticlockwise as a single plate, either uniformly or episodically, during the Neotectonic era is

  16. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation.

    Science.gov (United States)

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A

    2017-06-28

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.

  17. Evaluation of fracture toughness in dental ceramics using indentation and SEVNB (Single Edge V-Notched Beam)-method

    International Nuclear Information System (INIS)

    Santos, L.A.; Santos, C.; Souza, R.C.; Ribeiro, S.

    2009-01-01

    In this work, the fracture toughness of different ceramics based on Al 2 O 3 and ZrO 2 were evaluated using, comparatively two methods, Vickers indentation and SEVNB (Single Edge V-Notched Beam) method. Al 2 O 3 , ZrO 2 (3%Y 2 O 3 ) micro-particled and ZrO 2 (3%Y 2 O 3 ) nanometric, ZrO 2 -Al 2 O 3 and Al 2 O 3 -ZrO 2 composites were sintered at different temperatures. Samples were characterized by relative density, X-ray diffraction, SEM, and mechanical evaluation by hardness, bending strength and fracture toughness obtained by ickers indentation and SEVNB-method. The results were presented comparing the densification and microstructural results. Furthermore, the advantages and limitations of each method were discussed. (author)

  18. Nano-indentation creep properties of the S2 cell wall lamina and compound corner middle lamella [abstract

    Science.gov (United States)

    Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone

    2010-01-01

    Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...

  19. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    Science.gov (United States)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  20. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  1. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  2. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    Science.gov (United States)

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Approche statistique pour identifier les propriétés mécaniques des phases individuelles á partir de données d'indentation

    Czech Academy of Sciences Publication Activity Database

    Čech, J.; Haušild, P.; Materna, A.; Matějíček, Jiří

    2017-01-01

    Roč. 105, č. 1 (2017), č. článku 105. ISSN 0032-6895. [Indentation 2016. Lille, 12.10.2016-14.10.2016] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Nanoindentation * interface * composites * grid indentation * statistical distribution Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics https://doi.org/10.1051/mattech/2016041

  4. Double hump sign in indentation gonioscopy is correlated with presence of plateau iris configuration regardless of patent iridotomy.

    Science.gov (United States)

    Kiuchi, Yoshiaki; Kanamoto, Takashi; Nakamura, Takao

    2009-02-01

    A plateau iris is one of the clinical forms of angle closure glaucoma. In patients with a patent iridotomy, the double hump sign detected during indentation gonioscopy has been reported to indicate the existence of a plateau iris configuration. The purpose of this study was to determine whether the double hump sign is correlated with the presence of the plateau iris syndrome regardless of the patency of the iridotomy. Five women and 3 men without a patent iridotomy presented with narrow angles on gonioscopy and a double hump sign on indentation gonioscopy. Ultrasound biomicroscopy (UBM) imaging was performed to determine the etiology of the narrow angle and double hump sign, and to determine the appropriate treatment to prevent the progression of visual field damage. Ten patients with narrow angles and without a double hump sign were also examined by UBM to serve as a control group. All 8 patients who showed double hump sign had a short iris root, which was inserted anterior to the ciliary face, a typical anatomic appearance of a plateau iris. On the other hand, only 1 eye of 10 eyes in control group appeared to have a plateau iris. A double hump sign observed on indentation gonioscopy is strongly correlated with the presence of a plateau iris, and therefore a useful indicator of a plateau iris configuration regardless of the patency of a laser iridotomy. Thus, a plateau iris configuration can be detected without using a UBM in many cases.

  5. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  6. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Indentation-Induced Mechanical Deformation Behaviors of AlN Thin Films Deposited on c-Plane Sapphire

    International Nuclear Information System (INIS)

    Jian, Sh.R.; Juang, J.Y.

    2012-01-01

    The mechanical properties and deformation behaviors of AlN thin films deposited on c-plane sapphire substrates by helicon sputtering method were determined using the Berkovich nano indentation and cross-sectional transmission electron microscopy (XTEM). The load-displacement curves show the 'pop-ins' phenomena during nano indentation loading, indicative of the formation of slip bands caused by the propagation of dislocations. No evidence of nano indentation-induced phase transformation or cracking patterns was observed up to the maximum load of 80 mN, from either XTEM or atomic force microscopy (AFM) of the mechanically deformed regions. Instead, XTEM revealed that the primary deformation mechanism in AlN thin films is via propagation of dislocations on both basal and pyramidal planes. Furthermore, the hardness and Young's modulus of AlN thin films estimated using the continuous contact stiffness measurements (CSMs) mode provided with the nanoindenter are 16.2 GPa and 243.5 GPa, respectively.

  8. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  9. Applying neural networks to optimize instrumentation performance

    International Nuclear Information System (INIS)

    Start, S.E.; Peters, G.G.

    1995-01-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate

  10. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  11. Instruments and accessories for neutron scattering research

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  12. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  13. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  14. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  15. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  16. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  17. Estimation of Apple Volume and Its Shape Indentation Using Image Processing Technique and Neural Network

    Directory of Open Access Journals (Sweden)

    M Jafarlou

    2014-04-01

    Full Text Available Physical properties of agricultural products such as volume are the most important parameters influencing grading and packaging systems. They should be measured accurately as they are considered for any good system design. Image processing and neural network techniques are both non-destructive and useful methods which are recently used for such purpose. In this study, the images of apples were captured from a constant distance and then were processed in MATLAB software and the edges of apple images were extracted. The interior area of apple image was divided into some thin trapezoidal elements perpendicular to longitudinal axis. Total volume of apple was estimated by the summation of incremental volumes of these elements revolved around the apple’s longitudinal axis. The picture of half cut apple was also captured in order to obtain the apple shape’s indentation volume, which was subtracted from the previously estimated total volume of apple. The real volume of apples was measured using water displacement method and the relation between the real volume and estimated volume was obtained. The t-test and Bland-Altman indicated that the difference between the real volume and the estimated volume was not significantly different (p>0.05 i.e. the mean difference was 1.52 cm3 and the accuracy of measurement was 92%. Utilizing neural network with input variables of dimension and mass has increased the accuracy up to 97% and the difference between the mean of volumes decreased to 0.7 cm3.

  18. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  19. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  20. "Instrumento II" adicional de avaliação do desenvolvimento de pré-escolares: seu valor na discriminação de grupos etários The additional "Second Instrument" for the assessment of preschooler development: its value for age-group differentiation

    Directory of Open Access Journals (Sweden)

    José Fernandes

    1981-12-01

    Full Text Available O conjunto de teste do "Instrumento de Avaliação do Desenvolvimento de Pré-escolares II" (IADPE-II visa aumentar a sensibilidade na avaliação psicométrica em crianças de 5 a 6 anos. Com o objetivo de proceder a uma análise inicial das principais características estatísticas do "Instrumento II", foi avaliado seu poder de discriminação entre as idades de 5 a 6 anos e as correlações entre ele e os instrumentos "IADPE-I" e "Escala de Comportamento" usados inicialmente neste projeto. Os dados obtidos revelam que o "IADPE-II" aumenta a sensibilidade da avaliação psicométrica de crianças de 5 a 6 anos. Encontrou-se correlação positiva e altamente significativa com os instrumentos citados. Com base nesses resultados verificou-se que o "IADPE-II" pode ser utilizado como uma avaliação complementar para avaliação psicométrica de pré-escolares de 5 a 6 anos de idade.This battery of tests - the "Instrument II" - was selected in order to increase the sensitivity of the psychometric evaluations for children from 5 to 6 years old and designed to be used as a complementary resource for the former mechanisms - the "IADPE" and the "Scale" both used on the CEAPE program. The present article studies the main statistical characteristics of the "Instrument II". It was found to increase the sensitivity of the psychometric evaluation of preschool children of the age quoted. A positive and significant correlation among the three methods mentioned was also obtained. On the basis of these results one can suggest that the "Instrument II" can be used as a complementary evaluation test for estimating the socio-psychological progress in preschool children of 5 and 6 years old belonging to low socio-economic classes.

  1. Application of instrumented microhardness method to follow the thermal ageing of cast duplex stainless steel

    International Nuclear Information System (INIS)

    Rezakhanlou, R.; Massoud, J.P.

    1993-03-01

    During the thermal ageing of cast duplex stainless steel the ferrite hardness largely increases. The measurement of the ferrite phase hardness can give us an indication of the level of the ageing process. But in order to have a representative value of the ferrite hardness, the applied load must be low enough. For this reason, we have used the instrumented microhardness (IMH) test which consists to measure continuously the applied load and the indentation depth during the operation. The mechanical analysis of the so called indentation curve allows us to calculate the hardness and the young modulus of the indented material for loads as low as 2 g. The results confirm the Vickers microhardness measurement under 50 g loads i.e. a sharp increase of the ferrite hardness (x 2.3 as compared to the as received state) for the highly aged sample. It should be noted that the results obtained with the IMH are completely independent of the operator. (authors). 18 refs., 7 figs., 6 tabs

  2. Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Girleanu, M., E-mail: maria.girleanu@uha.fr [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Pac, M.-J.; Louis, P. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Ersen, O.; Werckmann, J. [Departement Structures et Interfaces, IPCMS (UMR CNRS 7504), Universite de Strasbourg, 23 rue du Loess, F-67087 Strasbourg (France); Rousselot, C. [Departement Micro Nano Sciences et Systemes, FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, BP 71427, F-25211 Montbeliard (France); Tuilier, M.-H. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France)

    2011-07-01

    Titanium and aluminium nitride Ti{sub 1-x}Al{sub x}N films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti{sub 0.14}Al{sub 0.86}N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti{sub 0.14}Al{sub 0.86}N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.

  3. Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Girleanu, M.; Pac, M.-J.; Louis, P.; Ersen, O.; Werckmann, J.; Rousselot, C.; Tuilier, M.-H.

    2011-01-01

    Titanium and aluminium nitride Ti 1-x Al x N films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti 0.14 Al 0.86 N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti 0.14 Al 0.86 N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.

  4. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  5. Structural analysis of HyFlex EDM instruments.

    Science.gov (United States)

    Iacono, F; Pirani, C; Generali, L; Bolelli, G; Sassatelli, P; Lusvarghi, L; Gandolfi, M G; Giorgini, L; Prati, C

    2017-03-01

    To compare the phase transformation behaviour, the microstructure, the nano-hardness and the surface chemistry of electro-discharge machined HyFlex EDM instruments with conventionally manufactured HyFlex CM. New and laboratory used HyFlex EDM were examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nano-hardness and modulus of elasticity were also investigated using a maximum load of 20 mN with a minimum of 40 significant indentations for each sample. Raman spectroscopy and field emission-scanning electron microscope (FE-SEM) were used to assess the surface chemistry of HyFlex EDM. HyFlex CM were subjected to the same investigations and used as a comparison. Nano-indentation data were statistically analysed using the Student's t-test. XRD analysis on HyFlex EDM revealed the presence of martensite and rhombohedral R-phase, while a mixture of martensite and austenite structure was identified in HyFlex CM. DSC analysis also disclosed higher austenite finish (Af) temperatures for electro-discharge machining (EDM) instruments. Significant differences in nano-hardness and modulus of elasticity were found between EDM and CM files (P EDM and CM files were covered by an oxide layer. Micro-Raman spectroscopy assessed the presence of rutile-TiO 2 . HyFlex EDM revealed peculiar structural properties, such as increased phase transformation temperatures and hardness. Present results corroborated previous findings and shed light on the enhanced mechanical behaviour of these instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  10. Interface strength of SiC/SiC composites with and without helium implantation using micro-indentation test

    International Nuclear Information System (INIS)

    Saito, M.; Ohtsuka, S.

    1998-01-01

    Helium implantation effects on interface strength of SiC/SiC composite were studied using the micro-indentation fiber push-out method. Helium implantation was carried out with an accelerator at about 400 K. Total amount of implanted helium was approximately 10000 appm. Increase of the fiber push-in load was observed in as-implanted specimen. After post-implantation-annealing at 1673 K for 1 h, the change of the fiber push-in load by helium implantation was not observed. Effects of helium implantation on the interface are discussed. (orig.)

  11. Analysis of a weld of an hydrogen tank under pressure: contribution of the nano-indentation for the characterization

    International Nuclear Information System (INIS)

    Russo, C.; Delobelle, P.; Perreux, D.; Russo, C.; Munier, E.; Decamps, B.

    2007-01-01

    This work deals with the size of an hydrogen spherical tank under pressure, composed of two half shell in aluminium alloy AZ5G machined in a forged bar and welded by electrons beam by a circumference. In this work, it is shown what the nano-indentation test can bring here. The influence of the tempering heat treatment after welding, the grains diameter and the loss in alloy elements (Zn and Mg) on the local mechanical properties of the weld bead has been revealed. In the same way, a hardening of the alloy due to the hydrogen penetration and leading to an increase of the dislocations density is observed. (O.M.)

  12. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface in normal flow

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    Over the last two decades, several bridge cable manufacturers have introduced surface modi-fications on the high-density polyethylene (HDPE) sheathing that is often installed for the protection of inner strands. The main goal of this is rain rivulet impedance, leading to the suppression of rain......-wind induced vibrations (RWIVs). The modifications are based on re-search undertaken predominantly in Europe and Japan, with two different systems prevailing; HDPE tubing fitted with helical surface fillets and HDPE tubing with pattern-indented sur-faces. In the US and Europe, helical fillets dominate, whilst...

  13. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Krakowiak, Konrad J.; Wilson, William [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); James, Simon [Schlumberger Riboud Product Center, 1 Rue Henri Becquerel, Clamart 92140 (France); Musso, Simone [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); Ulm, Franz-Josef, E-mail: ulm@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate the calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.

  14. Effects of Mn addition on the microstructure and indentation creep behavior of the hot dip Zn coating

    International Nuclear Information System (INIS)

    Wang, Youbin; Zeng, Jianmin

    2015-01-01

    Highlights: • Mn addition could significantly refine the grain of the Zn coating. • Twins could be observed in the Zn coatings. • The stress exponent of the Zn coating increases with Mn addition. • The creep process of the Zn coating is dominated by dislocation climb and twins. - Abstract: The Zn coatings with different Mn additions were prepared by hot dip process, and the effects of the Mn addition on the microstructure and indentation creep behavior of the coatings were investigated through scanning electron microscope and constant-load holding indentation technique at the room temperature. Some twins can be observed in the microstructure of Zn coating, which may account for the formation of the large thermal misfit stress between the zinc coating and the steel substrate. The amount of twin microstructure in the Zn coating decreases with the Mn addition. It is also found that Mn addition could induce MnZn 13 phases to precipitate along the grain boundary and significantly refine the grains of Zn coatings. The steady-state stress of the Zn coating could be improved by Mn addition. The creep stress exponent values are in the range of 14–46 and increases with Mn addition. The creep process of the Zn coating is dominated by dislocation climb and twin formation

  15. Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys

    Science.gov (United States)

    Dayal, P.; Bhattacharyya, D.; Mook, W. M.; Fu, E. G.; Wang, Y.-Q.; Carr, D. G.; Anderoglu, O.; Mara, N. A.; Misra, A.; Harrison, R. P.; Edwards, L.

    2013-07-01

    In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nano-indentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (ΔHA2 + ΔHB2)0.5 as the lower limit and the sum of the individual hardening effects, (ΔHA + ΔHB) as the upper limit, within errors, for all depths measured. The hardening due to irradiation by different species of ions was calculated by subtracting the average hardness vs. depth curve of the un-irradiated or "virgin" material from that of the irradiated material. The combined hardening of the irradiated samples due to Ar and He irradiation was found to be described well by an approximate upper bound given by the simple linear sum of the individual hardening (L) and a lower bound given by the square root of the sum of the squares (R) of the individual hardening effects due to Ar and He irradiation along the full depth of the indentation. The peak of the combined hardness of Ar and He irradiated material appears at the depth predicted by both the R and the L curves, in all samples. The combined hardness increase due to Ar and He irradiation lies near the upper limit (L curve) for the ODS steel MA957, somewhere in between L and R curves for Zircaloy-4, and near the R curve for the stainless steel 316

  16. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  17. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from ATLANTIS II in the North Atlantic Ocean from 1981-06-12 to 1981-07-08 (NODC Accession 0117713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117713 includes chemical, discrete sample, physical and profile data collected from ATLANTIS II in the North Atlantic Ocean from 1981-06-12 to...

  18. Ideology as instrument.

    Science.gov (United States)

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. (Copyright) 2007 APA.

  19. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  20. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  1. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  2. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  3. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  4. A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC

    NARCIS (Netherlands)

    Mussert, K.M.; Vellinga, W.P.; Bakker, A.; Zwaag, van der S.

    2002-01-01

    The nano-indentation technique is a suitable technique to measure hardness and elastic moduli profiles of AA6061 reinforced with Al2O3 particles, since it allows measurements of mechanical properties on a micrometer range. To investigate possible local variations in mechanical behaviour of the

  5. Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

    International Nuclear Information System (INIS)

    Doerner, M.F.; Gardner, D.S.; Nix, W.D.

    1986-01-01

    Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness

  6. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  7. Comparison of the surface wave method and the indentation method for measuring the elasticity of gelatin phantoms of different concentrations.

    Science.gov (United States)

    Zhang, Xiaoming; Qiang, Bo; Greenleaf, James

    2011-02-01

    The speed of the surface Rayleigh wave, which is related to the viscoelastic properties of the medium, can be measured by noninvasive and noncontact methods. This technique has been applied in biomedical applications such as detecting skin diseases. Static spherical indentation, which quantifies material elasticity through the relationship between loading force and displacement, has been applied in various areas including a number of biomedical applications. This paper compares the results obtained from these two methods on five gelatin phantoms of different concentrations (5%, 7.5%, 10%, 12.5% and 15%). The concentrations are chosen because the elasticity of such gelatin phantoms is close to that of tissue types such as skin. The results show that both the surface wave method and the static spherical indentation method produce the same values for shear elasticity. For example, the shear elasticities measured by the surface wave method are 1.51, 2.75, 5.34, 6.90 and 8.40kPa on the five phantoms, respectively. In addition, by studying the dispersion curve of the surface wave speed, shear viscosity can be extracted. The measured shear viscosities are 0.00, 0.00, 0.13, 0.39 and 1.22Pa.s on the five phantoms, respectively. The results also show that the shear elasticity of the gelatin phantoms increases linearly with their prepared concentrations. The linear regressions between concentration and shear elasticity have R(2) values larger than 0.98 for both methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering.

    Science.gov (United States)

    Chen, Bang-Bao; Ma, De-Kun; Ke, Qing-Ping; Chen, Wei; Huang, Shao-Ming

    2016-03-07

    Edges often play a role as active centers for catalytic reactions in some nanomaterials. Therefore it is highly desirable to enhance catalytic activity of a material through modulating the microstructure of the edges. However, the study associated with edge engineering is less investigated and still at its preliminary stage. Here we report that Cu2MoS4 nanosheets with indented edges can be fabricated through a simple chemical etching route at room temperature, using Cu2MoS4 nanosheets with flat ones as sacrifice templates. Taking the electrocatalytic hydrogen evolution reaction (HER), photocatalytic degradation of rhodamine B (RhB) and conversion of benzyl alcohol as examples, the catalytic activity of Cu2MoS4 indented nanosheets (INSs) obtained through edge engineering was comparatively studied with those of Cu2MoS4 flat nanosheets (FNSs) without any modification. The photocatalytic tests revealed that the catalytic active sites of Cu2MoS4 nanosheets were associated with their edges rather than basal planes. Cu2MoS4 INSs were endowed with larger electrochemically active surface area (ECSA), more active edges and better hydrophilicity through the edge engineering. As a result, the as-fabricated Cu2MoS4 INSs exhibited an excellent HER activity with a small Tafel slope of 77 mV dec(-1), which is among the best records for Cu2MoS4 catalysts. The present work demonstrated the validity of adjusting catalytic activity of the material through edge engineering and provided a new strategy for designing and developing highly efficient catalysts.

  9. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  10. A simple indentation device for measuring micrometer-scale tissue stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Levental, I; Levental, K R; Janmey, P A [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Klein, E A; Assoian, R [Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Miller, R T [Departments of Medicine and Physiology, Louis Stokes VAMC, Cleveland, OH (United States); Wells, R G, E-mail: janmey@mail.med.upenn.ed [Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2010-05-19

    Mechanical properties of cells and extracellular matrices are critical determinants of function in contexts including oncogenic transformation, neuronal synapse formation, hepatic fibrosis and stem cell differentiation. The size and heterogeneity of biological specimens and the importance of measuring their mechanical properties under conditions that resemble their environments in vivo present a challenge for quantitative measurement. Centimeter-scale tissue samples can be measured by commercial instruments, whereas properties at the subcellular (nm) scale are accessible by atomic force microscopy, optical trapping, or magnetic bead microrheometry; however many tissues are heterogeneous on a length scale between micrometers and millimeters which is not accessible to most current instrumentation. The device described here combines two commercially available technologies, a micronewton resolution force probe and a micromanipulator for probing soft biological samples at sub-millimeter spatial resolution. Several applications of the device are described. These include the first measurement of the stiffness of an intact, isolated mouse glomerulus, quantification of the inner wall stiffness of healthy and diseased mouse aortas, and evaluation of the lateral heterogeneity in the stiffness of mouse mammary glands and rat livers with correlation of this heterogeneity with malignant or fibrotic pathology as evaluated by histology.

  11. 21 CFR 882.4560 - Stereotaxic instrument.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A stereotaxic instrument is a device consisting of a rigid frame with a calibrated guide mechanism for precisely positioning probes or other devices within a patient's brain, spinal cord, or other part of the nervous system. (b) Classification. Class II (performance standards). ...

  12. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  13. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  14. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  15. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  16. Computational and instrumental methods in EPR

    CERN Document Server

    Bender, Christopher J

    2006-01-01

    Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

  17. Remote and Virtual Instrumentation Platform for Distance Learning

    Directory of Open Access Journals (Sweden)

    Tom Eppes

    2010-08-01

    Full Text Available This journal presents distance learning using the National Instruments ELVIS II and how Multisim can be combined with ELVIS II for distance learning. National Instrument’s ELVIS II is a new version that can easily be used for e-learning. It features 12 of the commonly used instruments in engineering and science laboratories, including an oscilloscope, a function generator, a variable power supply, and an isolated digital multi-meter in a low-cost and easy-to-use platform and completes integration with Multisim software for SPICE simulation, which simplifies the teaching of circuit design. As NI ELVIS II is based on LabView, designers can easily customize the 12 instruments or can create their own using the provided source code for the instruments.

  18. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part II.

    Science.gov (United States)

    Tuttenuj, Daniel; Wetter, Oliver

    2016-04-01

    The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers in Switzerland. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books

  19. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  20. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  1. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.

    2015-07-15

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  2. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    International Nuclear Information System (INIS)

    Chatterjee, S.; Panwar, Sanjay; Madhusoodanan, K.

    2015-01-01

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  3. II plan of R and D: methodological technological, instrumental and numerical developments for radioactive wastes management; 2 plan de I+D: desarrolos metodologicos tecnologicos instrumentales y numericos en la gestion de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The second meeting of R and D in radioactive waste management was organized by ENRESA on June 1995 in Madrid. The main objective was to disseminate the most relevant works within the R and D plan, and to establish an adequate form involved for discussion R and D radioactive waste management. The meeting was articulated in the followings sessions: I.- Low and medium radioactive wastes II.- High level radioactive wastes: activities of ENRESA III.- High level radioactive wastes: near field IV.- Biosphere, radiological protection, behaviour evaluation V.-Dismantling and decommissioning nuclear facilities VI.- Geosphere (Author)

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. Fracture Toughness Evaluation of a Ni2MnGa Alloy Through Micro Indentation Under Magneto-Mechanical Loading

    Science.gov (United States)

    Goanţă, Viorel; Ciocanel, Constantin

    2017-12-01

    Ni2MnGa is a ferromagnetic alloy that exhibits the shape memory effect either induced by an externally applied magnetic field or mechanical stress. Due to the former, the alloy is commonly called magnetic shape memory alloy or MSMA. The microstructure of the MSMA consists of tetragonal martensite variants (three in the most general case) that are characterized by a magnetization vector which is aligned with the short side of the tetragonal unit cell. Exposing the MSMA to a magnetic field causes the magnetization vector to rotate and align with the external field, eventually leading to variant reorientation. The variant reorientation is observed macroscopically in the form of recoverable strain of up to 6% [1, 2]. As the magnetic field induced reorientation happens instantaneously [1, 3], MSMAs are suitable for fast actuation, sensing, or power harvesting applications. However, actuation applications are limited by the maximum actuation stress of the material that is about 3.5MPa at approximately 2 to 3% reorientation strain. During MSMA fatigue magneto-mechanical characterization studies [4, 5] it was observed that cracks nucleate and grow on the surface of material samples, after a relatively small number of cycles, leading to loss in material performance. This triggered the need for understanding the mechanisms that govern crack nucleation and growth in MSMAs, as well as the nature of the material, i.e. ductile or brittle. The experimental study reported in this paper was carried out to determine material's fracture toughness, the predominant crack growth directions, and the orientation of the cracks relative to the mechanical loading direction and to the material's microstructure. A fixture has been developed to allow Vickers micro indentation of 3mm by 3mm by 20mm Ni2MnGa samples exposed to different levels of magnetic field and/or mechanical stress. Using the measured characteristics of the impression generated during micro indentation, the lengths of

  6. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    Science.gov (United States)

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  7. Qualification of the indentation test for the local characterization of nuclear facility materials. Final report; Qualifizierung des Eindruckversuchs zur lokalen Charakterisierung kerntechnischer Werkstoffe. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Tandler, Martin; Seifert, Thomas; Schlesinger, Michael; Mohrmann, Ralf; Kilgus, Normen; Venugopal, Ravula

    2007-12-21

    With the aid of the registrating indentation test, the project intends to characterise the operational changes in the local material properties of nuclear materials by a quasi-nondestructive indentation test. The focus was on the materials 22NiMoCr3-7 and X6CrNiNb18-10, both of which are widely used in nuclear engineering. As the accuracy of the method depends on experimental influencing factors like surface treatment, intrinsic stresses, or material anisotropy, these influences are to be quantified and will be considered in the evaluation of the material characteristics. The influencing parameters will be investigated experimentally and numerically by FE simulations so that their influence can be distinguished from the actual material behaviour. (orig.)

  8. 26 CFR 1.1275-5 - Variable rate debt instruments.

    Science.gov (United States)

    2010-04-01

    ... nonpublicly traded property. A debt instrument (other than a tax-exempt obligation) that would otherwise... variations in the cost of newly borrowed funds in the currency in which the debt instrument is denominated... on the yield of actively traded personal property (within the meaning of section 1092(d)(1)). (ii...

  9. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  10. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  11. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  12. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    International Nuclear Information System (INIS)

    Nagaraju, S.; GaneshKumar, J.; Vasantharaja, P.; Vasudevan, M.; Laha, K.

    2017-01-01

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  13. Impedance of an annular-cathode indented-anode electron diode terminating a coaxial magnetically insulated transmission line

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Poukey, J.W.; Wright, T.P.; Bailey, J.; Heath, C.E.; Mock, R.; Spence, P.W.; Fockler, J.; Kishi, H.

    1988-01-01

    The impedance of a diode having an annular cathode and indented anode that terminates a coaxial MITL (magnetically insulated transmission line) is measured and compared with a semiempirical model developed from calculations made using the magIc code. The measurements were made on the 16-Ω electron accelerator HELIA (high-energy linear induction accelerator) operating at 3 MV. The model agrees with the measurements within the 10% measuring error and shows that the diode operates in either a load- or line-dominated regime depending on AK (anode-cathode) gap spacing. In the load-dominated regime, which corresponds to small AK gaps, the diode impedance is controlled by an effective anode-cathode gap, and the flow is approximately axial. In the line-dominated regime, which corresponds to large AK gaps, the impedance is independent of the AK gap and corresponds to the impedance associated with the minimum current solution of the MITL, with the flow becoming more radial as the AK gap is increased

  14. Novel attributes of AlGaN/AlN/GaN/SiC HEMTs with the multiple indented channel

    Science.gov (United States)

    Orouji, Ali A.; Ghaffari, Majid

    2015-11-01

    In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source-drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate-source and gate-drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate-drain and gate-source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.

  15. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  16. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  17. Failure Behaviour of Aluminium/CFRP Laminates with Varying Fibre Orientation in Quasi-static Indentation Test

    Science.gov (United States)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2018-03-01

    The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.

  18. Evaluation of the indenter modulus (IM) method in the international round robin test about the cable condition monitoring

    International Nuclear Information System (INIS)

    Kajimura, Yuusaku

    2016-01-01

    In order to ensure the reliability and safety of nuclear power plants, the diagnosis of cable aging is important. The Institute of Nuclear Safety System (INSS) has been developing the indenter modulus (IM) method for more than a dozen years. Its usefulness was demonstrated in the research project 'Assessment of cable aging for nuclear power plant' by the Japan Nuclear Energy Safety Organization in 2009. Furthermore, INSS participated in the IAEA Coordinated Research Project in 2013 to 2015, measuring and acquiring data of insulation materials of cables and cable jackets with insulation which had been never measured before by INSS. The main results are as follows. (1) The IM method is useful for new materials (for example, crosslinked polyolefins) which had never been measured before by INSS. (2) The IM method is also applicable to evaluation of cable jackets with insulation made of such materials as chlorosulfonated polyethylene. Therefore, the IM method is evaluated to be useful and applicable for most cable materials except those which have a high IM value initially and which have a small change in IM value during aging. (author)

  19. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, S. [Nuclear Recycle Board, BARCF, Kalpakkam (India); GaneshKumar, J.; Vasantharaja, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vasudevan, M., E-mail: dev@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-05-17

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  20. Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique

    International Nuclear Information System (INIS)

    Hinoki, T.; Zhang, W.; Kohyama, A.; Noda, T.

    1998-01-01

    In order to quantitatively evaluate mechanical properties of fibers, matrices and their interfaces in fiber reinforced SiC/SiC composites, fiber push-out tests have been carried out. From the indentation load vs. displacement relations, the fiber push-out process has been discussed in comparison with the C/C composites and the loads for fiber push-in and those for fiber push-out were estimated. The trends of load-displacement curve of fiber push-out process depended on specimen thickness. The curve in the case of thick specimen had a micro step indicating fiber push-in and a larger step corresponding to fiber push-out. However just a larger step indicating fiber push-out was seen without fiber push-in process in the case of thin specimen. Interfacial shear stress was discussed and defined in both cases. The effects of fiber coatings on interfacial shear stress obtained from thin specimens were analyzed. The relationship between bending stress and interfacial shear stress of SiC (pcs) /SiC (CVI) is preliminarily postulated together with microstructural characteristics of the composites. (orig.)