WorldWideScience

Sample records for instrument channel monitoring

  1. Calibration through on-line monitoring of instruments channels

    International Nuclear Information System (INIS)

    James, R.W.

    1996-01-01

    Plant technical specifications require periodic calibration of instrument channels, and this has traditionally meant calibration at fixed time intervals for nearly all instruments. Experience has shown that unnecessarily frequent calibrations reduce channel availability and reliability, impact outage durations, and increase maintenance costs. An alternative approach to satisfying existing requirements for periodic calibration consists of on-line monitoring and quantitative comparison of instrument channels during operation to identify instrument degradation and failure. A Utility Working Group has been formed by EPRI to support the technical activities necessary to achieve generic NRC acceptance of on-line monitoring of redundant instrument channels as a basis for determining when to perform calibrations. A topical report proposing NRC acceptance of this approach was submitted in August 1995, and the Working Group is currently resolving NRC technical questions. This paper describes the proposed approach and the current status of the topical report with regard to NRC review. While these activities will not preclude utilities from continuing to use existing calibration approaches, successful acceptance of this performance-based approach will allow utilities to substantially reduce the number of calibrations which are performed. Concurrent benefits will include reduced I ampersand C impact on outage durations and improved sensitivity to instrument channel performance

  2. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  3. Metrological certification of aerosol and iodine channels in instrumentation for radiation monitoring at nuclear power plants

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Ivanova, A.P.

    1988-01-01

    The method for converting the value of a volume activity unit of radioactive aerosols using the state special standard for operating measurement devices by means of aerosol sources is suggested. The sources are aerosol samples selected for a filter by means of the proper type of a detection unit or a radiometer and, thus, providing full coincidence of measurement geometry of aerosol sample activity during radiation monitoring. Application of aerosol samples permits to solve the problem of metrological certification and verification of aerosol and iodine channels of radiation safety monitoring systems under operating conditions without their dismantling and to establish the unity and correctness in the field of measurement of volume activity of 131 I aerosols at NPP

  4. On-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    International Nuclear Information System (INIS)

    Davis, E.; Rasmussen, B.

    2004-01-01

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system

  5. ON-Line Monitoring of Instrument Channel Performance: Volume 3: Applications to Nuclear Power Plant Technical Specification Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    E Davis, B Rasmussen

    2004-12-31

    This report is a guide for a technical specification change submittal and subsequent implementation of on-line monitoring for safety-related applications. This report is the third in a three-volume set. Volume 1, ''Guidelines for Model Development and Implementation'', presents the various tasks that must be completed to prepare models for and to implement an on-line monitoring system.

  6. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  7. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  8. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  9. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  10. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  11. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  12. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  13. Upgrade of Dhruva fuel channel flow instrumentation

    International Nuclear Information System (INIS)

    Gadgil, Kaustubh; Awale, P.K.; Sengupta, C.; Sumanth, P.; Roy, Kallol

    2014-01-01

    Dhruva, a 100 MW Heavy Water moderated and cooled, vertical tank-type Research Reactor, using metallic natural Uranium fuel has flow instrumentation for all the 144 fuel channels, consisting of venturi and triplicate DP gauges for each fuel channel. These gauges provide contacts for generation of reactor trip on low flow through fuel channel. These DP gauges were facing numerous generic and ageing related failures over the years and was also difficult to maintain owing to obsolescence. While considering an upgrade for these DP gauges, it was also planned to replace the existing Coolant Low Flow Trip (CLFT) system with a computer based Reactor Trip Logic System (RTLS). Being a retrofit job, the existing panels for mounting the gauges, cable layout, impulse tubing layout, etc. were retained, thereby simplifying the site execution, reducing reactor down time and also reducing person-milli-Sievert consumption. A customized Electronic DP Indicating Switch (EDPIS) was conceptualized for achieving these objectives. Such a design, utilizing a standard DP transmitter with customized electronic circuitry, was developed, evaluated and finalized after a series of factory trials, field trials and prototyping. The instrument design included contact input for existing CLFT system and also provision for 4-20 mA current output for the proposed computer based RTLS. The display and form factor of the instrument remained identical to older one and ensures familiarity of O and M personnel. Since EDPIS is classified as Safety Class IA, stringent type tests, hardware FMEA and V and V of the micro-controller software were carried out as per the requirements laid down by relevant standards for qualification of these instruments. Being a customized instrument, the manufacturing process was closely monitored and was followed by stringent QA plan and acceptance tests. A total of 396 gauges were replaced in a phased manner during scheduled fuelling outages and thereby did not affect reactor

  14. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  15. Instrumentation for Air Pollution Monitoring

    Science.gov (United States)

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  16. Miniaturized Environmental Monitoring Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  17. The Instrumentation Channel for the MUCOOL Experiment

    International Nuclear Information System (INIS)

    Kahn, S. A.; Guler, H.; Lu, C.; McDonald, K. T.; Prebys, E. J.; Vahsen, S. E.

    1999-01-01

    The MUCOOL facility is proposed to examine cooling techniques that could be used in a muon collider. The solenoidal beam channel before and after the cooling test section are instrumented to measure the beam emittance. This instrumentation channel includes a bent solenoid to provide dispersion and time projection chambers to measure the beam variables before and after the bend. The momentum of the muons is obtained from a measurement of the drift of the muon trajectory in the bent solenoid. The timing measurement is made by determining the phase from the momentum of the muon before and after it traverses RF cavities or by the use of a fast Cherenkov chamber. A computer simulation of the muon solenoidal channel is performed using GEANT. This study evaluates the resolution of the beam emittance measurement for MUCOOL

  18. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  19. Instrumentation for environmental monitoring in biological systems

    International Nuclear Information System (INIS)

    Amer, N.M.; Graven, R.M.; Budnitz, R.J.; Mack, D.A.

    1975-01-01

    A brief review of the status of instrumentation for monitoring environmental pollutants is given. Pollutants are divided into six broad categories: trace elements, pesticides and herbicides, ionizing radiation and radionuclides, asbestos and other microparticulates, and gaseous pollutants. (U.S.)

  20. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  1. Instrumentation development for real time brainwave monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could

  2. Sniffer Channel Selection for Monitoring Wireless LANs

    Science.gov (United States)

    Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling

    Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.

  3. The channeling experiment - instrumentation and site preparation

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Aagren, T.

    1990-01-01

    Physical properties of in situ single fractures have been investigated by drilling large diameter holes (200 mm) 2.5 to 3 m into and along prominent single fractures. Photo logs as well as hydraulic- tracer tests have been performed. The experiment is divided into two parts, (1) the single hole experiments and (2) the double hole experiment. In the single hole experiment water was injected into the fracture and the injection flowrates over 50 mm sections along the fracture plane were monitored. In the double hole test two parallel large diameter holes, in the same fracture, 1.75 m apart, have been used for pressure pulse tests and a tracer test where 5 different nonsorbing tracers were injected. Equipment has been designed for water injection into single fractures where injection flowrates and pressure responses are simultaneously monitored in twenty 50 mm sections along the intersection of the fracture with the bore hole. The Multipede injection packer designed to be used in diameter 200 mm bore hole with a maximum depth of 2.5 m. Injection is done with constant pressure which is stable within ±0.0025 bar, and can be separately adjusted for each of the 20 injection zones. Injection flowrates can be monitored with a resolution of 1/100 ml/h, which equals one drop of water every five hours. The injection and pressure pulse tests are run by a computer and all data are stored on magnetic disks. A fracture survey at the 360 m level and adjacent levels has been done. The survey focused on prominent planar fractures with extension of more than 2 m. Approximately 100 fractures were found. (authors)

  4. Instrument failure monitoring in nuclear power systems

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-01-01

    Methods of monitoring dynamic systems for instrument failures were developed and evaluated. In particular, application of these methods to nuclear power plant components is addressed. For a linear system, statistical tests on the innovations sequence of a Kalman filter driven by all system measurements provides a failure detection decision and identifies any failed sensor. This sequence (in an unfailed system) is zero-mean with calculable covariance; hence, any major deviation from these properties is assumed to be due to an instrument failure. Once a failure is identified, the failed instrument is replaced with an optimal estimate of the measured parameter. This failure accommodation is accomplished using optimally combined data from a bank of accommodation Kalman filters (one for each sensor), each driven by a single measurement. Using such a sensor replacement allows continued system operation under failed conditions and provides a system operator with information otherwise unavailable. To demonstrate monitor performance, a liner failure monitor was developed for the pressurizer in the Loss-of-Fluid Test (LOFT) reactor plant. LOFT is a small-scale pressurized water reactor (PWR) research facility located at the Idaho National Engineering Laboratory. A linear, third-order model of the pressurizer dynamics was developed from first principles and validated. Using data from the LOFT L6 test series, numerous actual and simulated water level, pressure, and temperature sensor failures were employed to illustrate monitor capabilities. Failure monitor design was applied to nonlinear dynamic systems by replacing all monitor linear Kalman filters with extended Kalman filters. A nonlinear failure monitor was derived for LOFT reactor instrumentation. A sixth-order reactor model, including descriptions of reactor kinetics, fuel rod heat transfer, and core coolant dynamics, was obtained and verified with test data

  5. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  6. Monitoring Instrument for X-Ray Box

    CERN Document Server

    Cifuentes Ospina, Alberto; Kuehn, Susanne; Schaepe, Steffen; CERN. Geneva. EP Department

    2017-01-01

    A humidity and temperature readout instrument has been designed and implemented in order to monitor the X-Ray Box used for testing the silicon detectors prototypes of the ITk. The sensors are connected to an Arduino Mega board equipped with 16 analog inputs and a serial port to a computer. A user-friendly software has been also designed in order to give an easy access to all measurements.

  7. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  8. Integrated synchronous receiver channel for optical instrumentation applications

    Science.gov (United States)

    Benten, Harold G. P. H.; Ruotsalainen, Tarmo; Maekynen, Anssi J.; Rahkonen, Timo E.; Kopola, Harri K.

    1997-09-01

    A two-channel synchronous receiver circuit for optical instrumentation applications has been designed and implemented. Each receiver channel comprises a.o. transimpedance preamplifier, voltage amplifiers, programmable feedback networks, and a synchronous detector. The function of the channel is to extract the slowly varying information carrying signal from a modulated carrier which is accompanied by relatively high levels of noise. As a whole, the channel can be characterized as a narrow band filter around the frequency of interest. Medical applications include arterial oxygen saturation (SaO2) measurement and dental pulp vitality measurement. In both cases, two optical signals with different frequencies are received by a single photodiode. The measured performance of the optical receiver shows its suitability for the above mentioned applications. Therefore the circuit will be used in a small sized, battery-operated sensor prototype to test the sensing method in a clinical environment. Other applications include the signal processing of optical position-sensitive detectors. A summary of measured receiver channel performance: input reduced noise current spectral density between 0.20 and 0.30 pA/(root)Hz at all relevant frequencies, total programmable channel transimpedance between 7 M(Omega) and 500 M(Omega) , lower -3 dB frequency of at least 50 Hz, upper -3 dB frequency of 40 kHz, maximum voltage swing at the demodulator output of 2.4 V.

  9. Safeguards instrument to monitor spent reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.

    1981-01-01

    A hand-held instrument for monitoring irradiated nuclear fuel inventories located in water-filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent-fuel storage facilities, both at reactor and away-from-reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument-to-instrument cnsistency. Interchangeable lenses accommodate various viewing and measuring conditions

  10. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  11. Beam monitoring in the transport channel

    International Nuclear Information System (INIS)

    Kalinin, A.S.; Levichev, E.B.; Samorukov, M.M.; Yupinov, Yu.L.

    1983-01-01

    Monitoring system for a single beam of charged particles, measuring peak current, centre of gravity displacement from equilibrium trajectory and cross section quadrupolar moment is described. Magnetoinduction sensors are used in the system. Beam parameter determination is made using a computer. The measurement accuracy is expected to be not worse than +-1mm in the current range (0.01-1)A at the beam duration more than 50 ns. The system is designed for the operation under conditions of background radiation and electromagnetic noise. The system described is developed for beam monitoring in electron-optical channel, connecting the ''Fakel'' LEA injector and small storage ring ''Plamja 1'', which is a part of storage ring complex-sources of synchrotron radiation

  12. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line

  13. Process instrument monitoring for SNM solution surveillance

    International Nuclear Information System (INIS)

    Armatys, C.M.; Johnson, C.E.; Wagner, E.P.

    1983-02-01

    A process monitoring computer system at the Idaho Chemical Processing Plant (ICPP) is being used to evaluate nuclear fuel reprocessing plant data for Safeguards surveillance capabilities. The computer system was installed to collect data from the existing plant instruments and to evaluate what safeguards assurances can be provided to complement conventional accountability and physical protection measures. Movements of solutions containing special nuclear material (SNM) can be observed, activities associated with accountancy measurements (mixing, sampling, and bulk measurement) can be confirmed, and long-term storage of SNM solutions can be monitored to ensure containment. Special precautions must be taken, both in system design and operation to ensure adequate coverage of essential measured parameters and interpretation of process data, which can be comprised by instrument malfunctions or failures, unreliable data collection, or process activities that deviate from readily identified procedures. Experience at ICPP and prior evaluations at the Tokai reprocessing plant show that the use of process data can provide assurances that accountability measurement procedures are followed and SNM solutions are properly contained and can help confirm that SNM controls are in effect within a facility

  14. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  15. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  16. Channel Islands, Kelp Forest Monitoring, Sea Temperature, 1993-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has subtidal temperature data taken at permanent monitoring sites. Since 1993,...

  17. Monitoring inter-channel nonlinearity based on differential pilot

    Science.gov (United States)

    Wang, Wanli; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun

    2018-06-01

    We modify and simplify the inter-channel nonlinearity (NL) estimation method by using differential pilot. Compared to previous works, the inter-channel NL estimation method we propose has much lower complexity and does not need modification of the transmitter. The performance of inter-channel NL monitoring with different launch power is tested. For both QPSK and 16QAM systems with 9 channels, the estimation error of inter-channel NL is lower than 1 dB when the total launch power is bigger than 12 dBm after 1000 km optical transmission. At last, we compare our inter-channel NL estimation method with other methods.

  18. Remote Monitoring of Instrumentation in Sealed Compartments

    International Nuclear Information System (INIS)

    Landron, Clinton; Moser, John C.

    1999-01-01

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been exploring the instrumentation of sealed canisters where the flight application will not tolerate either the presence of a chemical power source or penetration by power supply wires. This paper will describe the application of a low power micro-controller based instrumentation system that uses magnetic coupling for both power and data to support a flight application

  19. Design of instrument for monitoring nuclear radiation and baneful gas

    International Nuclear Information System (INIS)

    Xiong Jianping; Chen Jun; Zhu Wenkai

    2006-01-01

    Counters and ionization chambers are applied to sensors, and microprocessor based on ARM IP is applied to center controller in the instrument. It is achieved to monitor nuclear radiation and baneful gas in an instrument. The instrument is capable of LCD displaying, menu operating and speech alarming. (authors)

  20. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  1. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  2. INSTRUMENTATION FOR ENVIRONMENTAL MONITORING--Radiation--Vol3Pt1

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1972-01-02

    A comprehensive survey of instrumentation for environmental monitoring is being carried out by the Lawrence Berkeley Laboratory originally under a grant from the National Science Foundation and now by the Office of Health and Environmental Research of the Department of Energy. Instruments being investigated are those useful for measurements in Air Quality, Water Quality, Radiation, and Biomedicine related to environmental research and monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to this work. The results of the survey are given as (a) descriptions of the physical and operating characteristics of available instruments, (b) critical comparisons among instrumentation methods, and (c) recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored: their characteristics and forms, their sources and pathways, their effects on the ecosystem, and the means of controlling them through process and regulatory controls.

  3. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  4. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  5. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  6. Regulatory requirements and quality assurance of radiation monitoring instruments

    International Nuclear Information System (INIS)

    Narasimharao, K.L.; Sharma, Ranjit

    2005-01-01

    The successful utilisation of radiation sources in the fields of medicine and industry requires the accurate measurement of activity, exposure rate and dose. Many varieties of instruments are in use for measurement of these parameters and new ones are being developed. The criteria for the design of the radiation monitoring instrument include the type and intensity of the radiation, purpose of measurement and ruggedness of the instrument. Quality and reliability of radiation monitoring instruments ensure that individuals are adequately protected. Accuracy, response time and ruggedness are required to be as per the approved/ prescribed guidelines. Regulatory authorities outline the design and performance criteria for radiation monitoring instruments and prescribe the recommendations of international agencies such as IAEA, ICRU and ISO for radiological measurement assurance programme. National Standards Laboratories all over the world prescribe procedures for calibration of various radiation monitoring instruments. The instruments should be calibrated as per these guidelines and should be traceable to national standards. The calibration traceable to national/ international standards and documentation as well as limits stipulated by the competent authority ensures the expected performance of the instrument. (author)

  7. Instrumentation for chemical and radiochemical monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Nordmann, F.; Ballard, G.

    2009-01-01

    This article details the instrumentation implemented in French nuclear power plants for the monitoring of chemical and radiochemical effluents with the aim of limiting their environmental impact. It describes the controls performed with chemical automata for the search for drifts, anomalies or pollution in a given circuit. The operation principles of the different types of chemical automata are explained as well as the manual controls performed on samples manually collected. Content: 1 - general considerations; 2 - objectives of the chemical monitoring: usefulness of continuous monitoring with automata, transmission to control rooms and related actions, redundancy of automata; 3 - instrumentation and explanations for the main circuits: principle of chemical automata monitoring, instrumentation of the main primary circuit, instrumentation of the main secondary circuit, instrumentation of the tertiary circuit, preparation of water makeup (demineralized water), other loops, instrumentation for effluents and environment monitoring, measurement principles of chemical automata, control and maintenance of chemical automata; 4 - manual controls after sampling; 5 - radiochemical monitoring: automatized radiochemical measurements, manual radiochemical measurements; 6 - conclusion

  8. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  9. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    International Nuclear Information System (INIS)

    Barr, D.

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  10. Auto-associative Kernel Regression Model with Weighted Distance Metric for Instrument Drift Monitoring

    International Nuclear Information System (INIS)

    Shin, Ho Cheol; Park, Moon Ghu; You, Skin

    2006-01-01

    Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto associative kernel regression (AAKR) by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression

  11. Monitoring instrumentation spent fuel management program. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    Preliminary monitoring system methodologies are identified as an input to the risk assessment of spent fuel management. Conceptual approaches to instrumentation for surveillance of canister position and orientation, vault deformation, spent fuel dissolution, temperature, and health physics conditions are presented. In future studies, the resolution, reliability, and uncertainty associated with these monitoring system methodologies will be evaluated

  12. a Novel Instrument to Monitor Lanslides Deformation

    Science.gov (United States)

    Pasuto, A.; Mantovani, M.; Schenato, L.; Scherneck, H.

    2013-12-01

    Landslides are more widespread than any other geological event and have high ranking among the natural disasters in terms of casualties and economical damages. Deforestation and constructions of new settlements and infrastructures, as direct consequences of population growth, and the increasing frequency of extreme meteorological events, due to the global climatic changing, could lead to a more severe impact of landslides on human life and activities in the next future. Risk reduction generally comes through countermeasures, both structural and non-structural, that directly act on the developing process or tend to reduce the effects on the fabric of the city and of the environment. Nevertheless countermeasures have often shown their flimsiness especially if they are carried out on disruptions hard to stabilize for their dimensions, kinematics and morpho-evolutive conditions. In these cases there are basically two options: the relocation of the element at risk or the surveillance of the evolution of the instability process by means of a monitoring system. Monitoring therefore represents a powerful tool in both the surveillance of the territory and the management of the emergencies coming from geo-hydrological hazard. In this study we propose the development and testbedding of a novel, low-cost wireless smart sensor network for remote monitoring of land surface deformations. The purpose is to create a flexible and scalable monitoring system in order to overcome some of the limitations of the existing devices and to strongly reduce the costs. The system consists in a master station that works as a control and measuring unit, and a series of sensors (motes) placed over the unstable areas. The master station transmits a microwave signal and receives the response from each mote measuring their relative position and inferring any deformation occurred between successive interrogations. Moreover the motes can work as bridges so that even those that are not directly visible

  13. Assessing hospitals' clinical risk management: Development of a monitoring instrument

    Directory of Open Access Journals (Sweden)

    Pfeiffer Yvonne

    2010-12-01

    Full Text Available Abstract Background Clinical risk management (CRM plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals. Methods The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes. Results The monitoring instrument consists of 28 main questions organized in three sections: 1 Implementation and organizational integration of CRM, 2 Strategic objectives and operational implementation of CRM at hospital level, and 3 Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian. It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement. Conclusions We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety.

  14. Assessing hospitals' clinical risk management: Development of a monitoring instrument.

    Science.gov (United States)

    Briner, Matthias; Kessler, Oliver; Pfeiffer, Yvonne; Wehner, Theo; Manser, Tanja

    2010-12-13

    Clinical risk management (CRM) plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals. The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals) was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes. The monitoring instrument consists of 28 main questions organized in three sections: 1) Implementation and organizational integration of CRM, 2) Strategic objectives and operational implementation of CRM at hospital level, and 3) Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian). It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement. We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety.

  15. CLOUDCLOUD : general-purpose instrument monitoring and data managing software

    Science.gov (United States)

    Dias, António; Amorim, António; Tomé, António

    2016-04-01

    An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are

  16. Fibre Channel Instrumentation Environment Profile (IEP). Version 0.8

    National Research Council Canada - National Science Library

    Jones, Sid

    1999-01-01

    .... Since this document is focused at the system level, the target audience is both the end-item designer concerned about interoperability and the instrumentation engineer concerned with understanding...

  17. Onboard calibration and monitoring for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2012-01-01

    The SWIFT (Stratospheric Wind Interferometer for Transport studies) instrument is a proposed space-based field-widened Doppler Michelson interferometer designed to measure stratospheric winds and ozone densities using a passive optical technique called Doppler Michelson imaging interferometry. The onboard calibration and monitoring procedures for the SWIFT instrument are described in this paper. Sample results of the simulations of onboard calibration measurements are presented and discussed. This paper also discusses the results of the derivation of the calibrations and monitoring requirements for the SWIFT instrument. SWIFT's measurement technique and viewing geometry are briefly described. The reference phase calibration and filter monitoring for the SWIFT instrument are two of the main critical design issues. In this paper it is shown that in order to meet SWIFT's science requirements, Michelson interferometer optical path difference monitoring corresponding to a phase calibration accuracy of ∼10 −3 radians, filter passband monitoring corresponding to phase accuracy of ∼5 × 10 −3 radians and a thermal stability of 10 −3 K s −1 are required. (paper)

  18. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    Science.gov (United States)

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  19. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  20. On-line Monitoring of Instrumentation in Research Reactors

    International Nuclear Information System (INIS)

    2017-12-01

    This publication is the result of a benchmarking effort undertaken under the IAEA coordinated research project on improved instrumentation and control (I&C) maintenance techniques for research reactors. It lays the foundation for implementation of on-line monitoring (OLM) techniques and establishment of the validity of those for improved maintenance practices in research reactors for a number of applications such as change to condition based calibration, performance monitoring of process instrumentation systems, detection of process anomalies and to distinguish between process problems/effects and instrumentation/sensor issues. The techniques and guidance embodied in this publication will serve the research reactor community in providing the technical foundation for implementation of OLM techniques. It is intended to be used by Member States to implement I&C maintenance and to improve performance of research reactors.

  1. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  2. Quality assurance of radiation protection monitoring instruments in India

    International Nuclear Information System (INIS)

    Tripathi, S.M.; Daniel, Liji; Rao, Suresh; Sharma, D.N.

    2008-01-01

    Bhabha Atomic Research Centre (BARC) is the National Metrology Institute (NMI) for developing, maintaining and disseminating standards for ionizing radiation in India. Radiation Safety Systems Division (RSSD) of BARC has the requisite infrastructure in the form of experts, trained manpower, laboratories, equipment and facilities for providing calibration services to users and ascertaining traceability to international standards. It periodically participates in various international inter-comparisons. RSSD maintains reference radiation fields that are required for calibrating Radiation Protection Monitoring Instruments that form the backbone of the radiation monitoring programme for harnessing the benefits of nuclear energy and ionizing radiations. These instruments are type-tested and periodically calibrated at standard reference radiation fields to ensure their healthy working condition and fitness for their intended use. This paper describes the details of the standardization procedures adopted for reference radiation fields and infrastructure established and maintained at RSSD, BARC in accordance with the recommendations of ISO-4037. The paper describes the various tests that are carried out for radiation protection monitoring instrument to study the variation of the calibration factor with influencing quantities like linearity of response, energy response, angular dependence and overload characteristics. The results of these tests for typical instruments are also discussed. The present work also describes various types of indigenously developed radiation protection monitoring instruments and their performance characteristics. Adaptability of these instruments for the implementation of operational quantities are discussed briefly. It also dwells on the IAEA Quality Audit for radiation protection level calibrations, which RSSD has been participating since 2001. Our results of the quality audit are well within the acceptance limit (±7%) set by IAEA for the

  3. Instrument calibration reduction through on-line monitoring in the USA. Annex IV

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2008-01-01

    Nuclear power plants are required to calibrate important instruments once every fuel cycle. This requirement dates back more than 30 years, when commercial nuclear power plants began to operate. Based on calibration data accumulated over this period, it has been determined that the calibration of some instruments, such as pressure transmitters, do not drift enough to warrant calibration as often as once every fuel cycle. This fact, combined with human resources limitations and reduced maintenance budgets, has provided the motivation for the nuclear industry to develop new technologies for identifying drifting instruments during plant operation. Implementing these technologies allows calibration efforts to be focused on the instruments that have drifted out of tolerance, as opposed to current practice, which calls for calibration verification of almost all instruments every fuel cycle. To date, an array of technologies, referred to collectively as 'on-line calibration monitoring', has been developed to meet this objective. These technologies are based on identifying outlier sensors using techniques that compare a particular sensor's output to a calculated estimate of the actual process the sensor is measuring. If on-line monitoring data are collected during plant startup and/or shutdown periods as well as normal operation, the on-line monitoring approach can help verify the calibration of instruments over their entire operating range. Although on-line calibration monitoring is applicable to most sensors and can cover an entire instrument channel, the main application of this approach in nuclear power plants is currently for pressure transmitters (including level and flow transmitters). (author)

  4. Standard audit procedure for continuous emission monitors and ambient air monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The instruments were published in an operational policy manual in 2009. This policy aims to introduce standard audit criteria that can be used to determine if continuous emission monitors and ambient air monitoring devices are operating within acceptable parameters. Before delivering upscale points of the instrument to be audited, each one of the audit equipment used in the field is required to be at normal operating conditions. Before the beginning of the audit, each one of the meteorological and flow measurement equipment is required to be conditioned to current conditions. If the audit fails, the instrument will have to be audited quarterly. The establishment of specific procedures based on instrument manufacturer or certifying body operational standards is required in the case of non-continuous monitoring instruments presenting operational principles outside of the audit procedures listed in the document.

  5. Interference from radon-thoron daughters in plutonium channel of a continuous plutonium-in-air monitor

    International Nuclear Information System (INIS)

    Pendharkar, K.A.; Krishnamony, S.

    1983-01-01

    This paper summarises the results of a study conducted to define the extent of interference from the daughter products of radon/thoron to the plutonium channel of a continuous plutonium-in-air monitor. The effect on the detection limits of the instrument due to chemical form (transportable or non-transportable) and isotopic composition of plutonium aerosol are briefly discussed. (author)

  6. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  7. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    Science.gov (United States)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  8. Surveillance of instrumentation channels at nuclear power plants

    International Nuclear Information System (INIS)

    Thie, J.A.

    1989-06-01

    Surveillance activities at nuclear plants, involving-calibrations, functional tests, and simple checks, have many associated problems. These problems are of the following four types: administrative, equipment, human, and systemic. An extensive search of the literature has led to 63 generic classes of problems falling within these types and involving instrumentation department activities. The classification system is that which writers of incidents are essentially using, based on historical traditions, in naming their problems' causes. An interesting finding in the search was the strong correlation of this project to many aspects of industrial safety; technology transfer opportunities from the latter are identified. A survey of plant instrumentation experts was conducted to obtain a ranking of the most important problems. Classes of solutions to these problems are listed and discussed. Outlined is a possible methodology of matching these solutions to problems. Finally applications of this study are listed, and include extensions to training, operations, and maintenance departments of power plants. Appendices give several general examples for each problem class and many specific suggestions from experts on addressing the problems felt to be more important. 15 refs., 2 figs., 6 tabs

  9. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard, B.

    1998-01-01

    The XIA DXP-4C, a 4 channel, CAMAC based X-ray spectrometer, is based on digitally processing directly digitized preamplifier signals. Designed for instrumenting multi-detector arrays for synchrotron radiation applications, the DXP-4C was optimized for very high count rates at a low cost per detector channel. These design constraints coincidentally lead to an instrument which is very compact and relatively low power (3.4 W/channel), considering its count rate and MCA capabilities, and which therefore offers interesting possibilities for effective extension to portable applications. Further, because all functions (gain, filter parameters, pileup inspection criteria and internal calibrations) are digitally controlled, the design can be readily adapted to a large variety of user interfaces, including remote access interfaces. Here we present the basics of the design and examine approaches to lowering the power to less than 300 mW/channel while retaining count rate capabilities in excess of 50,000 cps. We then consider the engineering issues associated with portable and remote spectrometry applications, examining in detail the three cases of a lead paint detector, a remote contamination monitor, and a space mission spectrometer. (author)

  10. Development of an instrument for fast monitoring of radiotherapy equipment

    International Nuclear Information System (INIS)

    Khoury, H.J.; Almeida Melo, F. de; Patriota, J.H.; Oliveira Lira, C.B. de

    1990-01-01

    Radiation therapy machines need a constant monitoring to assure tumoral dose accuracy. Special attention must be given to linear accelerators which should be checked frequently. By this reason, an instrument was developed at the Nuclear Instrumentation Laboratory DEN/UFPE to measure the output energy and beam symmetry. This instrument use three silicon photodiodes as radiation detectors. Two of then were localized at 5cm and 10cm depht at the central axis and one at 5 cm from the center, at the lateral irradiated field. Changes in the photon spectrum are detected by the ratio of upper to lower photodiode response. The radiation field uniformity is checked by the lateral photodiode. (author) [pt

  11. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  12. Remote monitoring of instrumented structures using the Internet information superhighway

    Science.gov (United States)

    Fuhr, Peter L.; Huston, Dryver R.; Ambrose, Timothy P.

    1994-09-01

    The requirements of sensor monitoring associated with instrumented civil structures poses potential logistical constraints on manpower, training, and costs. The need for frequent or even continuous data monitoring places potentially severe constraints on overall system performance given real-world factors such as available manpower, geographic separation of the instrumented structures, and data archiving as well as the training and cost issues. While the pool of available low wage, moderate skill workers available to the authors is sizable (undergraduate engineering students), the level of performance of such workers is quite variable leading to data acquisition integrity and continuity issues - matters that are not acceptable in the practical field implementation of such developed systems. In the case of acquiring data from the numerous sensors within the civil structures which the authors have instrumented (e.g., a multistory building, roadway/railway bridges, and a hydroelectric dam), we have found that many of these concerns may be alleviated through the use of an automated data acquisition system which archives the acquired information in an electronic location remotely accessible through the Internet global computer network. It is therefore a possible for the data monitoring to be performed at a remote location with the only requirements for data acquisition being Internet accessibility. A description of the developed scheme is presented as well as guiding philosophies.

  13. Calibration of radiation protection area monitoring instruments in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Youssif, B.E.; Beineen, A.A.; Hassan, M.

    2010-01-01

    This article presents results of measurements for the calibration of radiation protection area monitoring instruments carried out during the period 2006-2008 at Secondary Standard Dosimetry Laboratory of Sudan. The work performed included quality assurance measurements, measurements for the dosimeter calibrations and uncertainty analysis. Calibrations were performed using 137 Cs gamma ray sources produced by OB 85 and OB 34/1 gamma calibrators producing air kerma rate that ranged from 10 μGy/h to 50 mGy/h. Area monitoring instruments were calibrated in terms of ambient dose equivalent, H*(10) derived using air kerma to ambient dose equivalent conversion coefficients. Results are presented for 78 area monitoring instruments representing most commonly used types in Sudan. Radioactive check source measurements for the reference chamber showed deviation within 1% limit. The accuracy in the beam output measurements was within 5% internationally considered as acceptable. The results highlighted the importance of radiation protection calibrations. Regulations are further need to ensure safety aspect really meet the required international standards.

  14. Multi-controller based 29 channel whole body portal monitor

    International Nuclear Information System (INIS)

    Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Portal Monitors are an essential part of personnel monitoring programme in any Nuclear Power Plant or Radiochemical/Reprocessing Plant. Compared to conventional Portal Monitors, whole-body Portals are preferred, for effective monitoring of entire body of the person being monitored for radioactive contamination. This is achieved by effectively distributing a large number of detectors on front/back of the person being monitored. The entry and exit for such Portals is usually side ways. The electronic system, designed essentially consists of powerful compact electronic circuits, comprising of three micro-controllers, a host of (32) 12C serial counters, other serial ADCs, DACs etc., apart from pulse processing, HV and LV circuits. Built-in embedded code has powerful fault diagnostics routines to show up failures in detector / detector electronics, HV, LV and other circuits apart from indicating contamination status, through visual and aural indications such as MIMIC, visual LCD display and individual channel counts etc. The Portal structural design consists of four individual SS members integrated, lead shielding assemblies (inside), on hinged support frames facilitate ease of assembling and dismantling of the structure. The detector arrangement is so arranged to have optimal uniform spread out, so as to record contamination of the whole body of the person being monitored. (author)

  15. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  16. The interaction between room and musical instruments studied by multi-channel auralization

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Otondo, Felipe

    2005-01-01

    in the anechoic recording. With this technique the variations in sound radiation from the musical instrument during the performance e.g. due to changes in level or movements can be reproduced with the influence of the surrounding room surfaces. Examples include a grand piano and a clarinet.......The directivity of musical instruments is very complicated and typically changes from one tone to the next. So, instead of measuring the average directivity, a multi-channel auralization method has been developed, which allows a highly accurate and realistic sounding auralization of musical...... instruments in rooms. Anechoic recordings have been made with 5 and 13 evenly distributed microphones around the musical instrument. The reproduction is made with a room acoustics simulation software using a compound source, which is in fact a number of highly directive sources, one for each of the channels...

  17. Microcontroller based multi-channel ultrasonic level monitoring system

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Singh, Inder Jeet; Chadda, V.K.

    2004-01-01

    Microcontroller based Multi-channel Ultrasonic Level Monitoring System developed by Computer Division is based on echo ranging techniques to monitor level. The transmitter directs an ultrasonic burst towards the liquid, which gets reflected from the top of the liquid surface. The time taken for ultrasound to travel from the transmitter to the top of liquid surface is measured and used to calculate the liquid level. The system provides for temperature compensation for accurate measurement as the ultrasound velocity depends on the ambient temperature. It can measure liquid level up to 5 meters. A single monitor can be used to measure level in 6 tanks. PC connectivity has been provided via RS 232 and RS 485 for remote operation and data logging of level. A GUI program developed using LABVIEW package displays level on PC monitor. The program provides for pictorial as well as numerical display for level and temperature in the front panel on the PC monitor. A user can monitor level for any or all tanks from the PC. One unit is installed at CIRUS for measuring level in Acid/ Alkali tanks and one is installed at APSARA for measuring water level in the reactor pool. (author)

  18. Microwave Instrument for Human Vital Signs Detection and Monitoring

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup

    problems with homodyne systems, i.e. channel mismatches and DC offsets resulting from hardware imperfections. To verify the theory, a new VSD radar system called the DTU-VISDAM (VItalSigns Detection And Monitoring) has been designed and build. The system together with the implemented signal processing...... front-end was initiated. With financial support from the Danish fund H. C. Ørsteds Fonden, the IC was fabricated in the SG25H3 SiGe:C BiCMOS technology from Innovations for High Performance microelectronics (IHP) GmbH in Germany. The radar transceiver has been measured and altough some adjustments could...

  19. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  20. The sensitivity to humidity of radon monitoring instruments

    International Nuclear Information System (INIS)

    Schmied, H.

    1984-01-01

    In a project funded by the Swedish Building Research Council (BFR) a continuous radon monitoring instrument (RGA-400 EDA Instr. Inc.) with electrostatic field collection has been calibrated. The original calibration factor gave no reliable radon readings and was therefore corrected for relative humidity by EDA. From four calibrations in the radon chamber at the Swedish Radiation Protection Board (SSI) it was clear that the instrument was sensitive to absolute humidity, which gave better agreement than relative humidity or temperature. Sensitivity to humidity for this principle of measure ment has been presented in various papers without presenting any combined influence with temperature, which can lead to the wrong conclusions, especially when the temperature levels differ. Some laboratories use humidity absorbants to overcome this humidity dependence. In this paper the calibration results for the FGA-400 radon readings only, are presented. (Author)

  1. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  2. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley

    2014-01-01

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed

  3. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley [University of Tennessee, Knoxville (United States)

    2014-08-15

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed.

  4. The Ozone Monitoring Instrument: overview of 14 years in space

    Science.gov (United States)

    Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof

    2018-04-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  5. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  6. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  7. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  8. The Fermi Gamma-ray Burst Monitor Instrument

    International Nuclear Information System (INIS)

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing γ-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view (≥8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  9. The Ozone Monitoring Instrument: overview of 14 years in space

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2018-04-01

    Full Text Available This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout and near real-time (NRT availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  10. Virtual instrument automation of ion channeling setup for 1.7 MV tandetron accelerator

    International Nuclear Information System (INIS)

    Suresh, K.; Sundaravel, B.; Panigrahi, B.K.; Nair, K.G.M.; Viswanathan, B.

    2004-01-01

    A virtual instrument based automated ion channeling experimental setup has been developed and implemented in a 1.7 MV tandetron accelerator. Automation of the PC based setup is done using a windows based virtual instrument software allowing the setup to be easily ported between different computer operating systems. The virtual instrument software has been chosen to achieve quick and easy development of versatile, multi-purpose user friendly graphical interface for carrying out channeling experiments. The software has been modular designed to provide independent control of the stepper motors for fixing the sample at any user defined orientation, running and on-line display of azimuthal and tilt angular scans, auto storage of the angular scan data. Using this automated setup, the crystallographic axis of the sample can be aligned with the incident ion beam rapidly minimizing the beam damages to the sample. A standard single crystalline GaAs(100) has been characterized with this set up using 2 MeV He ++ ion beam. The crystalline quality (χ min ) and channeling half angle (ψ 1sol2 ) are measured to be 3.7% and 0.48 deg., respectively, which are close to the theoretical values. Salient features, working principles and design details of the automated setup are discussed in this paper

  11. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  12. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information

  13. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    E. Glowacka

    2015-11-01

    Full Text Available The Mexicali Valley (northwestern Mexico, situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500–3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF, has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008 in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C. have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015. The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011. In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain

  14. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  15. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Directory of Open Access Journals (Sweden)

    Carvalho Paulo F.

    2018-01-01

    Full Text Available Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak. These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees. Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA® standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®, to meet the demands of telecommunications that require large amount of data (TB transportation at high transfer rates (Gb/s, to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency

  16. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Science.gov (United States)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, AntÓnio P.; Pereira, Rita C.; Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, AntÓnio J. N.; Correia, Carlos M. B. A.; Gonçalves, Bruno

    2018-01-01

    Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak). These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees). Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA®) standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®), to meet the demands of telecommunications that require large amount of data (TB) transportation at high transfer rates (Gb/s), to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency scenarios

  17. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    International Nuclear Information System (INIS)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-01-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA) , which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential, Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and sub oxid conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs

  18. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-07-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA), which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential. Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and suboxic conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs.

  19. Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS

    Science.gov (United States)

    Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    We present views and analysis of the execution of several PVM (Parallel Virtual Machine) codes for Computational Fluid Dynamics on a networks of Sparcstations, including: (1) NAS Parallel Benchmarks CG and MG; (2) a multi-partitioning algorithm for NAS Parallel Benchmark SP; and (3) an overset grid flowsolver. These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains: (1) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (2) Monitor, a library of runtime trace-collection routines; (3) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (4) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran 77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses XIIR5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (1) the impact of long message latencies; (2) the impact of multiprogramming overheads and associated load imbalance; (3) cache and virtual-memory effects; and (4) significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (1) ConfigView, showing the physical topology

  20. Multisensor Instrument for Real-Time Biological Monitoring

    Science.gov (United States)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  1. Development of Interactive Monitoring System for Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments.

  2. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  3. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    International Nuclear Information System (INIS)

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Lichti, G. G.; Kienlin, A. von; Steinle, H.; Diehl, R.; Greiner, J.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-01-01

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system

  4. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    Science.gov (United States)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  5. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  6. Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks

    Science.gov (United States)

    Viti, T. M.; Garmire, D. G.

    2017-12-01

    Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.

  7. AN ADAPTIVE MULTI-CHANNEL SPECTROELLIPSOMETER FOR ECOLOGICAL MONITORING

    Directory of Open Access Journals (Sweden)

    F. A. Mkrtchyan

    2012-09-01

    Full Text Available The creation of multichannel polarization optical instrumentation and use of spectroellipsometric technology are very important for the real-time ecological control of aquatic environment. Spectroellipsometric devices give us high precision of measurements. This report is aimed to describe: •A technology of combined use of spectroellipsometry and algorithms of identification and recognition that allowed the creation of a standard integral complex of instrumental, algorithmic, modular and software tools for the collection and processing of data on the aquatic environment quality with forecasting and decision - making functions. •A compact measuring - information multichannel spectroellipsometric system (device for monitoring the quality of aquatic environment, that is based on the combined use of spectroellipsometry and training, classification, and identification algorithms. This spectroellipsometric system will differ from modern foreign analogues by the use of a new and very promising method of ellipsometric measurements, an original element base of polarization optics and a complex mathematical approach to estimating the quality of a water object subjected to anthropogenic influence.Unlike foreign analogues, the system has no rotating polarization elements. This allows one to increase the signal-to-noise ratio and the long-term stability of measurements, to simplify and reduce the price of multichannel spectroellipsometers. The system will be trainable to the recognition of the pollutants of aquatic environment. A spectroellipsometer in laboratories of V.A. Kotelnikov's Institute of Radioengineering and Electronics, Russian Academy of Sciences is designed for in-situ real time measurements of spectra of ellipsometric parameters Psi and Delta with consequent changeover to spectra of transmitted and reflected signal from water media in frames of used physical model of water environment.

  8. A digitized wide range channel for new instrumentation and control system of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan

    2010-01-01

    Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)

  9. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    International Nuclear Information System (INIS)

    Wrest, D.J.; Hines, J.W.; Uhrig, R.E.

    1996-01-01

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs

  10. Instrument surveillance and calibration verification through plant wide monitoring using autoassociative neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wrest, D J; Hines, J W; Uhrig, R E [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1997-12-31

    The approach to instrument surveillance and calibration verification (ISCV) through plant wide monitoring proposed in this paper is an autoassociative neural network (AANN) which will utilize digitized data presently available in the Safety Parameter Display computer system from Florida Power Corporations Crystal River number 3 nuclear power plant. An autoassociative neural network is one in which the outputs are trained to emulate the inputs over an appropriate dynamic range. The relationships between the different variables are embedded in the weights by the training process. As a result, the output can be a correct version of an input pattern that has been distorted by noise, missing data, or non-linearities. Plant variables that have some degree of coherence with each other constitute the inputs to the network. Once the network has been trained with normal operational data it has been shown to successfully monitor the selected plant variables to detect sensor drift or failure by simply comparing the network inputs with the outputs. The AANN method of monitoring many variables not only indicates that there is a sensor failure, it clearly indicates the signal channel in which the signal error has occurred. (author). 11 refs, 8 figs, 2 tabs.

  11. Survey of instrumentation for environmental monitoring: major update. Volume 3. Radiation

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This is the third volume of a four-volume (seven-part) series, the culmination of a comprehensive survey of instrumentation for environmental monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to radiation monitoring. The results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored, their characteristics and forms, their sources and pathways, their effects on the ecosystem, and the means of controlling them through process and regulatory controls. The discussion is presented under sections entitled radiation sources; instrumentation: by type of radiation or instrument type; and, instrumentation for specific radionuclides. (JGB)

  12. Survey of instrumentation for environmental monitoring: major update. Volume 3. Radiation

    International Nuclear Information System (INIS)

    1979-09-01

    This is the third volume of a four-volume (seven-part) series, the culmination of a comprehensive survey of instrumentation for environmental monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to radiation monitoring. The results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Information is also given regarding the pollutants to be monitored, their characteristics and forms, their sources and pathways, their effects on the ecosystem, and the means of controlling them through process and regulatory controls. The discussion is presented under sections entitled radiation sources; instrumentation: by type of radiation or instrument type; and, instrumentation for specific radionuclides

  13. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, R; Yadav, R S [Aligarh Muslim Univ. (India). Dept. of Physics; Naqvi, T H [Z.H. Engineering Coll., Aligarh (India); Ahmed, Rais [National Council of Educational Research and Training, New Delhi (India)

    1975-12-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described.

  14. Monitoring the mechanical vibration of in-core detector tubes and fuel channels via ICFD noise analysis

    International Nuclear Information System (INIS)

    Glockler, O.; Cooke, D.F.; Czuppon, G.J.; Kapoor, K.K.

    2000-01-01

    Vibrations of core internals are regularly monitored in the CANDU nuclear generating stations of Ontario Power Generation (OPG) via the noise analysis of in-core flux detectors (ICFDs). Voltage signals of standard station instrumentation are recorded by portable multi-channel high-speed high-resolution data acquisition systems, then statistical parameters are derived from the multi-channel time series measurements. Reactor noise analysis is a non-intrusive statistical technique regularly used in system surveillance, diagnostics and in actual operational I and C problems. It utilizes the dynamic information carried by the small fluctuations (noise) of station signals measured around their mean values during steady-state operation. The present paper discusses specific results related to the flow-induced mechanical vibrations of detector tubes and fuel channels. (author)

  15. 40 CFR 63.1004 - Instrument and sensory monitoring for leaks.

    Science.gov (United States)

    2010-07-01

    ... to be measured in air. (5) Monitoring performance. Monitoring shall be performed when the equipment... devices in gas and vapor service) or § 63.1012(f) (compressors). (d) Sensory monitoring methods. Sensory... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Instrument and sensory monitoring for...

  16. Method for monitoring stability of channel within a core in a reactor

    International Nuclear Information System (INIS)

    Monta, Kazuo; Takigawa, Yukio.

    1976-01-01

    Object: To obtain a flow rate as a factor for determining a safety limit of hydraulic vibration in a fuel channel within a core from signals of an incore neutron detector every channel to thereby monitor stability of the fuel channel. Structure: On the basis of hydraulic data of fuel channels such as power distribution and flow distribution obtained in each fuel channel, average pressure of fuel channels, measured value relating to inlet sub-cleaning of recycling water and throttling of inlet and outlet orifices, discrimination of stability is effected by a channel stability monitoring device, or on the basis of comparison between the limit value of stability in connecting with those parameters designated among parameters and the actual value thereof, determination of stability allowance is carried out. (Yoshihara, H.)

  17. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    International Nuclear Information System (INIS)

    Kumar, S.; Prasad, R.; Yadav, R.S.; Ahmed, Rais

    1975-01-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described. (author)

  18. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer.

    Science.gov (United States)

    Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten

    2017-01-01

    Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.

  19. Development of Real-Time Coal Monitoring Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  20. MUG-OBS - Multiparameter Geophysical Ocean Bottom System : a new instrumental approach to monitor earthquakes.

    Science.gov (United States)

    hello, yann; Charvis, Philippe; Yegikyan, Manuk; verfaillie, Romain; Rivet, Diane

    2016-04-01

    Real time monitoring of seismic activity is a major issue for early warning of earthquakes and tsunamis. It can be done using regional scale wired nodes, such as Neptune in Canada and in the U.S, or DONET in Japan. Another approach to monitor seismic activity at sea is to deploying repeatedly OBS array like during the amphibious Cascadia Initiative (four time 1-year deployments), the Japanese Pacific Array (broadband OBSs "ocean-bottom broadband dispersion survey" with 2-years autonomy), the Obsismer program in the French Lesser Antilles (eight time 6-months deployments) and the Osisec program in Ecuador (four time 6-months deployments). These autonomous OBSs are self-recovered or recovered using an ROV. These systems are costly including ship time, and require to recover the OBS before to start working on data. Among the most recent alternative we developed a 3/4 years autonomy ocean bottom system with 9 channels (?) allowing the acquisition of different seismic or environmental parameters. MUG-OBS is a free falling instrument rated down to 6000 m. The installation of the sensor is monitored by acoustic commands from the surface and a health bulletin with data checking is recovered by acoustic during the installation. The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command using a one day fast cruise boat of opportunity. Since sensors stayed at the same location for 3 years, it is a perfect tool to monitor large seismic events, background seismic activity and aftershock distribution. Clock, drift measurement and GPS localization is automatic when the shuttle reaches the surface. For remote areas, shuttles released automatically and a seismic events bulletin is transmitted. Selected data can be recovered by two-way Iridium satellite communication. After a period of 3 years the main station is self-recovered by

  1. Radiation protection instrumentation for personnel dosimetry, area and environmental monitoring

    International Nuclear Information System (INIS)

    Jones, A.R.

    1978-04-01

    Several kinds of personal dosimeter exist and their performance is reviewed in the light of requirements for an ideal instrument. The requirements of portable instruments are reviewed and the extent to which they are met in one example is described. Where permitted environmental doses are larger than the fluctuations in natural backgrounds, certain types of thermoluminescent dosimeters provide a cheaper and reliable alternative measuring system

  2. Channel Islands, Kelp Forest Monitoring, Survey, Fish Transect, 1985-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has measurements of the abundance of fish species. The original measurements...

  3. Channel Islands, Kelp Forest Monitoring, Survey, Random Point Contact, 1982-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has estimates of substrate composition and percent cover of selected algal and...

  4. Channel Islands, Kelp Forest Monitoring, Survey, 5m Quadrat, 1996-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset from the Channel Islands National Park's Kelp Forest Monitoring Program has measurements of the abundance of selected rare, clumped, sedentary indicator...

  5. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    Science.gov (United States)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  6. Pre-criticality testing of radiation monitors associated with protective and regulatory channels of PHWRs and related work

    International Nuclear Information System (INIS)

    Tripathi, S.M.; Rao, Suresh; Mahant, A.K.; Sathian, V.; Ghodke, Shobha; Satam, R.A.; Singh, Yashoda; Phadnis, U.V.; Shaha, V.V.

    2006-01-01

    The paper describes the various experiments that are regularly carried out for each PHWR since RAPS-2. The work involves performance evaluation of start-up counters and ion chambers used in Protective and Regulatory channels and start-up counters used both in-core and out of core. In addition, Radiation Safety Systems Division (RSSD) also carries out calibration of Delayed Neutron Monitors (DNM) and Self Powered Neutron Detectors (SPND). Except SPND, all other detectors are tested not only at BARC but also at reactor sites prior to initial flushing of heavy water, using the actual circuitry and control instruments at site. The performance evaluation of SPNDs is carried out at A-1 location of APSARA reactor core. Apart from these, RSSD also carries out calibration of zonal classification monitors and health physics related radiation monitors at BARC. (author)

  7. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  8. Integration of 128 channels for monitoring, acquisition and control with existing LHCD DAC system

    International Nuclear Information System (INIS)

    Joshi, Ramesh; Virani, Chetan; Wadhwani, Archana; Sharma, P.K.

    2015-01-01

    Lower Hybrid Current Drive (LHCD) data acquisition system needs to be upgraded for additional channel requirement. The existing VME based DAC has been used since long with 32 analog input channels for data monitoring and control. Additional 128 channels require integrating with existing DAC. There are four layers of waveguides which deliver final output power into tokamak. Each layer requires 32 channels for power measurement. For the same requirement 128 analog input channels have been integrated with the help of carrier board and IP modules. Acromag IP330 modules have been procured and finally integrated with additional carrier board with existing VME hardware. Each module provides 32 analog input channels. Device driver has been developed for each module and integrated with existing program. LHCD DAC system has been upgraded with additional 128 channels requirement. It has been successfully testing with recent SST-1 campaign. (author)

  9. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard-Nelson, B.

    1998-01-01

    The XIA DXP-4C is a 4 channel, CAMAC based, X-ray spectrometer which digitally processes directly digitized preamplifier signals. The DXP-4C was designed for instrumenting multi-detector arrays for synchrotron radiation applications, and optimized for very high count rates at a low cost per detector channel. This produced a very compact and low power (3.4 W/channel) instrument for its count rate and MCA capabilities, which thus provides a strong basis for portable applications. Because all functions are digitally controlled, it can be readily adapted to various user interfaces, including remote access interfaces. Here the authors describe the design and examine approaches to lowering its power to 50 mW/channel. They then consider the issues in applying it to three typical portable or remote spectrometry applications

  10. Response Time Analysis and Test of Protection System Instrument Channels for APR1400 and OPR1000

    International Nuclear Information System (INIS)

    Lee, Chang Jae; Han, Seung; Yun, Jae Hee; Baek, Seung Min; Lee, Sang Jeong

    2015-01-01

    , the establishment of the systematic response time evaluation methodology is needed to justify the conformance to the response time requirement used in the safety analysis. This paper proposes the response time evaluation methodology for APR1400 and OPR1000 using the combined analysis and test technique to confirm that the plant protection system can meet the analytical response time assumed in the safety analysis. In addition, the results of the quantitative evaluation performed for APR1400 and OPR1000 are presented in this paper. The proposed response time analysis technique consists of defining the response time requirement, determining the critical signal path for the trip parameter, allocating individual response time to each component on the signal path, and analyzing the total response time for the trip parameter, and demonstrates that the total analyzed response time does not exceed the response time requirement. The proposed response time test technique is composed of defining the response time requirement, determining the critical signal path for the trip parameter, determining the test method for each component on the signal path, performing the response time test, and demonstrates that the total test result does not exceed the response time requirement. The total response time should be tested in a single test that covers from the sensor to the final actuation device on the instrument channel. When the total channel is not tested in a single test, separate tests on groups of components or single components including the total instrument channel shall be combined to verify the total channel response. For APR1400 and OPR1000, the ramp test technique is used for the pressure and differential pressure transmitters and the step function testing technique is applied to the signal processing equipment and final actuation device. As a result, it can be demonstrated that the response time requirement is satisfied by the combined analysis and test technique

  11. Response Time Analysis and Test of Protection System Instrument Channels for APR1400 and OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Jae; Han, Seung; Yun, Jae Hee; Baek, Seung Min [Department of Instrumentation and Control System Engineering, KEPCO Engineering and Construction, Daejeon (Korea, Republic of); Lee, Sang Jeong [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-07-01

    , the establishment of the systematic response time evaluation methodology is needed to justify the conformance to the response time requirement used in the safety analysis. This paper proposes the response time evaluation methodology for APR1400 and OPR1000 using the combined analysis and test technique to confirm that the plant protection system can meet the analytical response time assumed in the safety analysis. In addition, the results of the quantitative evaluation performed for APR1400 and OPR1000 are presented in this paper. The proposed response time analysis technique consists of defining the response time requirement, determining the critical signal path for the trip parameter, allocating individual response time to each component on the signal path, and analyzing the total response time for the trip parameter, and demonstrates that the total analyzed response time does not exceed the response time requirement. The proposed response time test technique is composed of defining the response time requirement, determining the critical signal path for the trip parameter, determining the test method for each component on the signal path, performing the response time test, and demonstrates that the total test result does not exceed the response time requirement. The total response time should be tested in a single test that covers from the sensor to the final actuation device on the instrument channel. When the total channel is not tested in a single test, separate tests on groups of components or single components including the total instrument channel shall be combined to verify the total channel response. For APR1400 and OPR1000, the ramp test technique is used for the pressure and differential pressure transmitters and the step function testing technique is applied to the signal processing equipment and final actuation device. As a result, it can be demonstrated that the response time requirement is satisfied by the combined analysis and test technique

  12. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  13. Instrumentation for environmental monitoring. Volume 1. Radiation. Second Edition

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Nero, A.V.; Murphy, D.J.; Graven, R.

    1983-01-01

    This volume describes ionizing radiation and the instruments used for measurement. Units, sources, and effects of radiation are introduced, basic detection methods discussed, and measurement of alpha, beta, gamma and x-radiation described. Sources of anthropogenic radiation are discussed in detail: nuclear power plants, spent-fuel processing, and uranium mining and milling

  14. Sleep monitoring : A comparison between three wearable instruments

    NARCIS (Netherlands)

    Wouwe, N.C. van; Valk, P.J.L.; Veenstra, B.J.

    2011-01-01

    During military operations soldiers often encounter extreme environmental circumstances like heat, cold, prolonged physical exercise, and disturbed sleep, which hamper their performance. Monitoring changes in physiological parameters may assist with adequate interventions to prevent the negative

  15. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  16. Tesla VUPJT instruments for radiation monitoring of working environment and selected aplications

    International Nuclear Information System (INIS)

    Slezak, V.; Kula, J.; Novakova, O.; Jursova, L.; Severa, L.

    1986-01-01

    A survey is presented of the current state of development and production of instruments for ionizing radiation monitoring and detection, also listing possible applications in the national economy. (author)

  17. Experience with instrumentational monitoring of steam turbine foundations

    International Nuclear Information System (INIS)

    Linnemann, H.; Hagemann, M.

    1989-01-01

    Many factors can lead to the deformation of foundations and consequently to variations in the state of alignment of a turbine shaft line. Various measurement programmes, measurement procedures and instrumentation have been developed and proven in power plant practice. Experience accumulated hitherto with automatic measurement systems shows that these procedures are superior to conventional methods in respect of accuracy, availability and information content. (orig.) [de

  18. Reference values for generic instruments used in routine outcome monitoring: the leiden routine outcome monitoring study

    Directory of Open Access Journals (Sweden)

    Schulte-van Maaren Yvonne WM

    2012-11-01

    Full Text Available Abstract Introduction The Brief Symptom Inventory (BSI, Mood & Anxiety Symptom Questionnaire −30 (MASQ-D30, Short Form Health Survey 36 (SF-36, and Dimensional Assessment of Personality Pathology-Short Form (DAPP-SF are generic instruments that can be used in Routine Outcome Monitoring (ROM of patients with common mental disorders. We aimed to generate reference values usually encountered in 'healthy' and ‘psychiatrically ill’ populations to facilitate correct interpretation of ROM results. Methods We included the following specific reference populations: 1294 subjects from the general population (ROM reference group recruited through general practitioners, and 5269 psychiatric outpatients diagnosed with mood, anxiety, or somatoform (MAS disorders (ROM patient group. The outermost 5% of observations were used to define limits for one-sided reference intervals (95th percentiles for BSI, MASQ-D30 and DAPP-SF, and 5th percentiles for SF-36 subscales. Internal consistency and Receiver Operating Characteristics (ROC analyses were performed. Results Mean age for the ROM reference group was 40.3 years (SD=12.6 and 37.7 years (SD=12.0 for the ROM patient group. The proportion of females was 62.8% and 64.6%, respectively. The mean for cut-off values of healthy individuals was 0.82 for the BSI subscales, 23 for the three MASQ-D30 subscales, 45 for the SF-36 subscales, and 3.1 for the DAPP-SF subscales. Discriminative power of the BSI, MASQ-D30 and SF-36 was good, but it was poor for the DAPP-SF. For all instruments, the internal consistency of the subscales ranged from adequate to excellent. Discussion and conclusion Reference values for the clinical interpretation were provided for the BSI, MASQ-D30, SF-36, and DAPP-SF. Clinical information aided by ROM data may represent the best means to appraise the clinical state of psychiatric outpatients.

  19. Radiation protection instrumentation. Monitoring equipment. Radioactive aerosols in the environment

    International Nuclear Information System (INIS)

    1996-01-01

    This international standard applies to portable or installed equipment for continuous monitoring of radioactive aerosols in the environment in normal and emergency conditions. Monitoring involves continuous sampling and, where desirable, automatic start of sampling. The document applies particularly to the following assignments: (i) determination of the volume activity of radionuclides in the form of aerosols, either per time unit, along with its time changes, or in the integral form over a longer time period such as 24 h, and measurement of the volume sampled; (ii) triggering a warning alarm signal if the preset volume activity or time integral of the volume activity of aerosols has been exceeded. The document deals with radioactive aerosol monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of the air circuit. (P.A.)

  20. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  1. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    Science.gov (United States)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  2. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Polagye, B. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Copping, A. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown-Saracino, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suryan, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kramer, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  3. Paper on operation and maintenance experiences on radiation monitoring instrumentation at NAPS

    International Nuclear Information System (INIS)

    Gupta, J.P.; Vinod Kumar; Sen, S.K.; Malhotra, S.

    2005-01-01

    Narora Atomic Power Station (NAPS) is the first standardized Pressurised Heavy Water Reactor in India commissioned in the year 1989. Many new Radiation Monitoring Systems like Portal Monitors and Ventilation Exhaust Activity Monitors were first time introduced at NAPS. All the Personnel Contamination Monitors and Area Radiation Monitors used at NAPS were designed and developed by Electronics Division, BARC. Only the Portal Monitor was supplied by M/S Herfurth, Germany. The paper highlights the operation and maintenance experiences on Radiation Monitoring Instrumentation at NAPS in the last 15 years of operation. The paper also highlights the different problems faced in Radiation Instruments and our suggestions for improvement in their design for their better availability and long term reliability. (author)

  4. Survey of instrumentation used for monitoring metals in water

    Energy Technology Data Exchange (ETDEWEB)

    Quinby-Hunt, M.S.

    1978-06-01

    A study was conducted of instrumentation used to determine metals in water. Several of the techniques most commonly used for analysis and routine determinations of metals in water are shown in Table 1. They are atomic absorption spectroscopy, both flame and flameless, atomic emission spectroscopy using conventional flame sources and inductively-coupled plasma sources, and ultraviolet-visible absorption techniques. Other less frequently employed methods are x-ray fluorescence analysis using both photon and charged particle excitation with energy-dispersive and wavelength-dispersive spectral analysis. Also electrochemical techniques and activation analysis are studied.

  5. Calibration of instrument and personnel monitoring in radiological protection

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamad Ramli; Wan Saffiey Wan Abdullah

    1987-01-01

    It is difficult to choose radioprotection equipments that are not too expensive and suit the purpose. Some of the dosimetric characteristics of good dosemeters outlined by ISO 4071-1978 (E) namely scale linearity, energy dependence, radiation quality dependence and angular dependence for some of the commercially available dosemeters are discussed. The calibration procedures practised at the National Secondary Standard Dosimetry Laboratory (SSDL), of the Nuclear Energy Unit (NEU) is also explained. The radiological equipments for personnel monitoring such as film badge and TLD are widely used to estimate the radiation dose delivered to the whole or partial body of a personnel. Both of the personnel monitoring procedures have been established at the NEU. The objective, use and maintenance of the devices are also discussed in detail. The evaluation of the monthly dose received by a personnel from various establishments in the country are also presented. (author). 17 figs

  6. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  7. Performance monitoring of zircaloy-4 square fuel channels at TAPS-1 and 2

    International Nuclear Information System (INIS)

    Akhtar, J.; Ramu, A.; Anilkumar, K.R.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.; Srivastava, S.P.; Prasad, P.N.; Anantharaman, K.

    2006-01-01

    Tarapur Atomic Power Station is a twin unit Boiling Water Reactors. The initial rated capacity of each unit was 210 MWe. Subsequently due to Secondary Steam Generator tube leak problem, the units were de-rated to 160 MWe in the year 1984-85. The station has completed 36 years of successful commercial operation. TAPS reactor fuel channels are made of Zircaloy-4, material. These are used along with 6x6 array nuclear fuel assemblies. The fuel channels need to be discharged once it reaches an optimum exposure limit and based on the surveillance programme, which monitors the channels performance. NFC has indigenously developed fuel channels for TAPS and these are at various stages of exposure in both the reactor cores. The performance review of these channels was carried out by the experts from TAPS-Site, NPCIL-ED and RED, BARC. The two major factors, which affect fuel channels performance, are (a) Bulge and (b) Bow. The phenomenon of longitudinal bow occurs due to the neutron flux gradient across the channels faces. Studies made on this subject by General Electric (GE) indicated that this channel deflection occurs at a slow rate. Therefore, fuel channels surveillance programme is essential to check the irradiated fuel channels performance in order to replace the fuel channels once it reaches the optimum exposure limit. To estimate the useful life of irradiated fuel channels, channel deflection/bulge measurement inspection system and methodology was developed jointly by TAPS and Centre for Design and manufacture (CDM), BARC. This system was successfully deployed at TAPS. This paper briefly describes the developmental efforts made by Nuclear Fuel Complex (NFC), Hyderabad, NPCIL-Fuel Group, Engg.Directorate, RED/BARC, CDM/BARC. (author)

  8. Instrumentation for status monitoring and protection of SST-1 superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: aashoo.sharma@yahoo.com; Prasad, U.; Doshi, K.; Varmora, P.; Khristi, Y.; Patel, D.; Pradhan, S.

    2016-11-15

    Highlights: • Details of status monitoring instrumentation are presented. • Protection instrumentation details are presented. • Instrumentation installation details, signal conditioning and DAQ system details and the results during SST-1 operation are presented. - Abstract: Superconducting magnets of SST-1 are extensively instrumented to continuously monitor the health of magnets during machine cool-down, plasma experiments and also during the machine warm-up phase. These instrumentations include temperature sensors, flow meters, hall probes, strain gages, displacement sensors, pressure sensors and voltage taps. The number of sensors and their locations has been optimized to systematically monitor all important magnet parameters to ensure its safety. In-house developed modular signal conditioning cards have been developed for these instrumentations. The data is acquired on a Versa Module Europa bus based data acquisition system (VME DAQ). This paper gives an overview of selection, installation, laboratory scale validations, and distribution logics of these instrumentations. Results during plasma campaigns and the up-gradation aspects of these instrumentations are also discussed in this paper.

  9. Research in radiation monitoring survey instrumentation. Final report

    International Nuclear Information System (INIS)

    Blalock, T.V.; Kennedy, E.J.; Phillips, R.G.; Walker, E.W. Jr.

    1978-01-01

    Two low-power solid-state prototype readout units were developed, an LED display and a LCD display. This display output was in a bar-graph format, covering four-decades of information, with 10-segments per decade. The displays accept a frequency input, which is standardly available from several portable radiation-survey instruments. Both readout units will operate on two D-cell batteries (3.0 Volt), with a typical current drain requirement of 0.3 MA for the LED display and 30μA for the LCD display. A wide-range electrometer circuit was also developed. The circuit covers an input current range from 10 -13 A to 10 -8 A. The output signal is a pulse whose frequency is directly proportional to input current. The circuit requires no high-megohm resistors, and is autoranging. Several candidate input amplifiers were analyzed and evaluated for use with the electrometer circuit

  10. Instrumentation techniques for monitoring shock and detonation waves

    Science.gov (United States)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  11. An approach to effectiveness monitoring of floodplain channel aquatic habitat: channel condition assessment.

    Science.gov (United States)

    Richard D. Woodsmith; James R. Noel; Michael L. Dilger

    2005-01-01

    The condition of aquatic habitat and the health of species dependent on that habitat are issues of significant concern to land management agencies, other organizations, and the public at large in southeastern Alaska, as well as along much of the Pacific coastal region of North America. We develop and test a set of effectiveness monitoring procedures for measuring...

  12. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Thanh Duc; Le, Minh Duc [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, Alcalá de Henares, Madrid (Spain); Duong, Hong Anh [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Koenka, Israel Joel [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland)

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  13. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    International Nuclear Information System (INIS)

    Mai, Thanh Duc; Le, Minh Duc; Sáiz, Jorge; Duong, Hong Anh; Koenka, Israel Joel; Pham, Hung Viet; Hauser, Peter C.

    2016-01-01

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  14. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  15. Design of multi-channel analyzer's monitoring system based on embedded system

    International Nuclear Information System (INIS)

    Yang Tao; Wei Yixiang

    2007-01-01

    A new Multi-Channel Analyzer's Monitoring system based on ARM9 Embedded system is introduced in this paper. Some solutions to problem are also discussed during the procedure of design, installation and debugging on Linux system. The Monitoring system is developed by using MiniGUI and Linux software system API, with the functions of collecting, displaying and I/O data controlling 1024 channels datum. They are all realized in real time, with the merits of low cost, small size and portability. All these lay the foundation of developing homemade Digital and Portable nuclear spectrometers. (authors)

  16. Neutron flux monitoring with pre-startup channels in FBTR [Paper No.:E6

    International Nuclear Information System (INIS)

    Nagaraj, C.P.; Ramakrishnan, R.; Subha Rao, R.; Pillai, C.P.; Muralikrishan, G.; Raghavan, K.

    1993-01-01

    The pre-start up instrumentation system using boron lined proportional counters has been well designed and the counters have been rigorously tested. This system in conjunction with the regular start-up channels (with more than 3 decades overlap) covers the start up measurement range adequately and provides necessary indications, interlocks and trips on low count rate, high count rate and doubling time to ensure safety. The pre-startup channels have been operational. The reactor trip on LOG NO due to count rate on start-up channels less than 3 cps is automatically inhibited with the higher count rate obtained on the pre-startup channels. With this and log CRM readings from PSU well on scale has facilitated smooth and safe reactor start ups even with low shutdown count rates. (author). 5 figs

  17. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  18. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    Science.gov (United States)

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  19. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    OpenAIRE

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The ...

  20. Instrument evaluation no. 11. ESI nuclear model 271 C contamination monitor

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to he carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report deals with the ESI Nuclear Model 271 C; a general purpose contamination monitor, comprising a GM tube connected by a coiled extensible cable to a ratemeter

  1. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  2. [Design and implementation of real-time continuous glucose monitoring instrument].

    Science.gov (United States)

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  3. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  4. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  5. The development of state/region owned goods management’s monitoring instrument design

    Directory of Open Access Journals (Sweden)

    Ikhwanto Yogy

    2017-01-01

    Full Text Available The problems in state/region owned goods in Indonesian state and local governments are suspected to occur because of weak monitoring programs, according to many studies. A tool or instrument in implementing this monitoring program is expected to address this problem. Such tool currently doesn’t exist yet. This research aims to fill that gap by developing a monitoring instrument design for state/region owned goods by using Daerah Istimewa Yogyakarta (DIY Local Government as a research context in order to take valuable inputs for the design. This research is using developmental research method. Government Regulation were used for normative reference and Friedman’s results-based accountability quadrat were used in developing good indicators for the instrument. This research is succeeded in formulating the indicators that made up the instrument. Indicators compiled are divided into compliance-based indicators and results-based indicators. Indicators are formulated based on the validation and inputs from employees of DIY’s Assets Management Agency and experts from academia. This instrument still has some limitations that need improvement through further research.

  6. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  7. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  8. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  9. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview

    NARCIS (Netherlands)

    Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, J.P.; Levelt, P.F.

    2007-01-01

    We present an overview of the theoretical and algorithmic aspects of the Ozone Monitoring Instrument (OMI) aerosol and surface UV algorithms. Aerosol properties are derived from two independent algorithms. The nearUV algorithm makes use of OMI observations in the 350-390 nm spectral region to

  10. Effective cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation

    NARCIS (Netherlands)

    Stammes, P.; Sneep, M.; Haan, de J.F.; Veefkind, J.P.; Wang, P.; Levelt, P.F.

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's EOS-Aura satellite is measuring ozone, NO2, and other trace gases with daily global coverage. To correct these trace gas retrievals for the presence of clouds, there are two OMI cloud products, based on different physical processes,

  11. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  12. Monitoring student attendance, participation, and performance improvement: an instrument and forms.

    Science.gov (United States)

    Kosta, Joanne

    2012-01-01

    When students receive consistent and fair feedback about their behavior, program liability decreases. To help students to have a clearer understanding of minimum program standards and the consequences of substandard performance, the author developed attendance and participation monitoring and performance improvement instruments. The author discusses the tools that address absenteeism, tardiness, unprofessional, and unsafe clinical behaviors among students.

  13. Application of a multi-channel system for continuous monitoring and an early warning system.

    Science.gov (United States)

    Lee, J H; Song, C H; Kim, B C; Gu, M B

    2006-01-01

    A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.

  14. Eddy current monitoring of spacers in coolant channel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.; Vijayaraghavan, R.

    1993-01-01

    An eddy current testing method has been standardised for monitoring spacer springs which are used in coolant channel assemblies of pressurised heavy water nuclear reactors (PHWRs). The standard bobbin coil probe used for monitoring the spacer spring detects only the location but does not monitor the tilt orientation and tilt angle of a tilted spacer spring. The knowledge of location along with the tilt orientation of the spacer spring greatly improves the performance of repositioning methods. A modified probe with angular windings has been developed in laboratory tests for monitoring the location as well as the tilt orientation of the spacer springs. Experimental results are presented showing excellent performance of the modified probe in monitoring the exact location as well as tilt orientation of a spacer spring. The modified probe has also been used successfully in the field during repositioning of spacer springs in PHWRs before commissioning. (Author)

  15. Predicting automatic speech recognition performance over communication channels from instrumental speech quality and intelligibility scores

    NARCIS (Netherlands)

    Gallardo, L.F.; Möller, S.; Beerends, J.

    2017-01-01

    The performance of automatic speech recognition based on coded-decoded speech heavily depends on the quality of the transmitted signals, determined by channel impairments. This paper examines relationships between speech recognition performance and measurements of speech quality and intelligibility

  16. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  18. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  19. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  20. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  1. Novel instrumentation for online monitoring of stationary beds and their height for settling slurries

    CSIR Research Space (South Africa)

    Ilgner, Hartmut J

    2016-06-01

    Full Text Available stream_source_info Ilgner_2016.pdf.txt stream_content_type text/plain stream_size 1057 Content-Encoding UTF-8 stream_name Ilgner_2016.pdf.txt Content-Type text/plain; charset=UTF-8 10th North American Conference... on Multiphase Technology 2016, Banff, Canada 8 – 10 June 2016 Novel instrumentation for online monitoring of stationary beds and their height for settling slurries H J Ilgner ABSTRACT: Novel instrumentation has been developed to detect stationary...

  2. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  3. The software and hardware design of a 16 channel online dose rate monitoring system

    International Nuclear Information System (INIS)

    Tang Wenjuan; Yan Yonghong; Yang Shiming; Li Xiaonan; Min Jian

    2011-01-01

    The software and hardware design of a 16 channel online dose rate monitoring system is presented. After being amplified and A/D converted, the output signal of the sensors was sent to a microprocessor through an FPGA, where the low-frequency filter, calculation, temperature compensation and pedestal deduction were accomplished. Such steps corrected the variation of dark current dependent on temperature fluctuations in a effective way, and finally the instantaneous dose rate results with enough precise were obtained. (authors)

  4. Design and Implementation of a Web-based Monitoring System by using EPICS Channel Access Protocol

    International Nuclear Information System (INIS)

    An, Eun Mi; Song, Yong Gi

    2009-01-01

    Proton Engineering Frontier Project (PEFP) has developed a 20MeV proton accelerator, and established a distributed control system based on EPICS for sub-system components such as vacuum unit, beam diagnostics, and power supply system. The control system includes a real-time monitoring and alarm functions. From the aspect of a efficient maintenance of a control system and a additional extension of subsystems, EPICS software framework was adopted. In addition, a control system should be capable of providing an easy access for users and a real-time monitoring on a user screen. Therefore, we have implemented a new web-based monitoring server with several libraries. By adding DB module, the new IOC web monitoring system makes it possible to monitor the system through the web. By integrating EPICS Channel Access (CA) and Database libraries into a Database module, the web-based monitoring system makes it possible to monitor the sub-system status through user's internet browser. In this study, we developed a web based monitoring system by using EPICS IOC (Input Output Controller) with IBM server

  5. XML for nuclear instrument control and monitoring: an approach towards standardisation

    International Nuclear Information System (INIS)

    Bharade, S.K.; Ananthakrishnan, T.S.; Kataria, S.K.; Singh, S.K.

    2004-01-01

    Communication among heterogeneous system with applications running under different operating systems and applications developed under different platforms has undergone rapid changes due to the adoption of XML standards. These are being developed for different industries like Chemical, Medical, Commercial etc. The High Energy Physics community has already a standard for exchange of data among different applications , under heterogeneous distributed systems like the CMS Data Acquisition System. There are a large number of Nuclear Instruments supplied by different manufactures which are increasingly getting connected. This approach is getting wider acceptance in instruments at reactor sites, accelerator sites and complex nuclear experiments -especially at centres like CERN. In order for these instruments to be able to describe the data which is available from them in a platform independent manner XML approach has been developed. This paper is the first attempt at Electronics Division for proposing an XML standard for control, monitoring, Data Acquisition and Analysis generated by Nuclear Instruments at Accelerator sites, Nuclear Reactor plant and Laboratory. The gamut of Nuclear Instruments include Multichannel Analysers, Health Physics Instruments, Accelerator Control Systems, Reactor Regulating systems, Flux mapping Systems etc. (author)

  6. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  7. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  8. Design of a instrumentation module for monitoring ingestive behavior in laboratory studies.

    Science.gov (United States)

    Fontana, Juan M; Lopez-Meyer, Paulo; Sazonov, Edward S

    2011-01-01

    The development of accurate and objective tools for monitoring of ingestive behavior (MIB) is one of the most important needs facing studies of obesity and eating disorders. This paper presents the design of an instrumentation module for non-invasive monitoring of food ingestion in laboratory studies. The system can capture signals from a variety of sensors that characterize ingestion process (such as acoustical and other swallowing sensors, strain sensor for chewing detection and self-report buttons). In addition to the sensors, the data collection system integrates time-synchronous video footage that can be used for annotation of subject's activity. Both data and video are simultaneously and synchronously acquired and stored by a LabVIEW-based interface specifically developed for this application. This instrumentation module improves a previously developed system by eliminating the post-processing stage of data synchronization and by reducing the risks of operator's error.

  9. Radiation monitoring and measuring instrument developed by Turkish Atomic Energy Authority

    International Nuclear Information System (INIS)

    Kuecuekarslan, N.; Gueven, A.

    2001-01-01

    Turkish Atomic Energy Authority (TAEA), Cekmece Nuclear Research and Training Center, Nuclear Electronics Department is working on research, development and production of radiation monitoring and measuring instruments in the aims of TAEA to serve our Country. Advanced micro controller technology is used to cover problems of radiation measurement. Control by micro controller enables reliable, stable measurement and display of low level dose rate fields. It makes possible the simultaneous measurement of both dose and dose rate values

  10. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    Science.gov (United States)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  11. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  12. The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar

    Science.gov (United States)

    Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.

    2018-04-01

    The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.

  13. NESSI and `Alopeke: Two new dual-channel speckle imaging instruments

    Science.gov (United States)

    Scott, Nicholas J.

    2018-01-01

    NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.

  14. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    Science.gov (United States)

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  15. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  16. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    Science.gov (United States)

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  17. Research on development of multi-channel analyzer used for monitoring and warning radiation equipment

    International Nuclear Information System (INIS)

    Nguyen Van Sy; Dang Quang Thieu; Nguyen Thi Bao My

    2015-01-01

    The subject assigned to this paper presents research on development of multi-channel analyzer used for monitoring and warning environmental radiation equipment under the project KC.05.16/11-15 Research on manufacturing equipment monitoring and warning radiation. In this thematic we have two subjects that need to be resolved such as: i) Designing spectroscopy amplifier block (AMP) duty pulse signals obtained about few hundred millivolts output from scintillation detector preamplifier, amplified as a few volts and the standard Gaussian pulses shaped to connect to the analog-to-digital converter. The spectroscopy amplifier block can change the gain by digital control to respond to the problem of automatic spectrum stability for multi-channel analyzer systems. ii) Designing analog-to-digital converter block (ADC) in accordance with the actual conditions, such as high stability, fast conversion time, high throughput, and it consumes low energy. Selecting suitable microprocessor for fast connection ability, to operate reliably paired with the analog-to-digital converter into a multi-channel analyzer (MCA) serving analysis. (author)

  18. VAMCIS, a new measuring channel for continuous monitoring of leak rates inside PWR steam generators

    International Nuclear Information System (INIS)

    Champion, G.; Dubail, A.; Lefevre, F.

    1988-01-01

    In order to assess the primary to secondary leakage, radioactive isotopes, formed in the primary coolant as a result of fission or neutron capture, are usually monitored in the pressurized water reactor (PWR) secondary coolant. Conventional methods mainly based on the detection of 133 Xe, tritium, and 41 Ar are widely used on French Electricite de France (EdF) PWRs. Some years ago, it appeared necessary to improve both leak rate assessments and steam generator tube rupture (SGTR) detection. A volumetric activity measuring channel inside steam (VAMCIS) has been developed for this purpose. The SGTR that occurred at the North Anna PWR has focused the attention of safety authorities on this new measuring channel. It is planned to implement VAMCIS at North Anna in order to check the leak rate variations more accurately

  19. Investigation of Stability of Precise Geodetic Instruments Used in Deformation Monitoring

    Science.gov (United States)

    Woźniak, Marek; Odziemczyk, Waldemar

    2017-12-01

    Monitoring systems using automated electronic total stations are an important element of safety control of many engineering objects. In order to ensure the appropriate credibility of acquired data, it is necessary that instruments (total stations in most of the cases) used for measurements meet requirements of measurement accuracy, as well as the stability of instrument axis system geometry. With regards to the above, it is expedient to conduct quality control of data acquired using electronic total stations in the context of performed measurement procedures. This paper presents results of research conducted at the Faculty of Geodesy and Cartography at Warsaw University of Technology investigating the stability of "basic" error values (collimation, zero location for V circle, inclination), for two types of automatic total stations: TDA 5005 and TCRP 1201+. Research provided also information concerning the influence of temperature changes upon the stability of investigated instrument's optical parameters. Results are presented in graphical analytic technique. Final conclusions propose methods, which allow avoiding negative results of measuring tool-set geometry changes during conducting precise deformation monitoring measurements.

  20. Three-channel face apparatus for monitoring the direction of wells in the drilling process

    Energy Technology Data Exchange (ETDEWEB)

    Sirayev, A Kh; Kovshov, G N; Molchanov, A A

    1979-01-01

    Apparatus has been developed and successfully tested under laboratory and stand conditions for monitoring the direction of wells, using wireless communications channel on the string of drilling pipes. As a result of decrease in the frequency of the transmission signal, use of an LBT with best electrical characteristics, matching of the face transmitter with load and increase in the power of the transmitter, a level of useful signal 30 m V is successfully obtained on the surface from depth 2500 m in high-ohmic sections and 10 mV from depth 1900 m in low-ohmic sections.

  1. MONITORING OF THE PERFORMANCE EFFICIENCY OF THE EQUIPMENT AT THE ENTERPRISES OF AVIATION INSTRUMENTATION

    Directory of Open Access Journals (Sweden)

    Petr P. Dobrov

    2016-01-01

    Full Text Available The article elaborates the proposals to improve the systems for monitoring performance of the equipment at the enterprises of aviation instrument. The relevance of the study due to the fact that the aviation instrument-making industry of the Russian Federation can play a role as a key factor in enhancing the competitiveness of the national economy. Currently, the global aviation market is fairly saturated, it competition is not between individual companies and between the aviation powers. The role of an efficient industrial production is largely dependent on the amount, structure, technical condition and the level of utilization of fixed assets. Specificity of high-tech high-tech production presupposes the existence of a specific fleet of expensive and unique equipment; a high degree of novelty products, single or small-scale type of production that determines the high cost of production of a unit of production; high demands on the staff . The paper noted that the production capacity is an essential tool for production planning process, which allows to determine the optimal work shifts Park main technological equipment and production program to justify the enterprises of sphere of aviation instrument. On the basis of the modification of OEE method, a stochastic model is proposed, which allows to display the efficiency of the productive capacity of the high-tech enterprises of sphere of aviation instrument in the form of multi-dimensional size and much more accurately identify the relationship between its elements.

  2. Incorporation of personal computers in a research reactor instrumentation system for data monitoring and analysis

    International Nuclear Information System (INIS)

    Leopando, L.S.

    1998-01-01

    The research contract was implemented by obtaining off-the shelf personal computer hardware and data acquisition cards, designing the interconnection with the instrumentation system, writing and debugging the software, and the assembling and testing the set-up. The hardware was designed to allow all variables monitored by the instrumentation system to be accessible to the computers, without requiring any major modification of the instrumentation system and without compromising reactor safety in any way. The computer hardware addition was also designed to have no effect on any existing function of the instrumentation system. The software was designed to implement only graphical display and automated logging of reactor variables. Additional functionality could be easily added in the future with software revision because all the reactor variables are already available in the computer. It would even be possible to ''close the loop'' and control the reactor through software. It was found that most of the effort in an undertaking of this sort will be in software development, but the job can be done even by non-computer specialized reactor people working with programming languages they are already familiar with. It was also found that the continuing rapid advance of personal computer technology makes it essential that such a project be undertaken with inevitability of future hardware upgrading in mind. The hardware techniques and the software developed may find applicability in other research reactors, especially those with a generic analog research reactor TRIGA console. (author)

  3. Raman Spectroscopy for In-Line Water Quality MonitoringInstrumentation and Potential

    Science.gov (United States)

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  4. Nuclear radiation monitoring instruments for personnel in nuclear disaster for defence needs

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.; Vaijapurkar, S.G.; Yadav, Ashok

    2005-01-01

    Ever since the tragedy of nuclear device exploding over Japan by USA in 1945 awareness exists amongst the armed forces personnel all over the world that a requirement of implementing radiological protection is imminent. Towards this adoption of radiological safety programme is a criterion. In a nuclear war disaster scenario, one encounters initial nuclear radiation (gamma and neutron radiations), gamma radiations from fallout, heat and blast. At certain distances Tanks/ armoured vehicles will survive and 4 R/s radiation level sensing to actuate relays for closing the ports of vehicles is essential, leading to reduction in inhalation, ingestion of fallout radioactivity and reduction in radiation dose received by occupants of the vehicle. Towards this sturdy radiation monitors to indicate gamma dose rate of the order of 1000 R/h, gamma and neutron dosimeters of the order of 1000 cGy with reading instruments are to be developed. These must work in harsh environment and sustain JSS 55555 conditions of army. Defence Laboratory, Jodhpur over past one decade has been involved in developing personnel, area and field monitoring instruments like dosimeters, survey meters, which are useful, acceptable to army personnel, armoured and personnel carrier vehicles, field structures/shelters. Technology transfer after satisfaction of armed forces, product ionisation and supply, maintenance, training has been the endeavor of the DRDO. Herein it is proposed to highlight the techno electronics nuclear radiation monitoring sensors and associated electronics systems developed first time in the country and productionised in bulk for Services for implementing personnel protection. The sensors developed and described are - Radiophotoluminescent Glass (RPLG) for gamma radiation dosimetry , neutron sensitive PIN diode for fast neutron dosimetry, gamma radiation sensitive PIN diode, superheated liquid neutron and gamma sensors. The dosimeter, dose rate meter and field/area instruments are

  5. Virtual instrument for controlling and monitoring digitalized power supply in SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Chinese Academy of Sciences, Beijing; Xu Ruinian; Shen Tianjian; Li Deming

    2006-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) needs extremely precise power supplies for their various magnets. A digital controller is being developed for the power converters of the SSRF power supply (PS). In the digital controller, a fully digital pulse-width modulator (PWM) directly controls the power unit insulated gate bipolar transistor (IGBT) of the PS. A program in LabVIEW language has been developed to control and monitor the digital PS via serial communication (RS232) from a PC and to modify its parameters as well. In this article, the software design of the virtual instrument for controlling and monitoring digitalized PS and its associated functions are described, and the essential elements of the program graphical main-VI and sub-VI source code are presented and explained. The communication protocol and the structure of the developed system are also included in this article. (authors)

  6. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  7. Nucleonic instruments from VUPJT Tesla

    International Nuclear Information System (INIS)

    Smola, J.

    1986-01-01

    The instruments currently produced by Tesla Premysleni are listed and briefly characterized. They include a low level alpha-beta counter, an automatic low level alpha-beta counter, detection units for environmental sample counting, instruments for measuring specific activity of liquids and radon concentration in water, a radioactive aerosol meter, dose ratemeters, portable alpha-beta indicators for surface contamintion monitoring, neutron monitors, single-, two- and three-channel spectrometric units. (M.D.)

  8. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  9. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    International Nuclear Information System (INIS)

    Jenkins, J.B.

    1996-01-01

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability

  10. Method of exchanging cables of neutron monitoring instrumentation tube and folding device of the cable

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1990-01-01

    In a BWR type reactor, a wide range monitor (WRNM) is used instead of a conventional neutron source range monitor (SRM) or an intermediate range monitor (IRM). The WRNM is always fixed to a predetermined position in a reactor core while containing a detection section in a dry tube, different from a conventional monitor. Accordingly, driving devices for the conventional detection section such as in SRM and IRM are not necessary but, when the reactor is operated for a long period of time, it is sometimes necessary to be replaced with new WRNM. According to the present invention, the cable of the detector placed in a neutron instrumentation tube is connected to a cable take-up drum in a take-up device passing through a cask. Then, the cable is taken-up by driving the take-up drum by a driving motor and the WRNM detection section attached to the top end of the cable is contained in the cask. With this constitution, replacing and processing operation for the detection section can be facilitated and operator's exposure dose can be reduced. (I.S.)

  11. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  12. Overview of the atmospheric ionizing radiation environment monitoring by Bulgarian build instruments

    Science.gov (United States)

    Dachev, Tsvetan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Spurny, Frantisek; Ploc, Ondrej; Uchihori, Yukio; Flueckiger, Erwin; Kudela, Karel; Benton, Eric

    2012-10-01

    Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic radiation of galactic and solar origin and to secondary radiation produced in the atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required by the following recommendations of the International Commission on Radiological Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic radiation. This approach has been also adopted in other official documents (NCRP 2002). In this overview we present the results of ground based, mountain peaks, aircraft, balloon and rocket radiation environment monitoring by means of a Si-diode energy deposition spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the purposes of the space radiation monitoring at MIR and International Space Station (ISS). These spectrometers-dosemeters are further developed, calibrated and used by scientific groups in different countries. Calibration procedures of them are performed at different accelerators including runs in the CERN high-energy reference field, simulating the radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan HIMAC accelerator were performed also. The long term aircraft data base were accumulated using specially developed battery operated instrument in 2001-2009 years onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. The obtained experimental data are compared with computational models like CARI and EPCARD. The

  13. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  14. Dose rate mapping and quantitative analysis of radioactive deposition with simple monitoring instruments in Finland after the Chernobyl accident.

    Energy Technology Data Exchange (ETDEWEB)

    Koivukoski, J. [Ministry of the Interior, Rescue Dept., Helsinki (Finland); Paatero, J. [Finnish Meteorological Inst., Helsinki (Finland)], E-mail: janne.koivukoski@intermin.fi

    2013-03-01

    This article reviews the Finnish dose-rate mapping equipment and the system to process the obtained results, which were used immediately after the 1986 Chernobyl accident. We present the results of the external gamma-radiation monitoring carried out with simple civil-defence gamma monitoring instruments and compare them with the subsequent deposition mapping performed with research-grade instruments. The analysis shows that the quality of radiation mapping is good enough for decision makers to direct protective measures to the right areas. This review also demonstrates that a simple stationary external gamma radiation monitoring network can be effectively used for early warning in radiation emergency situations. (orig.)

  15. Satellite rainfall monitoring over Africa for food security, using multi-channel MSG data

    Science.gov (United States)

    Chadwick, R.; Grimes, D.; Saunders, R.; Blackmore, T.; Francis, P.

    2009-04-01

    Near real-time rainfall estimates are crucial in sub-Saharan Africa for a variety of humanitarian and agricultural purposes. However, for economic and infrastructural reasons, regularly reporting rain-gauges are sparse and precipitation radar networks extremely rare. Satellite rainfall estimates, particularly from geostationary satellites such as Meteosat Second Generation (MSG), present one method of filling this information gap, as they produce data at high temporal and spatial resolution. An algorithm has been developed to produce rainfall estimates for Africa from multi-channel MSG data. The algorithm is calibrated using precipitation radar data collected in Niamey, Niger as part of the African Monsoon Multidisciplinary Analyses (AMMA) project in 2006, and is based on an algorithm used operationally over Europe by the UK Met Office. Contingency tables are used to establish a statistical relationship between multi-channel MSG data and probability of rainfall at several different rain-rate magnitudes as sensed by the radar. Rain-rate estimates can then be produced at a variety of spatial and temporal scales, with MSG scan length (15 minutes) and pixel size (3-4km) as the lower limit. Results will be presented of a validation of this algorithm over the Sahel region of Africa. Rainfall estimates from this algorithm, processed for 2004, will be validated against gridded rain-gauge data at a 0.5 degree and 10 day timescale suitable for drought monitoring purposes. A comparison will also be made against rainfall estimates from the TAMSAT algorithm, which uses single channel IR data from MSG, and has been shown to perform well in the Sahel region.

  16. Monitoring of East Channel dredge areas benthic fish population and its implications

    International Nuclear Information System (INIS)

    Drabble, Ray

    2012-01-01

    Regional annual sampling of commercial fish stocks formed a high priority for monitoring studies attendant with the granting of aggregate dredging licenses in the Eastern Channel Region (ECR) which had previously not been dredged. An assessment of 4 m beam trawl sampling between 2005 and 2008 following the granting of licences in 2006 is provided. The majority of fish species have shown marked reductions in abundance since commencement of dredging. Draghead entrainment has been identified as a possible contributory cause based upon the known vulnerability of selected species (). Other environmental factors considered offer no explanation for the changes in abundance. Comparative analyses with ICES data for plaice and sole over the study period demonstrate that changes in the ECR do not result from seasonal flux in the wider populations. An alternative impact model and potential mitigation measures are suggested.

  17. Uveka: a UV exposure monitoring system using autonomous instruments network for Reunion Island citizens

    Science.gov (United States)

    Sébastien, Nicolas; Cros, Sylvain; Lallemand, Caroline; Kurzrock, Frederik; Schmutz, Nicolas

    2016-04-01

    Reunion Island is a French oversea territory located in the Indian Ocean. This tropical Island has about 840,000 inhabitants and is visited every year by more than 400,000 tourists. On average, 340 sunny days occurs on this island in a whole year. Beyond these advantageous conditions, exposure of the population to ultraviolet radiation constitutes a public health issue. The number of hospitalisations for skin cancer increased by 50% between 2005 and 2010. Health insurance reimbursements due to ophthalmic anomalies caused by the sun is about two million Euros. Among the prevention measures recommended by public health policies, access to information on UV radiation is one of the basic needs. Reuniwatt, supported by the Regional Council of La Reunion, is currently developing the project Uveka. Uveka is a solution permitting to provide in real-time and in short-term forecast (several hours), the UV radiation maps of the Reunion Island. Accessible via web interface and smartphone application, Uveka informs the citizens about the UV exposure rate and its risk according to its individual characteristics (skin phototype, past exposure to sun etc.). The present work describes this initiative through the presentation of the UV radiation monitoring system and the data processing chain toward the end-users. The UV radiation monitoring system of Uveka is a network of low cost UV sensors. Each instrument is equipped with a solar panel and a battery. Moreover, the sensor is able to communicate using the 3G telecommunication network. Then, the instrument can be installed without AC power or access to a wired communication network. This feature eliminates a site selection constraint. Indeed, with more than 200 microclimates and a strong cloud cover spatial variability, building a representative measurement site network in this island with a limited number of instruments is a real challenge. In addition to these UV radiation measurements, the mapping of the surface solar radiation

  18. Review of regulatory requirements relevant to calibration of monitoring instruments in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Hassan; Khedr, Ahmed; El-Din Talha, Kamal [Egyptian Nuclear and Radiological Regulatory Authority, Cairo (Egypt). Nuclear Safety Engineering Dept.

    2015-05-15

    The objective of this work is to demonstrate the regulatory requirements pertaining to calibration of monitoring instruments in research reactors. The regulatory statements concerning this subject in IAEA safety standards and the implementation of such regulations in twelve countries with different levels of nuclear programs are surveyed: Australia, Bulgaria, Canada, Egypt, Finland, Germany, Hungary, Slovenia, South Korea, Spain, United Kingdom of England and United States of America. In addition, the requirements of ISO/IEC17025 and NUPIC (Nuclear Utilities Procurement Issues Committee) are compared. Seven technical and administrate aspects are suggested as the comparison criteria and the explicit expression of the statements, the level of document (i.e.: act, requirement or guide) are the considered resources. The main differences and similarities between the different approaches are identified in order to provide an input for future development of the national regulations.

  19. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points

    Science.gov (United States)

    Kraft, S.; Puschmann, K. G.; Luntama, J. P.

    2017-09-01

    As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.

  20. Development of a monitoring instrument to assess the performance of the Swiss primary care system.

    Science.gov (United States)

    Ebert, Sonja T; Pittet, Valérie; Cornuz, Jacques; Senn, Nicolas

    2017-11-29

    The Swiss health system is customer-driven with fee-for-service paiement scheme and universal coverage. It is highly performing but expensive and health information systems are scarcely implemented. The Swiss Primary Care Active Monitoring (SPAM) program aims to develop an instrument able to describe the performance and effectiveness of the Swiss PC system. Based on a Literature review we developed a conceptual framework and selected indicators according to their ability to reflect the Swiss PC system. A two round modified RAND method with 24 inter-/national experts took place to select primary/secondary indicators (validity, clarity, agreement). A limited set of priority indicators was selected (importance, priority) in a third round. A conceptual framework covering three domains (structure, process, outcome) subdivided into twelve sections (funding, access, organisation/ workflow of resources, (Para-)Medical training, management of knowledge, clinical-/interpersonal care, health status, satisfaction of PC providers/ consumers, equity) was generated. 365 indicators were pre-selected and 335 were finally retained. 56 were kept as priority indicators.- Among the remaining, 199 were identified as primary and 80 as secondary indicators. All domains and sections are represented. The development of the SPAM program allowed the construction of a consensual instrument in a traditionally unregulated health system through a modified RAND method. The selected 56 priority indicators render the SPAM instrument a comprehensive tool supporting a better understanding of the Swiss PC system's performance and effectiveness as well as in identifying potential ways to improve quality of care. Further challenges will be to update indicators regularly and to assess validity and sensitivity-to-change over time.

  1. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  2. The Opera Instrument: An Advanced Curation Development for Mars Sample Return Organic Contamination Monitoring

    Science.gov (United States)

    Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.

    2018-01-01

    Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.

  3. Fiber optic field analytical instrumentation in place of quarterly compliance monitoring

    International Nuclear Information System (INIS)

    Henshaw, J.M.

    1995-01-01

    ChemSensor reg-sign is a new field analytical tool capable of in situ, real time measurements of organics in water. The purpose of this paper is to describe the application of this new instrument to the ongoing monitoring of petroleum contaminated ground water. The sensing element in ChemSensor incorporates a short optical fiber core with a hydrophobic/organophilic chemical coating. Light is launched into the fiber from a light emitting diode and detected at the opposite end by a photodiode. When the sensor is immersed in water containing organics, the organics partition into the organophilic coating and change the effective refractive index of he coating allowing light to escape. The resultant loss of light reaching the detector correlates to the concentration of organics present. It has been demonstrated through extensive field tests that response factors developed for ChemSensor allow it to be used as an accurate indication of BTEX contamination present. A large scale field test with an environmental consultant and a petroleum company was conducted to gain confidence in the correlation of ChemSensor to laboratory methods. As a result of this study, a case was made to the state regulators for substitution of a portion of the quarterly compliance monitoring with ChemSensor. This program has the potential to save the petroleum company thousands in laboratory analytical costs per year. This paper discusses the application of ChemSensor to sites contaminated by gasoline as well as the collection and interpretation of the data

  4. Postrelease monitoring of radio-instrumented sea otters in Prince William Sound

    Science.gov (United States)

    Monnett, C.; Rotterman, L.M.; Stack, C.; Monson, Daniel H.; Bayha, Keith; Kormendy, Jennifer

    1990-01-01

    Sea otters (Enhydra lutris) that were captured in western Prince William Sound (PWS) or the Gulf of Alaska, treated, and held in captivity at the temporary rehabilitation centers established in response to the T/V Exxon Valdez oil spill were instrumented with radio transmitters, released into eastern PWS, and monitored by radiotelemetry. We undertook the present study to gain information for guiding the release of the remaining captive otters and evaluating the efficacy of sea otter rehabilitation after exposure to crude oil. Radio transmitters were attached to the flippers of seven sea otters released in May 1989 and monitored for periods of a few hours to more than 60 days. However, little was learned about the fate of these animals because the radio transmitters used proved unreliable. Forty-five additional sea otters from the rehabilitation centers were implanted with radio transmitters, released into northeastern PWS and monitored for 8 months. During the first 20 days after the first release of these implanted otters (n = 21), they were more mobile than wild-caught and released sea otters studied in PWS, from 1984 through 1990. All were alive and vigorous at the end of the 20-day period. Tracking of all 45 implanted sea otters during the 8-month period showed that the otters remained highly mobile. Many (46.6%) crossed into western PWS. However, by the end of the 8 months, 12 of the instrumented otters were dead and 9 were missing. One radio failed. These mortality and missing rates are much higher than those normally observed for adult sea otters in PWS. The death rate was highest in winter. These data suggest that, despite the tremendous amount of money and energy directed toward the treatment and care of these animals, the sea otters released from the centers were not completely rehabilitated, that is, not returned to a normal state. We recommend that future policies focus on preventing otters from becoming oiled, rather than attempting to treat them

  5. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    Science.gov (United States)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface

  6. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    of multiple in-house developed, state-of-the-art building blocks. They have all been assessed and characterized up to a dose higher than 1 MGy. The first block in the signal chain is a smaller than 1 uV offset, low noise instrumentation amplifier that has a programmable gain between 8 and 256. This amplifier is followed by a high precision 16 bit ADC. Its main function is to digitize the amplified signal coming from the amplifier. The output of the ADC is a serial digital data stream. The next block is a 8 channel digital multiplexer. It converts the 8 digital data streams into 1 digital data stream. Hereby the instrumentation solution reduces the number of cables from 16 to 1 (8* 2 analogue differential signals). In addition, the multiplexer modules can be combined with other modules to reduce even further the number of cables. Every instrumentation solution requires a stable high precision voltage reference. Therefore also a bandgap reference has been developed and assessed under gamma irradiation. A low jitter, 10 MHz clock generator has been developed and qualified to clock the ADC and the multiplexer with high accuracy. Finally, an on-chip radiation-hard temperature sensor is also included. A complete remote, real-time test setup was prepared by MAGyICS in cooperation with Fusion for Energy to qualify the sensor instrumentation link at SCK-CEN. It is qualified by closely following the ESCC22900 space standard for electronics used in a radiation environment. The main benefit of the sensor instrumentation solution discussed here is that it can be directly employed in a MGy-level accumulated dose radiation environment, therefore it can digitize and multiplex sensor readout values early in the signal chain. Hereby the sensor values are not distorted by external interferences on the long transmission cable. Moreover it allows readout and digitize multiple low-bandwidth sensors ( pressure and temperature sensors, thermocouples, angular resolvers and LVDTs). Hence

  7. An alarm instrument for monitoring leakage of oil storage tanks and the location of their leak position using radioisotope tracers

    International Nuclear Information System (INIS)

    Lu Qingqian; Sun Xiaolei; Hu Xusheng

    1990-01-01

    Usually it is difficult to find out gasoline leakage at the bottom of a storage tank from the very beginning. In order to solve this problem, a leak-monitoring technique and an instrument based on the detection of nuclear radiation have been successfully developed. The instrument possesses high sensitivity, short reaction time, excellent stability and rellability. When very small leaks at the bottom of a tank appear, the instrument will show a leak signal and give an alarm. In the meantime, however, the tank can be still used until the preparations for repairing are completed. Then its leak position can be accurately located by using radioisotope tracers

  8. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  9. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN, HF, and CO2 Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    2015-01-01

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  10. AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2

    Science.gov (United States)

    Iwasa, Y.

    1986-01-01

    In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.

  11. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    Science.gov (United States)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  12. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    Science.gov (United States)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the

  13. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    Science.gov (United States)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  14. New approach to information fusion for Lipschitz classifiers ensembles: Application in multi-channel C-OTDR-monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Andrey V.; Egorov, Dmitry V. [LPP “EqualiZoom”, Astana, 010000 (Kazakhstan)

    2016-06-08

    This paper presents new results concerning selection of an optimal information fusion formula for an ensemble of Lipschitz classifiers. The goal of information fusion is to create an integral classificatory which could provide better generalization ability of the ensemble while achieving a practically acceptable level of effectiveness. The problem of information fusion is very relevant for data processing in multi-channel C-OTDR-monitoring systems. In this case we have to effectively classify targeted events which appear in the vicinity of the monitored object. Solution of this problem is based on usage of an ensemble of Lipschitz classifiers each of which corresponds to a respective channel. We suggest a brand new method for information fusion in case of ensemble of Lipschitz classifiers. This method is called “The Weighing of Inversely as Lipschitz Constants” (WILC). Results of WILC-method practical usage in multichannel C-OTDR monitoring systems are presented.

  15. Kelp forest monitoring 1993 annual report. Channel Islands National Park. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, D.; Walder, R.; Gorodezky, L.; Lerma, D.; Richards, D.

    1993-06-01

    The 1993 results of the Channel Islands National Park Kelp Forest Monitoring Project are described in this report. Population dynamics of 68 taxa or categories of algea, fish, and invertebrates were measured at 16 permanent sites around the five islands within the park. Survey techniques utilized SCUBA and surface-supplied-air, and included quadrats, band transects, random contacts, fish transects, video transects, size frequency measurements, artificial recruitment modules, and species list surveys. Temperature data was collected using Sea Data batheothermographs, and HOBOTEMP temperature loggers. Temperature loggers were installed at each of the sixteen sites. Size frequency measurements were taken from artifical recruitment modules at nine sites. In 1993, 13 sites had giant kelp, Macrocysts pyrifera, forests, one site was dominated by the aggregating red sea cucumber, pachythyone rubra, one site was dominated by red sea urchins, Strongylocentrotus franciscanus, and another by purple sea urchins, S. purpuratus. The 13 sites with kelp forests consisted of 10 mature and three young kelp forests. Wasting disease was observed in sea stars and wasting syndrome was apparent in sea urchins. Sea urchins wasting syndrome appears to have caused mass mortality of purple sea urchins, S. purpuratus, at two Santa Barbara Island sites.

  16. A 32-channel front-end ASIC for GEM detectors used in beam monitoring applications

    Science.gov (United States)

    Ciciriello, F.; Altieri, P. R.; Corsi, F.; De Robertis, G.; Felici, G.; Loddo, F.; Lorusso, L.; Marzocca, C.; Matarrese, G.; Ranieri, A.; Stamerra, A.

    2017-11-01

    A multichannel, mixed-signal, front-end ASIC for GEM detectors, intended for beam monitoring in hadron therapy applications, has been designed and prototyped in a standard 0.35 μm CMOS technology. The analog channels are based on the classic CSA + shaper processing chain, followed by a peak detector which can work as an analog memory, to simplifiy the analog-to-digital conversion of the peak voltage of the output pulse, proportional to the energy of the detected event. The available hardware resources include an 8-bit A/D converter and a standard-cell digital part, which manages the read-out procedure, in sparse or serial mode. The ASIC is self-triggered and transfers energy and address data to the external DAQ via a fast 100 MHz LVDS link. Preliminary characterization results show that the non-linearity error is limited to 5% for a maximum input charge of about 70 fC, the measured ENC is about 1400e- and the time jitter of the trigger signal generated in response to an injected charge of 60 fC is close to 200 ps.

  17. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  18. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  19. Exploring topographic methods for monitoring morphological changes in mountain channels of different size and slope

    Science.gov (United States)

    Theule, Joshua; Bertoldi, Gabriele; Comiti, Francesco; Macconi, Pierpaolo; Mazzorana, Bruno

    2015-04-01

    High resolution digital elevation models (DEM) can easily be obtained using either laser scanning technology or photogrammetry with structure from motion (SFM). The scale, resolution, and accuracy can vary according to how the data is acquired, such as by helicopter, drone, or extendable pole. In the Autonomous Province of Bozen-Bolzano (Northern Italy), we had the opportunity to compare several of these techniques at different scales in mountain streams ranging from low-gradient braided rivers to steep debris flow channels. The main objective is to develop protocols for efficient monitoring of morphologic changes in different parts of the river systems. For SFM methods, we used the software "Photoscan Professional" (Agisoft) to generate densified point clouds. Both artificial and natural targets were used to georeference them. In some cases, targets were not even necessary and point clouds could be aligned with older point clouds by using the iterative closest point algorithm in the freeware "CloudCompare". At the Mareit/Mareta River, a restored braided river, an airborne laser scan survey (2011) was compared to a SFM DEM derived from a helicopter photo survey (2014) carried out (by the Autonomous Province of Bolzano) at approximately 100 m above ground. Photogrammetry point clouds had an alignment error of 1.5 cm and had three times more data coverage than laser scanning. Indeed, the large spacing and clustering of 2011 ALS swaths led to areas of no data when a 10-cm grid is developed. In the Gadria basin, a debris flow monitoring catchment, we used a sediment retention basin to compare debris flow volumes resulting from i) a drone (by the "Mavtech" company) survey at 10 m above ground (with GoPro camera), ii) a 5-m pole-mounted camera (with Canon EOS 700D) and iii) a 3-m pole-mounted camera (with GoPro Hero Silver3+) to a iv) TLS survey. As the drone had limited load capacity (especially at high elevations) we used the lightweight GoPro Hero 3+, but due to the

  20. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    International Nuclear Information System (INIS)

    Williams, David E; Henshaw, Geoff S; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A

    2013-01-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution. (paper)

  1. Identification of unusual events in multi-channel bridge monitoring data

    Science.gov (United States)

    Omenzetter, Piotr; Brownjohn, James Mark William; Moyo, Pilate

    2004-03-01

    Continuously operating instrumented structural health monitoring (SHM) systems are becoming a practical alternative to replace visual inspection for assessment of condition and soundness of civil infrastructure such as bridges. However, converting large amounts of data from an SHM system into usable information is a great challenge to which special signal processing techniques must be applied. This study is devoted to identification of abrupt, anomalous and potentially onerous events in the time histories of static, hourly sampled strains recorded by a multi-sensor SHM system installed in a major bridge structure and operating continuously for a long time. Such events may result, among other causes, from sudden settlement of foundation, ground movement, excessive traffic load or failure of post-tensioning cables. A method of outlier detection in multivariate data has been applied to the problem of finding and localising sudden events in the strain data. For sharp discrimination of abrupt strain changes from slowly varying ones wavelet transform has been used. The proposed method has been successfully tested using known events recorded during construction of the bridge, and later effectively used for detection of anomalous post-construction events.

  2. Instrument evaluation no. 11. ESI nuclear model 271 C contamination monitor

    CERN Document Server

    Burgess, P H

    1978-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to he carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  3. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  4. 40 CFR 63.1023 - Instrument and sensory monitoring for leaks.

    Science.gov (United States)

    2010-07-01

    ... be used during that day's monitoring. (ii) A calibration gas other than methane in air may be used if... or more of the compounds to be measured in air. (5) Monitoring performance. Monitoring shall be... devices) or § 63.1031(f) (alternative compressor standard). (d) Sensory monitoring methods. Sensory...

  5. Real-Time River Channel-Bed Monitoring at the Chariton and Mississippi Rivers in Missouri, 2007-09

    Science.gov (United States)

    Rydlund, Jr., Paul H.

    2009-01-01

    Scour and depositional responses to hydrologic events have been important to the scientific community studying sediment transport as well as potential effects on bridges and other hydraulic structures within riverine systems. A river channel-bed monitor composed of a single-beam transducer was installed on a bridge crossing the Chariton River near Prairie Hill, Missouri (structure L-344) as a pilot study to evaluate channel-bed change in response to the hydrologic condition disseminated from an existing streamgage. Initial results at this location led to additional installations in cooperation with the Missouri Department of Transportation at an upstream Chariton River streamgage location at Novinger, Missouri (structure L-534) and a Mississippi River streamgage location near Mehlville, Missouri (structures A-1850 and A-4936). In addition to stage, channel-bed elevation was collected at all locations every 15 minutes and transmitted hourly to a U.S. Geological Survey database. Bed elevation data for the Chariton River location at Novinger and the Mississippi River location near Mehlville were provided to the World Wide Web for real-time monitoring. Channel-bed data from the three locations indicated responses to hydrologic events depicted in the stage record; however, notable bedforms apparent during inter-event flows also may have affected the relation of scour and deposition to known hydrologic events. Throughout data collection periods, Chariton River locations near Prairie Hill and Novinger reflected bed changes as much as 13 feet and 5 feet. Nearly all of the bed changes correlated well with the hydrographic record at these locations. The location at the Mississippi River near Mehlville indicated a much more stable channel bed throughout the data collection period. Despite missing data resulting from damage to one of the river channel-bed monitors from ice accumulation at the upstream nose of the bridge pier early in the record, the record from the downstream

  6. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  7. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  8. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  9. Marine oil pollution and beached bird surveys: the development of a sensitive monitoring instrument

    International Nuclear Information System (INIS)

    Camphuysen, C.J.; Heubeck, M.

    2001-01-01

    One of the most obvious adverse effects of (chronic) pollution of the world's oceans and seas with mineral oil is the mortality of seabirds. Systematic surveys of beachcast corpses of birds ('beached bird surveys') have been used in many parts of the world to document the effect of oil pollution, but particularly so in Western Europe and in parts of North America. In this paper, the history, current schemes, methods and possible (future) use of beached bird surveys are described and discussed, because the value of beached bird surveys has been hotly disputed. Oil pollution is known since the late 19 th century, while the first beached bird surveys were conducted in the 1920s. Due to the amount of man-power needed for these surveys, most beached bird survey programs thrived only through the work of a large number of volunteers. However, most programs have resulted in substantial amounts of high quality data, often covering many consecutive years. One of the main shortcomings of many beached bird survey programs was the emphasis on stranded bird numbers rather than on relative measures, such as oil rates (percentage of corpses oiled of all corpses found). Sources of pollution, particularly so in chronically polluted regions such as the North Sea, the Baltic, the Mediterranean and the waters around Newfoundland, are insufficiently known, but could be studied through a sampling program connected to beached bird surveys. Suggestions for standardization of methods are presented, which could lead to a global and highly sensitive monitoring instrument of marine oil pollution. (Author)

  10. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  11. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  12. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  13. Monitoring water masses properties by Glider in Sardinia Channel during summer 2014

    Science.gov (United States)

    Gana, Slim; Iudicone, Daniele; Ghenim, Leila; Mortier, Laurent; Testor, Pierre; Tintoré, Joaquin; Olita, Antonio

    2015-04-01

    ., 2003), often involving surface and intermediate waters, are generated by baroclinic instabilities of the AC itself. The AEs generally remain more or less included in the main AC flow. The AEs alongslope-downstream propagation usually ends in the Channel of Sardinia, where AEs dramatically interact with the bathymetry and can remain almost blocked in the Sardinia Channel area for several months before collapsing (Puillat et al., 2002). In order to clarify some of these processes, including the behavior of the Algerian current and associated eddies, our methodology is based on a combined approach using glider observations and sea surface features observed by satellite. By autonomously collecting high-quality observations in three dimensions, gliders allow high-resolution oceanographic monitoring and provide useful contributions for the understanding of mesoscale dynamics and multidisciplinary interactions (e.g., Hodges and Fratantoni, 2009). On top of that, the glider route follows the ground track of the satellite SARAL, equipped with a Ka band altimeter (AltiKa), with the view to implement a methodology of analysis as performed by Bouffard et al. (2010). The main objectives of the project are : • identification of the physical properties of the surface and intermediate water masses between Northern Tunisian Coast and Sardinia and evaluation of the transport of water, salt and heat through the area • study of the variability of the physical properties of surface and intermediate water masses through the use of in-situ and satellite data. • understanding exchanges through sub-basins and the complex interactions through eddies • validation of the operational hydrodynamic numerical model of the western Mediterranean (http://www.seaforecast.cnr.it/en/fl/wmed.php) through the use of in-situ and satellite data. 3. Preliminary results of the experiment The glider carried out 6 legs during the period spanning from the 16th of August 2014 to the 19th of September 2014

  14. Evaluation of the current fast neutron flux monitoring instrumentation applied to LFR demonstrator ALFRED. Capabilities and limitations

    International Nuclear Information System (INIS)

    Lepore, Luigi; Remetti, Romolo; Cappelli, Mauro

    2015-01-01

    Among Gen IV projects for future nuclear power plants, Lead Fast Reactors (LFR) seem to be a very interesting solution due to their benefits in terms of fuel cycle, coolant-safety and waste management. The novelty of the matter causes some open issues about coolant chemical aspect, structural aspects, monitoring instrumentation, etc. Particularly hard neutron flux spectra would make traditional neutron instrumentation unfit to all reactor conditions, i.e. source, intermediate, and power range. Identification of new models of nuclear instrumentation specialized for LFR neutron flux monitoring asks for an accurate evaluation of the environment the sensor will work in. In this study, thermal-hydraulics and chemical conditions for LFR core environment will be assumed, as the neutron flux will be studied extensively by means of the Monte Carlo transport code MCNPX. The core coolant’s high temperature drastically reduces the candidate instrumentation, because only some kind of fission chambers and Self Powered Neutron Detectors can be operated in such an environment. This work aims to evaluate the capabilities of the available instrumentation (usually designed for Sodium Fast Reactors, SFRs) when exposed to the neutron spectrum derived from ALFRED, a pool-type small-power LFR project to demonstrate the feasibility of this technology into the European framework. This paper shows that such instruments do follow the power evolution, but they are not completely suitable to detect the whole range of reactor power. Some improvements are then possible in order to increase the signal-to-noise ratio, by optimizing each instrument in the range of reactor power, such to get the best solution. Some new detector designs are here proposed, and the possibilities for prototyping and testing by means of a fast reactor investigated. (author)

  15. Upgrade of the NCSU PULSTAR instrumentation power channels. Final technical report, September 1, 1992 - August 31, 1994

    International Nuclear Information System (INIS)

    Perez, P.B.

    1998-01-01

    The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. The originally supplied instrumentation has been replaced with solid-state and current technology equipment. The financial assistance from the US Department of Energy has been the primary source of support. This is the final report for the Instrumentation Upgrade

  16. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  17. Geotechnical instrumentation requirements for at-depth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-01-01

    Minimum required geotechnical measurements for confirmation of repository performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between +-0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  18. An Integrated Monitoring System Through 3d Laser Scanner and Traditional Instruments for Load Test on Arch Bridge

    Science.gov (United States)

    Pera, D.; Ferrando, I.

    2017-05-01

    The experimental campaign represents an example of how the careful design of the different test phases and the choice of the needed instrumentation are fundamental aspects to obtain a proper interpretation of the results, for future application on the real structures. Additionally, the present work represents a successful example of a combined monitoring system, integrating the traditional and innovative technical instrumentation for loading tests and geomatics survey techniques. The monitoring system has been designed with the aim of defining the load carrying capacity of a masonry arch bridge scaled model and to test the performances of a new retrofitting method. In particular, two different configuration have been considered: a first one with isolated arch and a second one with gravel fill on the arch.

  19. AN INTEGRATED MONITORING SYSTEM THROUGH 3D LASER SCANNER AND TRADITIONAL INSTRUMENTS FOR LOAD TEST ON ARCH BRIDGE

    Directory of Open Access Journals (Sweden)

    D. Pera

    2017-05-01

    Full Text Available The experimental campaign represents an example of how the careful design of the different test phases and the choice of the needed instrumentation are fundamental aspects to obtain a proper interpretation of the results, for future application on the real structures. Additionally, the present work represents a successful example of a combined monitoring system, integrating the traditional and innovative technical instrumentation for loading tests and geomatics survey techniques. The monitoring system has been designed with the aim of defining the load carrying capacity of a masonry arch bridge scaled model and to test the performances of a new retrofitting method. In particular, two different configuration have been considered: a first one with isolated arch and a second one with gravel fill on the arch.

  20. A telemedicine instrument for Internet-based home monitoring of thoracoabdominal motion in patients with respiratory diseases

    Science.gov (United States)

    da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de

    2011-01-01

    Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.

  1. Channel Islands, Kelp Forest Monitoring, Size and Frequency, Natural Habitat, 1985-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has measurements of the size of selected animal species at selected locations in the Channel Islands National Park. Sampling is conducted annually...

  2. Monitoring of elemental composition of honey from selected regions of Ghana using Instrumental Neutron Activation Analysis and Atomic Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Boateng, R.

    2015-01-01

    Honey is a sweet, thick and viscid fluid collected from beehives and usually found in cells of the honey comb. It is produced from nectar collected from various flowers by honeybees and processed. Among the important uses, pure and undiluted honey serves as natural sweetener and contains a broad variety of vitamins for human consumption. Due to its global demand, monitoring of the quality of honey is of great significance. In this study, honey samples were collected systematically from farmers and retailers in the Brong Ahafo, Ashanti and Greater Accra regions of Ghana. The sampling was done along the farmer-to-trader channels, to assess the quality of honey produced from various regions and to trace the sources of elemental contamination. Physicochemical studies; pH, electrical conductivity and specific gravity were done. The levels of selected toxic heavy metals (Hg, Pb, Cd, V, Cr, As) and essential metals (K, Na, Ca, Mg, Mn, Cu, Fe, Co) in the honey samples were analysed using instrumental neutron activation analysis (INAA). Flame atomic absorption spectrophotometry (FAAS) was also employed to determine elements such as Pb, Co, Cr and Fe. All the honey samples were found to be acidic, with pH ranging from 3.60 to 6.10. The acidity of honey is significant as it inhibits the growth of microorganisms. The values agrees favourably with the permitted pH limits of 3.40 to 3.60 for good quality honey, set by the National Honey Board of United States. The electrical conductivities measured ranged from 11.9 μS/cm to 44.4 μS/cm. The values were within the acceptable limits set by Ghana Standards Authority and other organizations (<800 μS/cm). The specific gravity of the honey samples analysed ranged from 1.297 to 2.031. These values were higher than the values (1.2081 to 1.2270) reported in Libyan Honey. However, these values were closer to the average specific gravity (1.425) value reported in other studies. These variations in the specific gravity may be related to

  3. Joint PDL and In-band OSNR Monitoring Supported by Data-Aided Channel Estimation

    DEFF Research Database (Denmark)

    Pittalà, Fabio; Hauske, Fabian N.; Ye, Yabin

    2012-01-01

    Employing a known training sequence robust and precise PDL and OSNR monitoring is demonstrated over a wide range of combined distortions. The proposed in-service monitoring technique is insensitive to CD, PMD and SOP rotation....

  4. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo

    Science.gov (United States)

    Aziz, Syed Mahfuzul; Khambatta, Faram; Vaithianathan, Tharshan; Thomas, John C.; Clark, Jillian M.; Marshall, Ruth

    2010-04-01

    A continuous wave near infrared instrument has been developed to monitor in vivo changes in the hemoglobin concentration of the trabecular compartment of human bone. The transmitter uses only two laser diodes of wavelengths 685 and 830 nm, and the receiver uses a single silicon photodiode operating in the photovoltaic mode. The functioning of the instrument and the depth of penetration of the near infrared signals was determined in vitro using tissue-equivalent phantoms. The instrument achieves a depth of penetration of approximately 2 cm for an optode separation of 4 cm and, therefore, has the capacity to interrogate the trabecular compartment of human bone. The functioning of the instrument was tested in vivo to evaluate the relative oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations of the proximal tibial bone of apparently healthy, normal weight, adult subjects in response to a 3 min on, 5 min off, vascular occlusion protocol. The traces of the relative Hb and HbO2 concentrations obtained were reproducible in controlled conditions. The instrument is relatively simple and flexible, and offers an inexpensive platform for further studies to obtain normative data for healthy cohorts, and to evaluate disease-specific performance characteristics for cohorts with vasculopathies of bone.

  5. Use of portable instrumentation/PC for loose-part monitor sensor validation, impact detection, and characterization

    International Nuclear Information System (INIS)

    Allen, J.W.

    1989-01-01

    Impact detection [loose-part monitoring (LPM)] is typically performed using acoustic sensors (accelerometers) permanently affixed to natural collection sites for possible loose parts. A typical nuclear facility will consist of 12 to 16 channels around the primary loop. Normal operation of these systems consists of continuously monitoring the conditioned sensor output and alert (or alarm) when signal levels exceed a certain threshold value. Technology for Energy Corporation (TEC) has utilized statistical methods to develop a system for monitoring LPM sensors that is capable of unambiguous channel operability validation, low-level impact (rattling) detection and trending, and impact characterization. The system consists of a software package resident on a personal computer (PC) for data storage, trending, and reporting. A small portable microprocessor box (meter) is used for data acquisition and analysis. The portable data box receives an analysis parameter set from the host PC, accepts amplified signals from the individual LPM sensors, and carries out spectral and probability density analyses. The results from the analyses are available for viewing at the meter and are locally stored for later uploading to the host computer. At the host, key parameters are trended from both the spectral and the amplitude probability function analyses. Alarm limits are preset to indicate if further analysis is warranted

  6. Geotechnical instrumentation requirements for atdepth testing and repository monitoring in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    This paper outlines geotechnical instrumentation requirements for the possible establishment of a nuclear waste repository in tuff on the Nevada Test Site (NTS). The Nuclear Regulatory Commission (NRC) has specified a continuing program to confirm performance during the operational period of the repository, which could last 50 years. Minimum required geotechnical measurements for confirmation of performance include thermal and thermomechanical responses; changes in stress, strain, and displacements; and pore pressure and groundwater flow characteristics. Conditions expected in tuff are: maximum rock temperatures of less than 250 0 C, stresses less than 100 MPa, strains between + or -0.01 mm/mm, and pore pressures less than 35 KPa in the unsaturated zone where hydraulic head is not the primary contributor. The paper describes instrumentation needed to make the desired measurements. In general, the instrumentation and data system are required to be stable and reliable for tens of years. Designs must consider requirements for temperature stability, temperature expansion compensation, moisture resistance, and long-term durability in mining-type environments. Severe requirements such as these suggest consideration of techniques for in-situ replacement of instrumentation. State-of-the-art instrumentation is briefly described along with a discussion of needs for refinement, replacement/recalibration and instrumentation development

  7. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1994-02-01

    SRI International will develop a unique new instrument that will be capable of providing real-time (<1 minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: (1) an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; (2) a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; (3) two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and (4) a powerful personal computer for control and data acquisition. Initially, the instrument will be developed for targeted use in conjunction with the K-1435 Toxic Substances Control Act (TSCA) incinerator at the Oak Ridge National Laboratory K-25 site. Ultimately, the instrument will be designed to operate in the field at any cleanup site, located close to the stack or process vent, providing the plant operations personnel with real-time information and alarm capabilities. In addition, this instrument will be very broadly applicable for cleanup or sampling, for example, any time contaminated soil is moved or disturbed

  8. Measurement of new operational quantities with radiation protection instruments designed for working area monitoring and for individual monitoring

    International Nuclear Information System (INIS)

    Prigent, R.; Chary, J.; Chemtob, M.

    1992-01-01

    The ICRP recommended a dose limitation system based on numerical evaluation of the dose equivalent to organs or tissues, H T , which are used to calculate the effective dose, H E , by weighting. The ICRU proposed new operational quantities accessible to measurement which are conservative with respect to these recommendations. The objective of this paper is to recall briefly the basic recommendations and to find out if radiation protection instruments presently used calibrated in terms of the previous quantities are capable to measure these new quantities. A dozen of practical cases are presented. (author)

  9. Measurement of new operational quantities with radiation protection instruments designed for working area monitoring and for individual monitoring

    International Nuclear Information System (INIS)

    Prigent, R.; Chary, J.; Chemtob, M.; Lebouleux, P.

    1992-01-01

    The ICRP recommended a dose limitation system based on numerical evaluation of the dose equivalent to organs or tissues, H T , which are used to calculate the effective dose, H E , by weighting. The ICRU proposed new operational quantities accessible to measurement which are conservative with respect to these recommendations. The objective of this paper is to recall briefly the basic recommendations and to find out if radiation protection instruments presently used calibrated in terms of the previous quantities are capable to measure these new quantities. A dozen of practical cases are presented

  10. From Landsat through SLI: Ball Aerospace Instrument Architecture for Earth Surface Monitoring

    Science.gov (United States)

    Wamsley, P. R.; Gilmore, A. S.; Malone, K. J.; Kampe, T. U.; Good, W. S.

    2017-12-01

    The Landsat legacy spans more than forty years of moderate resolution, multi-spectral imaging of the Earth's surface. Applications for Landsat data include global environmental change, disaster planning and recovery, crop and natural resource management, and glaciology. In recent years, coastal water science has been greatly enhanced by the outstanding on-orbit performance of Landsat 8. Ball Aerospace designed and built the Operational Land Imager (OLI) instrument on Landsat 8, and is in the process of building OLI 2 for Landsat 9. Both of these instruments have the same design however improved performance is expected from OLI 2 due to greater image bit depth (14 bit on OLI 2 vs 12 bit on OLI). Ball Aerospace is currently working on two novel instrument architectures applicable to Sustainable Land Imaging for Landsat 10 and beyond. With increased budget constraints probable for future missions, technological improvements must be included in future instrument architectures to enable increased capabilities at lower cost. Ball presents the instrument architectures and associated capabilities enabling new science in past, current, and future Landsat missions.

  11. A new cavity ring-down instrument for airborne monitoring of N2O5, NO3, NO2 and O3 in the upper troposphere lower stratosphere

    Science.gov (United States)

    Ruth, Albert A.; Brown, Steven S.; Dinesan, Hemanth; Dubé, William P.; Goulette, Marc; Hübler, Gerhard; Orphal, Johannes; Zahn, Andreas

    2016-04-01

    The chemistry of NO3 and N2O5 is important to the regulation of both tropospheric and stratospheric ozone. In situ detection of NO3 and N2O5 in the upper troposphere lower stratosphere (UTLS) represents a new scientific direction as the only previous measurements of these species in this region of the atmosphere has been via remote sensing techniques. Because both the sources and the sinks for NO3 and N2O5 are potentially stratified spatially, their mixing ratios, and their influence on nitrogen oxide and ozone transport and loss at night can show large variability as a function of altitude. Aircraft-based measurements of heterogeneous N2O5 uptake in the lower troposphere have uncovered a surprising degree of variability in the uptake coefficient [1], but there are no corresponding high altitude measurements.The UTLS is routinely sampled by the IAGOS-CARIBIC program (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com), a European infrastructural program with the aim of studying the chemistry and transport across this part of the atmosphere. An airfreight container with 15 different automated instruments from 8 European research partners is utilized on board a commercial Lufthansa airbus 340-600 to monitor ~ 100 atmospheric species (trace gases and aerosol parameters) in the UTLS. The instrumentation in the CARIBIC container is now to be supplemented by a new cavity ring-down device for monitoring nitrogen oxides, jointly developed by researchers from Cork (Ireland), Boulder (USA) and Karlsruhe (Germany). The compact and light-weight instrument is designed to monitor not only NO3 and N2O5, but also NO2 and O3. The detection is based on 4 high-finesse optical cavities (cavity length ~ 44 cm). Two cavities are operated at 662 nm (maximum absorption of NO3), the other two at 405 nm (maximum absorption of NO2). The inlet to one of the (662)-cavities is heated in order to thermally decompose N2O5

  12. Diagnostic monitoring of the condition of the amplification-transformer channel of automatic gas protection apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ye F; Basovskiy, B I; Popov, V V

    1978-01-01

    A method is suggested for verifying the performance capacity of an amplifier-transformer channel of apparatus for automatic gas protection under operating conditions. Processes are examined which occur in the bridge measurement plan of the sensor during shunting of one of the thermal-transformer elements by a resistor. An expression is obtained for determining the coefficient of transfer of the amplification-transformer channel on the outlet signals of the apparatus in a working regime and after shunting of one of the thermal-transformer elements.

  13. Innovative technologies (DIY instruments and data sonification) for engaging volunteers to participate in marine environmental monitoring programs.

    Science.gov (United States)

    Piera, J.

    2016-02-01

    In recent years the promotion of marine observations based on volunteer participation, known as Citizen Science, has provided environmental data with unprecedented resolution and coverage. The Citizen Science based approach has the additional advantage to engage people by raising awareness and knowledge of marine environmental problems. The technological advances in embedded systems and sensors, enables citizens to create their own devices (known as DIY, Do-It-Yourself, technologies) for monitoring the marine environment. Within the context of the CITCLOPS project (www.citclops.eu), a DIY instrument was developed to monitor changes on water transparency as a water quality indicator. The instrument, named KdUINO, is based on quasi-digital sensors controlled by an open-hardware (Arduino) board. The sensors measure light irradiance at different depth and the instrument automatically calculates the light diffuse attenuation Kd coefficient to quantify the water transparency. The buoy construction is an ideal activity for creative STEM programming. Several workshops in high schools were done to show to the students how to construct their own buoy. Some of them used the buoy to develop their own scientific experiments. In order to engage students more motivated in artistic disciplines, the research group developed also a sonification system that allows creating music and graphics using KdUINO measurements as input data.

  14. Radiation protection instrumentation. Monitoring equipment. Atmospheric radioactive iodine in the environment

    International Nuclear Information System (INIS)

    1995-01-01

    This international standard applies to portable or installed equipment for the monitoring of radioactive iodine (such as I-131 or I-125) in air in the environment of nuclear installations during normal operation, during design basis events, and in emergency situations. The monitoring involves continuous sample trapping and, where adequate, automatic start of sampling. The document deals with radioactive iodine monitor design, testing procedures, and documentation. Appended tables refer to the reference and normal testing conditions, tests in normal testing conditions, tests during changes of the affecting quantities, and tests of changes in the air circuit. (P.A.)

  15. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model

    Science.gov (United States)

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-01-01

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people’s postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future. PMID:27999324

  16. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model.

    Science.gov (United States)

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-12-17

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people's postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future.

  17. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time

    Science.gov (United States)

    Suchyna, Thomas M.; Besch, Steven R.; Sachs, Frederick

    2004-03-01

    All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd+3 and Ca+2 that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.

  18. Design, Validation, and Use of an Evaluation Instrument for Monitoring Systemic Reform.

    Science.gov (United States)

    Scantlebury, Kathryn; Boone, William; Kahle, Jane Butler; Fraser, Barry J.

    2001-01-01

    Describes the design, development, validation, and use of an instrument that measures student attitudes and several environmental dimensions (i.e., standards-based teaching, home support, and peer support). Indicates that the classroom environment (standards-based teaching practices) was the strongest independent predictor of both achievement and…

  19. 40 CFR 65.104 - Instrument and sensory monitoring for leaks.

    Science.gov (United States)

    2010-07-01

    ... the representative composition of the process fluid not each individual organic compound in the stream...)(ii) of this section. (i) Mixtures of methane in air at a concentration no more than 2,000 parts per... calibration gas other than methane in air may be used if the instrument does not respond to methane or if the...

  20. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1993-04-01

    Under contract DE-AC21-92MC29116, SRI International will develop a unique new instrument that will be capable of providing real-time (< l minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: (1) an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; (2) a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; (3) two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and (4) a powerful personal computer for control and data acquisition

  1. Operational test procedure for pumping and instrumentation control skid SALW-6001B monitor and control system

    International Nuclear Information System (INIS)

    Garcia, M.F.

    1995-11-01

    This OTP shall verify and document that the monitor and control system comprised of PICS SALW-6001B PLC, 242S PLC, Operator Control Station, and communication network is functioning per operational requirements

  2. Latest nuclear monitoring instrumentation and control system and its planned application

    International Nuclear Information System (INIS)

    Kawakami, Seishiro; Sato, Toshifumi; Ikeda, Jun

    2002-01-01

    With the recent rapid progress made in electronic devices used in digital monitoring and control systems, Toshiba has developed special-purpose digital monitoring equipment and human-machine interface equipment that meet the special requirement of high reliability and long-term supply and maintainability for nuclear power plants, and is scheduled to apply these new products to actual nuclear power plants. Moreover, for the in-core sensor, which is a special-purpose product for nuclear power plants, Toshiba has been developing a new local power range monitor (LPRM) detector as the comprehensive result of improvements made up to now, and has developed the first domestic gamma-thermo (GT) detector as a pivot of the next-generation neutron monitoring system. (author)

  3. A Novel Design of Needle Aspiration Biopsy Monitoring Instrument (NAOMI Tested on a Low Cost Chest Phantom

    Directory of Open Access Journals (Sweden)

    Surakusumah Rino Ferdian

    2016-01-01

    Full Text Available Needle biopsy is a medical intervention method for taking a lung tissue sample that suspected as a cancer. The disadvantage is the physicians directly visualize the anatomical structures in an open surgery for lung cancer biopsy procedure. There is a need to develop an instrument that may help the physician to guarantee the accuracy and efficiency while performing needle aspiration biopsy. Therefore, a needle aspiration biopsy monitoring instrument or named as NAOMI is proposed. It consists of a microcontroller system, an IMU sensor, an ultrasonic ranging module, a bluetooth module, and a 9V lithium battery. The experimental testing consist of performance testing, functional testing using chest phantom, and user acceptances. The results showed that the NAOMI improve the accuracy and efficiency while performing the needle biopsy operation.

  4. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  5. Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP

    Directory of Open Access Journals (Sweden)

    Mehael J. Fennelly

    2017-12-01

    Full Text Available Primary biological aerosol particles (PBAP encompass many particle types that are derived from several biological kingdoms. These aerosol particles can be composed of both whole living units such as pollen, bacteria, and fungi, as well as from mechanically formed particles, such as plant debris. They constitute a significant proportion of the overall atmospheric particle load and have been linked with adverse health issues and climatic effects on the environment. Traditional methods for their analysis have focused on the direct capture of PBAP before subsequent laboratory analysis. These analysis types have generally relied on direct optical microscopy or incubation on agar plates, followed by time-consuming microbiological investigation. In an effort to address some of these deficits, real-time fluorescence monitors have come to prominence in the analysis of PBAP. These instruments offer significant advantages over traditional methods, including the measurement of concentrations, as well as the potential to simultaneously identify individual analyte particles in real-time. Due to the automated nature of these measurements, large data sets can be collected and analyzed with relative ease. This review seeks to highlight and discuss the extensive literature pertaining to the most commonly used commercially available real-time fluorescence monitors (WIBS, UV-APS and BioScout. It discusses the instruments operating principles, their limitations and advantages, and the various environments in which they have been deployed. The review provides a detailed examination of the ambient fluorescent aerosol particle concentration profiles that are obtained by these studies, along with the various strategies adopted by researchers to analyze the substantial data sets the instruments generate. Finally, a brief reflection is presented on the role that future instrumentation may provide in revolutionizing this area of atmospheric research.

  6. Air pollution monitoring of an urban dust in Daejeon city, Korea by using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yong-Sam Chung; Sun-Ha Kim; Jong-Hwa Moon; Hark-Rho Kim; Jong-Myoung Lim; Jin-Hong Lee

    2008-01-01

    For air pollution monitoring, about 1300 airborne particulate matter samples were collected by using a low volume air sampler and a polycarbonate filter at two sampling sites in an urban region, Daejeon, the middle of Korea from 2003 to 2006. Mass concentrations of the black carbon were measured using a smoke stain reflectometer. The concentrations of 24 elements in the collected samples were analyzed by using instrumental neutron activation analysis, and its temporal trends and enrichment factors were investigated under different environmental conditions. Analytical control was carried out by using certified reference materials. (author)

  7. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  8. The modern instrumentation used for monitoring and controlling the main parameters of the regenerative electro-mechano-hydraulic drive systems

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica

    2009-01-01

    In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.

  9. Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring

    Science.gov (United States)

    Leitao, Jordana; Chandramohan, Daniel; Byass, Peter; Jakob, Robert; Bundhamcharoen, Kanitta; Choprapawon, Chanpen; de Savigny, Don; Fottrell, Edward; França, Elizabeth; Frøen, Frederik; Gewaifel, Gihan; Hodgson, Abraham; Hounton, Sennen; Kahn, Kathleen; Krishnan, Anand; Kumar, Vishwajeet; Masanja, Honorati; Nichols, Erin; Notzon, Francis; Rasooly, Mohammad Hafiz; Sankoh, Osman; Spiegel, Paul; AbouZahr, Carla; Amexo, Marc; Kebede, Derege; Alley, William Soumbey; Marinho, Fatima; Ali, Mohamed; Loyola, Enrique; Chikersal, Jyotsna; Gao, Jun; Annunziata, Giuseppe; Bahl, Rajiv; Bartolomeus, Kidist; Boerma, Ties; Ustun, Bedirhan; Chou, Doris; Muhe, Lulu; Mathai, Matthews

    2013-01-01

    Objective Verbal autopsy (VA) is a systematic approach for determining causes of death (CoD) in populations without routine medical certification. It has mainly been used in research contexts and involved relatively lengthy interviews. Our objective here is to describe the process used to shorten, simplify, and standardise the VA process to make it feasible for application on a larger scale such as in routine civil registration and vital statistics (CRVS) systems. Methods A literature review of existing VA instruments was undertaken. The World Health Organization (WHO) then facilitated an international consultation process to review experiences with existing VA instruments, including those from WHO, the Demographic Evaluation of Populations and their Health in Developing Countries (INDEPTH) Network, InterVA, and the Population Health Metrics Research Consortium (PHMRC). In an expert meeting, consideration was given to formulating a workable VA CoD list [with mapping to the International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) CoD] and to the viability and utility of existing VA interview questions, with a view to undertaking systematic simplification. Findings A revised VA CoD list was compiled enabling mapping of all ICD-10 CoD onto 62 VA cause categories, chosen on the grounds of public health significance as well as potential for ascertainment from VA. A set of 221 indicators for inclusion in the revised VA instrument was developed on the basis of accumulated experience, with appropriate skip patterns for various population sub-groups. The duration of a VA interview was reduced by about 40% with this new approach. Conclusions The revised VA instrument resulting from this consultation process is presented here as a means of making it available for widespread use and evaluation. It is envisaged that this will be used in conjunction with automated models for assigning CoD from VA data, rather than involving physicians. PMID

  10. Point-of-care instrument for monitoring tissue health during skin graft repair

    Science.gov (United States)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  11. Monitoring of Entrance Channel Navigation Improvements at Pentwater, Michigan, and Design Guidance for Pocket Wave Absorbers

    National Research Council Canada - National Science Library

    Thompson, Edward F; Myrick, Glenn B; Zager, Nicholas J; Bottin, Jr., Robert R; Sabol, Margaret A; Selegean, James P; McKinney, James P; Demirbilek, Zeki; Acuff, Jr, Hugh F

    2006-01-01

    .... The objectives of the monitoring effort at Pentwater Harbor were to evaluate the design of existing pocket wave absorbers and to develop better design guidance for future pocket wave absorber projects...

  12. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  13. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    Science.gov (United States)

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  14. Virtual-Instrument-Based Online Monitoring System for Hands-on Laboratory Experiment of Partial Discharges

    Science.gov (United States)

    Karmakar, Subrata

    2017-01-01

    Online monitoring of high-voltage (HV) equipment is a vital tool for early detection of insulation failure. Most insulation failures are caused by partial discharges (PDs) inside the HV equipment. Because of the very high cost of establishing HV equipment facility and the limitations of electromagnetic interference-screened laboratories, only a…

  15. Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors

    NARCIS (Netherlands)

    Freaney, R.; McShane, A.; Keaveny, T.V.; McKenna, M.; Rabenstein, K.; Scheller, F.W.; Pfeiffer, D.; Urban, G.; Moser, I.; Jobst, G.; Manz, A.; Verpoorte, E.; Widmer, M.W.; Diamond, D.; Dempsey, E.; Saez De Viteri, F.J.; Smyth, M.

    1997-01-01

    A prototype miniaturized Total Chemical Analysis System (μTAS) has been developed and applied to on-line monitoring of glucose and lactate in the core blood of anaesthetized dogs. The system consists of a highly efficient microdialysis sampling interface sited in a small-scale extracorporeal shunt

  16. Design, validation, and use of an evaluation instrument for monitoring systemic reform

    Science.gov (United States)

    Scantlebury, Kathryn; Boone, William; Butler Kahle, Jane; Fraser, Barry J.

    2001-08-01

    Over the past decade, state and national policymakers have promoted systemic reform as a way to achieve high-quality science education for all students. However, few instruments are available to measure changes in key dimensions relevant to systemic reform such as teaching practices, student attitudes, or home and peer support. Furthermore, Rasch methods of analysis are needed to permit valid comparison of different cohorts of students during different years of a reform effort. This article describes the design, development, validation, and use of an instrument that measures student attitudes and several environment dimensions (standards-based teaching, home support, and peer support) using a three-step process that incorporated expert opinion, factor analysis, and item response theory. The instrument was validated with over 8,000 science and mathematics students, taught by more than 1,000 teachers in over 200 schools as part of a comprehensive assessment of the effectiveness of Ohio's systemic reform initiative. When the new four-factor, 20-item questionnaire was used to explore the relative influence of the class, home, and peer environment on student achievement and attitudes, findings were remarkably consistent across 3 years and different units and methods of analysis. All three environments accounted for unique variance in student attitudes, but only the environment of the class accounted for unique variance in student achievement. However, the class environment (standards-based teaching practices) was the strongest independent predictor of both achievement and attitude, and appreciable amounts of the total variance in attitudes were common to the three environments.

  17. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  18. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  19. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  20. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    Directory of Open Access Journals (Sweden)

    Abdullah Alzahrani

    2015-10-01

    Full Text Available This study presents the use of a multi-channel opto-electronic sensor (OEPS to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA, and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05; a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001; the bias of BAA 0.85 bpm, the standard deviation (SD 9.20 bpm, and the limits of agreement (LOA from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001; the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  1. Synchrotron radiation microtomography of musical instruments: a non-destructive monitoring technique for insect infestations

    Directory of Open Access Journals (Sweden)

    Beatrice Bentivoglio-Ravasio

    2011-08-01

    Full Text Available X-ray computed tomography is becoming a common technique for the structural analysis of samples of cultural relevance, providing luthiers, art historians, conservators and restorators with a unique tool for the characterization of musical instruments. Synchrotron-radiation phase-contrast microtomography is an ideal technique for the non-destructive 3D analysis of samples where small lowabsorbing details such as larvae and eggs can be detected. We report results from the first feasibility studies performed at the Elettra synchrotron laboratory, where the 1494 organ by Lorenzo Gusnasco da Pavia has been studied. Together with important information about the structural conditions, the presence of xylophages could be detected and characterized.

  2. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  3. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  4. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    International Nuclear Information System (INIS)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author)

  5. Seven-channel digital telemetry system for monitoring and direct computer capturing of biological data.

    Science.gov (United States)

    Drewes, A M; Andreasen, A; Assentoft, J E; Nagel, O

    1993-09-01

    A seven-channel telemetry system for collection and display of biological data is presented. The system can amplify bioelectrical signals in the range of 2 microV to 200 mV and has a bandwidth of 0.1-80 Hz. After multiplexing, the signals are digitized with a resolution of 8 bits. The data are frequency modulated directly on a VHF transmitter. After receiving the data on a VHF receiver, they are routed directly to the RS232 input connector on the PC. Thereby the advantage of direct communication between the transmitter and the PC can be utilized. Expensive analog equipment is avoided and display of the signals on the PC screen as well as signal analysis can be performed. The system has been tested and was found to be stable and highly reliable.

  6. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  7. Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor.

    Science.gov (United States)

    Pulikkathodi, Anil Kumar; Sarangadharan, Indu; Chen, Yi-Hong; Lee, Geng-Yen; Chyi, Jen-Inn; Lee, Gwo-Bin; Wang, Yu-Lin

    2018-03-27

    In this research, we have designed, fabricated and characterized an electrical double layer (EDL)-gated AlGaN/GaN high electron mobility transistor (HEMT) biosensor array to study the transmembrane potential changes of cells. The sensor array platform is designed to detect and count circulating tumor cells (CTCs) of colorectal cancer (CRC) and investigate cellular bioelectric signals. Using the EDL FET biosensor platform, cellular responses can be studied in physiological salt concentrations, thereby eliminating complex automation. Upon investigation, we discovered that our sensor response follows the transmembrane potential changes of captured cells. Our whole cell sensor platform can be used to monitor the dynamic changes in the membrane potential of cells. The effects of continuously changing electrolyte ion concentrations and ion channel blocking using cadmium are investigated. This methodology has the potential to be used as an electrophysiological probe for studying ion channel gating and the interaction of biomolecules in cells. The sensor can also be a point-of-care diagnostic tool for rapid screening of diseases.

  8. Use of natural diamonds to monitor 14C AMS instrument backgrounds

    International Nuclear Information System (INIS)

    Taylor, R.E.; Southon, John

    2007-01-01

    To examine one component of the instrument-based background in University of California Keck Carbon Cycle AMS spectrometer, we have obtained measurements on a set of natural diamonds pressed into sample holders. Natural diamond samples (N = 14) from different sources within rock formations with geological ages greatly in excess of 100 Ma yielded a range of currents (∼110-250 μA 12 C - where filamentous graphite typically yields ∼150 μA 12 C - ) and apparent 14 C ages (64.9 ± 0.4 ka BP [0.00031 ± 0.00002 fm] to 80.0 ± 1.1 ka BP [0.00005 ± 0.00001 fm]). Six fragments cut from a single diamond exhibited essentially identical 14 C values - 69.3 ± 0.5 ka-70.6 ± 0.5 ka BP. The oldest 14 C age equivalents were measured on natural diamonds which exhibited the highest current yields

  9. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    Science.gov (United States)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  10. An assessment of the parameters and experimental data of the continuous water activity monitors operating in the upstream and downstream channels of the Paks nuclear power plant

    International Nuclear Information System (INIS)

    Nagy, Gy.; Feher, I.

    1986-03-01

    A NaI(Tl) scintillator was placed into a measuring vessel of 8 msup(3) volume for monitoring the effluents in the upstream and downstream channels of the Paks nuclear power plant. The effects of radioactivity, meteorological parameters, and the atmospheric pressure on the counting rates, and their daily and monthly average values in both channels were analyzed. The short-term increases of the monitor signals could be attributed to rainy weather. The sup(222)Rn countent of water was also evaluated. (author)

  11. A SUBSTRATE AND A METHOD FOR DETERMINING AND/OR MONITORING ELECTROPHYSIOLOGICAL PROPERTIES OF ION CHANNELS

    DEFF Research Database (Denmark)

    2001-01-01

    The present invention relates to a substrate and a method for obtaining an electrophysiological measuring configuration in which a cell forms a high resistive seal (giga-seal) around a measuring electrode making it suitable for determining and monitoring a current flow through the cell membrane...... and reference electrodes formed by wafer processing technology. The electrodes are adapted to conduct a current between them by delivery of ions by one electrode and receipt of ions by the other electrode and are typically silver/silver halide electrodes. This allows for effective and fast measuring of cells...

  12. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  13. Detection of beamsplitting attack in a quantum cryptographic channel based on photon number statistics monitoring

    International Nuclear Information System (INIS)

    Gaidash, A A; Egorov, V I; Gleim, A V

    2014-01-01

    Quantum cryptography in theory allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source. In order to overcome this possibility, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. We present an alternative method based on monitoring photon number statistics after detection. This method can therefore be used with any existing protocol

  14. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg D. [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-06-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  15. Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications

    International Nuclear Information System (INIS)

    Boccaleri, Enrico; Arrais, Aldo; Frache, Alberto; Gianelli, Walter; Fino, Paolo; Camino, Giovanni

    2006-01-01

    A wide series of carbon nanostructures (ranging from fullerenes, through carbon nanotubes, up to carbon nanofibers) promise to change several fields in material science, but a real industrial implementation depends on their availability at reasonable prices with affordable and reproducible degrees of purity. In this study we propose simple instrumental approaches to efficiently characterize different commercial samples, particularly for qualitative evaluation of impurities, the discrimination of their respective spectral features and, when possible, for quantitative determination. We critically discuss information that researchers in the field of nanocomposite technology can achieve in this aim by spectral techniques such as Raman and FT-IR spectroscopy, thermo-gravimetrical analysis, mass spectrometry-hyphenated thermogravimetry, X-ray diffraction and energy dispersive spectroscopy. All these can be helpful, in applied research on material science, for a fast reliable monitoring of the actual purity of carbon products in both commercial and laboratory-produced samples as well as in composite materials

  16. Study on air pollution monitoring in Korea using low volume air sampler by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yong Sam Chung; Jong Hwa Moon, Young Ju Chung; Seung Yeon Cho; Sang Hun Kang

    1999-01-01

    The aim of this research was to enhance the use of nuclear analytical techniques for air pollution studies and to study the feasibility of the use of instrumental neutron activation analysis (INAA) as a routine monitoring tool to reveal environmental pollution sources. For the collection of air particulate samples, the Gent stacked filter unit, low volume sampler with Nucleopore membrane filters were used. Trace elements in samples collected at two suburban residential sites, Taejon and Wonju city in the Republic of Korea, were analyzed by INAA. Variations of the elemental concentrations were measured monthly and the enrichment factors were calculated for the fine (< 2 μm EAD) and coarse size (2-10 μm EAD) fractions. The analytical data were treated statistically to estimate the relationship between the two variables, the concentrations of elements and the total suspended particulate matter. The results were used to describe the emission source and their correlation. (author)

  17. Quantifying uncertainty in high-resolution remotely sensed topographic surveys for ephemeral gully channel monitoring

    Science.gov (United States)

    Wells, Robert R.; Momm, Henrique G.; Castillo, Carlos

    2017-07-01

    Spatio-temporal measurements of landform evolution provide the basis for process-based theory formulation and validation. Over time, field measurements of landforms have increased significantly worldwide, driven primarily by the availability of new surveying technologies. However, there is no standardized or coordinated effort within the scientific community to collect morphological data in a dependable and reproducible manner, specifically when performing long-term small-scale process investigation studies. Measurements of the same site using identical methods and equipment, but performed at different time periods, may lead to incorrect estimates of landform change as a result of three-dimensional registration errors. This work evaluated measurements of an ephemeral gully channel located on agricultural land using multiple independent survey techniques for locational accuracy and their applicability in generating information for model development and validation. Terrestrial and unmanned aerial vehicle photogrammetry platforms were compared to terrestrial lidar, defined herein as the reference dataset. Given the small scale of the measured landform, the alignment and ensemble equivalence between data sources was addressed through postprocessing. The utilization of ground control points was a prerequisite to three-dimensional registration between datasets and improved the confidence in the morphology information generated. None of the methods were without limitation; however, careful attention to project preplanning and data nature will ultimately guide the temporal efficacy and practicality of management decisions.

  18. Aeroflex Single Board Computers and Instrument Circuit Cards for Nuclear Environments Measuring and Monitoring

    International Nuclear Information System (INIS)

    Stratton, Sam; Stevenson, Dave; Magnifico, Mateo

    2013-06-01

    A Single Board Computer (SBC) is an entire computer including all of the required components and I/O interfaces built on a single circuit board. SBC's are used across numerous industrial, military and space flight applications. In the case of military and space implementations, SBC's employ advanced high reliability processors designed for rugged thermal, mechanical and even radiation environments. These processors, in turn, rely on equally advanced support components such as memory, interface, and digital logic. When all of these components are put together on a printed circuit card, the result is a highly reliable Single Board Computer that can perform a wide variety of tasks in very harsh environments. In the area of instrumentation, peripheral circuit cards can be developed that directly interface to the SBC and various radiation measuring devices and systems. Designers use signal conditioning and high reliability Analog to Digital Converters (ADC's) to convert the measuring device signals to digital data suitable for a microprocessor. The data can then be sent to the SBC via high speed communication protocols such as Ethernet or similar type of serial bus. Data received by the SBC can then be manipulated and processed into a form readily available to users. Recent events are causing some in the NPP industry to consider devices and systems with better radiation and temperature performance capability. Systems designed for space application are designed for the harsh environment of space which under certain conditions would be similar to what the electronics will see during a severe nuclear reactor event. The NPP industry should be considering higher reliability electronics for certain critical applications. (authors)

  19. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  20. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    Science.gov (United States)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  1. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2018-04-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017. During the FY2017 reporting period, the warmest months were June, July, and August and the coldest were December and January. Solar radiation showed the same seasonal trend, although the months with the most solar radiation were May and June. Monthly mean wind speeds were highest in the spring (April and May). Winds were generally from the southwest during the summer and from the northwest throughout the remainder of the year. The monthly average

  2. Multi-channel electronics for secondary emission grid profile monitor of TTF linac

    International Nuclear Information System (INIS)

    Reingardt-Nikoulin, P.; Gaidash, V.; Mirzojan, A.; Kocharyan, V.; Noelle, D.

    2004-01-01

    According to the TTF beam experimental program, a measurement f the time dependence of the energy spread within the bunch train should be done by means of a standard device for profile measurements, that is Secondary Emission Grid (SEMG). SEMG on the high-energy TTF beam is placed in the focal plane of the magnet spectrometer. It should measure the total energy spread in the range from 0.1% up to a few percents for any single or any group of electron bunches in the bunch train of TTF Linac. SEMG profile measurements with new high sensitive electronics are described. Beam results of SEMG Monitor test are given for two modifications of an electronic preamplifier

  3. Global and Seasonal Distributions of CHOCHO and HCHO Observed by the Ozone Monitoring Instrument on EOS Aura

    Science.gov (United States)

    Kurosu, T. P.; Fu, T.; Volkamer, R.; Millet, D. B.; Chance, K.

    2006-12-01

    Over the two years since its launch in July 2004, the Ozone Monitoring Instrument (OMI) on EOS Aura has demonstrated the capability to routinely monitor the volatile organic compounds (VOCs) formaldehyde (HCHO) and glyoxal (CHOCHO). OMI's daily global coverage and spatial resolution as high as 13x24 km provides a unique data set of these molecules for the study of air quality from space. We present the first study of global seasonal distributions of CHOCHO from space, derived from a year of OMI observations. CHOCHO distributions are compared to simultaneous retrievals of HCHO from OMI, providing a first indication of seasonally resolved ratios of these VOCs on a global scale. Satellite retrievals are compared to global simulations of HCHO and CHOCHO, based on current knowledge of sources and sinks, using the GEOS-Chem global chemistry and transport model. Formaldehyde is both directly emitted and also produced from the oxidation of many VOCs, notably biogenic isoprene, and is removed by photolysis and oxidation. Precursors of glyoxal include isoprene, monoterpenes, and aromatics from anthropogenic, biogenic, and biomass burning emissions; it is removed by photolysis, oxidation by OH, dry/wet deposition, and aerosol uptake. As a case study, satellite observations will also be compared to ground-based measurements taken during the Pearl River Delta 2006 field campaign near Guangzhou, China, where high glyoxal concentrations are frequently observed from space.

  4. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  5. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  6. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    International Nuclear Information System (INIS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-01-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring. (c)

  7. [Development of an instrument for the assessment of demand and monitoring of the health management in a health insurance].

    Science.gov (United States)

    Burnus, M; Benner, V; Becker, L; Müller, D; Stock, S

    2014-06-01

    To identify and follow up the health relevant effects of change-management-projects and to determine improvements in activities following this change a specific health-controlling instrument with benchmarking options has been developed. This instrument applies scientific quality standards and shows the organisational value in form of an index (BGM-Systemindex). It shows the correlation between the four indices management system, health-related actions, health and absence rate and allows a qualitative view of corporate health promotion on and its long term effects. The initiator for the project was an employee survey, which showed a need for action to improve job satisfaction. The survey was the reason that management initiated an integral change-management-project. The project showed many interfaces with the corporate health promotion (BGM), thus enabling consequent changes to be made and their effects to be evaluated. The aim of the project was to clearly increase employee satisfaction up to the next employee survey. Overall the project can be considered a success as the main aim of the project to increase the employees job satisfaction in the given period of time was clearly accomplished. The BGM-Systemindex also stood the test for comprehensive monitoring of the employees health. The project was able to prove that the health relevant parameters could be optimised and that the quality, acceptance and efficiency of the intervention methods had improved. It also showed a positive development of the early and long term health indicators. This is a positive contrast to available literature, which shows that an insufficient or incorrectly used change management results in a lower employee satisfaction. As a result it was decided to use the tool in future.

  8. A novel assessment of odor sources using instrumental analysis combined with resident monitoring records for an industrial area in Korea

    Science.gov (United States)

    Lee, Hyung-Don; Jeon, Soo-Bin; Choi, Won-Joon; Lee, Sang-Sup; Lee, Min-Ho; Oh, Kwang-Joong

    2013-08-01

    The residents living nearby the Sa-sang industrial area (SSIA) continuously were damaged by odorous pollution since 1990s. We determined the concentrations of reduced sulfur compounds (RSCs) [hydrogen sulfide (H2S), methyl mercaptan (CH3SH), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS)], nitrogenous compounds (NCs) [ammonia (NH3) and trimethylamine (TMA)], and carbonyl compounds (CCs) [acetaldehyde and butyraldehyde] by instrumental analysis in the SSIA in Busan, Korea from Jun to Nov, 2011. We determined odor intensity (OI) based on the concentrations of the odorants and resident monitoring records (RMR). The mean concentration of H2S was 10-times higher than NCs, CCs and the other RSC. The contribution from RSCs to the OI was over 50% at all sites excluding the A-5 (chemical production) site. In particular, A-4 (food production) site showed more than 8-times higher the sum of odor activity value (SOAV) than the other sites. This suggested that the A-4 site was the most malodorous area in the SSIA. From the RMR analysis, the annoyance degree (OI ≥ 2) was 51.9% in the industrial area. The 'Rotten' smell arising from the RSCs showed the highest frequency (25.3%) while 'Burned' and 'Other' were more frequent than 'Rotten' in the residential area. The correlation between odor index calculated by instrumental analysis and OI from the RMR was analyzed. The Pearson correlation coefficient (r) of the SOAV was the highest at 0.720 (P food production causes significant annoyance in the SSIA. We also confirm RMR data can be used effectively to evaluate the characteristic of odorants emitted from the SSIA.

  9. Instrumentation and monitoring of the nextgen road infrastructure: Some results and perspectives from the R5G project

    Science.gov (United States)

    Hautière, Nicolas; Bourquin, Frédéric

    2017-04-01

    Through the centuries, the roads - which today constitute in France a huge transport network of 1 millions kilometers length - have always been able to cope with society needs and challenges. As a consequence, the next generation road infrastructure will have to take into account at least three societal transitions: ecological, energetic and digital. The goal of the 5th generation road project (R5G©) [1], led by Ifsttar in France, aligned with the Forever Open program [2], is to design and build demonstrators of such future road infrastructures. The goal of this presentation is to present different results related to the greening of road materials [3], the design of energy-positive roads [4, 5], the test of roads that self-diagnose [6], the design of roads adapted for connected [7], autonomous [8] and electrified vehicles [9], etc. In terms of perspectives, we will demonstrate that the road infrastructures will soon become a complex system: On one side road users will benefit from new services, on the other side such massively connected and instrumented infrastructures will potentially become an opportune sensor for knowledge development in geoscience, such as air quality, visibility and fog monitoring. References: [1] R5G project. r5g.ifsttar.fr [2] Forever Open Road project. www.foreveropenroad.eu [3] Biorepavation project. www.infravation.net/projects/BIOREPAVATION [4] N. Le Touz, J. Dumoulin. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities. EGU General Assembly 2015, Apr 2015, Vienne, Austria. [5] S. Asfour, F. Bernardin, E. Toussaint, J.-M. Piau. Hydrothermal modeling of porous pavement for its surface de-freezing. Applied Thermal Engineering. Volume 107, 25 August 2016, Pages 493-500 [6] LGV BPL Instrumentation. http://railenium.eu/wp-content/uploads/2016/08/INSTRUMENTATION-BPL-FR.pdf [7] SCOOP@F project. https://ec.europa.eu/inea/en/connecting

  10. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  11. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  12. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  13. Routine Outcome Monitoring and Clinical Decision-Making in Forensic Psychiatry Based on the Instrument for Forensic Treatment Evaluation.

    Science.gov (United States)

    van der Veeken, Frida C A; Lucieer, Jacques; Bogaerts, Stefan

    2016-01-01

    Rehabilitation in forensic psychiatry is achieved gradually with different leave modules, in line with the Risk Need Responsivity model. A forensic routine outcome monitoring tool should measure treatment progress based on the rehabilitation theory, and it should be predictive of important treatment outcomes in order to be usable in decision-making. Therefore, this study assesses the predictive validity for both positive (i.e., leave) and negative (i.e., inpatient incidents) treatment outcomes with the Instrument for Forensic Treatment Evaluation (IFTE). Two-hundred and twenty-four patients were included in this study. ROC analyses were conducted with the IFTE factors and items for three leave modules: guided, unguided and transmural leave for the whole group of patients. Predictive validity of the IFTE for aggression in general, physical aggression specifically, and urine drug screening (UDS) violations was assessed for patients with the main diagnoses in Dutch forensic psychiatry, patients with personality disorders and the most frequently occurring co-morbid disorders: those with combined personality and substance use disorders. Results tentatively imply that the IFTE has a reasonable to good predictive validity for inpatient aggression and a marginal to reasonable predictive value for leave approvals and UDS violations. The IFTE can be used for information purposes in treatment decision-making, but reports should be interpreted with care and acknowledge patients' personal risk factors, strengths and other information sources.

  14. The design of the layout of faceted multi-channel electro-optical spatial coordinates measuring instrument for point-like bright objects

    Science.gov (United States)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-06-01

    For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.

  15. Reactor instrumentation renewal of the TRIGA reactor Vienna, Austria

    International Nuclear Information System (INIS)

    Boeck, H.; Weiss, H.; Hood, W.E.; Hyde, W.K.

    1992-01-01

    The TRIGA Mark-II reactor at the Atominstitut in Vienna, Austria is replacing its twenty-four year old instrumentation system with a microprocessor based control system supplied by General Atomics. Ageing components, new governmental safety requirements and a need for state of the art instrumentation for training students has spurred the demand for new reactor instrumentation. In Austria a government appointed expert is assigned the responsibility of reviewing the proposed installation and verifying all safety aspects. After a positive review, final assembly and checkout of the instrumentation system may commence. The instrumentation system consists of three basic modules: the control system console, the data acquisition console and the NH-1000 wide range channel. Digital communications greatly reduce interwiring requirements. Hardwired safety channels are independent of computer control, thus, the instrumentation system in no way relies on any computer intervention for safety function. In addition, both the CSC and DAC computers are continuously monitored for proper operation via watchdog circuits which are capable of shutting down the reactor in the event of computer malfunction. Safety channels include two interlocked NMP-1000 multi-range linear channels for steady state mode, an NPP-1000 linear safety channel for pulse mode and a set of three independent fuel temperature monitoring channels. The microprocessor controlled wide range NM- 1000 digital neutron monitor (fission chamber based) functions as a startup/operational channel, and provides all power level related Interlocks. The Atominstitut TRIGA reactor is configured for four modes of operation: manual mode, automatic mode (servo control), pulsing mode and square wave mode. Control of the standard control rods is via stepping motor control rod drives, which offers the operator the choice of which control rods are operated by the servo system in automatic and square wave model. (author)

  16. Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products

    Science.gov (United States)

    Torres, Omar; Bhartia, Pawan K.; Jethva, Hiren; Ahn, Changwoo

    2018-05-01

    Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor's viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI's spatial coverage. It currently affects about half of the instrument's 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved aerosol optical depth (AOD), single scattering albedo (SSA) and the UV Aerosol Index (UVAI) using the 2005-2007 three-year period prior to the onset of the row anomaly. Regional monthly average values calculated using viewing positions 1 through 30 were compared to similarly obtained values using positions 31 through 60, with the expectation of finding close agreement between the two calculations. As expected, mean monthly values of AOD and SSA obtained with these two scattering-angle dependent subsets of OMI observations agreed over regions where carbonaceous or sulphate aerosol particles are the predominant aerosol type. However, over arid regions, where desert dust is the main aerosol type, significant differences between the two sets of calculated regional mean values of AOD were observed. As it turned out, the difference in retrieved desert dust AOD between the scattering-angle dependent observation subsets was due to the incorrect representation of desert dust scattering phase function. A sensitivity analysis using radiative transfer calculations demonstrated that the source of the observed AOD bias was the spherical shape assumption of desert dust particles. A similar analysis in terms of UVAI yielded large differences in the monthly mean values for the two sets of calculations over cloudy regions. On the contrary, in arid regions with minimum cloud presence, the resulting UVAI monthly average values for the two sets of observations were in very close agreement. The discrepancy under cloudy conditions was found

  17. What have we Learned after a Decade of Experiments and Monitoring at the NEES@UCSB Permanently Instrumented Field Sites?

    Science.gov (United States)

    Steidl, J. H.; Civilini, F.; Seale, S. H.; Hegarty, P.

    2013-12-01

    The Wildlife Liquefaction Array (WLA) and Garner Valley Downhole Array (GVDA) located in southern California are facilities that for the last decade have been supported under the National Science Foundations George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES) program. These densely instrumented geotechnical and structural engineering field sites continuously record both acceleration and pore pressure, with accelerometers located on the surface and at various depths below the surface, and pore pressure transducers installed at depth within the liquefiable layers. Permanently instrumented structures for examining soil-foundation-structure interaction and a permanent cross-hole array at the sites have transformed these sites into multi-disciplinary earthquake engineering research facilities. Over the last decade, local and regional seismic activity, including multiple extremely active earthquake swarms, have produced a valuable new data set providing a unique opportunity to observe site response and the evolution of pore pressure generation with time throughout the liquefiable layer at an unprecedented level of detail. In addition to the earthquakes provided by nature, active testing experiments using the mobile shakers from NEES@UTexas and NEES@UCLA have produced an equally valuable data set on both site characterization studies and soil-foundation-structure interaction. The new observations of pore pressure and acceleration with depth are providing in situ empirical evidence documenting the range of ground motion levels at which the onset of nonlinear behavior and excess pore pressure begins, augmenting previous case history data, and laboratory data from cyclic tri-axial and centrifuge testing. The largest static pore pressure increases observed in the 'NEES' decade of monitoring were generated by four events at the WLA site, ranging in magnitude from 4.6 to 5.4 and all at distances less than 10km from the site. The largest peak horizontal

  18. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  19. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  20. Web-enabled and real-time reporting: Cellular based instrumentation for coastal sea level and surge monitoring

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desai, R.G.P.

    of disaster alert warnings to the coastal communities. Immediate alert and related information bulletins disseminated to appropriate local and central disaster management cells and the people by public communication channels such as commercial radio...

  1. IBRD sonar scour monitoring project : real-time river channel-bed monitoring at the Chariton and Mississippi Rivers in Missouri, 2007-09, final report, January 2010.

    Science.gov (United States)

    2010-01-01

    Scour and depositional responses to hydrologic events have been important to the scientific community studying sediment transport as well as potential effects on bridges and other hydraulic structures within riverine systems. A river channel-bed moni...

  2. Alternative concepts for design of air monitoring instruments: In-line and open face reference samplers and a new method of demonstrating alpha CAM performance

    International Nuclear Information System (INIS)

    Rodgers, J.C.; McFarland, A.R.

    1993-01-01

    Over the past several years Los Alamos, Texas A ampersand M University and Canberra Instruments have been collaborating on the development of advanced continuous air monitoring and air sampling concepts and technology. We have successfully completed the design of an alpha CAM which embodies a number of innovations in the way radon progeny background interference is controlled and compensated, and in the way data processing, alarm generation, and data communication are handled

  3. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  4. Estimates of Free-tropospheric NO2 Abundance from the Aura Ozone Monitoring Instrument (OMI) Using Cloud Slicing Technique

    Science.gov (United States)

    Choi, S.; Joiner, J.; Krotkov, N. A.; Choi, Y.; Duncan, B. N.; Celarier, E. A.; Bucsela, E. J.; Vasilkov, A. P.; Strahan, S. E.; Veefkind, J. P.; Cohen, R. C.; Weinheimer, A. J.; Pickering, K. E.

    2013-12-01

    Total column measurements of NO2 from space-based sensors are of interest to the atmospheric chemistry and air quality communities; the relatively short lifetime of near-surface NO2 produces satellite-observed hot-spots near pollution sources including power plants and urban areas. However, estimates of NO2 concentrations in the free-troposphere, where lifetimes are longer and the radiative impact through ozone formation is larger, are severely lacking. Such information is critical to evaluate chemistry-climate and air quality models that are used for prediction of the evolution of tropospheric ozone and its impact of climate and air quality. Here, we retrieve free-tropospheric NO2 volume mixing ratio (VMR) using the cloud slicing technique. We use cloud optical centroid pressures (OCPs) as well as collocated above-cloud vertical NO2 columns (defined as the NO2 column from top of the atmosphere to the cloud OCP) from the Ozone Monitoring Instrument (OMI). The above-cloud NO2 vertical columns used in our study are retrieved independent of a priori NO2 profile information. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud optical centroid pressure is proportional to the NO2 volume mixing ratio (VMR) for a given pressure (altitude) range. We retrieve NO2 volume mixing ratios and compare the obtained NO2 VMRs with in-situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is good when proper data screening is applied. In addition, the OMI cloud slicing reports a high NO2 VMR where the aircraft reported lightning NOx during the Deep Convection Clouds and Chemistry (DC3) campaign in 2012. We also provide a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the

  5. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  6. Radiation parameter monitoring of the irradiation channel of the RVS-3 loop during the FRAMATOME 1 experiment in 1996/1997

    International Nuclear Information System (INIS)

    Hrabanek, J.

    1997-11-01

    The monitoring system serving to measure the neutron fluence rate with self-powered rhodium detectors and the radiative heating on iron with calorimeters is highlighted. The sensor signal transmission routes and instrumentation for their measurement and recording are described. The method of observed data evaluation is characterized and the results of this processing are given for the FRAMATOME 1 experiment, which was carried out on the RVS-3 loop of the LVR-15 reactor in 1996-1997. (author)

  7. Development and Validation of an Instrument Measuring Theory-Based Determinants of Monitoring Obesogenic Behaviors of Pre-Schoolers among Hispanic Mothers

    Directory of Open Access Journals (Sweden)

    Paul Branscum

    2016-06-01

    Full Text Available Public health interventions are greatly needed for obesity prevention, and planning for such strategies should include community participation. The study’s purpose was to develop and validate a theory-based instrument with low-income, Hispanic mothers of preschoolers, to assess theory-based determinants of maternal monitoring of child’s consumption of fruits and vegetables and sugar-sweetened beverages (SSB. Nine focus groups with mothers were conducted to determine nutrition-related behaviors that mothers found as most obesogenic for their children. Next, behaviors were operationally defined and rated for importance and changeability. Two behaviors were selected for investigation (fruits and vegetable and SSB. Twenty semi-structured interviews with mothers were conducted next to develop culturally appropriate items for the instrument. Afterwards, face and content validity were established using a panel of six experts. Finally, the instrument was tested with a sample of 238 mothers. Psychometric properties evaluated included construct validity (using the maximum likelihood extraction method of factor analysis, and internal consistency reliability (Cronbach’s alpha. Results suggested that all scales on the instrument were valid and reliable, except for the autonomy scales. Researchers and community planners working with Hispanic families can use this instrument to measure theory-based determinants of parenting behaviors related to preschoolers’ consumption of fruits and vegetables, and SSB.

  8. Development of eHOME, a Mobile Instrument for Reporting, Monitoring, and Consulting Drug-Related Problems in Home Care: Human-Centered Design Study.

    Science.gov (United States)

    Dijkstra, Nienke Elske; Sino, Carolina Geertruida Maria; Heerdink, Eibert Rob; Schuurmans, Marieke Joanna

    2018-03-07

    Home care patients often use many medications and are prone to drug-related problems (DRPs). For the management of problems related to drug use, home care could add to the multidisciplinary expertise of general practitioners (GPs) and pharmacists. The home care observation of medication-related problems by home care employees (HOME)-instrument is paper-based and assists home care workers in reporting potential DRPs. To facilitate the multiprofessional consultation, a digital report of DRPs from the HOME-instrument and digital monitoring and consulting of DRPs between home care and general practices and pharmacies is desired. The objective of this study was to develop an electronic HOME system (eHOME), a mobile version of the HOME-instrument that includes a monitoring and a consulting system for primary care. The development phase of the Medical Research Council (MRC) framework was followed in which an iterative human-centered design (HCD) approach was applied. The approach involved a Delphi round for the context of use and user requirements analysis of the digital HOME-instrument and the monitoring and consulting system followed by 2 series of pilots for testing the usability and redesign. By using an iterative design approach and by involving home care workers, GPs, and pharmacists throughout the process as informants, design partners, and testers, important aspects that were crucial for system realization and user acceptance were revealed. Through the report webpage interface, which includes the adjusted content of the HOME-instrument and added home care practice-based problems, home care workers can digitally report observed DRPs. Furthermore, it was found that the monitoring and consulting webpage interfaces enable digital consultation between home care and general practices and pharmacies. The webpages were considered convenient, clear, easy, and usable. By employing an HCD approach, the eHOME-instrument was found to be an easy-to-use system. The systematic

  9. Field application of a multi-frequency acoustic instrument to monitor sediment for silt erosion study in Pelton turbine in Himalayan region, India

    Science.gov (United States)

    Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.

    2016-11-01

    High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.

  10. Micro-Arcsec mission: implications of the monitoring, diagnostic and calibration of the instrument response in the data reduction chain. .

    Science.gov (United States)

    Busonero, D.; Gai, M.

    The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.

  11. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    Science.gov (United States)

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. Quarterly report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1994-07-01

    Purpose of the instrument is for real-time (<1 min), ppB analysis of gaseous/particulate pollutants (VOCs, PAHs, heavy metals, transuranics) from DOE waste cleanup. It will consist of an isokinetic sampler, a pressure transition and sampling region for parallel analyses, two small mass spectrometers (one for organic analysis using field ionization, one [ion trap] for particulates using pyrolysis and electron-impact ionization), and a personal computer. A dimethylsilicone membrane will be used for the organic vapors. A forward-backward coincidence method will be used in the laser scattering particle detector. The instrument will be easily transportable to DOE waste sites, such as waste storage tanks

  13. Man-made secondary channels along the river Rhine (The Netherlands); results of post-project monitoring

    NARCIS (Netherlands)

    Simons, J.H.E.J.; Bakker, C.; Schropp, M.H.I.; Jans, L.H.; Kok, F.R.; Grift, R.E.

    2001-01-01

    Owing to river regulation in the past and intensive farming, the ecological value of the floodplains of the River Rhine in The Netherlands has decreased dramatically. One way to restore riverine biotopes is to create permanently flowing channels in the floodplain. Along the River Waal, the main

  14. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  15. Effects on work ability, job strain and quality of life of monitoring depression using a self-assessment instrument in recurrent general practitioner consultations: A randomized controlled study.

    Science.gov (United States)

    Petersson, E-L; Wikberg, C; Westman, J; Ariai, N; Nejati, S; Björkelund, C

    2018-05-01

    Depression reduces individuals' function and work ability and is associated with both frequent and long-term sickness absence. Investigate if monitoring of depression course using a self-assessment instrument in recurrent general practitioner (GP) consultations leads to improved work ability, decreased job strain, and quality of life among primary care patients. Primary care patients n = 183, who worked. In addition to regular treatment (control group), intervention patients received evaluation and monitoring and used the MADRS-S depression scale during GP visit at baseline and at visits 4, 8, and 12 weeks. Work ability, quality of life and job strain were outcome measures. Depression symptoms decreased in all patients. Significantly steeper increase of WAI at 3 months in the intervention group. Social support was perceived high in a significantly higher frequency in intervention group compared to control group. Monitoring of depression course using a self-assessment instrument in recurrent GP consultations seems to lead to improved self-assessed work ability and increased high social support, but not to reduced job strain or increased quality of life compared to TAU. Future studies concerning rehabilitative efforts that seek to influence work ability probably also should include more active interventions at the workplace.

  16. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-09-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m above sea level, and for one flight over the Mexico City area where the aircraft was restricted to altitudes ~320–800 m above ground level over the rural area and ~550–750 m over the city. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET

  17. SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments.

    Science.gov (United States)

    Pichler, Peter; Mazanek, Michael; Dusberger, Frederico; Weilnböck, Lisa; Huber, Christian G; Stingl, Christoph; Luider, Theo M; Straube, Werner L; Köcher, Thomas; Mechtler, Karl

    2012-11-02

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge.

  18. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  19. Comparison of Digisonde and CDSS measurement for the monitoring of the existence of the Ionospheric communication channel

    Czech Academy of Sciences Publication Activity Database

    Rejfek, Luboš; Mošna, Zbyšek; Beran, L.; Chmelař, P.; Chmelařová, N.; Dobrovolný, P.; Rozsíval, P.

    2015-01-01

    Roč. 2, č. 12 (2015), s. 67-71 ISSN 2313-626X R&D Projects: GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : Ionospheric communication channel * Digisonde * Continuous Doppler Sounding System Subject RIV: DG - Athmosphere Science s, Meteorology http://www. science -gate.com/IJAAS/ Articles /2015-2-12/12%202015-2-12-pp.67-71.pdf

  20. ITRAP - International laboratory and field test site exercise for radiation detection instruments and monitoring systems at border crossings

    International Nuclear Information System (INIS)

    Beck, P.; Schmitzer, C.; Duftschmid, K.E.; Arlt, R.

    2001-01-01

    Illicit trafficking in nuclear materials has become more and more a problem, due to the circulation of a high number of radioactive sources and the big amount of nuclear material. The IAEA database counts at present more than 300 verified cases. The endangering cased thereby ranges from possible health defect for the publication to terrorists activities and production of nuclear weapons. In addition to the primary criminal reasons the illegal disposal of radioactive sources as salvage, scrap and others show a further problem, which has lead to severe accidents and lethal effects in the past (e.g. Goiana, Mexico). Some countries have already under taken countermeasures (e.g. Monitoring at the Finnish-Russian and German- Polish border, border monitoring in Italy). The International Atomic Energy Agency (IAEA) has reacted on this actual problem by setting up a new program to fight against nuclear criminality and has suggested a pilot study for the practical test of border monitoring systems. Co-ordinated by the Federal Ministry of Economy and Labour the Austrian Government financed the pilot study ITRAP (Illicit Trafficking Radiation Detection Assessment Program) carried out by the Austrian Research Centers Seibersdorf (ARCS). Aim of the study was to work out the technical requirements and the practicability of an useful monitoring system at border crossings. The results of the study will be offered by the IAEA to the member states as international recommendations for border monitoring systems

  1. Monitoring Water Quality at Lake Merritt, Oakland, CA Following Improvements to the Tidal Channel to the San Francisco Bay

    Science.gov (United States)

    Bracho, H.; Martinez, J.; Johnson, M.; Turrey, A.; Avila, M.; Medina, S.; Rubio, E.; Ahumada, E.; Nguyen, S.; Guzman, Y.

    2014-12-01

    Elliot Ahumada, Esosa Oghogho, Samantha Nguyen, Humberto Bracho, Diego Quintero, Ashanti Johnson and Kevin Cuff Lake Merritt is a tidal lagoon in the center of Oakland, California, just east of Downtown. Water quality at Lake Merritt has been a major concern for community members and researchers for many years (Pham 200X). Results of past research lead to recommendations to lengthen a channel that connects Lake Merritt with the San Francisco Bay to improve water flow and quality. In 2012 the City of Oakland responded to these recommendations by initiating the creation of a 230-meter long channel. In conducting our research we use a water quality index that takes into account measurements of pH, temperature, water hardness (dissolved solids), ammonia, salinity, dissolved oxygen, and nitrate. Newly collected data is then compared with that collected by Pham using comparable parameters to assess the impact of recent changes at the Lake on its overall water quality. In addition, we measured the abundance of aquatic species at four different sites within the Lake. Preliminary results suggest that an increase in the abundance of fish and improved overall water quality have resulted from channel extension at Lake Merritt.

  2. Distribution Channels Conflict and Management

    OpenAIRE

    Kiran, Dr Vasanth; Majumdar, Dr Mousumi; Kishore, Dr Krishna

    2012-01-01

    Relationships in distribution channels tend to be long-term oriented and members of the channel rely on each other to jointly realize their goals by serving buyers. Despite the channels focus on serving buyers, conflicts often arise between channel members because of each members self-interest. When conflicts arise, the perceptions of a channel member based on normative, rational/instrumental, or emotional reasoning will influence relational norms like trust and commitment that characterize t...

  3. Real-time ambient air monitoring adjacent to the Houston ship channel for volatile organic compounds associated with the refinery operations using the trace atmospheric gas analyzer (TAGA)

    International Nuclear Information System (INIS)

    Mickunas, D.B.

    2009-01-01

    An Urban Air Toxic Monitoring Program was developed by the United States Environmental Protection Agency (US EPA) to help evaluate the potential toxic air pollution in urban areas. The Trace Atmospheric Gas Analyzer (TAGA) was used to monitor the ambient air for target compounds associated with industrial, motor vehicle, and natural emissions sources in areas adjacent to the Houston Ship Channel in Texas. In this study, the TAGA used triple quadrupole technology to perform qualitative and quantitative analyses for benzene, toluene, xylenes, styrene, 1,3-butadiene, methyl tert-butyl ether, and 1,2,3-trichloropropane. The concentrations for the various ion pairs of the target compounds were updated approximately every 2 seconds. The information was incorporated into the geographic information system (GIS) along with the global positioning system (GPS) information for the TAGA location, aerial views of the monitoring area, and meteorological data for the associated region. The information is used to isolate the emission sources and help reduce air pollution. The GPS output helps determine a path-averaged concentration along various routes. Combined with meteorological data, this information can be used in risk assessment to calculate downwind impacts associated with the target compounds under other meteorological conditions and to determine health impacts. It was concluded that the TAGA can provide rapid, accurate and reliable analytical information for monitoring ambient air. 2 refs., 1 tab., 9 figs

  4. Real-time ambient air monitoring adjacent to the Houston ship channel for volatile organic compounds associated with the refinery operations using the trace atmospheric gas analyzer (TAGA)

    Energy Technology Data Exchange (ETDEWEB)

    Mickunas, D.B. [United States Environmental Protection Agency, Research Triangle Park, NC (United States). Environmental Response Team; Wood, J.; Weeks, W. [Lockheed Martin Response Engineering and Analytical Contract, Edison, NJ (Canada)

    2009-07-01

    An Urban Air Toxic Monitoring Program was developed by the United States Environmental Protection Agency (US EPA) to help evaluate the potential toxic air pollution in urban areas. The Trace Atmospheric Gas Analyzer (TAGA) was used to monitor the ambient air for target compounds associated with industrial, motor vehicle, and natural emissions sources in areas adjacent to the Houston Ship Channel in Texas. In this study, the TAGA used triple quadrupole technology to perform qualitative and quantitative analyses for benzene, toluene, xylenes, styrene, 1,3-butadiene, methyl tert-butyl ether, and 1,2,3-trichloropropane. The concentrations for the various ion pairs of the target compounds were updated approximately every 2 seconds. The information was incorporated into the geographic information system (GIS) along with the global positioning system (GPS) information for the TAGA location, aerial views of the monitoring area, and meteorological data for the associated region. The information is used to isolate the emission sources and help reduce air pollution. The GPS output helps determine a path-averaged concentration along various routes. Combined with meteorological data, this information can be used in risk assessment to calculate downwind impacts associated with the target compounds under other meteorological conditions and to determine health impacts. It was concluded that the TAGA can provide rapid, accurate and reliable analytical information for monitoring ambient air. 2 refs., 1 tab., 9 figs.

  5. Design and implementation of a wireless (Bluetooth) four channel bio-instrumentation amplifier and digital data acquisition device with user-selectable gain, frequency, and driven reference.

    Science.gov (United States)

    Cosmanescu, Alin; Miller, Benjamin; Magno, Terence; Ahmed, Assad; Kremenic, Ian

    2006-01-01

    A portable, multi-purpose Bio-instrumentation Amplifier and Data AcQuisition device (BADAQ) capable of measuring and transmitting EMG and EKG signals wirelessly via Bluetooth is designed and implemented. Common topologies for instrumentation amplifiers and filters are used and realized with commercially available, low-voltage, high precision operational amplifiers. An 8-bit PIC microcontroller performs 10-bit analog-to-digital conversion of the amplified and filtered signals and controls a Bluetooth transceiver capable of wirelessly transmitting the data to any Bluetooth enabled device. Electrical isolation between patient/subject, circuitry, and ancillary equipment is achieved by optocoupling components. The design focuses on simplicity, portability, and affordability.

  6. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  7. Monitoring and evaluation of policy instruments to support renewable electricity in EU Member States. Summary; Monitoring und Bewertung der Foerderinstrumente fuer Erneuerbare Energien in EU Mitgliedsstaaten. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Ragwitz, M.; Held, A. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Resch, G.; Faber, T.; Huber, C.; Haas, R. [Technische Univ. Wien (AT). Energy Economics Group (EEG)

    2006-09-15

    Policy strategies for the promotion of electricity from renewable energy sources differ significantly among the Member States of the European Union with respect to the amount of additional installed capacity as well as concerning the country-specific support costs. The present report aims to assess the effectiveness and the economic efficiency of the support policies in the EU based on both historical experiences and prospective model-based analysis. The main message of the investigation is that the most effective policy instruments tend to be cost-efficient at the same time. In particular, feed-in tariff systems were identified as a successful instrument for supporting renewable energies in terms of effectiveness and efficiency, whereas quota systems still have to prove themselves in practice. (orig.) [German] Bezueglich des Erfolges bei der Foerderung erneuerbarer Energietraeger im Stromsektor bestehen deutliche Unterschiede zwischen den Mitgliedsstaaten der Europaeischen Union. Dies betrifft sowohl den Zubau an installierter Kapazitaet als auch die laenderspezifischen Foerderkosten des Ausbaus. In diesem Projekt erfolgte eine vergleichende Betrachtung der Wirksamkeit und der oekonomischen Effizienz der Foerderpolitiken in den Laendern der EU basierend auf historischen Erfahrungen als auch auf prospektiven modellbasierten Analysen. Es zeigt sich, dass die wirksamsten Systeme auch haeufig die kostenguenstigsten sind. Insbesondere wird ersichtlich, dass garantierte Einspeisetarife ein sehr erfolgreiches Instrumentarium zur Foerderung erneuerbarer Energien im Stromsektor darstellen, nicht allein bezueglich des generierten Marktwachstums sondern auch im Hinblick auf die oekonomische Effizienz, wogegen Quotensysteme ihre Praxistauglichkeit bezogen auf die genannten Kriterien noch nachweisen muessen. (orig.)

  8. Routine outcome monitoring and clinical decision-making in forensic psychiatry based on the Instrument for Forensic Treatment Evaluation

    NARCIS (Netherlands)

    van der Veeken, F.C.A.; Lucieer, Jacques; Bogaerts, S.

    2016-01-01

    Background Rehabilitation in forensic psychiatry is achieved gradually with different leave modules, in line with the Risk Need Responsivity model. A forensic routine outcome monitoring tool should measure treatment progress based on the rehabilitation theory, and it should be predictive of

  9. α-Monitor(roating drum cell) - an in-line instrument for continuous measuring α-activity

    International Nuclear Information System (INIS)

    Groll, P.; Brenk, O.; Guettle, G.; Persohn, M.; Radek, S.; Roeder, L.; Roemer, J.

    1982-03-01

    In this report the documentation for the installation of the α-monitor in a reprocessing facility is given. The mechanics of the apparatus is described as well as the electronics. In detail the conditions for normal operation and hints for trouble-shooting are given. (orig.) [de

  10. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  11. Design of a Channel Error Simulator using Virtual Instrument Techniques for the Initial Testing of TCP/IP and SCPS Protocols

    Science.gov (United States)

    Horan, Stephen; Wang, Ru-Hai

    1999-01-01

    There exists a need for designers and developers to have a method to conveniently test a variety of communications parameters for an overall system design. This is no different when testing network protocols as when testing modulation formats. In this report, we discuss a means of providing a networking test device specifically designed to be used for space communications. This test device is a PC-based Virtual Instrument (VI) programmed using the LabVIEW(TM) version 5 software suite developed by National Instruments(TM)TM. This instrument was designed to be portable and usable by others without special, additional equipment. The programming was designed to replicate a VME-based hardware module developed earlier at New Mexico State University (NMSU) and to provide expanded capabilities exceeding the baseline configuration existing in that module. This report describes the design goals for the VI module in the next section and follows that with a description of the design of the VI instrument. This is followed with a description of the validation tests run on the VI. An application of the error-generating VI to networking protocols is then given.

  12. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Directory of Open Access Journals (Sweden)

    Sameera Dharia

    2011-02-01

    Full Text Available Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR K(+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+ addition to the external bath. Cu(2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K(+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  13. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  14. Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    OpenAIRE

    Dharia, Sameera; Rabbitt, Richard D.

    2011-01-01

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential a...

  15. Nuclear electronic equipment for control and monitoring panel. Procedure guide for on-site tests of nuclear reactor instruments

    International Nuclear Information System (INIS)

    1975-10-01

    By the use of a procedure for on-site testing of nuclear reactor instruments it should be possible to judge their ability to guarantee the reactor safety and availability at the moment of divergence or during operation. Such a procedure must therefore be created as a work implement for the quick and reliable installation of electronic devices necessary for nuclear reactor control and supervision. A standard document is proposed for this purpose, allowing a ''test programme'' to be set up before the equipment is installed on the site [fr

  16. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    Science.gov (United States)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  17. A real-time FPGA based monitoring and fault detection processing system for the Beam Wire Scanner instruments at CERN

    CERN Document Server

    AUTHOR|(CDS)2070252; Tognolini, Maurizio; Zamantzas, Christos

    The CERN Beam Instrumentation group (BE-BI) is designing a new generation of an instrument called Beam Wire Scanner (BWS). This system uses an actuator to move a very thin wire through a particle beams, back and forth with a movement stroke of pi [rad]. To achieve very fast speed when touching the particle beam with such a small stroke, large torque is applied while the expected smoothness of the displacement is crucial. This system relies on a resolver to determine the angular position and power correctly its Permanent Magnet Synchronous Motor (PMSM). In 2016, a failure of the position acquisition chain has highlighted the severe consequences of such problem, which resulted by 24 hours downtime of the Super Proton Synchrotron (SPS) accelerator with significant financial consequences. This work mitigates this single failure point by taking advantage of the existing redundancy in the sensors embedded on the system. The resolver is compared to two Incremental Optical Position Sensor (IOPS) developed in-house ...

  18. Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements

    Directory of Open Access Journals (Sweden)

    Phillipe Nédélec

    2015-06-01

    Full Text Available This article presents the In-service Aircraft of a Global Observing System (IAGOS developed for operations on commercial long-range Airbus aircraft (A330/A340 for monitoring the atmospheric composition. IAGOS is the continuation of the former Measurement of OZone and water vapour on Airbus In-service airCraft (MOZAIC programme (1994–2014 with five aircraft operated by European airlines over 20 yr. MOZAIC has provided unique scientific database used worldwide by the scientific community. In continuation of MOZAIC, IAGOS aims to equip a fleet up to 20 aircraft around the world and for operations over decades. IAGOS started in July 2011 with the first instruments installed aboard a Lufthansa A340-300, and a total of six aircraft are already in operation. We present the technical aircraft system concept, with basic instruments for O3, CO, water vapour and clouds; and optional instruments for measuring either NOy, NOx, aerosols or CO2/CH4. In this article, we focus on the O3 and CO instrumentation while other measurements are or will be described in specific papers. O3 and CO are measured by optimised but well-known methods such as UV absorption and IR correlation, respectively. We describe the data processing/validation and the data quality control for O3 and CO. Using the first two overlapping years of MOZAIC/IAGOS, we conclude that IAGOS can be considered as the continuation of MOZAIC with the same data quality of O3 and CO measurements.

  19. Tamper indicating radiation surveillance instrumentation

    International Nuclear Information System (INIS)

    Chambers, W.H.; Ney, J.F.

    1975-01-01

    Prototype personnel and shipping dock portal monitors suitable for unattended use were fabricated and tested. The requirement for continuous operation with only periodic inspection along with a desire for minimum costs and minimum interference with normal plant operation imposed unique design constraints. The design, operation, and performance of the detection and data recording instrumentation are described, as well as the tamper indicating techniques required to protect the collected data. The essential elements of either of the two instruments include a gamma detector array, signal conditioning electronics, digital alarm logic circuitry, power supplies, a microwave occupancy monitor, surveillance camera, irreversible electromechanical counters, and the appropriate tamper indicating envelope protecting these elements. Attempts to penetrate the tamper indicating envelope require material removal, and undetectable repair is very difficult, if not impossible. The techniques for joining major subassemblies and providing unique seals are also described. The personnel doorway uses a double pole array of NaI(Tl) detectors, and outputs are taken from a single channel pulse height analyzer with a window set at 60 to 250 keV and the lower level discriminator at greater than 60 keV. A sliding interval counter is used to make comparisons to an accumulated background at the 4sigma level. Logic design, sensitivity for special nuclear materials, false alarm data, and test procedures are described in detail. The shipping dock monitor had different design constraints and therefore uses a single, long, cylindrical plastic scintillator. Some differences in signal conditioning and processing are also described. (auth)

  20. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  1. The nuclear reactor remote monitoring system as an instrument for early detection and evaluation of incidents or accidents

    International Nuclear Information System (INIS)

    Eder, E.

    1981-01-01

    The remote monitoring system for nuclear reactors (KFUe) in Bavaria is a technical means to support the supervising authority. The measuring devices installed in the KFUe make it possible to perceive very early such accidents which could be liable for unplanned releases of greater amounts of radioactive substances. The data compiled by the KFUe will be also used as basis for further statutory supervisions, if necessary. When alarm thresholds in the measuring devices are exceeded the stand-by supervision staff on the Bavarian State Office for Environmental Protection will be informed automatically. Further decisions will be met by the supervision staff. (orig.) [de

  2. Upgrading a marketing channels role

    Directory of Open Access Journals (Sweden)

    Tišma-Borota Ankica

    2002-01-01

    Full Text Available As one of the marketing mix instruments, marketing channels were usually behind other instruments (product, price and promotion. Many companies regarded marketing channels as something that was 'left' after more important strategies of price, product and promotion were created. In recent past, things have changed and marketing channels became more interesting for research. This change came as a result of change in global market functioning especially in competitive advantage, distributors' strength and increasing technology.

  3. DOE-EPRI On-Line Monitoring Implementation Guidelines

    International Nuclear Information System (INIS)

    E. Davis, R. Bickford

    2003-01-01

    Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasibility of on-line monitoring at several participating nuclear plants. The results have been very encouraging, and substantial progress is anticipated in the coming years

  4. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  5. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    Science.gov (United States)

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  6. Comparative study of fix-installed monitoring instruments and its application in detecting uncontrolled trafficking of radioactive materials at airports

    International Nuclear Information System (INIS)

    Pujol, L.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.; Garcia-Galludo, M.

    2010-01-01

    In this paper we analyze the response of three commercial equipment designed to detect illicit trafficking or inadvertent movement of radioactive materials at airports when carried by passengers. We compared three fix-installed instruments: APM (Bicron), GR-606 (Exploranium), and FHT-1372 (Thermo Eberline). In this initial evaluation conducted at the Laboratory of Nuclear engineering of the School of Civil Engineering, it was observed that the FHT-1372 introduced a fester detection response, sensitive and allowed the measurement of total dose rate and artificial dose rate. This equipment was installed at the exit from customs passenger of Barajas international airport operating for a period of 108 days in 2002 with a total number of 1,339,931 people. this period was divided into 5 sessions to establish suitable investigation levels to detect a possible incident of radioactive material, which was finally set at 110 nSv/h to total dose rate and 25 nSv/h for artificial dose rate. During this period 39 possible incidents were detected above the investigation level established, 5 of them with a value 10 times the environmental background of the room where the equipment was installed (about 90 nSv/h), and no level exceeded 100 μSv/h at 1 m distance, which is the limit for legal transport of radioactive materials from the International Atomic Energy Agency (IAEA). (Author) 17 refs.

  7. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-08-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  8. Monitoring human and organizational factors influencing common-cause failures of safety-instrumented system during the operational phase

    International Nuclear Information System (INIS)

    Rahimi, Maryam; Rausand, Marvin

    2013-01-01

    Safety-instrumented systems (SISs) are important safety barriers in many technical systems in the process industry. Reliability requirements for SISs are specified as a safety integrity level (SIL) with reference to the standard IEC 61508. The SIS reliability is often threatened by common-cause failures (CCFs), and the beta-factor model is the most commonly used model for incorporating the effects of CCFs. In the design phase, the beta-factor, β, is determined by answering a set of questions that is given in part 6 of IEC 61508. During the operational phase, there are several factors that influence β, such that the actual β differs from what was predicted in the design phase, and therefore the required reliability may not be maintained. Among the factors influencing β in the operational phase are human and organizational factors (HOFs). A number of studies within industries that require highly reliable products have shown that HOFs have significant influence on CCFs and therefore on β in the operational phase, but this has been neglected in the process industry. HOFs are difficult to predict, and susceptible to be changed during the operational phase. Without proper management, changing HOFs may cause the SIS reliability to drift out of its required value. The aim of this article is to highlight the importance of HOFs in estimation of β for SISs, and also to propose a framework to follow the HOFs effects and to manage them such that the reliability requirement can be maintained

  9. Comparative studies on detergent-assisted apocytochrome b6 reconstitution into liposomal bilayers monitored by Zetasizer instruments.

    Directory of Open Access Journals (Sweden)

    Michał A Surma

    Full Text Available The present paper is a systematic, comparative study on the reconstitution of an apocytochrome b6 purified from a heterologous system using a detergent-free method and reconstitution into liposomes performed using three different detergents: SDS, Triton X-100 and DM, and two methods of detergent removal by dialysis and using Bio-Beads. The product size, its distribution and zeta potential, and other parameters were monitored throughout the process. We found that zeta potential of proteoliposomes is correlated with reconstitution efficiency and, as such, can serve as a quick and convenient quality control for reconstitution experiments. We also advocate using detergent-free protein purification methods as they allow for an unfettered choice of detergent for reconstitution, which is the most crucial factor influencing the final product parameters.

  10. Technological considerations in emergency instrument preparedness

    International Nuclear Information System (INIS)

    Selby, J.M.

    1975-01-01

    The types of emergency instrumentation systems necessary to characterize the severity and extent of radiation accidents and to aid in the protection of operating personnel and personnel living near the plant are discussed. These include instruments for direct measurement of the airborne radioactive material within the facility, fixed instrumentation for ambient dose rate monitoring or area monitoring, and portable instruments for environmental monitoring

  11. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    Science.gov (United States)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; hide

    2015-01-01

    The Fast Plasma Investigation (FPI) on NASAs Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30 ms for electrons; 150 ms for ions) and spatially differentiated measurements of the full 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity, the reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions of magnetically reconnecting plasmas. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated using the plateau curve technique. In this, a fixed detection threshold is set. The detection system count rate is then measured as a function of MCP voltage to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection system discrimination threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully describe the behavior of the detection system and individually characterize each of its fundamental parameters. To improve this situation, we have developed a detailed phenomenological description of the detection system, its behavior and its signal, crosstalk and noise sources. Based on this, we have devised a new detection

  12. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  13. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yu [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 and Medical Physics Program, University of Nevada, Las Vegas, Nevada 89154-3037 (United States); Pratx, Guillem; Bazalova, Magdalena; Qian Jianguo; Meng Bowen; Xing Lei [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 (United States)

    2013-03-15

    Purpose: Developing an imaging method to directly monitor the spatial distribution of platinum-based (Pt) drugs at the tumor region is of critical importance for early assessment of treatment efficacy and personalized treatment. In this study, the authors investigated the feasibility of imaging platinum (Pt)-based drug distribution using x-ray fluorescence (XRF, a.k.a. characteristic x ray) CT (XFCT). Methods: A 5-mm-diameter pencil beam produced by a polychromatic x-ray source equipped with a tungsten anode was used to stimulate emission of XRF photons from Pt drug embedded within a water phantom. The phantom was translated and rotated relative to the stationary pencil beam in a first-generation CT geometry. The x-ray energy spectrum was collected for 18 s at each position using a cadmium telluride detector. The spectra were then used for the K-shell XRF peak isolation and sinogram generation for Pt. The distribution and concentration of Pt were reconstructed with an iterative maximum likelihood expectation maximization algorithm. The capability of XFCT to multiplexed imaging of Pt, gadolinium (Gd), and iodine (I) within a water phantom was also investigated. Results: Measured XRF spectrum showed a sharp peak characteristic of Pt with a narrow full-width at half-maximum (FWHM) (FWHM{sub K{alpha}1}= 1.138 keV, FWHM{sub K{alpha}2}= 1.052 keV). The distribution of Pt drug in the water phantom was clearly identifiable on the reconstructed XRF images. Our results showed a linear relationship between the XRF intensity of Pt and its concentrations (R{sup 2}= 0.995), suggesting that XFCT is capable of quantitative imaging. A transmission CT image was also obtained to show the potential of the approach for providing attenuation correction and morphological information. Finally, the distribution of Pt, Gd, and I in the water phantom was clearly identifiable in the reconstructed images from XFCT multiplexed imaging. Conclusions: XFCT is a promising modality for monitoring

  14. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  15. Systematic monitoring of male circumcision scale-up in Nyanza, Kenya: exploratory factor analysis of service quality instrument and performance ranking.

    Science.gov (United States)

    Omondi Aduda, Dickens S; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane

    2014-01-01

    Considerable conceptual and operational complexities related to service quality measurements and variability in delivery contexts of scaled-up medical male circumcision, pose real challenges to monitoring implementation of quality and safety. Clarifying latent factors of the quality instruments can enhance contextual applicability and the likelihood that observed service outcomes are appropriately assessed. To explore factors underlying SYMMACS service quality assessment tool (adopted from the WHO VMMC quality toolkit) and; determine service quality performance using composite quality index derived from the latent factors. Using a comparative process evaluation of Voluntary Medical Male Circumcision Scale-Up in Kenya site level data was collected among health facilities providing VMMC over two years. Systematic Monitoring of the Medical Male Circumcision Scale-Up quality instrument was used to assess availability of guidelines, supplies and equipment, infection control, and continuity of care services. Exploratory factor analysis was performed to clarify quality structure. Fifty four items and 246 responses were analyzed. Based on Eigenvalue >1.00 cut-off, factors 1, 2 & 3 were retained each respectively having eigenvalues of 5.78; 4.29; 2.99. These cumulatively accounted for 29.1% of the total variance (12.9%; 9.5%; 6.7%) with final communality estimates being 13.06. Using a cut-off factor loading value of ≥0.4, fifteen items loading on factor 1, five on factor 2 and one on factor 3 were retained. Factor 1 closely relates to preparedness to deliver safe male circumcisions while factor two depicts skilled task performance and compliance with protocols. Of the 28 facilities, 32% attained between 90th and 95th percentile (excellent); 45% between 50th and 75th percentiles (average) and 14.3% below 25th percentile (poor). the service quality assessment instrument may be simplified to have nearly 20 items that relate more closely to service outcomes. Ranking of

  16. Evaluating the validity and reliability of the V-scale instrument (Turkish version) used to determine nurses' attitudes towards vital sign monitoring.

    Science.gov (United States)

    Ertuğ, Nurcan

    2018-06-01

    The aim of this study was to determine the validity and reliability of the Turkish version of the V-scale, which measures nurses' attitudes towards vital signs monitoring in the detection of clinical deterioration. This validity and reliability study was conducted at a tertiary hospital in Ankara, Turkey, in 2016. A total of 169 ward nurses participated in the study. Exploratory factor analysis, Cronbach's alpha coefficient, and the intraclass correlation coefficient were used to determine the validity and reliability of the scale. A 5-factor, 16-item scale explained 60.823% of the total variance according to the validity analysis. Our version matched the original scale in terms of the number of items and factor structure. Cronbach's alpha coefficient of the Turkish version of the V-scale was 0.764. The test-retest reliability results were 0.855 for the overall intraclass correlation coefficient, and the t-test result was P > 0.05. The V-scale is a reliable and valid instrument to measure Turkish nurses' attitudes towards vital signs monitoring in the detection of clinical deterioration. © 2018 John Wiley & Sons Australia, Ltd.

  17. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  18. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2011-11-01

    Full Text Available Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  19. Programmable pulse and analog data logger for environmental monitoring

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.

    1983-01-01

    A programmable data logger with 16 analog channels and 8 pulse channels is described to which nuclear radiation detectors, meteorological measuring instruments and transducers were connected for registration of operating data in the course of a research project in which natural and man-made radionuclide concentrations were measured near the ground. The set-up can be modified for other measuring and monitoring tasks. (orig.) [de

  20. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  1. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  2. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  3. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    International Nuclear Information System (INIS)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A.

    2013-01-01

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  4. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  5. Monitoring and evaluation pilots Energy Box and Energy vouchers. Measuring the success rate of two instruments for energy saving in households; Monitoring en evaluatie pilots Energiebox en Energiebon. Succesmeting van twee instrumenten voor energiebesparing bij huishoudens

    Energy Technology Data Exchange (ETDEWEB)

    Groot, M.I.; Koot, M.C.M.; Schepers, B.L.; Wielders, L.M.L. [CE, Delft (Netherlands); Jungblut, P. [Blauw Research, Rotterdam (Netherlands)

    2007-06-15

    The Dutch government wants to incite energy saving behavior in households and increase the use of energy saving products. By means of the pilot projects of the Energy Box and the Energy Voucher the Dutch Ministry of Housing, Spatial Planning and the Environment wants to examine if these instruments can contribute to changing behavior and the corresponding CO2 reduction. This final report describes the results of the monitoring and evaluation study of the pilots with the aim of establishing how the actions are values in real life, which products are actually used and what the direct and indirect effects are of these actions on energy saving, CO2 reduction and changing behavior [mk]. [Dutch] De overheid wil Nederlandse huishoudens aanzetten tot energiebesparend gedrag en gebruik van energiebesparende producten. Met de uitgevoerde pilotprojecten van de Energiebox en de Energiebon wil het Ministerie van VROM onderzoeken of met deze instrumenten een bijdrage kan worden geleverd aan gedragsverandering en de daarmee samenhangende CO2-reductie. In deze eindrapportage worden de resultaten van de monitoring en evaluatiestudie van de pilots beschreven met als doel: Bepalen hoe de acties in de praktijk gewaardeerd worden, welke producten daadwerkelijk worden gebruikt en welk directe en indirecte effecten de acties hebben op energiebesparing, CO2-reductie en gedragsverandering.

  6. Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise

    Science.gov (United States)

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-03-01

    This study presents an effective engineering approach for human vital signs monitoring as increasingly demanded by personal healthcare. The aim of this work is to study how to capture critical physiological parameters efficiently through a well-constructed electronic system and a robust multi-channel opto-electronic patch sensor (OEPS), together with a wireless communication. A unique design comprising multi-wavelength illumination sources and a rapid response photo sensor with a 3-axis accelerometer enables to recover pulsatile features, compensate motion and increase signal-to-noise ratio. An approved protocol with designated tests was implemented at Loughborough University a UK leader in sport and exercise assessment. The results of sport physiological effects were extracted from the datasets of physical movements, i.e. sitting, standing, waking, running and cycling. t-test, Bland-Altman and correlation analysis were applied to evaluate the performance of the OEPS system against Acti-Graph and Mio-Alpha.There was no difference in heart rate measured using OEPS and both Acti-Graph and Mio-Alpha (both p<0.05). Strong correlations were observed between HR measured from the OEPS and both the Acti-graph and Mio-Alpha (r = 0.96, p<0.001). Bland-Altman analysis for the Acti-Graph and OEPS found the bias 0.85 bpm, the standard deviation 9.20 bpm, and the limits of agreement (LOA) -17.18 bpm to +18.88 bpm for lower and upper limits of agreement respectively, for the Mio-Alpha and OEPS the bias is 1.63 bpm, standard deviation SD8.62 bpm, lower and upper limits of agreement, - 15.27 bpm and +18.58 bpm respectively. The OEPS demonstrates a real time, robust and remote monitoring of cardiovascular function.

  7. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, Mario; Gran, Frauke Schmitt; Thunem, Harald P-J.

    2004-04-01

    On-Line Monitoring (OLM) of a channel's calibration state evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. The Halden Reactor Project has developed the signal validation system PEANO, which can be used to assist with the tasks of OLM. To further enhance the PEANO System for use as a calibration reduction tool, the following two additional modules have been developed; HRP Prox, which performs pre-processing and statistical analysis of signal data, Batch Monitoring Module (BMM), which is an off-line batch monitoring and reporting suite. The purpose and functionality of the HRP Prox and BMM modules are discussed in this report, as well as the improvements made to the PEANO Server to support these new modules. The Halden Reactor Project has established a Halden On-Line Monitoring User Group (HOLMUG), devoted to the discussion and implementation of on-line monitoring techniques in power plants. It is formed by utilities, vendors, regulatory bodies and research institutes that meet regularly to discuss implementation aspects of on-line monitoring, technical specification changes, cost-benefit analysis and regulatory issues. (Author)

  8. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  9. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  10. Wireless instrumentation for data transfer of smart sensors

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Kwon, Il Bum

    2005-01-01

    A wireless instrumentation system was constructed to transfer the data from a structure site to a monitoring site. The device was composed of a transmitter and a receiver. The transmitter was connected with smart sensors, as fiber optic sensors, piezo-sensors, and shape memory alloy sensors. The specification of this device was as follows: 2.4 GHz of transmitted frequency, 8 channels, 57600 bps of the transmitted speed, and 10 mW of the transmitted power. By bending the beam, the strain data were well transmitted to a monitor PC.

  11. Support tube of in-core instruments

    International Nuclear Information System (INIS)

    Suzumura, Takeshi; Saito, Shozo; Yasuda, Tetsuo; Shirosaki, Kiyotaka.

    1975-01-01

    Object: To permit satisfactory output measurement by preventing the bending of a in-core instrument tube within a reactor due to vibrations by means of a spring and thereby preventing mechanical damage of an adjacent fuel channel box. Structure: At a corner of a channel box of a fuel assembly, a in-core instrument tube is arranged along a channel box and has its surface provided with a plurality of removable leaf springs arranged in the direction of axis of the in-core instrument tube and each having an arcular tip. Thus, when the in-core instrument tube is inserted into the reactor, the arcular tip portions of the leaf springs are brought into plane contact with the corner of the channel box so that the in-core instrument tube is elastically supported on the channel box. Thus, there is no possibility of causing damage to the adjacent fuel channel box. (Kamimura, M.)

  12. Rapid instrumental and separation methods for monitoring radionuclides in food and environmental samples. Final report on an IAEA co-ordinated research programme

    International Nuclear Information System (INIS)

    1995-01-01

    The Co-ordinated Research Programme (CRP) on Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and Environmental Samples was established by the Agency following a Consultants' Meeting on the same topic, which was held 5-9 September 1988 in Vienna. It was completed in 1992. At various times during its course it encompassed 15 participants from 14 countries. The scope of work and objectives of the CRP were established at the Consultants' Meeting. It was agreed that the CRP should focus on the development of rapid methods for the determination of radionuclides in food and environmental samples during the intermediate and late post-accident phases. The rapid methods developed during the course of the CRP were intended to permit a timely and accurate determination of radionuclides at concentrations at least one order of magnitude below those specified for Derived Intervention Levels (DILs) for food by the WHO/FAO and the IAEA. Research Co-ordination meetings were held in Warsaw, Poland in September 1989 and in Vienna, Austria in 1991. Reports of the meetings are available from the Agency on Request. This document comprises copies of final reports from the participants and selected contributions presented by the participants at the meetings. The contributions were selected on the basis of being able to stand alone, without further explanation. Where there was an overlap in the information presented by a participant at both meetings, the most complete contribution was selected

  13. Rapid instrumental and separation methods for monitoring radionuclides in food and environmental samples. Final report on an IAEA co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Co-ordinated Research Programme (CRP) on Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and Environmental Samples was established by the Agency following a Consultants' Meeting on the same topic, which was held 5-9 September 1988 in Vienna. It was completed in 1992. At various times during its course it encompassed 15 participants from 14 countries. The scope of work and objectives of the CRP were established at the Consultants' Meeting. It was agreed that the CRP should focus on the development of rapid methods for the determination of radionuclides in food and environmental samples during the intermediate and late post-accident phases. The rapid methods developed during the course of the CRP were intended to permit a timely and accurate determination of radionuclides at concentrations at least one order of magnitude below those specified for Derived Intervention Levels (DILs) for food by the WHO/FAO and the IAEA. Research Co-ordination meetings were held in Warsaw, Poland in September 1989 and in Vienna, Austria in 1991. Reports of the meetings are available from the Agency on Request. This document comprises copies of final reports from the participants and selected contributions presented by the participants at the meetings. The contributions were selected on the basis of being able to stand alone, without further explanation. Where there was an overlap in the information presented by a participant at both meetings, the most complete contribution was selected.

  14. On-ground calibration of the BEPICOLOMBO/SIMBIO-SYS at instrument level

    Science.gov (United States)

    Rodriguez-Ferreira, J.; Poulet, F.; Eng, P.; Longval, Y.; Dassas, K.; Arondel, A.; Langevin, Y.; Capaccioni, F.; Filacchione, G.; Palumbo, P.; Cremonese, G.; Dami, M.

    2012-04-01

    The Mercury Planetary Orbiter/BepiColombo carries an integrated suite of instruments, the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS has 3 channels: a stereo imaging system (STC), a high-resolution imager (HRIC) and a visible-near-infrared imaging spectrometer (VIHI). SIMBIO-SYS will scan the surface of Mercury with these three channels and determine the physical, morphological and compositional properties of the entire planet. Before integration on the S/C, an on-ground calibration at the channels and at the instrument levels will be performed so as to describe the instrumental responses as a function of various parameters that might evolve while the instruments will be operating [1]. The Institut d'Astrophysique Spatiale (IAS) is responsible for the on-ground instrument calibration at the instrument level. During the 4 weeks of calibration campaign planned for June 2012, the instrument will be maintained in a mechanical and thermal environment simulating the space conditions. Four Optical stimuli (QTH lamp, Integrating Sphere, BlackBody with variable temperature from 50 to 1200°C and Monochromator), are placed over an optical bench to illuminate the four channels so as to make the radiometric calibration, straylight monitoring, as well as spectral proofing based on laboratory mineral samples. The instrument will be mounted on a hexapod placed inside a thermal vacuum chamber during the calibration campaign. The hexapod will move the channels within the well-characterized incoming beam. We will present the key activities of the preparation of this calibration: the derivation of the instrument radiometric model, the implementation of the optical, mechanical and software interfaces of the calibration assembly, the characterization of the optical bench and the definition of the calibration procedures.

  15. Advanced instrumentation for nuclear monitoring

    International Nuclear Information System (INIS)

    Armantrout, G.; McGibbon, A.; Swierkowski, S.; Sherohman, J.; Yee, J.

    1975-01-01

    Research on semiconductor radiation detectors is described. Computational models to calculate the energy band structure, carrier mobility, and carrier lifetime of proposed detector materials are presented; and a computer spectrum simulation that accurately predicts the potential performance of the materials as detectors is given. Also, a self contained, field-portable spectrometer for laboratory-grade pulse-height analysis of gamma-ray spectra suitable for use under extreme environmental conditions and isolated locations by personnel not trained in electronics is reported. (auth)

  16. Piezometric level and electrical conductivity spatiotemporal monitoring as an instrument to design further managed aquifer recharge strategies in a complex estuarial system under anthropogenic pressure.

    Science.gov (United States)

    Coelho, Victor Hugo R; Bertrand, Guillaume F; Montenegro, Suzana M G L; Paiva, Anderson L R; Almeida, Cristiano N; Galvão, Carlos O; Barbosa, Luís Romero; Batista, Larissa F D R; Ferreira, Eduardo L G A

    2018-03-01

    Recife Metropolitan Region (RMR, NE Brazil) lies over a multi-layered aquifer system located in an estuarial area. The region has experienced fast population growth and repeated droughts in the last three decades, which led to unprecedented anthropogenic pressure on groundwater resources because of intense water pumping. Accordingly, scientific and stakeholder communities have been challenged to ensure the maintenance of sustainable groundwater resource by managing all water cycle. Because controlling pumping rates is difficult due to the large number of illegal wells, the Managed Aquifer Recharge (MAR) strategies are now under consideration. The RMR presents a tropical climate and an annual average rainfall rate of approximately 2450 mm year -1 , providing great potential volumes of water to be used for piezometric level recovery. However, MAR implementation requires a detailed and in-depth knowledge of the human-impact on the hydrogeological behavior of the resource over the long-term, in order to find out the most appropriate recharge strategy. Therefore, the present study illustrates how routine data monitoring, i.e., piezometric level and electrical conductivity (EC), in combination with the geological knowledge, may allow proposing further MAR strategies. Two contrasted behaviors were observed in RMR: (i) groundwater level decrease and stable EC in the North and Southernmost areas of Recife; and (ii) stable groundwater level and high/varying EC values next to the estuarial zone. Although aquifers are undergoing over-abstraction, this spatiotemporal heterogeneity suggests that a recharge is possibly locally favored next to the estuarial area of the RMR thanks to hydraulic connections between surface and deep aquifers throughout extended paleo-channels. Thus, based on this typology, MAR implementation through controlled infiltration close to the estuarial area seems to be more appropriated, whereas the direct deep injection appears to be more relevant in more

  17. Nuclear electronic instrument systems using the Harwell 6000 series

    International Nuclear Information System (INIS)

    Seymour, F.D.; Snelling, G.F.; Hawthorn, I.

    1980-01-01

    This report describes some of the more recent equipment designed by the Systems Instrumentation Unit (AERE, Harwell), in the Harwell 6000 modular format. The units include: Laboratory Instruments (alpha monitors, beta-gamma detectors, spectrometers, automatic sample changer systems, automated counting laboratory systems, low power systems). Environmental Monitors (nuclear plant monitor, air monitor, sea bed monitor). Process Instruments (plutonium waste control, x-ray fluorescence monitor, process monitor, beam current monitor, effluent monitors). (U.K.)

  18. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    Science.gov (United States)

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  19. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  20. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  1. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  2. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  3. Review of monitoring instruments for transuranics in fuel fabrication and reprocessing plants. A progress report to the physical and technological programs, Division of Biomedical and Environmental Research, U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Kordas, J.F.; Phelps, P.L.

    1977-01-01

    A comprehensive review of the monitoring instruments for transuranic elements released from nuclear fuel fabrication and reprocessing plants has been compiled. The extent of routine operational releases has been reviewed for the light water reactor (LWR) fuel cycle (including plutonium recycle), the breeder reactor fuel cycle, and the high-temperature gas cooled reactor (HTGR) fuel cycle. The stack monitoring instrumentation that is presently in use at the various fabrication and reprocessing plants around the country is examined. Sampling difficulties including the inlet-probe arrangement and the effectiveness of the entire sampling system are discussed, as are the measurement problems for alpha-emitting, long-lived, transuranic aerosols, 129 I, 106 Ru, and tritium oxide. The potential problems in the HTGR fuel cycle such as the measurement of releases of alpha-emitting aerosols and of gaseous releases of 220 Rn and 14 C are also considered. Monitoring requirements range from the detection of low-level, routine releases to high-level accidental releases. Both first and second kinds of detection errors are considered in a discussion of adequate detection limits. The presently deployed monitors are critically examined in this light and the drawbacks and limitations of each are noted. Prototype instrumentation is studied, including Argonne's mechanical separation technique, Battelle's mass separation by surface ionization method, and in particular, LLL's transuranic aerosol measurement system. The potentials, sensitivities, advantages, and limitations of each system are enumerated. The additional potential uses of the LLL system are also discussed

  4. Instrumentation and equipment for monitoring and controlling NPP post-accident situations. Working material. Proceedings of a specialists' meeting held in Dimitrovgrad, Russian Federation, 12-15 September 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objectives of the Specialist's Meeting were: To provide an international forum for presentation and discussion on experience with instrumentation and equipment for monitoring and controlling NPP post-accident situations; to share experience on the design and improvements in the subject area; to identify and describe advanced features for safety and post-accident management improvements. In order to facilitate a structure discussion and not to omit important problem areas, papers on the following subjects were considered to be within the scope of the Specialist's Meeting: Analysis of existing post-accident instrumentation (in terms of range, qualification and redundancy) to support post-accident management. Requirements for post accident instrumentation and equipment - operating experience, regulations, standards; experience in upgrading of the existing instrumentation; instrumentation and equipment for emergency management systems (emergency rooms and national centers); post-accident computerized aids to assist operators; post-accident operating procedures; R and D in post-accident instrumentation, future trends. The present volume contains: (1) the papers presented by national delegates; (2) programme of the meeting; (3) description of the RIAR research facilities; and (4) list of participants. Refs, figs and tabs

  5. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  7. Linking the optically monitored channel evolution with tremor like seismic activity during aero-fracturing in a very fine granular medium

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume

    2014-05-01

    The characterization and comprehension of rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control,volcanic eruptions), or in the industry, as CO2 sequestration. Even though the fluids and rocks are relatively easier to understand individually, the coupled behaviour of porous media with a dynamic fluid flow makes the system difficult to comprehend. The dynamic interaction between flow and the porous media, rapid changes in the local porosity due to the compaction and migration of the porous material, fracturing due to the momentum exchange in fast flow, make understanding of such a complex system a challenge. In this study, analogue models are developed to predict and control the mechanical stability of rock and soil formations during the injection or extraction of fluids. The models are constructed and calibrated based on the experimental data acquired. This experimental data obtained from solid-fluid interaction are monitored using a combination of techniques, both from geophysics and from experimental fluid mechanics. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. Non expanding polystyrene beads around 80μm size are used as solid particles and air is used as the intruding fluid. During the experiments, the fluid is injected steadily (or injected and suddenly stopped to see the pushback in a setup with four impermeable boundaries) into the system from the point opposite to the semi-permeable boundary so that the fluid penetrates into the solid and makes a way via creating channels, fractures or directly using the pore network to the semi

  8. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  9. Review of monitoring instruments for transuranics in fuel fabrication and reprocessing plants. A progress report to the physical and technological programs, Division of Biomedical and Environmental Research, U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Kordas, J.F.; Phelps, P.L.

    A comprehensive review of the monitoring instruments for transuranic elements released from nuclear fuel fabrication and reprocessing plants has been compiled. The extent of routine operational releases has been reviewed for the light water reactor (LWR) fuel cycle (including plutonium recycle), the breeder reactor fuel cycle, and the high-temperature gas cooled reactor (HTGR) fuel cycle. The stack monitoring instrumentation presently in use at the various fabrication and reprocessing plants around the country is discussed. Sampling difficulties and the effectiveness of the entire sampling system are reviewed, as are the measurement problems for alpha-emitting, long-lived, transuranic aerosols, 129 I, 106 Ru, and tritium oxide. The potential problems in the HTGR fuel cycle such as the measurement of releases of alpha-emitting aerosols and of gaseous releases of 220 Rn and 14 C are also considered

  10. Million revolution accelerator beam instrument for logging and evaluation

    International Nuclear Information System (INIS)

    Peggs, S.; Saltmarsh, C.; Talman, R.

    1988-03-01

    A data acquisition and analysis instrument for the processing of accelerator beam position monitor (BPM) signals has been assembled and used preliminarily for beam diagnosis of the Fermilab accelerators. Up to eight BPM (or other analogue) channels are digitized and transmitted to an acquisition Sun workstation and from there both to a monitor workstation and a workstation for off-line (but immediate) data analysis. A coherent data description format permits fast data object transfers to and from memory, disk and tape, across the Sun ethernet. This has helped the development of both general purpose and experiment-specific data analysis, presentation and control tools. Flexible software permits immediate graphical display in both time and frequency domains. The instrument acts simultaneously as a digital oscilloscope, as a network analyzer and as a correlating, noise-reducing spectrum analyzer. 2 refs., 3 figs

  11. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  12. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI with Brewer measurements at El Arenosillo (Spain – Part 1: Analysis of parameter influence

    Directory of Open Access Journals (Sweden)

    M. Antón

    2010-07-01

    Full Text Available The main objective of this study is to compare the erythemal UV irradiance (UVER and spectral UV irradiances (at 305, 310 and 324 nm from the Ozone Monitoring Instrument (OMI onboard NASA EOS/Aura polar sun-synchronous satellite (launched in July 2004, local equator crossing time 01:45 p.m. with ground-based measurements from the Brewer spectrophotometer #150 located at El Arenosillo (South of Spain. The analyzed period comprises more than four years, from October 2004 to December 2008. The effects of several factors (clouds, aerosols and the solar elevation on OMI-Brewer comparisons were analyzed. The proxies used for each factor were: OMI Lambertian Equivalent Reflectivity (LER at 360 nm (clouds, the aerosol optical depth (AOD at 440 nm measured from the ground-based Cimel sun-photometer (http://aeronet.gsfc.nasa.gov, and solar zenith angle (SZA at OMI overpass time. The comparison for all sky conditions reveals positive biases (OMI higher than Brewer 12.3% for UVER, 14.2% for UV irradiance at 305 nm, 10.6% for 310 nm and 8.7% for 324 nm. The OMI-Brewer root mean square error (RMSE is reduced when cloudy cases are removed from the analysis, (e.g., RMSE~20% for all sky conditions and RMSE smaller than 10% for cloud-free conditions. However, the biases remain and even become more significant for the cloud-free cases with respect to all sky conditions. The mentioned overestimation is partially due to aerosol extinction influence. In addition, the differences OMI-Brewer typically decrease with SZA except days with high aerosol loading, when the bias is near constant. The seasonal dependence of the OMI-Brewer difference for cloud-free conditions is driven by aerosol climatology.

    To account for the aerosol effect, a first evaluation in order to compare with previous TOMS results (Antón et al., 2007 was performed. This comparison shows that the OMI bias is between +14% and +19% for

  13. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  14. U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI)

    Science.gov (United States)

    Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko; Krotkov, Nickolay A.; Pickering, Kenneth E.; Streets, David G.; Lu, Zifeng

    2015-06-01

    Emissions of nitrogen oxides (NOx) and, subsequently, atmospheric levels of nitrogen dioxide (NO2) have decreased over the U.S. due to a combination of environmental policies and technological change. Consequently, NO2 levels have decreased by 30-40% in the last decade. We quantify NO2 trends (2005-2013) over the U.S. using surface measurements from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) and an improved tropospheric NO2 vertical column density (VCD) data product from the Ozone Monitoring Instrument (OMI) on the Aura satellite. We demonstrate that the current OMI NO2 algorithm is of sufficient maturity to allow a favorable correspondence of trends and variations in OMI and AQS data. Our trend model accounts for the non-linear dependence of NO2 concentration on emissions associated with the seasonal variation of the chemical lifetime, including the change in the amplitude of the seasonal cycle associated with the significant change in NOx emissions that occurred over the last decade. The direct relationship between observations and emissions becomes more robust when one accounts for these non-linear dependencies. We improve the OMI NO2 standard retrieval algorithm and, subsequently, the data product by using monthly vertical concentration profiles, a required algorithm input, from a high-resolution chemistry and transport model (CTM) simulation with varying emissions (2005-2013). The impact of neglecting the time-dependence of the profiles leads to errors in trend estimation, particularly in regions where emissions have changed substantially. For example, trends calculated from retrievals based on time-dependent profiles offer 18% more instances of significant trends and up to 15% larger total NO2 reduction versus the results based on profiles for 2005. Using a CTM, we explore the theoretical relation of the trends estimated from NO2 VCDs to those estimated from ground-level concentrations. The model-simulated trends in VCDs strongly

  15. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  16. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  17. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine; Ding, Wei; Pietsch, Elisabeth; Kruithof, Joop; Uhl, Wolfgang; Vrouwenvelder, Johannes S.

    2017-01-01

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  18. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine

    2017-12-03

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  19. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-13 to 2012-09-25 (NCEI Accession 0157385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157385 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-09-10 to 2013-10-02 (NCEI Accession 0157366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157366 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-05-08 to 2013-05-28 (NCEI Accession 0157373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157373 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-04-19 to 2013-05-08 (NCEI Accession 0157305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157305 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-09-27 to 2012-10-04 (NCEI Accession 0157267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157267 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2013-02-03 to 2013-02-13 (NCEI Accession 0157382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157382 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from CEFAS ENDEAVOUR in the Bristol Channel, English Channel and others from 2012-10-23 to 2012-11-09 (NCEI Accession 0157241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157241 includes Surface underway, chemical, meteorological and physical data collected from CEFAS ENDEAVOUR in the Bristol Channel, English Channel,...

  7. Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) - Part 2: Analysis of site aerosol influence

    Science.gov (United States)

    Cachorro, V. E.; Toledano, C.; Antón, M.; Berjón, A.; de Frutos, A.; Vilaplana, J. M.; Arola, A.; Krotkov, N. A.

    2010-12-01

    Several validation studies have shown a notable overestimation of the clear sky ultraviolet (UV) irradiance at the Earth's surface derived from satellite sensors such as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI) with respect to ground-based UV data at many locations. Most of this positive bias is attributed to boundary layer aerosol absorption that is not accounted for in the TOMS/OMI operational UV algorithm. Therefore, the main objective of this study is to analyse the aerosol effect on the bias between OMI erythemal UV irradiance (UVER) and spectral UV (305 nm, 310 nm and 324 nm) surface irradiances and ground-based Brewer spectroradiometer measurements from October 2004 to December 2008 at El Arenosillo station (37.1° N, 6.7° W, 20 m a.s.l.), with meteorological conditions representative of the South-West of Spain. The effects of other factors as clouds, ozone and the solar elevation over this intercomparison were analysed in detail in a companion paper (Antón et al., 2010). In that paper the aerosol effects were studied making only a rough evaluation based on aerosol optical depth (AOD) information at 440 nm wavelength (visible range) without applying any correction. We have used the precise information given by single scattering albedo (SSA) from AERONET for the determination of absorbing aerosols which has allowed the correction of the OMI UV data. An aerosol correction expression was applied to the OMI operational UV data using two approaches to estimate the UV absorption aerosol optical depth, AAOD. The first approach was based on an assumption of constant SSA value of 0.91. This approach reduces the OMI UVER bias against the reference Brewer data from 13.4% to 8.4%. Second approach uses daily AERONET SSA values reducing the bias only to 11.6%. Therefore we have obtained a 37% and 12% of improvement respectively. For the spectral irradiance at 324 nm, the OMI bias is reduced from 10.5% to 6.98% for constant

  8. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  9. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  10. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography 2301

    Science.gov (United States)

    Headcut and channel extension in response to an abrupt base level change in 2004 of approximately 1m was studied in a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona, USA. Field observations and time-lapse photography were coupled with hy...

  11. Beam diagnostic instruments of TARN

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1987-09-01

    The paper summarizes the beam diagnostic instruments of the low energy ion accumulation ring; TARN. With these monitors, position, profiles, bunch structure, intensity, emittance and momentum spread were measured to evaluate the injection and stacking experiments. The monitors provide the sensitivity of a few μA for the nondestructive and a few nA for the destructive monitors. Discussions on monitor probe and electronics are presented on the basis of an achievement of the beam stacking experiments. (author)

  12. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  13. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lightning Instrument Package (LIP) consists of 6 rotating vane type electric field sensors along with a central computer to record and monitor the instruments....

  14. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  15. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  16. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  17. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  18. On-line monitoring applications at nuclear power plants. A risk informed approach to calibration reduction

    International Nuclear Information System (INIS)

    Shankar, Ramesh; Hussey, Aaron; Davis, Eddie

    2003-01-01

    On-line monitoring of instrument channels provides increased information about the condition of monitored channels through accurate, more frequent evaluation of each cannel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. EPRI's strategic role in on-line monitoring is to facilitate its implementation and cost-effective use in numerous applications at power plants. To this end, EPRI has sponsored an on-line monitoring implementation project at multiple nuclear plants specifically intended to install and use on-line monitoring technology. The selected on-line monitoring method is based on the Multivariate State Estimation Technique. The project has a planned three-year life; seven plants are participating in the project. The goal is to apply on-line monitoring to all types of power plant applications and document all aspects of the implementation process in a series of EPRI reports. These deliverables cover installation, modeling, optimization, and proven cost-benefit. This paper discusses the actual implementation of on-line monitoring to various nuclear plant instrument systems. Examples of detected instrument drift are provided. (author)

  19. Instrumentation and process control development for in situ coal gasification. Fourth quarterly report, September--November 1975

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A. (ed.)

    1976-01-01

    The instrumentation effort for Phases 2 and 3 of the Second Hanna In Situ Coal Gasification Experiment was fielded and background data obtained prior to the initiation of Phase 2 on November 25, 1975. A total of over 600 channels of instrumentation in 15 instrumentation wells and two surface arrays was fielded for the instrumentation techniques under evaluation. The feasibility of the passive acoustic technique to locate the source of process-related noises has been demonstrated; its utility is presently hampered by the inexact definition of signal arrivals and the lack of automated signal monitoring and analysis systems. A revised mathematical model for the electrical techniques has been developed which demonstrates the potential for remote monitoring. (auth)

  20. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  1. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  2. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  3. Diagnostic value of combined esophageal multi-channel intraluminal impedance and pH monitoring for gastroesophageal reflux in critically ill patients

    Directory of Open Access Journals (Sweden)

    Yi JIN

    2016-06-01

    Full Text Available Objective  To compare the diagnostic value of using 24-hour combined esophageal multichannel intraluminal impedance and pH monitoring (MII-pH in the diagnosis of gastro-esophageal reflux (GER and pH monitoring alone in critically ill patients. Methods  A prospective observational study was performed including 116 critically ill adult patients admitted to ICU of Peking Haidian Hospital from Jul. 2013 to Dec. 2014. All the patients underwent 24-hour combined MⅡ-pH monitoring. GER episodes were recorded and its pH was recorded (acidic, weakly acidic and weakly alkaline and its composition was recorded (liquid, mixed and gas reflux. The results of the MⅡ-pH and the pH were monitored and compared. The demographic characteristics and clinical information were recorded. Results  MⅡ-pH was monitored for 5024 episodes of GER in 115 of 116(99.1% patients, with a mean of 43.28±3.96 episodes per patient (median, 34 episodes; range, 0-196 episodes. The pH monitoring detected 1868 episodes (100% acid in only 54 of 116(46.6% patients, with a mean of 7.66±1.65 episodes per patient (median, 0 episodes; range, 0-81 episodes. The number of episode of all reflux and liquid reflux diagnosed by pH monitoring alone was less than those diagnosed by MⅡ-pH monitoring (P=0.000, and there was no correlation in the episodes number of all reflux and liquid reflux between the two techniques (r=0.119, 0.231. Only a moderate correlation was found in the number of episodes of acidic reflux between the two techniques (r=0.656. Conclusion  MⅡ-pH monitoring is more sensitive than pH monitoring alone for establishing the diagnosis of GER. DOI: 10.11855/j.issn.0577-7402.2016.05.12

  4. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  5. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  6. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  7. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Baig, A.R.

    1996-05-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important parameters of the Pakistan Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety point-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author) 12 figs

  8. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  9. Technical memorandum: instrumentation for APT and LTPP

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2006-01-01

    Full Text Available . In these phases, the parameters to be monitored on APT and LTPP sections have been identified, appropriate instruments and sensors for monitoring these parameters have been identified, and recommendations made regarding new developments, required upgrading...

  10. Instruments of Transformative Governance

    DEFF Research Database (Denmark)

    Borrás, Susana

    production and distribution channels. PDPs aim at overcoming current market and government failures by pooling resources in the attempt to solve this global social challenge. Thus, PDPs are a case of instruments of transformative research and innovation, operating in a transnational governance context....... They exhibit three novelties: they address strategic long-term problems in a holistic manner, set substantive output-oriented goals, and are implemented through new organizational structures. After characterizing the different types of current PDPs and the context in which they emerged, the paper examines...

  11. COMPARISON OF VARIOUS APPROACHES TO MULTI-CHANNEL INFORMATION FUSION IN C-OTDR SYSTEMS FOR REMOTE MONITORING OF EXTENDED OBJECTS

    Directory of Open Access Journals (Sweden)

    A. V. Timofeev

    2015-01-01

    Full Text Available The paper presents new results concerning selection of optimal information fusion formula for ensembles of COTDR channels. Here C-OTDR is a coherent optical time domain reflectometer. Each of these channels provides data for appropriate automatic classifier which is designed to classify the elastic vibration sources in the multiclass case. Those classifiers form a so-called classifiers ensemble. Ensembles of Lipschitz Classifiers were considered. In this case the goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The Matching Pursuit Optimization Ensemble Classifiers (MPOEC, the Linear Programming Boosting (LP-Boost (LP-β and LP-B variants, the Multiple Kernel Learning (MKL, and Weighing of Inversely as Lipschitz Constants (WILC approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. The basics of these methods have been briefly described along with intrinsic features. All of those methods are based on reducing the task of choosing convex hull parameters to a solution of an optimization problem. All of the mentioned approaches can be successfully used for using in the C-OTDR system data processing. Results of practical usage are presented.

  12. Natural attenuation in a surface water channel and a coastal aquifer by monitoring presence and removal of indicator bacteria, pathogens and antibiotic resistance gene: model development

    Science.gov (United States)

    Masciopinto, Costantino; Visino, Fabrizio; Luprano, Maria Laura; Levantesi, Caterina; Tandoi, Valter

    2015-04-01

    The spreading of microbial contamination into the environment, represents a very relevant problem, which leads to an increasing health concern. For this reason, it is important to identify and characterize the extent of natural depuration in water environmental particularly for reducing the presence of faecal contamination indicator bacteria, pathogens and antibiotic resistance genes (ARG). In this study, the presence of the above reported microbial parameters was analyzed in a surface water channel and in a coastal aquifer in southern Italy (Ostuni) southern Italy, both affected by Ostuni municipal treatment plant effluents and by local run-off. Several samples were collected from surface water, flowing in channels, and from wells in our study area. In particular, the water samples were analyzed to detect 7 fecal contamination indicators (E. coli, total coliforms, Clostridium p. spores, somatic coliphages, Enterococci and heterotrophic bacteria), Salmonella spp and the presence of ARGs. The water samples were also tested for chemical constituents. Finally a mathematical model has been developed in order to simulate pathogen migration pathways in the fractured groundwater and corresponding possible mitigation of pathogens in pumping wells.

  13. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  14. A practical appreciation of the implementation of a fully computerized monitoring and control system in N4 NFP series: An advanced instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    DaCruz, P. [Atos Origin, 4, Triton Square, Regent' s Place, London NW1 3HG (United Kingdom)

    2006-07-01

    Sema Group (acquired in February 2004 by Atos Origin) was selected by EDF to design, develop and supply this system, based on their product Advanced Data Acquisition and Control System (ADACS). The purpose of this paper is to give a practical appreciation from both the demand and supply perspectives of the implementation of the fully computerized Monitoring and Control systems. This is a joint presentation by EDF and Atos Origin based on their experiences of the N4 programme.

  15. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  16. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  17. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  18. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  19. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  20. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  1. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1977-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  2. Microprocessor-assisted calibration for a remote working level monitor

    International Nuclear Information System (INIS)

    McDowell, W.P.; Keefe, D.J.; Groer, P.G.; Witek, R.T.

    1976-01-01

    A method is described for calibrating a Remote Working Level Monitor, an instrument which measures Working Level and Rn-daughter concentrations in the atmosphere. The method makes use of a microprocessor to calculate beta efficiencies for RaB and RaC from the counts accumulated in the RaA, Ra(B + C) and RaC' channels of the instrument. Both the alpha spectroscopic and total-alpha methods are used to determine the Rn-daughter concentrations. These methods require the processor to solve systems of linear equations with several unknowns. No assumptions about Rn-daughter equilibrium are made

  3. A Study on the Inter-Channel Communication Independence for SMART I and C System

    International Nuclear Information System (INIS)

    Jeong, Kwang Il; Keum, Jong Yong; Park, Je Yun

    2009-01-01

    In nuclear power plants (NPP) the greatest concern is to ensure the safety goal, so it is designed with a protection conception using diversity and redundancy methods. Usually the I and C (Instrumentation and Control) system of NPP is composed of four channels to enhance the performance of the safety functions and performs the monitoring and control functions. In these redundant structures, the most important thing is that a malfunction in one channel cannot affect the safety functions of the redundant channels. The communication network of the digital I and C system is playing a role in intra-channel communication and inter-channel communication in four-channel I and C structure. Recent licensee experience indicates that companies planning to use the interchannel communication must perform a detailed analysis of all credible failure modes. In this paper, we propose some evaluation criteria to evaluate the inter-channel communication independence of SMART I and C system and preliminary design for mitigating methodologies of each credible failure

  4. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the Interference Pattern GNSS-R Technique

    Science.gov (United States)

    Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H.

    2011-12-01

    Reflectometry using Global Navigation Satellite Systems signals (GNSSR) has been the focus of many studies during the past few years for a number of applications over different scenarios as land, ocean or snow and ice surfaces. In the past decade, its potential has increased yearly, with improved receivers and signal processors, from generic GNSS receivers whose signals were recorded in magnetic tapes to instruments that measure full Delay Doppler Maps (the power distribution of the reflected GNSS signal over the 2-D space of delay offsets and Doppler shifts) in real time. At present, these techniques are considered to be promising tools to retrieve geophysical parameters such as soil moisture, vegetation height, topography, altimetry, sea state and ice and snow thickness, among others. This paper focuses on the land geophysical retrievals (topography, vegetation height and soil moisture) performed from a ground-based instrument using the Interference Pattern Technique (IPT). This technique consists of the measurement of the power fluctuations of the interference signal resulting from the simultaneous reception of the direct and the reflected GNSS signals. The latest experiment performed using this technique over a maize field is shown in this paper. After a review of the previous results, this paper presents the latest experiment performed using this technique over a maize field. This new study provides a deeper analysis on the soil moisture retrieval by observing three irrigation-drying cycles and comparing them to different depths soil moisture probes. Furthermore, the height of the maize, almost 300 cm, has allowed testing the capabilities of the technique over dense and packed vegetation layers, with high vegetation water content.

  5. 3-D migration experiment - report 2: Instrumentation and tracers

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Gidlund, J.

    1987-11-01

    This report is one of the four reports describing the Stripa 3D experiment where water and tracer flow has been monitored in a specially excavated drift in the Stripa mine. The experiment was performed in a specially excavated drift at the 360 m level in granite. The whole ceiling and upper part of the walls were covered with more than 350 individual plastic sheets where the water flow into the drift could be collected. 11 different tracers were injected at distances between 11 and 50 m from the ceiling of the drift. The flow rate and tracer monitoring was kept up for more than two years. The tracer breakthrough curves and flow rate distributions were used to study the flow paths, velocities, hydraulic conductivities, dispersivities and channeling effects in the rock. The report describes the instrumentation developed and used as well as the tracers that were tested and used in the experiment. (orig.)

  6. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  7. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  8. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    Science.gov (United States)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the

  9. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  10. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  11. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  12. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  13. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  14. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  15. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  16. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Science.gov (United States)

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  17. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Frederic Bailleul

    Full Text Available The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO. Southern elephant seals (Mirounga leonina proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project. Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  18. Instrumentation for Infrared Airglow Clutter.

    Science.gov (United States)

    1987-03-10

    gain, and filter position to the Camera Head, and monitors these parameters as well as preamp video. GAZER is equipped with a Lenzar wide angle, low...Specifications/Parameters VIDEO SENSOR: Camera ...... . LENZAR Intensicon-8 LLLTV using 2nd gen * micro-channel intensifier and proprietary camera tube

  19. Improving the monitoring of a dumping site in a dynamic environment. Example of the Octeville site (Bay of Seine, English Channel).

    Science.gov (United States)

    Méar, Yann; Poizot, Emmanuel; Murat, Anne; Beryouni, Khadija; Baux, Noémie; Dauvin, Jean-Claude

    2018-04-01

    Dredged sediments have different physical and chemical characteristics compared with the sediments in place, which generates multiple effects on the environment. In this study, we show that the sampling strategy used to monitor the effects of dredge spoil deposition on the surrounding environment can lead to different interpretations. It appears that sediment sample replicates may or may not be necessary, depending on the studied area, the prevailing environmental forcings before sediment sampling and the combination of these two factors. The proposed modus operandi allows us to optimize both the confidence on the obtained results and the cost of the sediment studies (sampling and laboratory analyses). The results are based on the sediment fine fraction, which is considered as a key environmental component due, for example, to its strong association with the structure of benthic faunal communities as well as its role in the build-up of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CODcr在线监测废液中银的回收%The Recycling of Silver in Wastewater CODcr On-line Monitoring Instrument

    Institute of Scientific and Technical Information of China (English)

    汤爱华; 黄现统; 曹洪涛

    2012-01-01

    在线监测废液中含有大量的金属银,也含有对环境污染严重的汞及六价铬。文章探讨了一种简单的实验室法回收金属银,在氨-pH9.182的标准缓冲溶液体系中,实现银的还原,得到高纯度的银粉。对废液进行了还原、沉淀、中和、吸附一系列处理后,水质达到国家排放标准。%In the online monitoring waste liquid includes the massive metal silver, also contains mercury and hexavalent chromium serious environmental pollution. The paper discussed a simple laboratory method to recover metallic silver, in ammonia-pH 9.182 standard buffer solution system, restore silver to obtain high-purity silver. As to liquid waste, reduction, precipitation, neutralization and adsorption are used. Passing through a series of processing, the water quality achieves the national emission standard.