WorldWideScience

Sample records for installed rogowski coil

  1. Zero current measurements using the Rogowski coil

    International Nuclear Information System (INIS)

    Gregor, J.; Jakubova, I.; Kadlec, P.; Senk, J.; Vavra, Z.

    1997-01-01

    The zero current measurements using the Rogowski coil carried out on the model of the extinguishing chamber of hv SF 6 circuit breaker with self-flow generation are presented in the paper. The time course of the post-arc current obtained by numerical integration of the measured induced voltage of the Rogowski coil gives information not only about the value of the residual current after the successful interruption but also about the current changes connected with the dynamic behaviour of the arc during its quenching. (author)

  2. Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil

    Science.gov (United States)

    Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing

    2017-05-01

    The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.

  3. Development of the ITER Continuous External Rogowski: From conceptual design to final design

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Philippe, E-mail: philippe.jacques.moreau@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Spuig, Pascal; Le-luyer, Alain; Malard, Philippe; Cantone, Bruno; Pastor, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Vayakis, George; Delhom, Dominique [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arshad, Shakeib [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lister, Jonathan; Toussaint, Matthieu; Marmillod, Philippe; Testa, Duccio; Schlatter, Christian [Ecole polytechnique fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, 1015 Lausanne (Switzerland); Peruzzo, Simone [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • ITER Continuous External Rogowskis are designed for plasma current measurement. • CER are located in the casing of Toroidal Field Coils and will operate at 4.5 K. • The design of the sensors has been completed and validated through prototypes. • Detailed assembly procedure inside the toroidal field coil casing has been defined. • The CER has passed all the ITER and F4E design review procedures. - Abstract: In ITER, an accurate measurement of plasma current, with high reliability, is mandatory as this parameter is used to demonstrate licensing compliance with regulatory limits. For that purpose, several independent measurements based on magnetic diagnostics have been proposed. Rogowski coils are standard inductive sensors for current measurement in many applications. In ITER, three continuous external Rogowski coils are to be installed in the casing of the toroidal field coils. These sensors are remarkable from several points of view: overall length is about 40 m, high sensitivity needed, located in the toroidal field coil casing at 4.5 K and complex 3D routing with tight bending radius of 50 mm. Since 2005 an extensive work has been carried out to develop and analyze several design options complying with ITER specifications. Prototypes of a selected continuous external Rogowski design were built and tested successfully in terms of electrical, thermal, mechanical and vacuum characteristics. Finally a detailed assembly procedure inside the toroidal field coil casing has been defined according to the coil manufacturing and assembly constraints.

  4. Rogowski Loop design for NSTX

    International Nuclear Information System (INIS)

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-01

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies

  5. Research of Measurement Circuits for High Voltage Current Transformer Based on Rogowski Coils

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2014-02-01

    Full Text Available The electronic current transformer plays an irreplaceable position in the field of relay protection and current measurement of the power system. Rogowski coils are used as sensor parts, and in order to improve the measurement accuracy and reliability, the circuits at the high voltage system are introduced and improved in this paper, including the analog integral element, the filtering circuit and the phase shift circuit. Simulations results proved the reliability and accuracy of the improved circuits.

  6. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil.

    Science.gov (United States)

    Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao

    2018-03-13

    An innovative array of magnetic coils (the discrete Rogowski coil-RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC's interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.

  7. Plasma column displacement measurements by modified Rogowski sine-coil and Biot-Savart/magnetic flux equation solution on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Razavi, M.; Mollai, M.; Khorshid, P.; Nedzelskiy, I.; Ghoranneviss, M.

    2010-01-01

    The modified Rogowski sine-coil (MRSC) has been designed and implemented for the plasma column horizontal displacement measurements on small IR-T1 tokamak. MRSC operation has been examined on test assembly and tokamak. Obtained results show high sensitivity to the plasma column horizontal displacement and negligible sensitivity to the vertical displacement; linearity in wide, ±0.1 m, range of the displacements; and excellent, 1.5%, agreement with the results of numerical solution of Biot-Savart and magnetic flux equations.

  8. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil

    Directory of Open Access Journals (Sweden)

    Mengyuan Xu

    2018-03-01

    Full Text Available An innovative array of magnetic coils (the discrete Rogowski coil—RC with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.

  9. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil

    Science.gov (United States)

    Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao

    2018-01-01

    An innovative array of magnetic coils (the discrete Rogowski coil—RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors. PMID:29534006

  10. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)

    2009-12-19

    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  11. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  12. Toroid field coil shear key installation study, DOE task No. 22

    International Nuclear Information System (INIS)

    Jones, C.E.; Meier, R.W.; Yuen, J.L.

    1995-01-01

    Concepts for fitting and installation of the scissor keys, triangular keys, and truss keys in the ITER Toroidal Field (TF) Coil Assembly were developed and evaluated. In addition, the process of remote removal and replacement of a failed TF coil was considered. Two concepts were addressed: central solenoid installed last (Naka Option 1) and central solenoid installed first (Naka Option 2). In addition, a third concept was developed which utilized the favorable features of both concepts. A time line for installation was estimated for the Naka Option 1 concept

  13. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Ph., E-mail: philippe.jacques.moreau@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D. [Centre de Recherches en Physique des Plasmas, EPFL (Switzerland); Peruzzo, S. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Knaster, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); IFMIF EVEDA, Rokkasho (Japan); Vayakis, G.; Hughes, S.; Patel, K.M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed.

  14. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    International Nuclear Information System (INIS)

    Moreau, Ph.; Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P.; Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D.; Peruzzo, S.; Knaster, J.; Vayakis, G.; Hughes, S.; Patel, K.M.

    2013-01-01

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed

  15. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  16. Assembly, installation and commissioning of the new halo current sensors system for JET

    International Nuclear Information System (INIS)

    Peruzzo, S.; Fullard, K.; Grando, L.; Huntley, S.; Lam, N.; Pomaro, N.; Riccardo, V.; Sonato, P.

    2007-01-01

    This paper presents the status of the halo current sensors (HCS) diagnostic enhancement project for JET. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, with a total of 24 Rogowski coils and 5 toroidal field pick-up coils. These sensors are meant to provide a measurement of the current flowing through each single tile of the upper dump plate and an estimate of the total poloidal halo current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/2005 shutdown and the acquisition of signals started during the restart phase of the machine in autumn 2005. This paper firstly summarises the critical aspects encountered during the final phase of the procurement of the system and the in-vessel installation, which was accomplished using the remote handling system. The paper then focuses on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns

  17. Assembly, installation and commissioning of the JET-EP Halo Current Sensors system

    International Nuclear Information System (INIS)

    Peruzzo, S.; Grando, L.; Pomaro, N.; Sonato, P.; Fullard, K.; Huntley, S.; Lam, N.; Riccardo, V.

    2006-01-01

    The Halo Current Sensors (HCS) system has been developed under the JET-EP enhancement programme, to allow a more detailed study of the Halo Currents flowing in the upper part of the JET vessel. A better understanding of the origin, distribution and scaling of Halo Currents in tokamaks is one of the critical issues for any next step device, like the ITER project, in particular for the design of the plasma facing components and for a reliable plasma operation at high performances. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, each containing up to eight Rogowski coils and two toroidal field pick-up coils. The Rogowski coils are designed to directly measure the current flowing through the tiles of the upper dump plate, whereas the toroidal field pick-up coils are conceived to give an estimate the total poloidal Halo Current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/05 Shutdown and started the acquisition of signals during the restart phase of the machine in autumn 2005. This paper will highlight and discuss the critical aspects and the lessons learned during the final phase of the procurement of the system; the in-vessel installation, accomplished by means of remote handling system, and the pre-commissioning tests executed on the system will be described in detail. The paper will then focus on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns. Since the beginning of operation the HCS signals showed the effects of several noise sources, increased by the low sensitivity of the probes, due to design geometrical constraints. The expected pick-up of stray magnetic fields was quite easily compensated through a correlation with other existing magnetic diagnostics. Moreover the

  18. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    Tsuji, H.

    1999-01-01

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  19. Calibration of power systems and measurements of discharge currents generated for different coils in the EGYPTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Hegazy, H.; Žáček, František

    2006-01-01

    Roč. 25, 1-2 (2006), s. 73-86 ISSN 0164-0313 Institutional research plan: CEZ:AV0Z20430508 Keywords : small tokamaks * EGYPTOR tokamak * Rogowski coil Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.381, year: 2006

  20. Magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Ming-Wu, Fan [Institute of Atomic Energy, Peking (China)

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake.

  1. A magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    International Nuclear Information System (INIS)

    Yan Chen; Fan Ming-Wu

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake

  2. Current distribution between petals in PF-FSJS sample

    International Nuclear Information System (INIS)

    Zani, L.

    2003-01-01

    6 Rogowski coils have been installed on each leg of each of the 12 petals in the PF-FSJS sample (poloidal field - full size joint sample) in order to diagnostic current. It appears that Rogowski signal seem reliable for current distribution analysis (Ampere's law is checked and reproducibility is assured) but there is some limitations for qualitative diagnostics. In the series of transparencies results are detailed for the PU1 position, for both leg and right legs and for various unique-angle shift (Δθ) configurations but only results for 0 < Δθ < -5 are consistent

  3. Magnetic diagnostics at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, K.; Andreeva, T.; Endler, M.; Hathiramani, D.; Grulke, O.; Neuner, U.; Svensson, J.; Thomsen, H.; Geiger, J.; Werner, A. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Cardella, A. [JT-60SA project, F4E c/o IPP, Garching (Germany); Carvalho, B. [Instituto de Plasmas e Fusao Nuclear Instituto Superior Tecnico, Lisbon (Portugal)

    2016-07-01

    An arrangement of magnetic sensors has been installed at the stellarator Wendelstein 7-X (W7-X) including over 300 individual 3D shaped sensors like diamagnetic loops, Rogowski, Saddle and Mirnov coils. Future long pulse operation of up to 1800 s demands an optimization of materials, thermal shielding and signal integration accuracy. The main objectives are the reconstruction of magnetic equilibria and monitoring the diamagnetic plasma energy. Generally, in stellarators a toroidal current drive is not necessary to maintain confinement. Minimization of toroidal currents is in fact one of the major optimization criteria of W7-X. It will be investigated by continuous and segmented Rogowski coils and Saddle coils measuring e.g. bootstrap and Pfirsch-Schlueter currents and their spatial distributions. A set of 125 toroidally and poloidally arranged Mirnov coils will give information on MHD and Alfven mode activity and edge localized modes (ELMs). A detailed overview of the magnetic diagnostic system is outlined, and initial results obtained during the first operation phase of W7-X are presented.

  4. Characterization of light ion beams generated by a plasma focus device

    International Nuclear Information System (INIS)

    Koo, Bon Cheul

    1999-02-01

    Plasma focus device has been studied as neutron and X-ray sources generated from the high pressure fusion reaction during Z-pinch. Recently, the scope of the device is focused on efficient neutron generation, X-ray lithography, preliminary fusion experiment, and ion/electron beam generation devices. A Hexagonal Beam Generator with six parallel capacitors has been developed and generated ion beams from 30kJ(C=6 μ F, V= 100kV) maximum energy. To find the optimum condition of ion beam generation, the correlation among charging voltage(20∼30kV), operation pressure of chamber(0.1∼5 torr), and length of electrode has been studied. To measure ion beam, a Faraday Cup and 3 Rogowski coils were installed. Energy of ion beam was obtained by adopting time-of -flight method between Rogowski coils

  5. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  6. Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak

    International Nuclear Information System (INIS)

    Khorshid, Pejman; Razavi, M.; Molaii, M.; Ghoranneviss, M.; TalebiTaher, A.; Arvin, R.; Mohammadi, S.; NikMohammadi, A.

    2008-01-01

    A method for the measurement of the plasma position in the IR-T1 tokamak in toroidal coordinates is developed. A sine-coil, which is a Rogowski coil with a variable wiring density is designed and fabricated for this purpose. An analytic solution of the Biot-Savart law, which is used to calculate magnetic fields created by toroidal plasma current, is presented. Results of calculations are compared with the experimental data obtained in no-plasma shots with a toroidal current-carrying coil positioned inside the vessel to simulate the plasma movements. The results are shown a good linear behavior of plasma position measurements. The error is less than 2.5% and it is compared with other methods of measurements of the plasma position. This method will be used in the feedback position control system and tests of feedback controller parameters are ongoing

  7. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  8. Development of magnetic sensors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, M., E-mail: takechi.manabu@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Matsunaga, G.; Sakurai, S.; Sasajima, T.; Yagyu, J.; Hoshi, R.; Kawamata, Y.; Kurihara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nishikawa, T.; Ryo, T.; Kagamihara, S. [Okazaki Manufacturing Company, Kobe, Hyogo 651-0087 (Japan); Nakamura, K. [RIAM, Kyushu Univ., Kasuga, Fukuoka 816-8580,Japan (Japan)

    2015-10-15

    JT-60SA has been designed and is being constructed to demonstrate and develop steady-state high-beta operation. Resistive wall mode (RWM) control, error field correction, and edge-localized mode (ELM) control will be performed using in-vessel coils. For these controls, we have developed a biaxial magnetic sensor to determine 3D magnetic configuration of the plasma. Moreover, for obtaining basic information about JT-60SA plasma, magnetic sensors, in particular, one-turn loops, Rogowski coils, diamagnetic loops, and saddle coils have been developed. Because the length of the vacuum vessel in the poloidal direction of JT-60SA is 16 m and almost twice as long as that of JT-60U, the length of the Rogowski coil and the diamagnetic loop of JT-60SA are also twice as long as those on JT-60U. We have devised new types of sensors and a connector for the mineral-insulated cable because construction and installation of these sensors are much more difficult in JT-60SA. We will report the design and specification of the magnetic sensors for JT-60SA from the physics and engineering aspects.

  9. Design developments for the ITER in-Vessel equilibrium pick-up Coils and Halo current Sensors

    International Nuclear Information System (INIS)

    Chitarin, G; Grando, L.; Pomaro, N.; Peruzzo, S.; Taccon, C.

    2006-01-01

    The ITER magnetic diagnostics must provide essential information to be used both for plasma diagnostic purposes, and as feedback signals for the machine control loops. Some of the sensors have to be installed in a hostile environment characterized by severe neutron irradiation and plasma heat loads, which can reduce the sensor lifetime (due to mechanical and electrical damage) and also generate undesired DC signals, which might compromise the accuracy of the measurements obtained by time-integration. The paper is focused on the design development and optimization of a typical in-vessel tangential pick-up Coil. The work is aimed to achieve the required measurement precision in spite of Radiation Induced Electromotive Force (RIEMF) and Radiation Induced Thermo-Electric Sensitivity (RITES), which have recently been documented to take place in Mineral Insulated Cables (MIC). To this purpose, a substantial reduction of the thermal gradient and the maximum temperature due to nuclear heating in the pick-up coils is considered necessary. Within the limits of several heavy engineering constraints, a new concept of magnetic pick up coil has been developed. A winding made of a ceramic-coated conductor (instead of a MIC) and '' impregnated '' with ceramic filler is proposed. Different material choices for the coil support structure have been investigated. Similar issues are related to the Halo Sensor design. The possibility of replacing the circular tubes used as support of the Rogowski coils with a ceramic support in order to avoid the non-linear effect of the magnetic material has also been studied. The replacement of the MIC of the winding with a ceramic-coated wire is also investigated in order to increase of the effective area of the sensor. The paper includes also a critical review of each stage of the measurement chain (probes, cabling, conditioning electronics and data acquisition) in order to assess the compliance with the overall system precision that is required for

  10. Design of electron detection system for pulse electron irradiator

    International Nuclear Information System (INIS)

    Anjar Anggraini H; Agus Purwadi; Lely Susita RM; Bambang Siswanto; Agus Wijayanto

    2016-01-01

    Design of electron detection system for pulse electron irradiator has been conducted on the Plasma Cathode Electron Source by Rogowski coil technique. Rogowski coil has ability to capture the induced magnetic field of the electric current, subsequent induced magnetic field will provide voltage after passing integrator. This diagnostic used combination of copper wire, ferrite and RC integrator. The design depends on the pulse width and the value of plasma current that passes through the coil, thus the number of windings, coil area and integrator can be designed. For plasma spots current of IDPS expected to be 10 A and pulse width 10 μs the Rogowski coil using MnZn ferrite with inductance L = 0.275 mH and permeability μr = 200 H/m. For the current of plasma arc ADPS expected to be 100 A and pulse width 100 μs by using inductance L=1.9634 mH and permeability μr = 6256 H/m. Electron current in extraction system expected to be 30 A and pulse width 100 μs the Rogowski coil using inductance L=51.749 mH and permeability μr= 4987 H/m. Design integrator used is the type of RC integrator. (author)

  11. Current Monitoring System for ITER Like ICRH Antenna

    International Nuclear Information System (INIS)

    Argouarch, A.

    2006-01-01

    On TS antennas, the power transfer optimization from ICRH antenna to Plasma load is performed using feedback internal matching system. Experimental handling is required to mach the reactive impedance accordingly to the fluctuant plasma loading. As part of the development of the new ICRH prototype antenna, an additional measurement system based on Rogowski coils was developed to monitor the current distribution in antenna straps. The objective is to control module and phase of the antenna current straps with measurement provided by the coil system. Matching capacitors values, generators power and phase can also be controlled using the output of the devices, improving the real time matching control of the array. This paper details the new measurement layout, the Rogowski coil, and the whole system connected on each strap design for RF currents measurement between 40 MHz - 60 MHz for maximum amplitude of 1 kA. On the new ICRH prototype antenna, the measurement coils are coupled to the point where the strap currents are short circuited to the frame. The module and phase measurements are performed with the coils by direct magnetic induction in a vacuum and high temperature environment. Also, the Rogowski coils were characterized at low level power with vector network analyzer and the design adapted in order to obtain a controlled and reproducible gain in the desire bandwidth. The transconductive function is established with an experimental gain near -80 dB between primary circuit and inductive signal generated by the Rogowski coil. In a second step, the system with its associated electronic was qualified under high RF power. First results with high RF current (closed to 500 A at 57 MHz) match the desire Rogowski coil response. Compromises with electrical response at low power level and the coil under thermal/RF stresses were the most challenging part of the development. The overall response of the system and the current module/phase measurements are promising. A proper

  12. Instrumentation and test of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J.A.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1985-01-01

    Just before Christmas 1983 the fabrication of the Swiss LCT-coil was finished. Tests at ambient temperature were performed on the factory site and after delivery in Oak Ridge. To avoid an undesirable delay of the rescheduled Partial-Array Test it was agreed to install the coil without its superconducting bus. In July 1984 the Swiss LCT-coil was successfully cooled down to LHe temperature together with the other two fully installed coils. Besides the cooling system, the instrumentation, measured parameters of the coil and some preliminary results obtained during the ongoing Partial-Array Test are presented

  13. Diseño y construcción de bobinas de Rogowski modificadas de bajo costo y alto desempeño

    Directory of Open Access Journals (Sweden)

    Diego Seuret Jiménez

    2014-01-01

    Full Text Available Las bobinas Rogowski son dispositivos sencillos, confiables y versátiles para hacer mediciones de corriente en una amplia gama de aplicaciones que van, desde dispositivos microelectrónicos hasta sistemas de alta potencia en instalaciones industriales. Se construyó una bobina de Rogowski y el circuito de acondicionamiento de la señal para poder hacer mediciones de su respuesta ante estímulos eléctricos y llevar a cabo un análisis cualitativo. Adicionalmente, a partir del modelo matemático de la bobina, se hizo una modificación en la estructura interna de la misma para obtener voltajes de mayor magnitud y facilitar la lectura en instrumentos de medición eléctrica. Estos resultados se compararon con una bobina comercial estándar y las mediciones del voltaje de salida de la bobina Rogowski modificada muestran una señal con menos ruido y de mayor magnitud. Al haber aumentado la relación señal ruido en el sistema, el circuito de integración y amplificación arrojan resultados esperados.

  14. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  15. Effect of plasma current breakaway on the operating stability of the superconducting coil of the toroidal magnetic field in the T-10M installation

    International Nuclear Information System (INIS)

    Kostenko, A.I.; Kravchenko, M.Yu.; Monoszon, N.A.; Trokhachev, G.V.

    1979-01-01

    The method and calculation results of stability of a superconducting coil of the toroidal magnetic field in the T-10M installation to plasma current breakaway are presented. The calculations were performed for two values of the magnetic field induction in the centre of the plasma cross section: 3.5 and 5 T. The calculation of energy losses and heating of the superconducting coil was performed assuming the plasma current in case of breakaway decreases to zero with an infinite rate, so that the estimations obtained are maxiaum. It is shown that in case of 3.5 T induction the superconducting coil exhibits resistance to plasma current breakaways, and in case of 5 T it is necessary to use electromagnetic screening to provide stability

  16. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  17. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  18. Helical coil alignment in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Warwick, J.E.; Whitson, J.C.

    1985-01-01

    This paper presents a brief overview of the helical coil design concept, detailed descriptions of the method for installation and alignment, and discussions of segment installation and alignment equipment. Alignment is accomplished by optical methods using electronic theodolites connected to a microcomputer to form a coordinate measurement system. The coordinate measurement system is described in detail, along with target selection and fixturing for manipulation of the helical coil segments during installation. In addition, software is described including vendor-supplied software used in the coordinate measurement system and in-house-developed software used to calibrate segment and positioning fixture motion. 2 refs., 8 figs

  19. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  20. Manufacture of EAST VS In-Vessel Coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Du, Shijun; Jin, Huan; Yu, Min; Han, Qiyang; Wan, Jiansheng; Liu, Bin; Qiao, Jingchun; Liu, Xiaochuan; Li, Chang; Cai, Denggang; Tong, Yunhua

    2013-01-01

    Highlights: • ITER like Stainless Steel Mineral Insulation Conductor (SSMIC) used for EAST Tokamak VS In-Vessel Coil manufacture first time. • Research on SSMIC fabrication was introduced in detail. • Two sets totally four single-turn VS coils were manufactured and installed in place symmetrically above and below the mid-plane in the vacuum vessel of EAST. • The manufacture and inspection of the EAST VS coil especially the joint for the SSMIC connection was described in detail. • The insulation resistances of all the VS coils have no significant reduction after endurance test. -- Abstract: In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein

  1. TFTR Inner Support Structure final assembly and installation

    International Nuclear Information System (INIS)

    Rocco, R.E.; Brown, G.; Carglia, G.; Heitzenroeder, P.; Koenig, F.; Mookerjee, S.; Raugh, J.

    1983-01-01

    The Inner Support Structure (ISS) of the TFTR provides a specific level of restraint to the net centering force and overturning moment produced by the Toroidal Field (TF) coils and to the vertical forces produced by the Inner Poloidal Field (PF) coils. This is accomplished consistent with the need for four radial dielectric breaks running the entire length of the ISS to prevent eddy current loops. A brief description of the major components, method of manufacture and material selection of the ISS and PF coils is presented. Particular attention is given to the integration of the PF coils and the ISS components into the total assembly and the installation of strain gauges and crack monitors on the ISS. The requirements of no gaps at the interfaces of the ISS teeth at all three horizontal planes is discussed. The problem encountered with achieving the no gap requirement and the successful resolution of this problem, including its impact on installation of the ISS, is also discussed. The installation of the ISS, including setting in position, preloading with TF coil clips, and final tensioning of the tension bars is discussed. A brief description of the lower and upper lead stem splicing operation is presented. Subsequent to the final assembly, electrical tests were performed prior to and after installation on the TFTR machine. An overview of the tests and their results is presented

  2. Internal trim coils for CBA superconducting magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Aronson, S.; Cottingham, J.G.; Garber, M.; Hahn, H.; Sampson, W.B.

    1983-01-01

    In order to correct iron saturation effects and shape the beam working line, superconducting trim coils have been constructed, which operate inside the main coils. Detailed studies of mechanical properties, quench behavior, fields produced, and hysteresis have lead to the production of accelerator-quality coils generating the required-strength harmonics up to cos (7theta). These are routinely installed in CBA main magnets and operate at 80% of short sample with negligible training in an ambient field of more than 5.3T

  3. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  4. Design features of the KSTAR in-vessel control coils

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.K. [National Fusion Research Institute (NFRI), 52 Yeoeun-dong, Yusung-ku, Daejeon, 305-333 (Korea, Republic of)], E-mail: hkkim@nfri.re.kr; Yang, H.L.; Kim, G.H.; Kim, Jin-Yong; Jhang, Hogun; Bak, J.S.; Lee, G.S. [National Fusion Research Institute (NFRI), 52 Yeoeun-dong, Yusung-ku, Daejeon, 305-333 (Korea, Republic of)

    2009-06-15

    In-vessel control coils (IVCCs) are to be used for the fast plasma position control, field error correction (FEC), and resistive wall mode (RWM) stabilization for the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The IVCC system comprises 16 segments to be unified into a single set to achieve following remarkable engineering advantages; (1) enhancement of the coil system reliability with no welding or brazing works inside the vacuum vessel, (2) simplification in fabrication and installation owing to coils being fabricated outside the vacuum vessel and installed after device assembly, and (3) easy repair and maintenance of the coil system. Each segment is designed in 8 turns coil of 32 mm x 15 mm rectangular oxygen free high conductive copper with a 7 mm diameter internal coolant hole. The conductors are enclosed in 2 mm thick Inconel 625 rectangular welded vacuum jacket with epoxy/glass insulation. Structural analyses were implemented to evaluate structural safety against electromagnetic loads acting on the IVCC for the various operation scenarios using finite element analysis. This paper describes the design features and structural analysis results of the KSTAR in-vessel control coils.

  5. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  6. Upgrade of DC power supply system in ITER CS model coil test facility

    International Nuclear Information System (INIS)

    Shimono, Mitsugu; Uno, Yasuhiro; Yamazaki, Keita; Kawano, Katsumi; Isono, Takaaki

    2014-03-01

    Objective of the ITER CS Model Coil Test Facility is to evaluate a large scale superconducting conductor for fusion using the Central Solenoid (CS) Model Coil, which can generate a 13T magnetic field in the inner bore with a 1.5 m diameter. The facility is composed of a helium refrigerator / liquefier system, a DC power supply system, a vacuum system and a data acquisition system. The DC power supply system supplies currents to two superconducting coils, the CS Model Coil and an insert coil. A 50-kA DC power supply is installed for the CS Model Coil and two 30 kA DC power supplies are installed for an insert coil. In order to evaluate superconducting performance of a conductor used for ITER Toroidal Field (TF) coils whose operating current is 68 kA, the line for an insert coil is upgraded. A 10 kA DC power supply was added, DC circuit breakers were upgraded, bus bars and current measuring instrument were replaced. In accordance to the upgrade, operation manual was revised. (author)

  7. Requirements for qualification of manufacture of the ITER Central Solenoid and Correction Coils

    Energy Technology Data Exchange (ETDEWEB)

    Libeyre, Paul, E-mail: paul.libeyre@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Reiersen, Wayne [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Dolgetta, Nello; Jong, Cornelis; Lyraud, Charles; Mitchell, Neil; Laurenti, Adamo [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Sgobba, Stefano [CERN, CH-1211 Genève 23 (Switzerland); Turck, Bernard [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Martovetsky, Nicolai; Everitt, David; Freudenberg, K.; Litherland, Steve; Rosenblad, Peter [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Smith, John; Spitzer, Jeff [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Wei, Jing; Dong, Xiaoyu; Fang, Chao [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); and others

    2015-10-15

    Highlights: • A manufacturing line is installed for the ITER Correction Coils. • A manufacturing line is under installation for the ITER Central Solenoid. • Qualification of the manufacturing procedures has started for both manufacturing lines and acceptance criteria set. • Winding procedure of Correction Coils is qualified. - Abstract: The manufacturing line of the ITER Correction Coils (CC) at ASIPP in Hefei (China) was completed in 2013 and the manufacturing line of the ITER Central Solenoid (CS) modules is under installation at General Atomic premises in Poway (USA). In both cases, before starting production of the first coils, qualification of the manufacturing procedures is achieved by the construction of a set of mock-ups and prototypes to demonstrate that design requirements defined by the ITER Organization are effectively met. For each qualification item, the corresponding mock-ups are presented with the tests to be performed and the related acceptance criteria. The first qualification results are discussed.

  8. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  9. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  10. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  11. Study on Pole Arrangement of the CEDM Coils

    International Nuclear Information System (INIS)

    Park, Jin Seok; Lee, Myoung Goo; Kim, Hyun Min; Cho, Yeon Ho; Choi, Taek Sang

    2013-01-01

    The coil stack assembly is important for reliable operation of the CEDM, there have been efforts to improve the design by optimizing the design parameters such as dimensions and winding turns. However, magnetic forces of the CEDM can also change by different pole arrangement even if their design parameters are the same. Since the latch coil and lift coil are installed connected to each other, they produce magnetically coupled field when they are energized at the same time. This coupling field can affect the magnetic force of the CEDM significantly. In this paper, coil pole arrangement effects are studied. Electro-magnetic analysis is performed for the different pole arrangements of the CEDM coils to calculate the magnetic forces. Pole arrangement effects on magnetic forces were studied by static analysis of the CEDM magnetic field. Magnetic forces were calculated and compared for the two different pole arrangements of the coils. The results show that the magnetic poles of the lift coil and latch coil shall be arranged to have the same magnetic pole direction to achieve higher magnetic force

  12. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    Science.gov (United States)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  13. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  14. Electromagnetic results of the Japanese LCT coil's domestic test

    International Nuclear Information System (INIS)

    Nishi, Masataka; Okuno, Kiyoshi; Takahashi, Yoshikazu; Tsuji, Hiroshi; Ando, Toshinari; Shimamoto, Susumu

    1984-01-01

    The domestic test of the Japanese LCT coil was carried out in 1982. During this test, the coil was charged up to the single coil's 100% state (10.22kA, 6.4T, 106MJ) four times and experienced no quenche. at the 100% charging state, coil stability was tested by using heaters installed in the conductor. A half turn length normal zone (about 5 m) generated by heaters was spontenously disappeared in 2 second. This normalized zone included the highest magnetic field position. The transport current which gives the stable limit is extraporated to be about 12.5kA at 8T by this test result. The dump test was carried out also from the 100% charging state. At that time, about 90% of the coil's stored energy was extracted by the dump resistor and the coil was not damaged. (author)

  15. A Conceptual Design Study for the Error Field Correction Coil Power Supply in JT-60SA

    International Nuclear Information System (INIS)

    Matsukawa, M.; Shimada, K.; Yamauchi, K.; Gaio, E.; Ferro, A.; Novello, L.

    2013-01-01

    This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EFCC consists of eighteen sector coils installed inside the vacuum vessel, six in the toroidal direction and three in the poloidal direction, each one rated for 30 kA-turn. As a result, star point connection is proposed for each group of six EFCC coils installed cyclically in the toroidal direction for decoupling with poloidal field coils. In addition, a six phase inverter which is capable of controlling each phase current was chosen as PS topology to ensure higher flexibility of operation with reasonable cost.

  16. Design Of JET ELM Control Coils For Operation At 350 C

    International Nuclear Information System (INIS)

    Zatz, I.J.; Baker, R.; Brooks, A.; Cole, M.; Neilson, G.H.; Lowry, C.; Mardenfeld, M.; Omran, H.; Thompson, V.; Todd, T.

    2010-01-01

    A study has confirmed the feasibility of designing, fabricating and installing resonant magnetic field perturbation (RMP) coils in JET1 with the objective of controlling edge localized modes (ELM). A system of two rows of in-vessel coils, above the machine midplane, has been chosen as it not only can investigate the physics of and achieve the empirical criteria for ELM suppression, but also permits variation of the spectra allowing for comparison with other experiments. These coils present several engineering challenges. Conditions in JET necessitate the installation of these coils via remote handling, which will impose weight, dimensional and logistical limitations. And while the encased coils are designed to be conventionally wound and bonded, they will not have the usual benefit of active cooling. Accordingly, coil temperatures are expected to reach 350 C during bakeout as well as during plasma operations. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical coils. This has necessitated the use of an alternative copper alloy conductor C18150 (CuCrZr). More importantly, an alternative to epoxy had to be found. An R and D program was initiated to find the best available insulating and bonding material. The search included polyimides and ceramic polymers. The scope and status of this R and D program, as well as the critical engineering issues encountered to date are reviewed and discussed.

  17. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  18. Mechanical behavior of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Acerbi, E; Alessandria, F; Berthier, R; Broggi, F; Daël, A; Dudarev, A; Mayri, C; Miele, P; Reytier, M; Rossi, L; Sorbi, M; Sun, Z; ten Kate, H H J; Vanenkov, I; Volpini, G

    2002-01-01

    The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs).

  19. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  20. Current control system for superconducting coils of LHD

    International Nuclear Information System (INIS)

    Chikaraishi, H.; Yamada, S.; Inoue, T.

    1996-01-01

    This paper introduce a coil current control system of the LHD. The main part of this system consists of two VME based real time computers and a risc based work station which are connected by optical fiber link. In this computer system, a coil current controller for steady state operation of LHD which based on a state variable control theory is installed. Also advanced current control scheme, which are now developing for dynamic current control in phase II operation of LHD, are introduced. (author)

  1. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  2. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb 3 Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm 3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm 3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  3. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    International Nuclear Information System (INIS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-01-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s −1 0.005% s −1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class. (paper)

  4. Megagauss Magnetic Field Sensors Based on Ag2Te

    International Nuclear Information System (INIS)

    Stephen Mitchen; Allen L. Johnson; John W. Farley

    2006-01-01

    Pulsed power machines capable of producing tremendous energy face various diagnostic and characterizing challenges. Such devices, which may produce 10 - 100MAs, have traditionally relied on Faraday rotation and Rogowski coil technology for time-varying current measurements. Faraday rotation requires a host of costly optical components, including fibers, polarizers, retarders, lasers, and detectors, as well as setup, alignment, and time-consuming post-processing to unwrap the time-dependent current signal. Rogowski coils face potential problems such as physical distortion to the sensor itself due to the tremendous strain caused by magnetically induced pressures, which is proportional to the magnetic field squared (B2). Electrical breakdown in the intense field region is also a major concern. Other related challenges include, but are not limited to, bandwidth and inductance limitations and susceptibility issues related to electrical magnetic interference (EMI)

  5. Electromagnetic diagnostic system for the Keda Torus eXperiment

    Science.gov (United States)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on

  6. Very Fast Current Diagnostic for Linear Pulsed Beams

    Directory of Open Access Journals (Sweden)

    Nassisi Vincenzo

    2018-01-01

    Full Text Available Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn’t influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time (~100 ps, The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  7. Very Fast Current Diagnostic for Linear Pulsed Beams

    Science.gov (United States)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito

    2018-01-01

    Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  8. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  9. Cooling a solar telescope enclosure: plate coil thermal analysis

    Science.gov (United States)

    Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka

    2016-08-01

    The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin

  10. NET model coil test possibilities in the TOSKA TWIN configuration

    International Nuclear Information System (INIS)

    Gruenhagen, A.; Heller, R.; Herz, W.; Hofmann, A.; Jentzsch, K.; Kapulla, H.; Kneifel, B.; Komarek, P.; Lehmann, W.; Maurer, W.; Ulbricht, A.; Vogt, A.; Zahn, G.

    1989-07-01

    This report continues an earlier one on the possibilities of NET model coil testing in the TOSKA Upgrade facility at KfK. The investigation of a 'Cluster Test Facility' and a 'Solenoid Test Facility' is followed by the investigation of two further test arrangements. They are called 'Twin Configurations'. One common feature of both arrangements is that the EURATOM-LCT-coil delivers a background magnetic field. This coil should be operated at a temperature of 1.8 K and an enhanced current up to 20 kA compared to the LCT test where 3.5 K and up to 16 kA were the operating conditions. In one configuration the NET model test coil is adjacent to the LCT coil (ATC = Adjacent Twin Configuration), in the other one the NET model coil is inserted into the bore of LCT coil (ITC = Inserted Twin Configuration) either upright or with a 60 0 C slope. The configurations are investigated with respect to their electromagnetic mechanical and thermo-hydraulic properties. The requirements for the necessary mechanical support structure of the LCT coil were computed. Installation and cooling of the whole system were discussed. The time schedule and the costs for the test facility modification were estimated. Advantages and disadvantages for the configurations were discussed with respect to feasibility of the test arrangement and operation. (orig.) [de

  11. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  12. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  13. Adaptation of fast responding power supply for radial position control in SST-1

    International Nuclear Information System (INIS)

    Sharma, Dinesh Kumar; Patel, Kiritkumar B.; Singh, Akhilesh Kumar; Dhongde, Jasraj

    2013-01-01

    A high current, fast responding power supply was installed in 2005 for vertical stabilization of elongated plasmas in SST-1 tokamak. Presently, during initial experiments of SST-1 tokamak the need for radial control during current build-up was envisaged. For this purpose the existing power supply was suitable and the same was re-commissioned and control adaptations were carried as per experimental requirements. This paper highlights the capabilities of the power supply and details the modifications in the control interfaces and test programs for the radial control purpose. Details of the operation of the power supply along with control interfaces with performance measurements are provided. The re-commissioning provided an opportunity in the trouble shooting methods and sequential operation of the system. With the operational use on the actual coil the mutual effects are understood better and appropriate test programs are prepared. The power supply provided satisfactory performance for the intended use. In additional the system is suitable to simulate a plasma current loop to enable the testing and calibration of Rogowski coil used for plasma current measurement. (author)

  14. Industrial engineering studies for the manufacture of the ITER PF coils

    International Nuclear Information System (INIS)

    Libeyre, P.; Decool, P.; Guerin, O.; Perrella, M.; Bourquard, A.

    2007-01-01

    Industrial studies have been carried out in Europe to prepare the manufacture of the five poloidal field (PF) coils, which will be manufactured on the ITER site. A first study, carried out by Ansaldo Superconduttori, addressed the manufacturing sequence, assuming the manufacture of the PF coils inside the two buildings which will further host the cryogenic system. A second study, carried out by Alstom investigated how to achieve the manufacture of some crucial points. A new layout of the manufacturing line was proposed, aiming at manufacture of the PF2-6 coils within 36 months. A recent study performed by Alstom, assumes the manufacture of the PF coils in a single dedicated building, releasing so the constraint of meeting the deadline fixed in ITER reference scheme by the starting point of installation of the cryogenic components

  15. Measurement of toroidal plasma current in RF heated helical plasmas

    International Nuclear Information System (INIS)

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  16. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  17. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  18. Results from AFWL 230 kJ coaxial plasma gun experiments

    International Nuclear Information System (INIS)

    Hall, D.J.; Baker, W.L.; Beason, J.D.; Clouse, C.J.; Degnan, J.H.; Dietz, D.; Hackett, K.E.; Higgins, P.L.; Holmes, J.L.; Price, D.W.

    1988-01-01

    A coaxial plasma gun has been operated on the AFWL 0.5 MJ capacitor bank. A Marshall valve actuated by an explosive detonator is used to puff hydrogen gas from a small high pressure plenum into the breech of the gun. After a set delay from the explosion the capacitor bank is discharged across the electrodes of the coaxial gun. The operating mode of the gun can be changed by varying the plenum pressure and the firing delay. Over 150 shots have been fired, varying delay, plenum pressure, and initial stored energy. Initial plenum pressures were varied from 250 to 750 psi, and firing delays ranged from 0.8 msec to 2.2 msec. Experiments were conducted at 90, 176, and 230 kJ of initial stored energy (50, 70, adn 80 kV charge). Rogowski coils were used to measure current and magnetic field within the plasma at 25 axial locations along the gun. The coils were installed in grooves on the inner surface of the outer conductor. Signals from the coils were passively integrated. Integrator time constants ranged from 95 to 114 μsec. Time histories of magnetic field profiles are presented. These are used to describe the operating mode of the gun

  19. Application of HTSC coils for mitigation of VDE during a major disruption

    International Nuclear Information System (INIS)

    Yamada, T.; Uchimoto, T.; Miya, K.; Nakamura, Y.

    1998-01-01

    The authors proposed the new method to control plasma position passively with use of high Tc superconducting coils (HTSCs). HTSCs are robust against the thermal disturbance, so that they can be installed in the vicinity of plasmas. In this study, we examine that the VDEs during disruptions can be mitigated or not by using HTSC coils as a stabilizer. Shape and profile of plasmas will change considerably during a disruption, so that the linearized model cannot be applied to this problem. Tokamak Simulation Code (TSC) is employed to evaluate the stabilizing effect of HTSC during a major disruption. The configuration of International Thermonuclear Experimental Reactor (ITER) is taken as an example for numerical analyses. The result of simulations using linear model agreed with that of TSC computation. The results of the simulation show that VDEs during disruptions are mitigated due to the stabilizing effect of HTSC. The vertical instability growth rate is improved if HTSC coils are installed on the backplate. The electromagnetic forces on HTSCs during a disruption were also estimated. A design to accommodate these forces is possible without any difficulty. (author)

  20. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    Energy Technology Data Exchange (ETDEWEB)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  1. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  2. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  3. Acoustic emission measurement on large scale coils at JAERI

    International Nuclear Information System (INIS)

    Yoshida, K.; Hattori, Y.; Nishi, M.F.; Shimamoto, S.; Tsuji, H.

    1986-01-01

    The objective of acoustic emission measurement at Japan Atomic Energy Research Institute (JAERI) is an establishment of a general diagnostic method for superconducting magnet systems. Output of strain and displacement gages can not cover a whole system in monitoring premonitory phenomena of a magnet system s failure, because these sensors are mounted on points and therefore localized. Acoustic emissions can be transmitted to sensors through structural materials without electrical noise. Monitoring of acoustic emission will be one of the methods to predict a serious failure of magnet systems in a vacuum vessel. For this purpose, several sensors were installed on the Japanese LCT coil and the Test Module Coil (TMC). Some of acoustic activity was similar as seen in these coils. The correlation between voltage spikes and acoustic events is excellent during single coil charging mode, but poorer during out of plane force mode. There are no indicative acoustical phenomena before a magnet quench or during normal zone generation. The conditioning of acoustic events and voltage spikes can be seen after any cooling down. The localization of electrical insulation damage with the acoustic emission technique is one of its most useful applications

  4. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  5. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  6. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  7. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  8. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  9. Quality assurance aspects of the major procurements for the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Thompson, P.B.; Ryan, T.L.; Queen, C.C.; Halstead, E.L.; Murphy, J.L.; Wood, R.J.

    1983-01-01

    The Large Coil Test Facility (LCTF) project is comprised of the test stand, supporting cryogenic systems, instrumentation, data acquisition, and utilities necessary for testing the large superconducting coils of the Large Coil Program (LCP). A significant portion of the facility hardware has been obtained through procurement actions with industrial suppliers. This paper addresses the project's experience in formulation and execution of quality assurance (QA) actions relative to several of the major items procured. Project quality assurance planning and specific features related to procurement activities for several of the more specialized test facility components are described. These component procurements include: (1) the coil test stand's major structural item (the bucking post) purchased from foreign industry; (2) fabrication and testing of high-current power supplies; (3) industrial fabrication of specialized instrumentation (voltage-tap signal conditioning modules); and (4) fabrication, installation, and testing of the liquid helium piping system

  10. Requirements for accuracy of superconducting coils in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Yanagi, N; Ji, H; Kaneko, H; Ohyabu, N; Satow, T; Morimoto, S; Yamamoto, J; Motojima, O [National Inst. for Fusion Science, Chikusa, Nagoya (Japan); LHD Design Group

    1993-01-01

    Irregular magnetic fields resonate with the rational surface of the magnetic confinement systems, form magnetic islands and ergodic layers, and destruct the plasma confinement. To avoid this confinement destruction the requirement of an accuracy of 10[sup -4] in the magnetic field is adopted as the magnetic-accuracy design criterion for the LHD machine. Following this criterion the width of the undesirable magnetic island is kept less than one tenth of the plasma radius. The irregular magnetic field from the superconducting (SC) helical and poloidal coils is produced by winding irregularity, installing irregularity, cooling-down deformations and electromagnetic deformations. The local irregularities such as feeders, layer connections, adjacent-conductor connections of the coils also produce an error field. The eddy currents on the supporting shell structure of SC coils, the cryostat, etc. are also evaluated. All irregular effects are analyzed using Fourier decomposition and field mapping methods for the LHD design, and it is confirmed that the present design of the superconducting coil system satisfies the design criterion for these field irregularities. (orig.).

  11. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  12. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2016-06-01

    Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

  13. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  14. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  15. Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    CERN Document Server

    Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L

    2000-01-01

    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...

  16. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  17. Research Of The Efficiency Of The Wireless Power Transfer With The Employment Of DD Inductance Coils

    Directory of Open Access Journals (Sweden)

    Krainyukov Alexander

    2015-12-01

    Full Text Available The paper is devoted to using of DD inductance coils for the wireless power transfer. The aim of the given research is to determine influence of the parameters of resonance transformer on the efficiency of the wireless power transfer with the use of the DD inductance coils. Experimental installation of the wireless power transfer by a resonance inductive method was constructed. Experiments were performed with it help. Research results show influence of the distance between the coils of inductance, of the resonance transformer frequency, of the storage source voltage and of the temperature conditions on the efficiency of the wireless power transfer.

  18. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  19. Analysis and test to predict the fatigue life of the ISX-B toroidal field coils' finger joints

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Ojalvo, I.U.; Raynor, G.E.; Zatz, I.J.; Johnson, N.E.; Walls, J.C.; Nelson, B.E.; Cain, W.D.; Walstrom, P.L.; Pearce, J.W.

    1979-01-01

    A new and more rigorous structural evaluation of the ISX toroidal field (TF) coil fingers joints was undertaken to assess the effects of high-/beta/ operation of ISX-B. A new poloidal field (PF) coil set which allows high-/beta/ operation and produces larger out-of-plane loads on the TF coils was installed as part of the change to ISX-B. It was determined that the iron core significantly affects the out-of-plane load distribution and forces were calculated using the GFUN-3D code which considers 3-D iron core effects. These loads were applied to a half-symmetric finite element NASTRAN code model in which the TF coils were modeled as a string of beam elements. 8 refs

  20. Completed installations and the individual commissioning of the KSTAR MG system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Eom, Dae-young; Lee, Woo-Jin; Kong, Jong-Dea; Joung, Nam-Young; Kim, Yang-Soo; Kwon, Myeun [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Jang, Eun; Han, Chul-Woo; Lee, Sel-Ki; Kim, Gwang-Seon; Maeng, Jae-Hoon [Vitzrotech Co., Ltd, 605-2 Seonggok-dong, Danwon-gu, Ansan, Gyeonggi-do 425-833 (Korea, Republic of)

    2014-04-15

    Highlights: • All components of the MG system were made from each professional supplier and installed completely in the NFRI site. • The building and the overhead crane which need to install the MG system, were built in two sections. One is for the bearing, rotor and stator and the other section is for the VVVF and excitation system. • The dummy coil testing will commence in July 2013 and the comprehensive performance test of MG will be tested from August when the MPS commissioning is processing with superconducting coil. - Abstract: Peak power of 200 MVA is required in order to achieve the goal within a long pulse scenario for the final operation of the Korean Superconducting Tokamak Advanced Research (KSTAR). The available grid power is only 100 MVA at the National Fusion Research Institute (NFRI) site. Motor generator (MG) was considered as a method of resolving such problems. The design of the KSTAR MG system was completed in July 2010 and individual devices were produced by relevant manufacturers. The installation of individual devices was completed in December 2012. Specifically, the stator and rotor were assembled at the site due to their large size and weight. The bearings, variable voltage variable frequency (VVVF) and excitation systems were transported and installed on site after being manufactured externally. The building used for MG installation was built in 2011. With the building designed for ease of installation, an overhead crane was designed to allow access to the loading bay. In this paper, we discuss the installation of the MG system and the construction of the building suitable for installation of individual devices. In addition, performance on the test results of individual devices is also discussed.

  1. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  2. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  3. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  4. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  5. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  6. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  7. Some aspects of the design of the ITER NBI Active Correction and Compensation Coils

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Javier, E-mail: javier.alonso@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Barrera, Germán; Cabrera, Santiago; Rincón, Esther; Ríos, Luis; Soleto, Alfonso [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; Graceffa, Joseph; Shah, Darshan; Urbani, Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Water cooled coil design. • Magnetic shielding of the plasma heating Neutral Beam Injection System. • Active coils for magnetic field compensation. - Abstract: The neutral beam system for ITER consists of two heating and current drive injectors plus a diagnostic neutral beam injector. The proposed physical plant layout allows for a possible third heating injector to be installed later. For correct operation of the beam source, and to avoid deflections of the charged fraction of the beam, the magnetic field along the beam path must be very low. To minimize the stray ITER field in critical areas (ion source, acceleration grids, neutralizer, residual ion dump), a Magnetic Field Reduction System will envelop the beam vessels and the high voltage transmission lines to ion source. This whole system comprises the Passive Magnetic Shield, a set of thick steel plates, and the Active Correction and Compensation Coils, a set of coils carrying currents which depend on the tokamak stray field. This paper describes the status of the coil design, terminals and support structures, as well as a description of the calculations carried out. Most coils are suitable for removal from their final position to be replaced in case of a fault. Conclusions of the chosen design highlight the strategy for the system feasibility.

  8. Multi-field coupled sensing network for health monitoring of composite bolted joint

    Science.gov (United States)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  9. CHARGED PARTICLE MOTION IN AN EXPLOSIVELY GENERATED IONIZING SHOCK

    International Nuclear Information System (INIS)

    Boswell, Christopher J.; O'Connor, Patrick D.

    2009-01-01

    Different aspects of the plasma generated in a gas contained in a tube due to detonation of a small explosive charge located at one end of the tube are presented. The motion of the charged particles within the plasma is monitored using Rogowski coils. Using time-resolved emission spectroscopy the temperature and species in the detonation products and compressed gas behind the shock wave are recorded. From the spectral lines of the emission profiles the temperatures and electron density were evaluated to be in the vicinity of 7,000 K and 5x10 22 m -3 . An ultra fast wave traveling down the guide tube ahead of the hydrodynamic shock and causing any charged particles there to move fast enough to be detected by the Rogowski coils was recorded. From the measurements the phase velocity of the wave was calculated at 525 km/s when krypton filled the tube, and 1300 km/s in the case of argon. The temperature and density measurements are consistent with the data reported in the literature for similar tests. The electrostatic pulse measurements are a new phenomena not previously observed.

  10. Enhanced load current delivery from the SHIVA Star vacuum inductive store/plasma flow switch

    International Nuclear Information System (INIS)

    Price, D.W.; Baker, W.L.; Beason, J.D.

    1987-01-01

    The experimental results reported here were obtained from passively integrated Rogowski coils mounted in the SHIVA Star device and B located in the load and transfer regions of the device. The integrator time constant was 100 μs. Current measurements accuracy is estimated to be 5% for the Rogowski coils and 10% for B probes. B probes indicated peak currents of 13.5 MA at the breech and 13.0 MA at the muzzle with 650 ns 10-90% rise time. B probes in the implosion region indicated a current greater than 9.4 MA inside 5.5 cm radius; at that time, the muzzle current was 10.3 MA. The 10-90% rise time was 170 ns. The innermost probe indicated 7.3 MA inside 3.2 cm; at that time, the muzzle current was 9.3 MA. The 10-90% rise time at 3.2 cm was 300 ns. Timing anomalies suggested some azimuthal current asymmetry in the implosion region. The data indicate greater than 90% current delivery from the gun muzzle to just outside the initial position implosion foil and 70-80% current delivery from the gun muzzle to the partially imploded foil

  11. Power inverter design for ASDEX Upgrade saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Teschke, M., E-mail: teschke@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Suttrop, W.; Rott, M. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15

    Highlights: ► A cost effective inverter topology for AUG's 16 in-vessel saddle coils has been found. ► Use of commercially available power modules is possible. ► Exchange of reactive power between multiple inverters is possible. ► Influence of electromagnetic noise to AUG's diagnostics was measured. ► Gas insulation of electric feed through significantly depends on magnetic fields. It is protected by fast turn-off circuit. -- Abstract: A set of 16 in-vessel saddle coils has been installed in the ASDEX Upgrade (AUG) experiment since the end of 2011 [1]. To achieve full performance, it is necessary to operate them with alternating current (AC) of arbitrary waveforms. To generate spatially resolved magnetic fields, it is required to allocate separate power inverters to every single coil. Therefore, different topologies are analyzed and compared. Studies of the commutation behavior of power stages, different pulse width modulation (PWM) schemes and single-phase-to-earth fault detection are executed. Experiments to evaluate the electromagnetic interference (EMI) of possible inverter topologies on the AUG diagnostics are done as well. A special focus is put on the feasibility of analyzed topologies using industrially available and fully assembled “power modules” to minimize development effort and costs.

  12. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  13. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  14. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  15. Updating the Design of the Poloidal Field Coils for the ITER Magnet System

    International Nuclear Information System (INIS)

    Yoshida, K.; Takahashi, Y.; Mitchell, N.; Jong, C.; Bessette, D.

    2006-01-01

    be disconnected and by-passed. This implies that the remaining pancakes are operated at a higher current as the backup mode. Since all PF coils include 8 double pancakes the backup mode involves operation at a current which is 8/7 of the nominal current. Jumpers are pre-installed on the coil surface to allow this reconnection with a minimum of works in the cryostat and the conductor is designed with an extra margin. (author)

  16. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    Science.gov (United States)

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the

  17. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  18. Application of superconducting coils to VAR control in electric power systems: a proposal

    International Nuclear Information System (INIS)

    Boenig, H.J.; Hassenzahl, W.V.

    1979-11-01

    During the last eight years, static VAR-control systems with thyristor-controlled, room-temperature reactors have been used in electrical systems for voltage control and system stabilization. In this proposal, we describe a new static VAR-control system that uses an asymmetrically controlled Graetz bridge and a superconducting dc coil. Preliminary studies indicate that the proposed system will have lower overall losses and that its capital cost and electrical characteristics are comparable to those of a conventional system. Three- and four-year programs for developing the electronic circuitry and superconducting coils for VAR control, culminating in the installation and testing of an approx. 40-MVAR system, are proposed

  19. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  20. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  1. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  2. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  3. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  4. Evaluation of mechanical integrity for helical coil hold-down spring of PLUS7TM fuel

    International Nuclear Information System (INIS)

    Choi, Ki Sung; Kim, Yong Hwan; Kwon, Jung Tack; Kim, Kyu Tae

    2004-01-01

    Nuclear fuel assembly is subject to hydraulic forces generated by primary coolant flow during reactor operation. These forces may be sufficient to overcome the fuel assembly weight thereby allowing the fuel assembly to lift off of its support. To provide a positive hold-down margin against the upward coolant flow forces, helical coil springs or leaf springs are installed in the fuel assemblies. An advanced fuel for Korean Standard Nuclear Power Plants (KSNP), PLUS7 fuel has developed to get the thermal margin increase, failure free and high seismic resistance, etc. And the new designed helical coil hold-down spring was introduced into PLUS7 fuel assembly. The purpose of this paper is to evaluate the mechanical integrity for the helical coil hold-down spring of PLUS7 fuel assembly

  5. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  6. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  7. The Pre-compression System of the Toroidal Field Coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Jong, C.; Vollmann, T.; Ferrari, M.

    2006-01-01

    The Toroidal Field (TF) coils of ITER will undergo out-of-plane forces caused by the machine poloidal fields required to maintain the toroidal stability of the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the Inner Intercoil Structure (IIC), which are composed by 2 sets of 4 poloidal shear keys inserted in slots between adjacent coils placed at the top and bottom part of the inboard leg, and the Outer Intercoil Structure (OIS) formed by 4 bands of shear panels at the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations a toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN per coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by 2 sets of 3 fibre-glass epoxy composite rings submitted to a toroidal hoop force of 100 MN per set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼ 25 mm) is required, and it will be less than 30% of its ultimate stress. The imposed elongation to reach that force and the lower Young modulus of the composite compared with the stainless steel one will ease component tolerances and/or settlement effects in the final assembly. (author)

  8. Persistent current analysis of superconducting coils in a linear synchronous motor for maglev passenger transport system. Fujoshiki tetsudoyo linear doki motor ni okeru teijisoku mode chodendo coil denryu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Azusawa, T [Toshiba Corp., Tokyo (Japan)

    1994-05-20

    The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.

  9. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  10. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  11. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  12. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  13. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  14. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  15. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  16. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis.

    Science.gov (United States)

    Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne

    2011-06-28

    We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC.

  17. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  18. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  19. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  20. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  1. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  2. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  3. The pre-compression system of the toroidal field coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Ferrari, M.; Jong, C.; Vollmann, T.

    2007-01-01

    The toroidal field (TF) coils of ITER will undergo out-of-plane forces caused by the poloidal fields required to confine the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the inner intercoil structure (IIC), which is composed of two pairs (placed at the top and bottom part of the inboard leg) of four sets of poloidal shear keys inserted in slots between adjacent coils, and the outer intercoil structure (OIS) formed by four bands of shear panels on the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations at toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN/coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by two sets of three glass fibre/epoxy composite rings submitted to a toroidal hoop force of 100 MN/set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼25 mm) is required, and it reaches 1/5 of the composite presently estimated ultimate stress. The imposed elongation to reach that force and the lower Young's modulus of the composite compared with that of stainless steel will ease component tolerances and/or settlement effects in the final assembly. The paper describes the evolution in the design of the pre-compression system, from the conceptual phase when two circular cross-sections rings were considered to the present definitive one with three rectangular cross-section rings

  4. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  5. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  6. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  7. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  8. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  9. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  10. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  11. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2002-04-01

    Full Text Available Abstract Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

  12. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  13. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  14. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  15. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  16. An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection

    International Nuclear Information System (INIS)

    Tse, P W; Liu, X C; Wang, X J; Liu, Z H; Wu, B; He, C F

    2011-01-01

    Magnetostrictive sensors (MsSs) that can excite and receive guided waves are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired guided waves. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal guided waves excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to

  17. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  18. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  19. Electrical design of the BUSSARD inverter system for ASDEX upgrade saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Teschke, Markus, E-mail: teschke@ipp.mpg.de; Arden, Nils; Eixenberger, Horst; Rott, Michael; Suttrop, Wolfgang

    2015-10-15

    Highlights: • A cost effective inverter topology for AUG's 16 in-vessel saddle coils has been found. • Use of commercially available power modules is possible. • A NPC-like topology of the power stage is realized in a modular way. • The high-speed controllers and PWM engines are realized on Linux-based systems. • First experimental results of AUG plasma shots are presented. - Abstract: A set of 16 in-vessel saddle coils is installed in the ASDEX Upgrade (AUG) nuclear fusion experiment for mitigation of edge localized modes (ELM) and feedback control of resistive wall modes (RWM). The coils were driven by DC current only during previous campaigns. Now, a new inverter system “BUSSARD” (German abbr. for “Bayerischer Umrichter, schnell schaltend für AUGs rasche Drehfelder”, translated: “bavarian fast switching inverter for AUG's fast rotating fields”) is built for the experiment. A four-phase system has been assembled to simultaneously operate up to 4 groups of coils consisting of up to 4 serial-connected coils each. The maximum current is 1.3 kA with a ripple in the range of 7% and the frequency is variable between DC and approx. 100 Hz. The switching frequency is variable between approximately 3 and 10 kHz. As a first application, rotating fields are generated. The system can be enhanced in two stages to 16-phase operation with a bandwidth of 500 Hz and a 24 phase system with a bandwidth of up to 3 kHz.

  20. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  1. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  2. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs

  3. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    International Nuclear Information System (INIS)

    Pal, A M; Bhattacharya, S; Biswas, S; Basu, S; Pal, R

    2014-01-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere

  4. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  5. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  6. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  7. Is the cooling of coils of pulsed accelerators profitable?

    International Nuclear Information System (INIS)

    Neyret, G.; Parain, J.; Schnuriger, J.C.

    1960-05-01

    In this report, the authors recall how metal resistivity decreases at low temperatures, and give some indications about the power and price of cryogenic installations. They report the study of the cooling of coils in accelerators displaying an alternate gradient with a 15 GeV energy, with or without a magnetic circuit in iron. They establish that cooling does not result in a decrease in the cost price for an hour of operation. They also state that it is not even sure that this cooling would result in a dimension reduction while increasing the maximum achievable induction [fr

  8. Split coil made of (RE)BCO pancake coils for IC(B) anisotropy measurements of superconductors

    International Nuclear Information System (INIS)

    Frolek, L; Pardo, E; Gömöry, F; Šouc, J; Pitel, J

    2014-01-01

    Measurement of the I c (B) anisotropy is standard characterization of superconducting tapes, wires or cables. This contribution presents a split coil consisting on two superconducting pancake coils in order to generate the magnetic field necessary for this kind of measurement. Both coils were made using (RE)BCO – based second generation (2G) coated conductor tape with cross section 0.1 mm × 12 mm. The individual turns of the tape were insulated by a fiberglass tape without impregnation. These coils have identical inner and outer diameter and number of turns. Their inner and outer diameters are 50 mm and 80 mm, respectively, and they have 62 turns. The length of conductor in each coil is approximately 13 m. The distance between both pancake coils is 22 mm. Individual coils and the complete split coil were characterized in liquid nitrogen bath. Their parameters, like the critical currents, E(I) characteristics and magnetic field of complete split coil, were measured and interpreted. The split coil can be used up to magnetic fields of 210 mT. The length between the potential taps on the sample can be up to 20 mm, while the magnetic field decrease is lower than 1% on this length.

  9. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    Science.gov (United States)

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  10. Comparison of different current transducers used at JET within the range 5–100 kA for plasma control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R., E-mail: robjsalmon@gmail.com; Smith, P.; West, A.; Shaw, S.R.; Rendell, D.

    2015-10-15

    Highlights: • Zero-flux current transducers with sensory windings, Hall-effect DCCTs, Rogowski coils, shunt resistors and Faraday effect current transducers are reviewed. • All technologies have displayed good performance over 30 years of operation. • Faraday-effect current transducers have improved accuracy of the toroidal magnets current measurement on JET to 0.1%. • The improvement in accuracy has improved resolution on JET plasma kinetic profiles. - Abstract: The JET machine uses a variety of current transducers for control and protection of the plasma, the coils and their associated power supplies. This paper reviews the various measuring technologies, within the range 5–100 kA, used on JET to assist with the selection of high-current transducers for future plasma control/tokamak applications; these include Rogowski coils, coaxial shunts, Hall-effect transducers, zero-flux CTs and a Faraday-effect optical transducer. The paper considers reliability, accuracy and usability based on up to 30 years of operational experience of the transducers. Accuracy of the magnet current measurements is important in the control of tokamak plasmas and there has been considerable effort to improve it. Recently a Faraday-effect optical current sensor has been used to measure up to 67 kA in the Toroidal Field (TF) coil circuit. This measurement system has been calibrated at JET to verify its 0.1% accuracy. In addition, the data acquisition system for this measurement is automatically calibrated at the start of each JET pulse. The improved accuracy has been shown to enhance the spatial consistency of kinetic profiles at JET [1]. Due to its portability the JET project intends to employ the same Faraday-effect current transducer to calibrate other high current transducers by temporarily fitting it to other busbars, such as those in the Ohmic Heating network.

  11. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  12. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  13. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  14. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  15. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  16. Quench detector for large pulsed coils and quench analysis for the LASL/Westinghouse 20 MJ coil

    International Nuclear Information System (INIS)

    Hennessy, M.J.; Heintz, A.W.; Eckels, P.W.

    1981-01-01

    A detection scheme has been devised for use in the test of the 20 Mj Induction Heating Coil. This scheme allows the sensing of plus or minus voltages less than 320 mv resistive in magnitude in coils which will have inductive voltage components as high as /plus or minus/2.5 kv. The network which achieves this sensitivity is stable to less than 12.8 ppm. This method adopted involves the bucking out of the inductive voltage with two secondary co-wound flux sensing coils tapped at locations adjacent to voltage taps in the main superconducting coil. The detection scheme is recommended if large ripple or control voltages exist subsequent to the coil pulse. The most severe event which might quench the coil and/or damage the winding is exposure of the coil to gaseous cooling through lack of proper liquid level control. The detection scheme will protect the coil against this and other abnormal conditions that could damage the coil

  17. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  18. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  19. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  20. Plasma position from ring current measurements in Extrap T1

    International Nuclear Information System (INIS)

    Brunsell, P.; Jin Li.

    1989-11-01

    The inductive coupling between the plasma and the four octupole field coils in the Extrap T1 device is utilized as a means of estimating the plasma position. The current in each octupole ring as well as the plasma current is measured by a Rogowski coil and the ring - plasma mutual inductance is then computed assuming axisymmetric plasma displacements. The obtained position is in agreement with internal magnetic probe measurements. The time - evolution of the plasma position for different external vertical and toroidal field strengths is studied. For the present discharge parameter a vertical field of about .008 T is found to give an almost radially stationary plasma. The results are compared with a simple equilibrium model

  1. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.

    Science.gov (United States)

    Parry, David A D; Fraser, R D Bruce; Squire, John M

    2008-09-01

    alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.

  2. P-shaped Coiled Stator Ultrasound Motor for Rotating Intravascular Surgery Device

    Directory of Open Access Journals (Sweden)

    Toshinobu ABE

    2015-01-01

    Full Text Available The primary focus of this paper is the development of an ultra-miniature ultrasound motor for use in the human blood vessel. Since the size of the drive source for rotating the atherectomy device and intravascular ultrasonography system are large currently in practical use, it is installed outside the body, and the rotational power for the atherectomy device and intravascular ultrasonography system are transmitted through the long tortuous blood vessel. Such systems suffer from the problem that the rotation becomes non-uniform, and the problem that the available time is limited. We have therefore developed a P-shaped coiled stator ultrasound motor as a miniature ultrasound motor for rotating the ultrasound sensor for use in blood vessels in order to solve these problems. In this paper, we describe measurement of the torque, revolution speed, output power, efficiency, and particle motion on acoustic waveguide of the P-shaped coiled stator ultrasound motor.

  3. A study on the operation analysis of the power conditioning system with real HTS SMES coil

    International Nuclear Information System (INIS)

    Kim, A.R.; Jung, H.Y.; Kim, J.H.; Ali, Mohd. Hasan; Park, M.; Yu, I.K.; Kim, H.J.; Kim, S.H.; Seong, K.C.

    2008-01-01

    Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS

  4. Beam position and total current monitor for heavy ion fusion beams

    International Nuclear Information System (INIS)

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 μs. For accurate beam transport, the center of charge must be located to within ± 100 μm. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information

  5. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    Science.gov (United States)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  6. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  7. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  8. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  9. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  10. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  11. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  12. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  13. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  14. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  15. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    International Nuclear Information System (INIS)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-01-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length

  16. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  17. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  18. Comparison of the association of sac growth and coil compaction with recurrence in coil embolized cerebral aneurysms.

    Directory of Open Access Journals (Sweden)

    Anna L Hoppe

    Full Text Available In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs.An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed was used to compare translation of coil mass centers between recurrence and control subjects.Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003 but not the control (p=0.136. There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429. The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047.Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker.

  19. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  20. The design construction and installation of the helical winding for the CLEO stellarator

    International Nuclear Information System (INIS)

    Hunt, R.R.; Bayes, D.V.

    1979-03-01

    The CLEO stellarator has a torus 900mm major radius and 166mm minor radius, fitted externally with a 7 field period, l = 3, 120kAT helical winding of 179mm mean radius. The winding and torus have to withstand the large forces produced by the interaction of the current flowing in the winding with the toroidal magnetic field of 2 tesla produced by 24 coils spaced around the torus. To allow the torus to be divided the winding has to be split requiring a total of 240 demountable current-carrying joints at the torus vacuum joint positions. The design, development, manufacture, installation and operation of the helical winding is discussed. From the early development stages to installation took four years. When completed this was the largest installation of its type in Europe. (author)

  1. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  2. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.

    Science.gov (United States)

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Girard, Olivier; Darrasse, Luc

    2007-09-01

    Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.

  3. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  4. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  5. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1978-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  6. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1977-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started an aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pusled coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  7. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  8. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    Science.gov (United States)

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C

  9. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  10. Investigating the road surface effect to the fatigue life of an automotive coil spring

    Science.gov (United States)

    Putra, T. E.; Husaini

    2018-05-01

    This work aims to estimate the life of a coil spring considering road surface profiles. Strain signals were measured by installing a strain gage at the highest stress location of the coil spring and then driving the vehicle on country and village roads. The village road gave high amplitudes containing spikes when the tire touched a curb, bump or pothole. These conditions contributed to a higher loading rate to the car component, contributing to shorter useful fatigue life, which was only 140 reversals of blocks. Driving on the village road resulted in a 6-times decrease in the useful fatigue life of the component in comparison to the country road. In conclusion, the village road caused stronger vibrations to the component because it has a rough surface; meanwhile, the country road provided lower vibrations because the road was smooth.

  11. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  12. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  13. The significant impact of framing coils on long-term outcomes in endovascular coiling for intracranial aneurysms: how to select an appropriate framing coil.

    Science.gov (United States)

    Ishida, Wataru; Sato, Masayuki; Amano, Tatsuo; Matsumaru, Yuji

    2016-09-01

    OBJECTIVE The importance of a framing coil (FC)-the first coil inserted into an aneurysm during endovascular coiling, also called a lead coil or a first coil-is recognized, but its impact on long-term outcomes, including recanalization and retreatment, is not well established. The purposes of this study were to test the hypothesis that the FC is a significant factor for aneurysmal recurrence and to provide some insights on appropriate FC selection. METHODS The authors retrospectively reviewed endovascular coiling for 280 unruptured intracranial aneurysms and gathered data on age, sex, aneurysm location, aneurysm morphology, maximal size, neck width, adjunctive techniques, recanalization, retreatment, follow-up periods, total volume packing density (VPD), volume packing density of the FC, and framing coil percentage (FCP; the percentage of FC volume in total coil volume) to clarify the associated factors for aneurysmal recurrence. RESULTS Of 236 aneurysms included in this study, 33 (14.0%) had recanalization, and 18 (7.6%) needed retreatment during a mean follow-up period of 37.7 ± 16.1 months. In multivariate analysis, aneurysm size (odds ratio [OR] = 1.29, p < 0.001), FCP < 32% (OR 3.54, p = 0.009), and VPD < 25% (OR 2.96, p = 0.015) were significantly associated with recanalization, while aneurysm size (OR 1.25, p < 0.001) and FCP < 32% (OR 6.91, p = 0.017) were significant predictors of retreatment. VPD as a continuous value or VPD with any cutoff value could not predict retreatment with statistical significance in multivariate analysis. CONCLUSIONS FCP, which is equal to the FC volume as a percentage of the total coil volume and is unaffected by the morphology of the aneurysm or the measurement error in aneurysm length, width, or height, is a novel predictor of recanalization and retreatment and is more significantly predictive of retreatment than VPD. To select FCs large enough to meet the condition of FCP ≥ 32% is a potential relevant factor for better

  14. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  15. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  16. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  17. A history of detachable coils: 1987-2012.

    Science.gov (United States)

    Hui, Ferdinand K; Fiorella, David; Masaryk, Thomas J; Rasmussen, Peter A; Dion, Jacques E

    2014-03-01

    The development of detachable coils is one of the most pivotal developments in neurointervention, providing a tool that could be used to treat a wide variety of hemorrhagic stroke. From the original Guglielmi detachable coil, a number of different coil designs and delivery designs have evolved. This article reviews the history of commercially available detachable coils. A timeline of detachable coils was constructed and coil design philosophies were reviewed. A complete list of commercially available coils is presented in a timeline format. Detachable coil technology continues to evolve. Advances in construction and design have yielded products which may benefit patients in terms of safety, radiation dose reduction and cost of treatment. Continued evolution is expected, irrespective of competing disruptive technologies.

  18. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  19. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  20. Evaluation of inductive heating energy of a PF insert coil conductor by the calorimetric method (Contract research)

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Nabara, Yoshihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Okuno, Kiyoshi

    2009-02-01

    The PF Insert Coil is a single layer solenoid coil using a superconducting conductor designed for ITER, housed in a Poloidal field coil and installed in the bore of the CS Model Coil. A stability test of the conductor will be performed in a magnetic field generated by the CS Model Coil. In this test, the inductive heat of an inductive heater attached to the conductor will be applied to initiate a normal zone in the conductor. Since the conductor for the PF Insert Coil is a cable-in-conduit conductor, it is quite difficult to estimate inductive heating energy theoretically. Thus, the inductive heating energy is measured experimentally by the calorimetric method. The heating energy is in proportion to a constant multiplied by the integrated square of an applied sinusoidal current wave over the heating period. Experimental results show that the proportional constants of the conductor, cable, conduit and dummy conductor are 0.138 [J/A 2 s], 0.028 [J/A 2 s], 0.118 [J/A 2 s] and 0.009 [J/A 2 s], respectively. The first three denote not only the inductive heating but also the joule heating of the inductive heater. The final value denotes joule heating only. Therefore, subtracting the first three constants by the last one, the proportional constants of inductive heating generated in the conductor, cable and conduit are estimated to be 0.129 [J/A 2 s], 0.019 [J/A 2 s] and 0.109 [J/A 2 s], respectively. (author)

  1. The air quality in ventilation installations. Practical guidelines; Qualite de l'air dans les installations aerauliques. Guide pratique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, L. [France Air, 91 - Chilly Mazarin (France); Bianchina, M. [Unelvent, 93 - Le Bourget (France); Blazy, M. [Anjos, 01 - Torcieu (France); Boulanger, X. [Aldes, 21 - Chenove (France); Chiesa, M. [Atlantic (France); Duclos, M. [Groupe Titanair, 69 - Lyon (France); Hubert, D.; Kridorian, O. [Groupe Astato, Blanc Mesnil (France); Josserand, O. [Carrier (Belgium); Lancieux, C. [Camfil, 60 - Saint Martin Longueau (France); Lemaire, J.C. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Petit, Ph. [Compagnie Industrielle d' Applications Thermiques ( CIAT ), 75 - Paris (France); Ribot, B. [Electricite de France (EDF), 75 - Paris (France); Tokarek, S. [Gaz de France (GDF), 75 - Paris (France); Bernard, A.M.; Tissot, A. [Centre Technique des Industries Aerauliques et Thermiques (CETIAT), 69 - Villeurbanne (France)

    2004-07-01

    The present guide aims to provide design departments, maintenance companies and builders with practical guidelines and recommendations for the installation of ventilation and air-conditioning systems. The objective is to ensure good Indoor Air Quality (IAQ) and to safeguard the health and well-being of the occupants. The guide deals with aspects of design, dimensioning, installation and servicing, all of which play a major role in guaranteeing IAQ and duct-work hygiene. These steps are reviewed for the principal ventilation systems met in both residential and commercial premises. The first part presents the system and draws the attention of the user to specific points which require particular care in term of IAQ. The second part details recommended practice component by component, in respect of design, installation and servicing. Application of these simple guidelines during the various project stages is essential, in order to ensure a good IAQ in ventilation systems. Content: introduction; good ventilation; systems: exhaust ventilation, balanced ventilation, air handling unit, terminal ventilation units, impact of systems on indoor air quality, components: air inlet, air filter, heat recovery unit, heating or cooling coil, humidifier, mechanical fan unit, cowl and hybrid ventilation fan, mixing box, ventilation duct-work, air outlet and air terminal device; references.

  2. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  3. Invited review the coiled coil silk of bees, ants, and hornets.

    Science.gov (United States)

    Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T

    2012-06-01

    In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.

  4. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  5. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  6. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  7. Test facility for PLT TF coils

    International Nuclear Information System (INIS)

    Hearney, J.; File, J.; Dreskin, S.

    1975-01-01

    Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program

  8. Residual stress measurement of the jacket material for ITER coil by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Nickel-Iron based super alloy INCOLOY 908 is used for the jacket of a central solenoid coil (CS coil) of the International Thermonuclear Experimental Reactor (ITER). INCOLOY 908, however, has a possibility of fracture due to Stress Accelerated Grain Boundary Oxidation (SAGBO) under a tensile residual stress beyond 200MPa. Therefore it is necessary to measure the residual stress of the jacket to avoid SAGBO. We performed residual stress measurement of the jacket by neutron diffraction using the neutron diffractometer for residual stress analysis (RESA) installed at JRR-3M in JAERI. A sample depth dependence of internal strain was obtained from the (111) plane spacing. A residual stress distribution was calculated from the strain using Young`s modulus and Poisson`s ratio that were evaluated by a tensile test with neutron diffraction. The result shows that the tensile residual stress exceeds 200MPa of the SAGBO condition in some regions inside the jacket. (author)

  9. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  10. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  11. Final Test of the W7-X Control Coils Power Supply and its Integration into the Overall Control Environment

    International Nuclear Information System (INIS)

    Fuellenbach, F.; Rummel, T.; Pingel, S.; Laqua, H.; Mueller, I.; Jauregi, E.

    2006-01-01

    In order to be able to vary the magnetic configuration of WENDELSTEIN 7-X (W7-X) at the plasma edge and allow sweeping of the power across the divertor target plates 10 '' control coils '' are installed inside the plasma vessel behind the baffle plates of the divertor. The coils are made of a hollow copper profile with eight turns each. The dimensions of the coils are 2,05 m x 0,35 m x 0,35 m with a three dimensional shape to fit into the narrow space between the baffles and the wall of the plasma vessel. Each of the ten coils is supplied by independent power supplies each providing bi-directionally a direct current of 2500 A with high accuracy and low ripple. To allow sweeping the power deposition from the plasma across the target plates the power supplies provide an alternating current of up to 625 A with frequencies up to 20 Hz which is synchronised between the ten supplies in order to maintain the symmetry of the magnetic field. The total output current of a power supply is a superposition of a direct current and an alternating current, where both parts have to be independently adjustable. JEMA, Spain provided the complete set of power supplies which are based on 10 independent four-quadrant power supplies with a link rectifier and includes a cooling water unit, a dedicated distribution and a central control and visualization system. All ten power supply units and auxiliary systems have meanwhile been installed and finally tested at the W7-X site in Greifswald. The paper focuses on the results of the final tests and measures to integrate the power supply system to the overall control system including the central PLC and PC's for experiment control, data acquisition- and security systems. (author)

  12. Characterizing permanent magnet blocks with Helmholtz coils

    Science.gov (United States)

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  13. Coil supporting device for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kuno, Kazuo.

    1976-01-01

    Object: To reduce a thermal stress of a coil such as a magnetic limiter to minimize stress acting on a protective tube of the coil. Structure: A coil within a protective tube has its outer periphery surrounded and supported by a heat-resisting material such as ceramic at more than two positions suitably spaced lengthwise of a coil conductor, and heat insulating members are interposed between both sides of the coil and the protective tube so that it may be retained with respect to the width of the coil. Further, a heat-resisting resilient member is inserted in a clearance between an outer circumference and an inner circumference of the coil to allow a radial displacement of the coil. As a result, elongation of the coil due to thermal expansion may be escaped at the aforesaid two supports to reduce thermal stress of the coil and protective tube to support the coil within the protective tube in positively heat-resisting and insulating manner. (Kamimura, M.)

  14. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  15. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  16. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  17. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  18. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  19. Partial discharge location technique for covered-conductor overhead distribution lines

    Energy Technology Data Exchange (ETDEWEB)

    Isa, M.

    2013-02-01

    In Finland, covered-conductor (CC) overhead lines are commonly used in medium voltage (MV) networks because the loads are widely distributed in the forested terrain. Such parts of the network are exposed to leaning trees which produce partial discharges (PDs) in CC lines. This thesis presents a technique to locate the PD source on CC overhead distribution line networks. The algorithm is developed and tested using a simulated study and experimental measurements. The Electromagnetic Transient Program-Alternative Transient Program (EMTP-ATP) is used to simulate and analyze a three-phase PD monitoring system, while MATLAB is used for post-processing of the high frequency signals which were measured. A Rogowski coil is used as the measuring sensor. A multi-end correlation-based technique for PD location is implemented using the theory of maximum correlation factor in order to find the time difference of arrival (TDOA) between signal arrivals at three synchronized measuring points. The three stages of signal analysis used are: (1) denoising by applying discrete wavelet transform (DWT); (2) extracting the PD features using the absolute or windowed standard deviation (STD) and; (3) locating the PD point. The advantage of this technique is the ability to locate the PD source without the need to know the first arrival time and the propagation velocity of the signals. In addition, the faulty section of the CC line between three measuring points can also be identified based on the degrees of correlation. An experimental analysis is performed to evaluate the PD measurement system performance for PD location on CC overhead lines. The measuring set-up is arranged in a high voltage (HV) laboratory. A multi-end measuring method is chosen as a technique to locate the PD source point on the line. A power transformer 110/20 kV was used to energize the AC voltage up to 11.5 kV/phase (20 kV system). The tests were designed to cover different conditions such as offline and online

  20. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    International Nuclear Information System (INIS)

    Terawaki, Shin-ichi; Yoshikane, Asuka; Higuchi, Yoshiki; Wakamatsu, Kaori

    2015-01-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site

  1. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    Energy Technology Data Exchange (ETDEWEB)

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikane, Asuka [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Higuchi, Yoshiki [Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Wakamatsu, Kaori [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-05-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.

  2. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  3. Coil supporting device for thermonuclear device

    International Nuclear Information System (INIS)

    Okubo, Minoru; Ando, Toshiro; Ota, Mitsuru; Ishimura, Masabumi.

    1979-01-01

    Purpose: To lower the bending stress exerted on coils thereby preventing the coils from deformation by branching the outer circumferential support frames of coil support frames disposed at an equal pitch circumferentially to the coils into plurality, and integrally forming them to the inner circumferential support frames. Constitution: Each of the support frames for supporting poloidal coils winding around a vacuum vessel is bisected at the radial midway so that the outer circumferential branches are disposed at an equal pitch and they are formed integrally with the inner circumferential support frames. The inner circumferential support frames are fixed by support posts on a bed and the outer circumferential support frames are mounted to the outer edge of wedge-like support posts. Accordingly, if the coils expand outwardly upon increase in the temperature, the stress exerted on the support frame can be decreased. (Yoshino, Y.)

  4. Impact of coil price knowledge by the operator on the cost of aneurysm coiling. A single center study.

    Science.gov (United States)

    Finitsis, Stephanos; Fahed, Robert; Gaulin, Ian; Roy, Daniel; Weill, Alain

    2017-09-15

    Endovascular treatment of aneurysms with coils is among the most frequent treatments in interventional neuroradiology, and represents an important expense. Each manufacturer has created several types of coils, with prices varying among brands and coil types. The objective of this study was to assess the impact of cost awareness of the exact price of each coil by the operating physician on the total cost of aneurysm coiling. This was a comparative study conducted over 1 year in a single tertiary care center. The reference cohort and the experimental cohort consisted of all aneurysm embolization procedures performed during the first 6 months and the last 6 months, respectively. During the second period, physicians were given an information sheet with the prices of all available coils and were requested to look at the sheet during each procedure with the instruction to try to reduce the total cost of the coils used. Expenses related to the coiling procedures during each period were compared. 77 aneurysms (39 ruptured) in the reference cohort and 73 aneurysms (36 ruptured) in the experimental cohort were treated, respectively. There was no statistically significant difference regarding aneurysm location and mean size. The overall cost of the coiling procedures, the mean number of coils used per procedure, and the median cost of each procedure did not differ significantly between the two cohorts. Awareness of the precise price of coils by operators without any additional measure did not have a scientifically proven impact on the cost of aneurysm embolization. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  6. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  7. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  8. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  9. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    International Nuclear Information System (INIS)

    Takakuwa, J.

    2011-01-01

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to ∼1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  10. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  11. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  12. Control of the resistive wall mode with internal coils in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Okabayashi, M.; Bialek, J.; Bondeson, A.; Chance, M.S.; Chu, M.S.; Garofalo, A.M.; Hatcher, R.; In, Y.; Jackson, G.L.; Jayakumar, R.J.; Jensen, T.H.; Katsuro-Hopkins, O.; Haye, R.J. La; Liu, Y.Q.; Navratil, G.A.; Reimerdes, H.; Scoville, J.T.; Strait, E.J.; Takechi, M.; Turnbull, A.D.; Gohil, P.; Kim, J.S.; Makowski, M.A.; Manickam, J.; Menard, J.

    2005-01-01

    Internal coils, 'I-Coils', were installed inside the vacuum vessel of the DIII-D device to generate non-axisymmetric magnetic fields to act directly on the plasma. These fields are predicted to stabilize the resistive wall mode (RWM) branch of the long-wavelength external kink mode with plasma beta close to the ideal wall limit. Feedback using these I-Coils was found to be more effective as compared to using external coils located outside the vacuum vessel. Locating the coils inside the vessel allows for a faster response and the coil geometry also allows for better coupling to the helical mode structure. Initial results were reported previously (Strait E.J. et al 2004 Phys. Plasmas 11 2505). This paper reports on results from extended feedback stabilization operations, achieving plasma parameters up to the regime of C β ∼ 1.0 and open loop growth rates of γ open τ w ∼ 25 where the RWM was predicted to be unstable with only the 'rotational viscous stabilization mechanism'. Here C β ∼ (β - β no-wall.limit )/(β ideal.wall.limit - β no-wall.limit ) is a measure of the beta relative to the stability limits without a wall and with a perfectly conducting wall, and τ w is the resistive flux penetration time of the wall. These feedback experimental results clarified the processes of dynamic error field correction and direct RWM stabilization, both of which took place simultaneously during RWM feedback stabilization operation. MARS-F modelling provides a critical rotation velocity in reasonable agreement with the experiment and predicts that the growth rate increases rapidly as rotation decreases below the critical. The MARS-F code also predicted that for successful RWM magnetic feedback, the characteristic time of the power supply should be limited to a fraction of the growth time of the targeted RWM. The possibility of further improvements in the presently achievable range of operation of feedback gain values is also discussed

  13. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  14. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  15. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  16. Status of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J; Benz, H.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1983-01-01

    The Swiss coil is a forced flow coil cooled by supercritical helium. A brief review of the design considerations, some of its specific features, and the progress in fabrication are described. A discussion of both the instrumentation and the cryogenic characteristics of the coil is presented

  17. Control of the Resistive Wall Mode with Internal Coils in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Okabayashi, M.; Bialek, J.; Bondeson, A.

    2005-01-01

    New coils were installed inside the vacuum vessel of the DIII-D device for producing nonaxisymmetric magnetic fields. These 'Internal-Coils' are predicted to stabilize the Resistive Wall Mode (RWM) branch of the long-wavelength external kink mode with plasma beta close to the ideal wall limit. Feedback using these new Internal-Coils was found to be more effective when compared with using the External-Coils located outside the vacuum vessel, because the location inside the vessel allows faster response and their geometry also couples better to the helical mode structure. A proper choice of feedback gain increased the plasma beta above the no-wall limit to C β ≥ 0.9, where C β is a measure of achievable beta above no-wall limit defined as (β-β no-wall.limit )/(β ideal.wall.limit )-)/(β no.wall.limit ). The feedback system with Internal-Coils can suppress the RWM up to the normalized growth rate γτ w > or ∼ 10 (τ w is the resistive flux penetration time of the wall). The feedback-driven dynamic error field correction helps to stabilize the RWM by reducing the rotational drag for Ω rot > Ω crit , where Ω rot is the angular rotation frequency of plasma and Ω crit is the critical value for the rotational stabilization. When Ω rot crit /2, the feedback system must stabilize the RWM mainly through direct magnetic control of the mode. The estimated Ω crit /Ω A is ∼ 2.5% by the MARS-F code analysis with experimentally observed profiles, where /Ω A is the Alfven angular rotational frequency at q 2 surface. The MARS-F code also predicts that for successful RWM magnetic feedback control the power supply characteristic time should be a fraction of the growth time of the targeted RWM. (author)

  18. Hybrid equilibrium field coils for the ORNL TNS

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Strickler, D.J; Dory, R.A.

    1977-01-01

    In this study, we make a comparative study of the power supplies required by interior and exterior [to the toroidal field (TF) coils] equilibrium field coils that are separately appropriate for high-β, D-shaped plasmas in TNS. It is shown that the interior coils need power supplies that are an order of magnitude below those required by the exterior coils (while the latter case is much less difficult to build than the former). A hybrid EF coil concept is proposed that combines the interior and the exterior coils to retain their advantages in avoiding large interior coils while lowering the power supplied to the exterior coils by an order of magnitude

  19. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  20. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  1. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  2. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  3. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  4. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  5. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  6. Performance of the Conduction-Cooled LDX Levitation Coil

    Science.gov (United States)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  7. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  8. Plasma Discharge in Toroidal System

    International Nuclear Information System (INIS)

    Usada, Widdi; Suryadi; Purwadi, Agus; Kasiyo

    1996-01-01

    A toroidal discharge apparatus has been made as an initial research in magnetic confinement system. This system consists of a capacitor, a RF source, an igniter system, a primary coil, a torus, and completed by Rogowski probe as a current detector. In this system, the discharge occurs when the minimum voltage is operated at 5 kV. The experiment result shows that the coupling factor is 0.35, it is proved that there is an equality between estimated and measurement results of the primary inductance i.e 8.5 μH

  9. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  10. Electromagnetic-coil (EM-coil) measurement technique to verify presence of metal/absence of oxide attribute

    International Nuclear Information System (INIS)

    Fuller, J.L.; Hockey, R.L.

    2001-01-01

    This paper summarizes how an Electromagnetic-coil (EM-coil) measurement technique can be used to discriminate between plutonium metal and plutonium oxide inside sealed storage containers. As evidence, measurements on a variety of metals and their oxides are presented. This non-radiation measurement method provides assurance of the 'presence of metal/absence of oxide' attribute in less than a minute. During initial development, researchers at Pacific Northwest Laboratory have demonstrated the ability of this method to discriminate between aluminum and aluminum oxide placed inside an AT-400R storage container (total stainless steel wall thickness of over 2.5 cm). Similar results are expected, since Pu metal is electrically conductive and a Pu oxide behaves as an electrical insulator. At this writing, work is underway to perform the same demonstration using plutonium and plutonium oxide. Similar success has been demonstrated when using ALR-8 storage containers (basically carbon steel drums). Within these container types two scenarios have been explored. 1.) The same configuration made from different metals for demonstrating material property effects. A clear distinction was seen between the slight alloy changes among various forms of aluminum and brass in the same configuration. 2.) The same metal configured differently to demonstrate how mass distribution affects the EM signature. Hundreds of bb's (each about 2 mm in diameter) were placed in different containers to show how a slight change in distribution will affect the EM signature. With a five percent change in bb container diameter, the resulting EM signature changes are clear. This measurement method offers an extremely wide dynamic range resulting from its sensitivity to the wide range in electrical conductivity and magnetic permeability found in most metals and alloys. In fact, electrical conductivity spans the widest spectrum of all the known physical properties. Most insulators such as the oxides cover the

  11. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  12. Polymer cancerostatics with a coiled coil motif targeted against murine leukemia

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 36 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:61388971 Keywords : coiled coil * polymer cancerostatics * active targeting Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M) https://www.scitechnol.com/conference-abstracts/scientific-tracks-abstracts/nanodelivery-2017-proceedings.html

  13. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  14. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  15. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  16. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  17. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  18. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  19. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  20. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  1. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  2. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  3. Optimization of the ECT background coil

    International Nuclear Information System (INIS)

    Ballou, J.K.; Luton, J.N.

    1975-01-01

    This study was begun to optimize the Eccentric Coil Test (ECT) background coil. In the course of this work a general optimization code was obtained, tested, and applied to the ECT problem. So far this code has proven to be very satisfactory. The results obtained with this code and earlier codes have illustrated the parametric behavior of such a coil system and that the optimum for this type system is broad. This study also shows that a background coil with a winding current density of less than 3000 A/cm 2 is not feasible for the ECT models presented in this paper

  4. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  5. Stress relaxation in SSC 50mm dipole coils

    International Nuclear Information System (INIS)

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''

  6. Eccentric figure-eight coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi

    2015-01-01

    Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.

  7. Design and test program of a simplified divertor dummy coil structure for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L., E-mail: louis.doceul@cea.fr [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon 13115, St. Paul-lez-Durance (France); Saille, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Salami, M. [AVANTIS Engineering Groupe, ZI de l’Aiguille 46100, Figeac (France); Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France)

    2013-12-15

    Highlights: • The mechanical design and integration of the divertor structure has been performed. • The design of the casing and the winding-pack has been finalized. • The coil assembly process has been validated. • The realization of a coil mock-up scale one is in progress. -- Abstract: In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature. In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also

  8. Design and test program of a simplified divertor dummy coil structure for the WEST project

    International Nuclear Information System (INIS)

    Doceul, L.; Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A.; Portafaix, C.; Saille, A.; Salami, M.; Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B.

    2013-01-01

    Highlights: • The mechanical design and integration of the divertor structure has been performed. • The design of the casing and the winding-pack has been finalized. • The coil assembly process has been validated. • The realization of a coil mock-up scale one is in progress. -- Abstract: In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature. In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also

  9. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  10. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  11. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  12. Characteristics of parallel reverse coil inductors with different current ratio in coils used for melting in a suspension state

    International Nuclear Information System (INIS)

    Fogel', A.A.; Sidorova, T.A.; Smirnov, V.V.; Mezdrogina, M.M.

    1975-01-01

    The paper studies the effect of the ratio of the currents in the coils of an inductor with a parallel-switched ''reverse coil'', where the ratio of the current in the upper coil to that in the lower coil is 0.72. A region of stable dependence of liquid niobium characterized by upper and lower limits has been found. The maximum permissible volume of liquid niobium increases as the ratio of current in the upper coil to current in the lower coil decreases. The temperature dependences of niobium on the voltage in the inductor have been derived. Experiments have shown that the greater the capillary constant of niobium, the larger the region of stable dependence of liquid niobium, the larger the range of possible temperature regulation and the larger the maximum permissible volume. (N.K.)

  13. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  14. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  15. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  16. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils

    DEFF Research Database (Denmark)

    Ruckthong, Leela; Peacock, Anna F.A.; Pascoe, Cherilyn E.

    2017-01-01

    Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l......-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The d chirality does not alter the native fold, but the side-chain re-orientation modifies the sterics of the metal binding pocket. l-Cys side chains within the coiled-coil structure have previously...... by comparison of the structure of ZnIICl(CSL16DC)3 2- to the published structure of ZnII(H2O)(GRAND-CSL12AL16LC)3 -. Moreover, spectroscopic analysis indicates that the CdII geometry observed by using l-Cys ligands (a mixture of three- and four-coordinate CdII) is altered to a single four-coordinate species...

  17. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.; Patterson-Orazem, Athéna C.; Hazel, Anthony; Gumbart, James C.; Lieberman, Raquel L.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.

  18. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  19. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  20. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  1. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  2. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  3. Control of highly vertically unstable plasmas in TCV with internal coils and fast power supply

    International Nuclear Information System (INIS)

    Favre, A.; Moret, J.M.; Chavan, R.; Fasel, D.; Hofmann, F.; Lister, J.B.; Mayor, J.M.; Perez, A.; Elkjaer, A.

    1996-01-01

    The goal of TCV (Tokamak a Configuration Variable) is to investigate effects of plasma shape, in particular high elongation (up to 3), on tokamak physics. Such elongated configurations (I p ≅1 MA) are highly vertically unstable with growth rates up to γ=4000 s -1 . Control of the vertical position using the poloidal coils located outside the vessel is limited to γ≤1000 s -1 because of the shielding effect of the conductive vessel and because of the relative slow time response of their power supplies (0.8 ms thyristor 12 pulse switching at 120 Hz). This dictated the necessity to install a coil set inside the vacuum vessel fed with a Fast Power Supply (FPS). The choice and design of the system with a special attention to the mechanical and electrical constraints in TCV tokamak, as the results and real performances, will be presented. (author) 3 figs., 2 tabs., 2 refs

  4. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.; Rayment, Ivan (UW)

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.

  5. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  6. Switching transients in a superconducting coil

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  7. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  8. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  9. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  10. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  11. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  12. Coils in a fusion device and its fabrication method

    International Nuclear Information System (INIS)

    Maeda, Hideto; Moritani, Einoshin.

    1975-01-01

    Object: To provide a coil for nuclear fusion equipment, which coil has superior rigidity and strength and is separable into two sections and used for removing impurity ions from high temperature plasma such as heavy hydrogen and tritium. Structure: The coil according to the invention is manufactured by (1) a step of insulating horseshoe-shaped conductors one from another and bundling them into coil halves. (2) a step of assembling a flange on a coil case accommodating each coil half and hermetically welding a lid to each end of the coil half, (3) a step of evacuating the interior of each coil case, (4) a step of pouring a thermosetting resin into each evacuated coil case and hardening the resin, (5) a step of connecting the two coil halves with their ends not covered with resin held in abutting relation to each other, (6) a step of coupling coil case joint pieces to the joined portions and covering the joint pieces with a seal box and hermetically welding the box to the joint pieces, and (7) a step of pouring a thermosetting resin into each evacuated joint portion and hardening the resin. (Kamimura, M.)

  13. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    International Nuclear Information System (INIS)

    Whelan, B; Keall, P; Holloway, L; Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B; Fahrig, R

    2016-01-01

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  14. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Holloway, L [Liverpool Hospital and Ingham Institute, Liverpool, NSW (United Kingdom); Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B [Stanford Linear Accelerator Facility, Palo Alto, CA (United States); Fahrig, R [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  15. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  16. Coil Migration after Transarterial Coil Embolization of a Splenic Artery Pseudoaneurysm

    Directory of Open Access Journals (Sweden)

    Bezawit D. Tekola

    2013-11-01

    Full Text Available A 48-year-old man with a history of splenic artery pseudoaneurysm requiring transarterial embolization 3 months earlier presented to the emergency department with abdominal pain and fever. Computed tomography showed evidence of embolization coil fragments within the gastrointestinal tract. Upper endoscopy showed a large gastric ulcer with numerous embolization coils extruding into the gastric lumen. The patient underwent partial gastrectomy, distal pancreatectomy and resection of the splenic artery pseudoaneurysm. This case illustrates a rare delayed complication of transarterial embolization of a splenic artery pseudoaneurysm.

  17. First assembly phase for the ATLAS toroid coils

    CERN Document Server

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  18. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  19. Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein.

    Science.gov (United States)

    Royer, William E; Omartian, Michael N; Knapp, James E

    2007-01-05

    Annelid erythrocruorins are extracellular respiratory complexes assembled from 180 subunits into hexagonal bilayers. Cryo-electron microscopic experiments have identified two different architectural classes. In one, designated type I, the vertices of the two hexagonal layers are partially staggered, with one hexagonal layer rotated by about 16 degrees relative to the other layer, whereas in the other class, termed type II, the vertices are essentially eclipsed. We report here the first crystal structure of a type II erythrocruorin, that from Arenicola marina, at 6.2 A resolution. The structure reveals the presence of long continuous triple-stranded coiled-coil "spokes" projecting towards the molecular center from each one-twelfth unit; interdigitation of these spokes provides the only contacts between the two hexagonal layers of the complex. This arrangement contrasts with that of a type I erythrocruorin from Lumbricus terrestris in which the spokes are broken into two triple-stranded coiled coils with a disjointed connection. The disjointed connection allows formation of a more compact structure in the type I architecture, with the two hexagonal layers closer together and additional extensive contacts between the layers. Comparison of sequences of the coiled-coil regions of various linker subunits shows that the linker subunits from type II erythrocruorins possess continuous heptad repeats, whereas a sequence gap places these repeats out of register in the type I linker subunits, consistent with a disjointed coiled-coil arrangement.

  20. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  1. An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting

    International Nuclear Information System (INIS)

    Song, Mengjie; Pan, Dongmei; Li, Ning; Deng, Shiming

    2015-01-01

    Highlights: • A special experimental rig was built and its details are reported. • The negative effects of downwards flowing of the melted frost were shown. • Defrosting duration was shortened after installing water collecting trays. • Temperature of melted frost decreased after installing trays. - Abstract: When the surface temperature of the outdoor coil in an air source heat pump (ASHP) unit is lower than both freezing point of water and the air dew point, frost can be formed and accumulated over outdoor coil surface. Frosting affects the energy efficiency, and periodic defrosting therefore is necessary. Reverse cycle defrosting is currently the most widely used defrosting method. A previous related study has indicated that during reverse cycle defrosting, downwards flow of the melted frost over a multi-circuit outdoor coil could affect the defrosting performance, without however giving detailed quantitative analysis of the effects. Therefore an experimental study on the effects has been carried out and a quantitative analysis conducted using the experimental data. In this paper, the detailed description of an experimental ASHP unit which was specifically built up is firstly reported. This is followed by presenting experimental results. Result analysis and conclusions are finally given

  2. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  3. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  4. The Swiss LCT-coil

    International Nuclear Information System (INIS)

    Vecsey, G.; Benz, H.; Horvath, I.

    1985-01-01

    With delivery of the coil to ORNL on February 4, 1984, the second phase of the Swiss Large Coil Program - design and construction - was terminated. Mainlines of the Swiss design concept are summarized and related to theoretical calculations, experimental results of the supporting program, fabricational experience and first successful test results. An attempt is made to draw preliminary conclusions with regard to the design of future toroidal systems such as NET

  5. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    Science.gov (United States)

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    Science.gov (United States)

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  7. A single-layer flat-coil-oscillator (SFCO)-based super-broadband position sensor for nano-scale-resolution seismometry

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, Samvel [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)], E-mail: gevs_sam@web.am; Gevorgyan, Vardan [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia); International Scientific-Educational Center, National Academy of Sciences, 24-D Marshal Baghramyan av., Yerevan 0019 (Armenia); Karapetyan, Gagik [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 0025 (Armenia); Institute for Physical Researches, National Academy of Sciences, Gitavan IFI, 0203 Ashtarak-2 (Armenia)

    2008-05-15

    A new class super-broadband, nano-scale-resolution position sensor is tested. It is used as an additional sensor in seismograph. It enables to extend the band and enhance the sensitivity of the available technique by at least an order of magnitude. It allows transferring of mechanical vibrations of constructions and buildings, with amplitudes over 1 nm, into detectable signal in a frequency range starting practically from quasi-static movements. It is based on detection of position changes of a vibrating normal-metallic plate placed near the flat coil-being used as a pick-up in a stable tunnel diode oscillator. Frequency of the oscillator is used as a detecting parameter, and the measuring effect is determined by a distortion of the MHz-range testing field configuration near a coil by a vibrating plate, leading to magnetic inductance changes of the coil, with a resolution {approx}10 pH. This results in changes of oscillator frequency. We discuss test data of such a position sensor, installed in a Russian SM-3 seismometer, as an additional pick-up component, showing its advantages compared to traditional techniques. We also discuss the future of such a novel sensor involving substitution of a metallic coil by a superconductive one and replacement of a tunnel diode by an S/I/S hetero-structure-as much less-powered active element in the oscillator, compared to tunnel diode. These may strongly improve the stability of oscillators, and therefore enhance the resolution of seismic techniques.

  8. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  9. Magnetic field systems employing a superconducting D.C. field coil

    International Nuclear Information System (INIS)

    Bartram, T.C.; Hazell, P.A.

    1977-01-01

    Method and equipment for transferring energy to or from a direct-current superconducting field coil to change the magnetic field generated by the coil in which a second direct-current superconducting coil is used as a storage coil, and energy transfer between the field coil and the storage coil is effected automatically in dependence upon a control program. Preferably, the control program acts upon a variable transformer which is coupled by respective rectifier/inverters to the field and storage coils and also serves for intital supply of energy to the coils

  10. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  11. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  12. Force delivery of Ni-Ti coil springs.

    Science.gov (United States)

    Manhartsberger, C; Seidenbusch, W

    1996-01-01

    Sentalloy springs (GAC, Central Islip, N.Y.) of the open and closed type were investigated with a special designed device. The closed coil springs were subjected to a tensile and the open coil springs to a compression test. After a first measurement, the springs were activated for a period of 4 weeks and then reinvestigated with the same procedure. It could be shown distinctly that, with the different coil springs, the force delivery given by the producer could be achieved only within certain limits. To remain in the martensitic plateau, changed activation ranges, and for the Sentalloy coil springs white and red of the open and closed type, also changed force deliveries had to be taken into account. There was a distinct decrease in force delivery between the first and second measurement. After considering the loading curves of all the Sentalloy coil springs and choosing the right activation range respective to the force delivery, it was found that the coil springs deliver a superior clinical behavior and open new treatment possibilities.

  13. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  14. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Polevoy, J.T.

    1989-06-01

    Experimental measurements of the average axial velocity v parallel of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V p and the beam current I b . V p is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I b is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v parallel and calculations of the corresponding transverse to longitudinal beam velocity ratio α = v perpendicular /v parallel at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical rf interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v parallel and α are determined through the use of a computer code entitled EGUN. EGUN is used to model the cathode and anode regions of the gyrotron and it computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of α at low α, with the expected values from EGUN often falling within the standard errors of the measured values. 10 refs., 29 figs., 2 tabs

  15. Effect of current distribution on the voltage-temperature characteristics: study of the NbTi PF-FSJS sample for ITER

    International Nuclear Information System (INIS)

    Zani, L.; Ciazynski, D.; Gislon, P.; Stepanov, B.; Huber, S.

    2004-01-01

    Various tests, either on full-size joint samples or on model coils confirmed that current distribution may play a crucial role in the electrical behaviour of CICC in operating conditions. In order to evaluate its influence, CEA developed a code (ENSIC) the main feature of which is a CICC electrical model including a discrete resistive network associated with superconducting lengths. Longitudinal and transverse resistances are also modeled, representing either joint or conductor. In our paper we will present the comparison of experimental results with ENSIC calculations for one International Thermonuclear Experimental Reactor (ITER) sample prototype relevant to poloidal field (PF) coils: the PF-full-size joint sample (PF-FSJS). In this purpose, the current distribution has been measured thanks to a segmented Rogowski coils system. Current distribution effects on the basic characteristics (T CS , n-value etc) of the cable compared to single strand will be discussed. This study aims at putting light on the global strand state in a conductor and is also useful to evaluate some intrinsic parameters hardly measurable (effective interpetal transverse contact resistance for example) allowing further application in coils

  16. Linear motor coil assembly and linear motor

    NARCIS (Netherlands)

    2009-01-01

    An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially

  17. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  18. Polymer therapeutics with a coiled coil motif targeted against murine BCL1 leukemia

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Laga, Richard; Ulbrich, Karel; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Kabešová, Martina; Kovář, Marek; Pechar, Michal

    2013-01-01

    Roč. 14, č. 3 (2013), s. 881-889 ISSN 1525-7797 R&D Projects: GA ČR GAP301/11/0325; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:61389013 ; RVO:61388971 ; RVO:68378050 Keywords : coiled coil * polymer therapeutics * scFv Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M); EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 5.788, year: 2013

  19. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V. (NEU); (Purdue)

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  20. Final installation and testing of the feedback power amplifier for the Scyllac feedback experiment

    International Nuclear Information System (INIS)

    Kutac, K.J.; Kewish, R.W. Jr.; Gribble, R.F.; Rawcliffe, A.S.; Miller, G.; Kemp, E.L.; Bartsch, R.R.

    1975-01-01

    The Scyllac feedback system consists of eight subsystems. The installation and testing of the many components and eight subsystems are described. The eight subsystems are: (1) ML-8618 power amplifiers; (2) dc plate and bias power supplies; (3) ac filament power supplies; (4) position detector and signal processor (intermediate amplifier); (5) l = 0 and l = 2 output load coils; (6) control system and interlock system; (7) computer controlled analog-to-digital transient recorders; and (8) cable distribution and cooling-water supply system

  1. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    Science.gov (United States)

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  2. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  3. Racetrack coil instability resulting from friction-heat generation at fixtures

    International Nuclear Information System (INIS)

    Yazawa, T.; Urata, M.; Chandratilleke, G.R.; Maeda, H.

    1993-01-01

    This paper describes racetrack coil instability resulting from friction-heat generation at fixtures and a preventive measure against it using a thermal barrier. Epoxy impregnated racetrack coils sometimes experience premature quenches due to frictional heat produced by coil slides at fixtures that are essential for the coil straight part to withstand the electromagnetic force. Experimentally, we confirmed for a small-sized racetrack coil that coil slides were actually occurring. The coil movements coupled with acoustic emissions were observed several times when the coil was energized. Each of them was about 10 μm, an equivalent of 20 mJ in frictional heat. This frictional heat was almost comparable with the analytical and experimental coil stability margins when an insulation layer was thin. One of the effective measures against the frictional heat is the thermal barrier, which is a thick insulation layer at the interface between the coil and the fixtures. By thickening the insulation layer from 0.36 to 1.00 mm, the coil stability margin increased from 100 to 200 mJ. (orig.)

  4. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  5. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  6. Novel method of aligning ATF-1 coils

    International Nuclear Information System (INIS)

    Rome, J.A.; Harris, J.H.; Neilson, G.H.; Jernigan, T.C.

    1983-08-01

    The coils for the Advanced Toroidal Facility (ATF-1) torsatron may be easily aligned before the machine is placed under vacuum. This is done by creating nulls in the magnetic field by energizing the coils in various configurations. All of the nulls in vertical bar B vector vertical bar occur on the z-axis. When the nulls coincide, the coils are properly aligned

  7. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    Science.gov (United States)

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  8. Design and tests of a simplified divertor dummy coil structure for the WEST project

    International Nuclear Information System (INIS)

    Doceul, L.; Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A.; Saille, A.; Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B.; Portafaix, C.; Salami, M.

    2015-01-01

    Full text of publication follows. In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 200 Celsius degrees, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly of 4 meter diameter and 4 meter height representing a total weight of around 20 tonnes. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, mechanical loads (induced by disruptions) and electrical isolation (13 kV test) under high temperature. In order to fully validate the feasibility, the mounting and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed during 2012 in order to finalise the design for the call for tender phase. The progress and the first results of the simplified dummy coils will be also addressed. (authors)

  9. Dual levitated coils for antihydrogen production

    Science.gov (United States)

    Wofford, J. D.; Ordonez, C. A.

    2013-04-01

    Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.

  10. The ground-fault detection system for DIII-D

    International Nuclear Information System (INIS)

    Scoville, J.T.; Petersen, P.I.

    1987-10-01

    This paper presents a discussion of the ground-fault detection systems on the DIII-D tokamak. The subsystems that must be monitored for an inadvertent ground include the toroidal and poloidal coil systems, the vacuum vessel, and the coil support structures. In general, one point of each coil is tied to coil/power supply ground through a current limiting resistor. For ground protection the current through this resistor is monitored using a dynamically feedback balanced Hall probe transducer from LEM Industries. When large inductive currents flow in closed loops near the tokamak, the result is undesirable magnetic error fields in the plasma region and noise generation on signal cables. Therefore, attention must be paid to avoid closed loops in the design of the coil and vessel support structure. For DIII-D a concept of dual insulating breaks and a single-point ground for all structure elements was used to satisfy this requirement. The integrity of the support structure is monitored by a system which continuously attempts to couple a variable frequency waveform onto these single-point grounds. The presence of an additional ground completes the circuit resulting in current flow. A Rogowski coil is then used to track the unwanted ground path in order to eliminate it. Details of the ground fault detection circuitry, and a description of its operation will be presented. 2 refs., 7 figs

  11. Coil Array Design Inspired on the Kepler's Lenten Pretzel

    International Nuclear Information System (INIS)

    Vazquez, F.; Solis, S. E.; Rodriguez, A. O.

    2008-01-01

    The RF coil arrays are an important part in Magnetic Resonance Imaging, since they are the main device for transmission and reception of the magnetic resonance signal. An RF coil array with a new configuration based on the Kepler's Lenten pretzel for the geocentric path of Mars is proposed in this work. The evenly distributed trajectories may serve as the basic configuration to form a coil array to adequately cover a region of interest for magnetic resonance experiments. The main goal is to investigate the electromagnetic properties of this coil array geometry to obtain an optimal design for its further construction. Hence, the electromagnetic properties of the coil array were numerical simulated using the finite element method and the quasi-static approach. Resulting simulations showed that there is an important concentration of magnetic field lines at the centre of the coil array. This is an advantage over other coil arrays where the magnetic field usually decreased at their geometrical centre. Both the electric and magnetic fields had also a very good uniformity. These characteristics made this coil design a good candidate for applications where the use of multi-coil technology is mandatory

  12. Three-axis orthogonal transceiver coil for eddy current sounding

    Science.gov (United States)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  13. Investigation of Global Lightning using Schumann Resonances measured by High Frequency Induction Coil Magnetometers in the UK

    Science.gov (United States)

    Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.

    2012-12-01

    In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.

  14. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)

  15. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  16. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  17. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  18. Eddy current testing probe with dual half-cylindrical coils

    Science.gov (United States)

    Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong

    2000-02-01

    We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.

  19. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  20. Testing of the European LCT coil in the TOSKA facility

    International Nuclear Information System (INIS)

    Herz, W.; Katheder, H.; Krauth, H.

    1985-01-01

    The EURATOM-LCT coil was tested as a single coil in TOSKA. Load cells were mounted in the support structure to monitor forces between coil and vacuum vessel during cooldown and coil charging. Disturbances of components by magnetic fringing fields were carefully considered. To investigate the mechanical behaviour and compare it with FEM-calculations the coil was equipped with strain gauge rosettes and displacement transducers. Van Mises stresses in the coil case are in agreement with calculations. As known from special investigations during coil manufacturing the average radial Young modulus varies along the periphery caused by the different curvatures. This leads to differences with FEM-calculation (larger gaps between winding and coil case) assuming a larger constant Young modulus performed at the beginning of the project

  1. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    Science.gov (United States)

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  2. Retrieval of prolapsed coils during endovascular treatment of cerebral aneurysms

    International Nuclear Information System (INIS)

    Dinc, Hasan; Kuzeyli, Kayhan; Kosucu, Polat; Sari, Ahmet; Cekirge, Saruhan

    2006-01-01

    One of the feared complications during detachable coil embolization of cerebral aneurysms is herniation of a coil loop into the parent artery. Although coil protrusion of one or two loops into the parent vessel may not cause adverse events and in some instances can be ignored, the authors believe that coil retrieval is indicated if a free end is seen pulsating along the blood flow stream to prevent migration of the entire coil mass. In one patient, a microballoon was inflated across the neck of the aneurysm during retrieval of a herniated coil to prevent further coil herniation from the aneurysm sac. We present two cases in which prolapsed coils were successfully retrieved either using a microsnare and balloon combination or a microsnare alone. This report focuses on the efficacy of the Amplatz microsnare for such retrievals and the circumstances in which a herniated coil needs to be retrieved. We report two cases in which embolization coils partially migrated into the parent artery during endovascular treatment of cerebral aneurysm and were retrieved using the Amplatz Nitinol microsnare. (orig.)

  3. Slip-spring model of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  4. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  5. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    International Nuclear Information System (INIS)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization

  6. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  7. The design of the SULTAN inner coil

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Spoorenberg, C.J.G.

    1981-12-01

    The background field of the first phase of the test facility SULTAN will be generated by two concentric solenoids: a 6 Tesla outer coil with a free bore of 1.3 m and an inner coil for increasing the field to 8 Tesla. The free bore (cold) will be 1.055 m. The final design of the 8 Tesla inner coil is described. The coil will operate at an overall current density of 23 x 10 6 A/m 2 . It will be cooled directly by forced flow supercritical helium. A hollow conductor is applied, composed of a rectangular copper tube and a 16 strands Rutherford cable, soldered on one side of the tube. The copper tube will be cold worked to cope with the high stress level (165 MPa). The design base (field and stress analysis, cooling, stability), the mechanical design and the instrumentation will be specified. The design and construction of the coil is a part of the collaboration between ECN and Holec Transformer Group

  8. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  9. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  10. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    Science.gov (United States)

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).

  11. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  12. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  13. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  14. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  15. Improved SNR of phased-array PERES coils via simulation study

    International Nuclear Information System (INIS)

    RodrIguez, Alfredo O; Medina, LucIa

    2005-01-01

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  16. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  17. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  18. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  19. Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Bu Hyun; Lee, Jeong Woo; Shim, Hyun Ho; Park, Sang Goo [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Seung Yop [Sogang Univ., Seoul (Korea, Republic of)

    2016-01-15

    A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

  20. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Directory of Open Access Journals (Sweden)

    Oliver Weinberger

    Full Text Available The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  1. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  2. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  3. Design of the power system for dynamic resonant magnetic perturbation coils on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Y.H., E-mail: yhding@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, M.; Rao, B.; Nan, J.Y.; Zeng, W.B.; Zheng, M.Y.; Xu, H.Y.; Zhuang, G.; Pan, Y. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-10-15

    Highlights: ► We introduce the dynamic resonant magnetic perturbation coils system on J-TEXT. ► Details of the design of the power supply system have been presented. ► At DC mode, two antiparallel 6-pulse phase thyristor rectifiers were chosen. ► An AC–DC–AC converter including a series resonant inverter was adopted for AC mode. ► Some engineering testing result was given in this paper. -- Abstract: A set of in-vessel saddle coils has been installed on J-TEXT tokamak. They are proposed for further researches on controlling tearing modes and driving plasma rotation by static and dynamic resonant magnetic perturbations (RMPs). The saddle coils will be energized by DC with the amplitude up to 10 kA, or AC with maximum amplitude up to 5 kA within the frequency range of 1–5 kHz. At DC mode two antiparallel 6-pulse phase thyristor rectifiers are chosen to obtain bidirectional current, while at AC mode an AC–DC–AC converter including a series resonant inverter can generate current of various amplitudes and frequencies. The paper presents the design of the power supply system, based on the definition of the power supply requirements and the feasibility of implementation of the topology and control strategy. Some simulation and experimental results are given in the end.

  4. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic multi-channel TMS with reconfigurable coil.

    Science.gov (United States)

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil.

  6. Optimal design for MRI surface coils

    International Nuclear Information System (INIS)

    Rivera, M.; Vaquero, J.J.; Santos, A.; Pozo, F. del; Ruiz-Cabello, J.

    1997-01-01

    To demonstrate the possibility of designing and constructing specific surface coils or antennae for MRI viewing of each particular tissue producing better results than those provided by a general purpose surface coil. The study was performed by the Bioengineering and Telemedicine Group of Madrid Polytechnical University and was carried out at the Pluridisciplinary Institute of the Universidad Complutense in Madrid, using a BMT-47/40 BIOSPEC resonance unit from Bruker. Surface coils were custom-designed and constructed for each region to be studied, and optimized to make the specimen excitation field as homogeneous as possible, in addition to reducing the brightness artifact. First, images were obtained of a round, water phantom measuring 50 mm in diameter, after which images of laboratory rats and rabbits were obtained. The images thus acquired were compared with the results obtained with the coil provided by the manufacturer of the equipment, and were found to be of better quality, allowing the viewing of deeper tissue for the specimen as well as reducing the brightness artifact. The construction of surface coils for viewing specific tissues or anatomical regions improves image quality. The next step in this ongoing project will be the application of these concepts to units designed for use in humans. (Author) 14 refs

  7. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  8. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  9. Magnetic field, inductance of circular coil and solenoids

    International Nuclear Information System (INIS)

    Ramirez Hoyos, P.; Barbero Garcia, A.J.; Mafe Matoses, S.

    1995-01-01

    The self-inductance of a current-carrying circular coil and the mutual inductances of the Helmholtz coils and coil-sole-noid systems have been measured and calculated theoretically. The experiments and the required equipment are suited to an undergraduate laboratory. The theoretical calculation involve the use of simple numerical integration methods for evaluating the magnetic field of the circular coil and the inductances. The calculated values agree with the measurements within the experimental error. The material presented can be proposed to the students as a laboratory project. (Author) 7 refs

  10. Test of a model coil of TORE SUPRA

    International Nuclear Information System (INIS)

    Aymar, R.; Claudet, G.; Disdier, F.; Hamelin, J.; Libeyre, P.; Mayaux, C.; Meuris, C.; Parain, J.; Torossian, A.

    1980-10-01

    Inside the qualifying test programme, supporting the 'Tore Supra' Tokamak design, a reduced scale model of coil was fabricated by an industrial firm and fully tested. This model coil is provided with the same features as those retained for the complete magnet and is built according to the same design; in particular the Nb-Ti mixed matrix monolithic conductor is cooled by a pressurized superfluid helium bath, supplied from a model of the envisaged complete cryogenic system. Three main objectives have been assigned to this test: operation of the cryogenic system, stability of the superconductor winding under high mechanical stresses, mainly shear, and simulation of coil quench conditions. For this purpose, the model coil (outside bore 0.8 m) is located inside a 4 T magnet, an hydraulic jack applies a 1 MN force along a coil diameter. Operation of the model coil has been found highly stable, under the conditions of applied field and forces, a coil transition can be induced by an electrical heater only when the superfluid bath temperature is close to Tlambda. The 1.8 K cryogenic system provides a useful calorimetric measure of total losses induced inside the winding; its operation has been quite simple and reliable, permitting a sure extrapolation to a much larger size

  11. Mechanical study of 20 MJ superconducting pulse coil

    International Nuclear Information System (INIS)

    Hattori, Yasuhide; Shimamoto, Susumu

    1985-09-01

    This paper describes calculation methods and computer codes of stress distribution in a circular-shaped superconducting pulsed coils. The stress problems of a large sized superconducting coil, for example, are discussed for 20 MJ pool-cooled pulse coil. Young's modulus of a stranded flat cable, low rigidity, is measured and evaluated. (author)

  12. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer the rapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  13. Performance verification tests of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  14. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  15. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  16. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  17. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control.

    Science.gov (United States)

    Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel

    2017-11-22

    Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.

  18. Fabrication of the new poloidal field coils for DIII-D

    International Nuclear Information System (INIS)

    Heiberger, M.; Bott, R.J.; Gallix, R.; Street, R.W.

    1986-01-01

    The six new poloidal field coil assemblies manufactured by GA Technologies (GA) for DIII-D range in diameter from 3.4-5.3 m. Two of them are 55-turn field shaping coils. Each of the other four combines one turn of the ohmic heating coil and a 55-turn field shaping coil into a single unit encased in a stainless steel box beam. These four box beams, which provide support for the coils inside, are part of the overall coil and vacuum vessel support structure. They also serve as molds for vacuum impregnating the coils with epoxy. All coils are made of hollow, water-cooled copper conductor. The larger field shaping coils are designed for 20 kA, 3 sec rectangular current pulses with 40 0 C temperature rise. The ohmic heating coil turns are capable of currents of up to 110 kA. The conductor is wrapped with Kapton and fiberglass tape; Kapton provides 1000 V/turn and 28 kV coil-to-ground insulation. The fiberglass acts as wick and reinforcement for the vacuum impregnated epoxy resin which bonds the coil together. The fabrication process is described in detail and illustrated. Tools and setups used for special operations such as induction brazing, conductor winding, conductor bending, and vacuum impregnation are presented. The quality control procedures followed to guarantee sound brazed joints are explained. The electrical tests performed at several stages of fabrication, especially the 1000 V/turn impulse tests conducted before potting to facilitate fault detection and repair, are described

  19. Application of high-temperature superconducting coil for internal ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: ogawa@ppl.k.u-tokyo.ac.jp; Morikawa, Junji [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Yanagi, Nagato [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Iwakuma, Masataka [Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    A high-temperature superconducting (HTS) coil is applied for plasma confinement devices, where plasma is confined with a magnetic field of a floating HTS coil. The internal coil device mini-RT with a BSCCO tape has been constructed, in which the coil major radius and magnetomotive force are 0.15 m and 50 kA, respectively. The coil is cooled to 20 K with a helium gas by using a demountable transfer tube and check valve system. The coil current is directly excited by the external power supply with demountable electrodes. To reduce the heat load, the electrodes were cooled with liquid nitrogen. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured by laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded in levitating the HTS coil during 1 h with accuracy of less than 20 {mu}m. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. At the floating condition of the HTS coil, a high-density plasma with more than 10{sup 17} m{sup -3}, which is higher than the cut-off density of a 2.45 GHz microwave, has been produced. A new device RT-1 with a major radius of 0.25 m and a magnetomotive force of 250 kA is under construction, and a persistent current has been demonstrated. The feasibility on YBCO tape is briefly discussed.

  20. Giant High-Flow Type Pulmonary Arteriovenous Malformation: Coil Embolization with Flow Control by Balloon Occlusion and an Anchored Detachable Coil

    International Nuclear Information System (INIS)

    Kanematsu, Masayuki; Kondo, Hiroshi; Goshima, Satoshi; Tsuge, Yusuke; Watanabe, Haruo; Moriyama, Noriyuki

    2012-01-01

    Pulmonary arteriovenous malformations (PAVMs) are often treated by pushable fibered or non-fibered microcoils, using an anchor or scaffold technique or with an Amplatzer plug through a guiding sheath. When performing percutaneous transcatheter microcoil embolization, there is a risk of coil migration, particularly with high-flow type PAVMs. The authors report on a unique treatment in a patient with a giant high-flow PAVM whose nidus had a maximum diameter of 6 cm. A detachable coil, not detached from a delivery wire (an anchored detachable coil), was first placed in the feeding artery under flow control by balloon occlusion, and then multiple microcoils were packed proximally to the anchored detachable coil. After confirming the stability of the microcoils during a gradual deflation of the balloon, we finally released the first detachable coil. The nidus was reduced in size to 15 mm at one year postoperatively.

  1. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255 mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200 mm and axial-length of 100 mm), an increase of about a maximum of 3 μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system

  2. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  3. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  4. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  5. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  6. Switching transients in the MFTF yin-yang coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1982-01-01

    This report is a study of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to the coils' performance tests

  7. Magnet coils made from high-temperature superconductor

    International Nuclear Information System (INIS)

    Jenkins, R.G.; Yang, M.; Grovenor, C.R.M.; Goringe, M.J.

    1996-01-01

    We review the progress we have made in constructing HTS coils and report our latest results. Also we describe the cryogen-free operation of one of our HTS coils cooled to 55 K using a Stirling cycle cryocooler. Lastly, we describe how 4 Oxford coils are being used in a project to investigate the controllability of HTS magnets in applications such as ''maglev'' suspension systems. We briefly report the initial findings of this work and describe developments in progress. (orig.)

  8. Effects of passive coils on spheromak gross MHD instabilities

    International Nuclear Information System (INIS)

    Munson, C.; Janos, A.; Paul, S.; Wysocki, F.; Yamada, M.

    1983-01-01

    The experimental investigation of the effectiveness of figure-8 coils in stabilizing the n=1 tilting mode of spheromak plasmas in Proto S-1 A/B is extended. In addition, another coil configuration, the saddle coil, is examined

  9. Proposals for cold testing of the ITER TF coils

    International Nuclear Information System (INIS)

    Libeyre, P.; Ciazynski, D.; Dolgetta, N.; Duchateau, J.L.; Lyraud, C.; Kircher, F.; Schild, T.; Fietz, W.H.; Zahn, G.

    2005-01-01

    The ITER Toroidal Field (TF) magnet system will be made of 18 coils using Nb 3 Sn as superconducting material. These coils will operate at a maximum field of 11.8 T for a nominal current of 68 kA carried by a dual channel cable-in-conduit conductor cooled by a forced flow of supercritical helium at 4.5 K. In each coil, seven 760 m conductor lengths wound in double pancakes will be connected to each other by low resistance joints. As a final step of the reception tests, it is proposed to perform cold tests of these coils at liquid helium temperature after completion of their manufacture. The testing shall include high voltage tests to check the quality of the insulation, leak tests and pressure drop measurements of the hydraulic circuits as well as measurement of the joint resistances. Testing the coils up to nominal current is a discussed option, addressing on one hand measurement of the electrical performances in self field and on the other hand the mechanical behaviour of the coils. To perform these tests, a dedicated test facility has to be built, allowing possible simultaneous testing of two coils, assembled together in a twin coil configuration, similarly to their assembly in the torus. (authors)

  10. Proposals for cold testing of the ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Libeyre, P.; Ciazynski, D.; Dolgetta, N.; Duchateau, J.L.; Lyraud, C. [Association Euratom/CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Kircher, F.; Schild, T. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Fietz, W.H.; Zahn, G. [Association Euratom-Forschungszentrum Karlsruhe, Karlsruhe (Germany)

    2005-07-01

    The ITER Toroidal Field (TF) magnet system will be made of 18 coils using Nb{sub 3}Sn as superconducting material. These coils will operate at a maximum field of 11.8 T for a nominal current of 68 kA carried by a dual channel cable-in-conduit conductor cooled by a forced flow of supercritical helium at 4.5 K. In each coil, seven 760 m conductor lengths wound in double pancakes will be connected to each other by low resistance joints. As a final step of the reception tests, it is proposed to perform cold tests of these coils at liquid helium temperature after completion of their manufacture. The testing shall include high voltage tests to check the quality of the insulation, leak tests and pressure drop measurements of the hydraulic circuits as well as measurement of the joint resistances. Testing the coils up to nominal current is a discussed option, addressing on one hand measurement of the electrical performances in self field and on the other hand the mechanical behaviour of the coils. To perform these tests, a dedicated test facility has to be built, allowing possible simultaneous testing of two coils, assembled together in a twin coil configuration, similarly to their assembly in the torus. (authors)

  11. Steady-state resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1979-12-01

    If spatially-averaged values of the beta ratio can reach 5 to 10% in tokamaks, as now seems likely, resistive toroidal-field coils may be advantageous for use in reactors intended for fusion-neutron applications. The present investigation has parameterized the design of steady-state water-cooled copper coils of rectangular cross section in order to maximize figures of merit such as the ratio of fusion neutron wall loading to coil power dissipation. Four design variations distinguished by different ohmic-heating coil configurations have been examined. For a wall loading of 0.5 MW/m 2 , minimum TF-coil lifetime costs (including capital and electricity costs) are found to occur with coil masses in the range 2400 to 4400 tons, giving 200 to 250 MW of resistive dissipation, which is comparable with the total power drain of the other reactor subsystems

  12. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  13. Study on the optimum design of a high temperature superconducting coil

    International Nuclear Information System (INIS)

    Ishiguri, Shinichi; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Sato, Takao

    2005-01-01

    It is in particular of importance for HTS coils to secure a larger central magnetic field, a large stored energy, etc. with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle with respect to tapes. In view of this, the performance improvement of HTS coils is taken into account with an analytical model. As a coil shape, the minimum volume coil derived from the Fabry Factor constant curve is taken up, which is often employed at low temperature coils. The electric field distribution within a coil cross-section is calculated to examine effects on a current carrying capability. It is clear that high electric field portions appear at the coil edge region due primarily to inclined magnetic fluxes against HTS tapes. Considering this, a grade winding method of a coil is proposed, where the winding density of conductors is reduced at coil edge portions. With this coil winding structure, the critical current of an HTS coil is improved since the magnetic field is reduced at edge portions. The stored energy per HTS tape length and the central magnetic field of the coil can be remarkably increased by this kind of grade winding method

  14. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Schwarzinger, Stephan; Kroon, Gerard J.A.; Foss, Ted R.; Wright, Peter E.; Dyson, H. Jane

    2000-01-01

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  15. Stability analysis of high temperature superconducting coil in liquid hydrogen

    International Nuclear Information System (INIS)

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  16. Study of electric phenomena in energy dumping of LCT coil

    International Nuclear Information System (INIS)

    Oka, Koichi; Tsuji, Hiroshi; Nishi, Masataka; Shimamoto, Susumu

    1980-03-01

    In IEA-LCT coil, electric phenomena in energy dumping were studied analytically and experimentally. Protection resistance of the Japanese LCT coil is chosen as 0.1 Ω considering the quenching voltage, so that temperature rise of the coil is no problem. Energy dumping characteristic of the six-coil system is calculated under different conditions. It is concluded that simultaneous dumping of all the coils with the equivalent resistance values of protection is necessary. Flashover voltage tests of the model in 4.2 K liquid helium, 4.2 K gas helium and 4.2 K boiling helium show margin in practical quenching voltage of the coil. (author)

  17. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Science.gov (United States)

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  18. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Directory of Open Access Journals (Sweden)

    Erik Ronzone

    Full Text Available Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  19. Ocular MR imaging. Evaluation of different coil setups in a phantom study

    International Nuclear Information System (INIS)

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T 1 -weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality. (author)

  20. Spiral versus J-shaped coils for neurovascular embolisation - an in-vitro study

    International Nuclear Information System (INIS)

    Sugiu, K.; Tokunaga, K.; Mandai, S.; Martin, J.B.; Jean, B.; Ruefenacht, D.A.

    2003-01-01

    Our purpose was to compare the characteristics of J-shaped detachable platinum coils with those of spiral coils in in-vitro vascular models. J-shaped coils consist of distal semicircular and proximal straight segments, the latter extending for most of the length of the coil. Spiral coils have a helical shape memory and are thus limited in expansion. In in-vitro silicone vascular models simulating intracranial aneurysms and dural arteriovenous fistulae, we compared J-shaped and spiral coils with regard to ease of delivery, anchoring and folding patterns, and stability in various types of vascular lumen. Delivery and retrieval were comparable. In large and irregular aneurysms and venous sinuses, J-shaped coils could form a more complex basket which conformed to the shape of the vascular cavity. The J-shaped coil was always in contact with the vessel wall. In wide-necked aneurysms, coil protrusion was more frequent with J-shaped coils, while spiral coils tended to stay compact and circular. Arteries were occluded in a shorter segment with spiral coils. J-shaped coils were safe and superior for large and irregular aneurysms or sinuses. Spiral coils were preferable for spherical aneurysms and segmental occlusion of arteries. (orig.)

  1. Parallel connecting poloidal coil system for a doublet tokamak fusion reactor

    International Nuclear Information System (INIS)

    Toffolo, W.E.; Chen, W.Y.; Purcell, J.R.; Wesley, J.C.

    1977-09-01

    A method has been developed for parallel connection of the ohmic heating (OH) coil. The method involves subdividing the OH-coil into a number of parallel connected subcoils, with each subcoil having about 20 turns. Each of the field shaping coils (F-coils) also contains 20 turns, so that when connected to a common power supply, the OH and F-coils are decoupled. The advantages resulting from the scheme are numerous: (1) each F-coil contains a much smaller number of turns compared with the previous design concept, thus the construction and maintenance will be easier; (2) the parallel connected OH-coils form a constant flux envelope, resulting in an inherently lower error field at the plasma and the TF coil region, and this low error field is not sensitive to the variation in location of the OH-coils; (3) the voltage and current ratings of the individual OH coil conductors are reduced; and (4) the low impedance of the OH-coil system greatly improves the possibility of using a homopolar motor generator as a means of achieving flux reversal during startup and plasma current control during the burn cycle

  2. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  3. Design and fabrication of a radially-fed implosion heating coil

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Dickinson, J.M.; Melton, J.G.; Nunnally, W.C.

    1977-01-01

    A radially-fed implosion heating coil has been designed and fabricated at the Los Alamos Scientific Laboratory. The M arshall coil is a copper-plate-on-epoxy-substrate coil designed to utilize up to 200- kV to produce a 1-T magnetic field in a 20-cm bore with a risetime of no more than 250-ns. The design and fabrication process of this coil and the design of the high-voltage stand for the Marshall coil are discussed

  4. Surgical management of an ACM aneurysm eight years after coiling.

    Science.gov (United States)

    Pogády, P; Fellner, F; Trenkler, J; Wurm, G

    2007-04-01

    The authors present a case report on rebleeding of a medial cerebral aneurysm (MCA) eight years after complete endovascular coiling. The primarily successfully coiled MCA aneurysm showed a local regrowth which, however, was not the source of the rebleeding. The angiogram demonstrated no evidence of contrast filling of the coiled segment, but according to intraoperative findings (haematoma location, displacement of coils, evident place of rupture) there is no doubt that the coiled segment of the aneurysm was responsible for the haemorrhage.

  5. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  6. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  7. MFTF test coil construction and performance

    International Nuclear Information System (INIS)

    Cornish, D.N.; Zbasnik, J.P.; Leber, R.L.; Hirzel, D.G.; Johnston, J.E.; Rosdahl, A.R.

    1978-01-01

    A solenoid coil, 105 cm inside the 167 cm outside diameter, has been constructed and tested to study the performance of the stabilized Nb--Ti conductor to be used in the Mirror Fusion Test Facility (MFTF) being built at Lawrence Livermore Laboratory. The insulation system of the test coil is identical to that envisioned for MFTF. Cold-weld joints were made in the conductor at the start and finish of each layer; heaters were fitted to some of these joints and also to the conductor at various locations in the winding. This paper gives details of the construction of the coil and the results of the tests carried out to determine its propagation and recovery characteristics

  8. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  9. Reactivation of Open Coil Springs: A Novel Procedure

    Directory of Open Access Journals (Sweden)

    Sanjeeb Kumar Sahu

    2012-01-01

    Full Text Available Open coil springs are commonly used in orthodontic practice to create space for a palatally or lingually blocked out tooth. However, very often the clinician encounters a situation where the inter-bracket span is very less and the open coil spring is not long enough to open the required space needed for alignment. In such situations, the clinician needs to remove the arch wire and reinserts a longer coil spring. A new simple and cost-effective technique describes an intraoral reactivation of an open coil spring without the need for removal of the base archwire with the additional benefit of preventing unwanted forces to the adjacent teeth.

  10. Design of superconducting toroidal magnet coils and testing facility in the USA

    International Nuclear Information System (INIS)

    Luton, J.N.; Haubenreich, P.N.; Thompson, P.B.

    1977-01-01

    In the U.S. Large Coil Program, three industrial teams are presently designing test coils to general specifications prepared by the Oak Ridge National Laboratory with guidance from USERDA. Each test coil is approximately half the bore size of reactor coils, being oval or D-shaped, with a bore of 2.5 x 3.5 m. The dimensions and operating requirements of the coils are identical for all test coils. The coils are designed to produce a peak field of at least 8 tesla at the winding of a selected coil operated at its design current. This condition is met when the selected coil is operated in a compact toroidal array of 6 coils, with the other five coils being operated at 0.8 of their design current. The six coils are of three different designs. Both pool boiling and forced flow designs are included. The coils are housed in a single large vacuum chamber for economy and testing convenience. Auxiliary coils provide a pulse field over the test coil winding volume. This auxiliary system is designed to produce a pulse field which rises to a peak of 0.14 T in 1 sec. With the exception of material damage due to neutron irradiation, all reactor requirements and environments will be either duplicated, approximated, or simulated. The test facility is being designed to accept coils producing up to 12 tesla in later phases of the program

  11. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  12. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  13. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  14. Characteristic of TPF-I Current Signals

    International Nuclear Information System (INIS)

    Kunamaspakorn, T.; Poolyarat, N.; Picha, R.; Promping, J.; Onjun, T.

    2014-01-01

    Thailand Plasma Focus I (TPF-I) is a dense plasma focus device which has been built and developed as a collaborative project among TINT, SIIT, and TU as a radiation source for academic research. This prototype device is powered by a 30 μF capacitor bank, charged at 15 kV. In this work, we assembled a Rogowski coils, which was used for measuring high speed current pulse, to capture current signals from TPF-I. The signals were then compared with the simulation results from Lee model code and found to be in good agreement. The current development status of the TPF-I will also be presented.

  15. The experimental study on positioning of the surface coil for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kyoji; Yotsui, Yoritaka; Koseki, Yonoshin [Osaka Dental Univ., Hirakata (Japan)

    2002-12-01

    We examined the correlation between signal intensity and setting angulations for magnetic resonance imagesobtained using a surface coil, which had a three inch surface coil, and dual coil, which and a three inch surface coil and an anterior neck coil. We took T2-3D weighted, T2-2D weighted and T1-2D weighted images with the angulated three-inch surface coil at 0-90 degrees with the magnetic direction. In every sequence, the maximum intensity with the dual coil was taken with angulations of 50-60 degrees. The intensity of the dual coil could be as much as the three times that of the single coil. As the angulations increased with the dual coil, the thickness of the effective intensity was decreased until it reached 50% of the maximum thickness. With the single coil it decreased until it reached 10%. When using a high-resolution coil that cannot be setup parallel with the magnetic direction, we recommend using a dual coil rather than a single coil to increase the signal intensity. In the oral cavity, the intraoral coil should be used with the extraoral coil as the phased array coil. This is the optimum condition of coil angulation for taking high resolution images. (author)

  16. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.

  17. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  18. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  19. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  20. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Pressure rise analysis in superconducting coils during dumping

    International Nuclear Information System (INIS)

    Tada, E.; Shimamoto, S.

    1984-01-01

    This chapter describes the ALPHE computer code, whose purpose is to calculate transient helium behavior in a poolboiling coil and to determine suitable characteristics of safety devices to minimize the maximum pressure and the liquid helium lost during dumping due to quench, or when discharging without normalcy. The analysis is compared with the measurements obtained in the domestic test of the Japanese LCT coil. Topics considered include basic equations (helium behavior, heat generation), manual dump without quench, and dumping due to quench. It is demonstrated that the transient behavior, calculated by ALPHE assuming quasi-static equilibrium between helium and coil, is in good agreement with the experimental measurements observed in the domestic test of the Japanese LCT coil. The engineering technique required for the design criteria of superconducting coils and safety device during dumping is established. ALPHE can be used to design an emergency safety system for a helium refrigerator during dumping

  2. A tokamak with nearly uniform coil stress based on virial theorem

    International Nuclear Information System (INIS)

    Tsutsui, H.

    2002-01-01

    A novel tokamak concept with a new type of toroidal field (TF) coils and a central solenoid (CS) whose stress is much reduced to a theoretical limit determined by the virial theorem has been devised. Recently, we had developed a tokamak with force-balanced coils (FBCs) which are multi-pole helical hybrid coils combining TF coils and a CS coil. The combination reduces the net electromagnetic force in the direction of major radius. In this work, we have extended the FBC concept using the virial theorem. High-field coils should accordingly have same averaged principal stresses in all directions, whereas conventional FBC reduces stress in the toroidal direction only. Using a shell model, we have obtained the poloidal rotation number of helical coils which satisfy the uniform stress condition, and named the coil as virial-limited coil (VLC). VLC with circular cross section of aspect ratio A=2 reduces maximum stress to 60% compared with that of TF coils. In order to prove the advantage of VLC concept, we have designed a small VLC tokamak Todoroki-II. The plasma discharge in Todoroki-II will be presented. (author)

  3. On Eddy current examination (ECE) of Incoloy 800 SG tube using OD encircling and ID bobbin coil

    International Nuclear Information System (INIS)

    Kapoor, K.; Sunder Krishna, K.; Bakshu, S.A.

    2015-01-01

    The purpose of this paper is to present and compare the results of ECE carried out on steam generator tubes from OD side and ID side. During the manufacturing of the tubes Eddy current testing is being carried out using OD encircling probe as per ASTM E 571. Here the purpose of the test is to capture the manufacturing defects. The parameters of the test are optimized to achieve best sensitivity to this requirement. These tubes are then installed in the steam generator and once again ECE is carried out during installation (pre-service inspection-PSI) and during in-service inspection (ISI) by using ID bobbin coil. These tests are carried out as per ASME section V article 8 appendix 1. Here the purpose of the test is to detect wall thinning, dent, pits etc due to operation and to locate these defects (OD side or ID side). Here the operating parameters are optimized for phase separation of defects from OD and ID. These parameters are quite different from those used during the manufacturing ECE. Interpretation of the signals detected in PSI/ISI in must be done with care to correlate with defect indications detected during manufacturing. In the present study, tubes with certain manufacturing defects, detected with OD encircling test were subjected to ID bobbin coil examination. Also certain tubes with signal picked up during test from ID were examined by using the OD encircling probe. This comparison of the results provides a clear picture about the sensitivity and deficiency of the either type of test. (author)

  4. Vehicle to wireless power transfer coupling coil alignment sensor

    Science.gov (United States)

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  5. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  6. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  7. Manufacture and mechanical test of a TORE SUPRA model coil

    International Nuclear Information System (INIS)

    Aymar, R.; Claudet, G.; Disdier, F.; Hamelin, J.; Libeyre, P.; Mayaux, G.; Meuris, C.; Parain, J.; Torossian, A.

    1980-09-01

    Inside the qualifying test programme, supporting the Tore Supra Design, a reduced scale model of a Bsub(T) coil was fabricated by a large industrial firm. This model coil is provided with the same features as those retained for the complete magnet. Tests of this model coil have been carried out in such a way that most of stresses which will arise in Tore Supra windings are simulated; simultaneously its cryogenic supply is fully representative of the system retained for the complete machine. Operation of the model coil has been found highly stable; under the conditions of applied field and forces a coil transition could be triggered, by an electrical heater located inside the coil, only when the temperature of the superfluid helium bath was close to Tsub(lambda). Thus, design and manufacturing techniques have been qualified satisfactorily to proceed to the next step: fabrication of the superconducting Bsub(T) coils of Tore Supra

  8. Iron-free moving coil high temperature displacement transducer

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, A

    1976-07-01

    A unique, iron free, moving coil linear displacement transducer system is described, which is suitable for continuously monitoring linear movements, at varying temperatures up to 750/sup 0/C, in operational nuclear reactors. Although this device has been primarily developed for Advanced Gas Cooled Reactor Systems, it also has uses where long term measurements on conventional high temperature plant are required. Furthermore it could be particularly useful in material creep laboratories where precise linear changes in specimen length need to be monitored at elevated temperatures, over several years. Since individual transducer installations demand specific mounting arrangements to suit particular component geometries, evaluations have been made only on standard operational modules or capsules which are designed for containment in a range of housing or fixtures to suit particular applications. The behaviour of these devices has been studied at temperatures up to 750/sup 0/C for periods of over 10,000 h. An evaluation is also included of a commercially designed sensor assembly employing the same principle, for monitoring the boiler-shield wall movement at Hinkley Point 'B' AGR Station.

  9. Dental MRI using a dedicated RF-coil at 3 Tesla.

    Science.gov (United States)

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    International Nuclear Information System (INIS)

    Jeong, In Sung; Choi, Hyo Sang; Chung, Dong Chul

    2017-01-01

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils

  11. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  12. High frequency permeameter with semi-rigid pick-up coil

    International Nuclear Information System (INIS)

    Shin, Sung-Yong; Shin, Kwang-Ho . E-mail : khshin@star.ks.ac.kr; Kim, Jong-sung; Kim, Young-Hak; Lim, Sang-Ho; Sa-gong, Geon

    2006-01-01

    In this study, we propose the application of semi-rigid cable loop as a single turn shielded loop pick-up coil for the high frequency permeameter. Since the semi-rigid cable pick-up coil has simple structure, it is very easy to make the pick-up coil with bending and conventional soldering. The permeability of cobalt base amorphous ribbon was investigated using the developed permeameter for demonstrating its performance. The permeability of the amorphous ribbon was driven from the S-parameters measured using a network analyzer and permameter having the semi-rigid pick-up coil

  13. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  14. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death

    NARCIS (Netherlands)

    Maekawa, T.; Cheng, W.; Spiridon, L.N.; Töller, A.; Lukasik, E.; Saijo, Y.; Liu, P.; Shen, Q.H.; Micluta, M.A.; Somssich, I.E.; Takken, F.L.W.; Petrescu, A.J.; Chai, J.; Schulze-Lefert, P.

    2011-01-01

    Plants and animals have evolved structurally related innate immune sensors, designated NLRs, to detect intracellular nonself molecules. NLRs are modular, consisting of N-terminal coiled-coil (CC) or TOLL/interleukin-1 receptor (TIR) domains, a central nucleotide-binding (NB) domain, and C-terminal

  15. Resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized

  16. Coil Tolerance Impact on Plasma Surface Quality for NCSX

    International Nuclear Information System (INIS)

    Brooks, Art; Reiersen, Wayne

    2003-01-01

    The successful operation of the National Compact Stellarator Experiment (NCSX) machine will require producing plasma configurations with good flux surfaces, with a minimum volume of the plasma lost to magnetic islands or stochastic regions. The project goal is to achieve good flux surfaces over 90% of the plasma volume. NCSX is a three period device designed to be operated with iota ranging from ∼0.4 on axis to ∼0.7 at the edge. The field errors of most concern are those that are resonant with 3/5 and 3/6 modes (for symmetry preserving field errors) and the 1/2 and 2/3 modes (for symmetry breaking field errors). In addition to losses inherent in the physics configuration itself, there will be losses from field errors arising from coil construction and assembly errors. Some of these losses can be recovered through the use of trim coils or correction coils. The impact of coil tolerances on plasma surface quality is evaluated herein for the NCSX design. The methods used in this evaluation are discussed. The ability of the NCSX trim coils to correct for field errors is also examined. The results are used to set coils tolerances for the various coil systems

  17. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    Science.gov (United States)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  18. Design of the dummy coil for magnet power supply

    International Nuclear Information System (INIS)

    Kim, Chang-Hwan; Choi, Jae-Hoon; Jin, Jong-Kook; Lee, Dong-Keun; Kong, Jong-Dea; Joung, Nam-Young; Kim, Sang-Tae; Kim, Young-Jin; Kim, Yang-Soo; Kwon, Myeun

    2013-01-01

    Highlights: • It is necessary to confirm safety of the MPS on a dummy coil before the operating it. • We selected and designed the water cooling type dummy coil to test on the MPS's rating (12.5 kA) test. • For the design of the dummy coil, we considered requirements about electrical, structural and water cooling. • We will test as the rating power after MPS upgrade and that test will do before every KSTAR campaign. -- Abstract: It is necessary to test it on a dummy coil, before using a magnet power supply (MPS) to energize a Poloidal Field (PF) coil in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The dummy coil should accept the same large current from the MPS as the PF coil and be within the capability of the utilities located at the KSTAR site. Therefore a coil design based on the characteristics of the MPS and other restrictive conditions needed to be made. There are three requirements to be met in the design: an electrical requirement, a structural requirement, and a water cooling requirement. The electrical requirement was that the coil should have an inductance of 40 mH. For the structural requirement, the material should be non magnetic. The coil support structure and water cooling manifold were made of SUS 304. The water cooling requirement was that there should be sufficient flow rate so that the temperature rise ΔT should not exceed 12 °C for operation at 12.5 kA for 5 min. Square cross-section hollow conductor with dimensions of 38.1 mm × 38.1 mm was used with a 25.4 mm center hole for cooling water. However, as a result of tests, it was found that the electrical and structural requirements were satisfied but that the water cooling was over designed. It is imperative that the verification will be redone for a test with 12.5 kA for 5 min

  19. Design of the dummy coil for magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr; Choi, Jae-Hoon; Jin, Jong-Kook; Lee, Dong-Keun; Kong, Jong-Dea; Joung, Nam-Young; Kim, Sang-Tae; Kim, Young-Jin; Kim, Yang-Soo; Kwon, Myeun

    2013-11-15

    Highlights: • It is necessary to confirm safety of the MPS on a dummy coil before the operating it. • We selected and designed the water cooling type dummy coil to test on the MPS's rating (12.5 kA) test. • For the design of the dummy coil, we considered requirements about electrical, structural and water cooling. • We will test as the rating power after MPS upgrade and that test will do before every KSTAR campaign. -- Abstract: It is necessary to test it on a dummy coil, before using a magnet power supply (MPS) to energize a Poloidal Field (PF) coil in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The dummy coil should accept the same large current from the MPS as the PF coil and be within the capability of the utilities located at the KSTAR site. Therefore a coil design based on the characteristics of the MPS and other restrictive conditions needed to be made. There are three requirements to be met in the design: an electrical requirement, a structural requirement, and a water cooling requirement. The electrical requirement was that the coil should have an inductance of 40 mH. For the structural requirement, the material should be non magnetic. The coil support structure and water cooling manifold were made of SUS 304. The water cooling requirement was that there should be sufficient flow rate so that the temperature rise ΔT should not exceed 12 °C for operation at 12.5 kA for 5 min. Square cross-section hollow conductor with dimensions of 38.1 mm × 38.1 mm was used with a 25.4 mm center hole for cooling water. However, as a result of tests, it was found that the electrical and structural requirements were satisfied but that the water cooling was over designed. It is imperative that the verification will be redone for a test with 12.5 kA for 5 min.

  20. Suppression of m = 0 in a RFP by toroidal field coils

    International Nuclear Information System (INIS)

    Alexander, D.; Robertson, S.

    1993-01-01

    The Reversatron RFP is normally operated with the toroidal field coils connected in series. The time-integrated voltage applied to the circuit determines the sum of the fluxes linking each turn but not the flux within each turn. Each winding may have a different flux determined by the external drive and by currents within the plasma. A parallel connection of the field coils results in the flux within each coil being determined by the volt-seconds applied to the windings; thus the toroidal flux is the same within each coil. This configuration suppresses any toroidal variation in the toroidal flux and effectively reduces the level of the m = 0 component of the radial field. The m = 0 fluctuations are expected to arise due to nonlinear coupling of the m = 1 modes. A parallel connection of field coils is impractical due to the low impedance required for driving the coils. The authors have tested the effect of parallel connected coils by adding an auxiliary set of 36 coils. These are connected in parallel but are not connected to any supply. The toroidal flux is generated by the series-connected coils which generate voltage but not current in the parallel-connected coils. With the auxiliary coils, the discharge duration is increased from 500 to 550 μsec, the plasma current is increased from 50 kA to 60 kA, F is more negative, Θ is larger, and there is less shot-to-shot variation in the discharges. The m = 0 fluctuations measured by 43 surface coils are, however, only slightly reduced

  1. Physiological Studies on Pea Tendrils. IV. Flavonoids and Contact Coiling

    Science.gov (United States)

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Pea tendrils contain high concentrations of flavonoids, mainly quercetin-triglucosyl-p-coumarate (QGC). QGC is most abundant near the highly responsive apex of the tendril, and least abundant at the base. After mechanical stimulation, and during coiling of the tendril, the QGC titer drops to about 30% of its original value. The kinetics of flavonoid disappearance are significantly correlated with the kinetics of coiling. Aqueous extracts of unstimulated pea tendrils or 10 μm QGC inhibit contact coiling of excised tendrils. Extracts of coiled tendrils do not. The evidence indicates a possible regulatory role for flavonoids in contact coiling. PMID:16656581

  2. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  3. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    Science.gov (United States)

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  4. A large-stroke shape memory alloy spring actuator using double-coil configuration

    International Nuclear Information System (INIS)

    Kim, Seung-Won; An, Sungmin; Cho, Kyu-Jin; Lee, Jong-Gu; Cho, Maenghyo

    2015-01-01

    One way to increase the range of motion of shape memory alloy (SMA) actuators is to create displacements of the SMA associated with not only the deformation from straining but also rigid-body motion from translation and rotation. Rigid-body motion allows the SMA to create larger displacements without exceeding the maximum recovery strain so that the SMA actuators can have a larger shape recovery ratio. To improve the linear actuation stroke of SMA wire actuators, a novel SMA spring actuator is proposed that employs a double-coil geometry that allows the displacement of the SMA to be mainly induced by rigid-body motion. A double-coil SMA spring actuator is fabricated by coiling an SMA wire twice so that the double coiling results in a reduction of the initial length of the double-coil SMA spring actuator. The effects of the geometric parameters on the actuation characteristic of a double-coil SMA spring actuator are verified numerically by finite element analysis and experimentally according to a parametric study of the geometric parameters. The displacement-to-force profile of the double-coil SMA spring actuator is nonlinear, and the spring stiffness changes when the actuator transforms its configuration from a double-coil shape to a single-coil shape. According to the results of the parametric study, increasing the wire diameter increases both primary and secondary coil stiffness, and increasing the primary inner coil diameter decreases both primary and secondary coil stiffness, whereas increasing the secondary inner coil diameter decreases only the secondary coil stiffness. The result shows that one of the double-coil SMA spring actuators with an initial length of 8 mm has a recovery ratio of 1250%, while the recovery ratio of the single-coil SMA spring actuator with the same geometric parameters is 432%. (paper)

  5. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  6. Study on Dynamic Alignment Technology of COIL Resonator

    International Nuclear Information System (INIS)

    Xiong, M D; Zou, X J; Guo, J H; Jia, S N; Zhang, Z B

    2006-01-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system

  7. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  8. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  9. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  10. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  11. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  12. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  13. Four-channel surface coil array for sequential CW-EPR image acquisition

    Science.gov (United States)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  14. Design and fabrication of the active feedback control coils for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Du Shijun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)], E-mail: dsj@ipp.ac.cn; Liu Xufeng [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2008-10-15

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  15. Design and fabrication of the active feedback control coils for EAST

    International Nuclear Information System (INIS)

    Du Shijun; Liu Xufeng

    2008-01-01

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  16. Asymptomatic Delayed Coil Migration from an Intracranial Aneurysm: A Case Report

    Directory of Open Access Journals (Sweden)

    Anirban Deep Banerjee

    2011-01-01

    Full Text Available Objective. To describe asymptomatic delayed migration of a coil loop in a patient following successful coil embolization of an anterior communicating artery saccular aneurysm. Methods. A 24-year-old man with a ruptured anterior communicating artery saccular aneurysm underwent coil embolization with one helical ultrasoft coil. Results. A followup CT scan head and a cerebral angiogram one month following the procedure revealed distal migration of an intra-aneurysmal coil loop into the left pericallosal artery. The patient, however, remained asymptomatic. Conclusion. Delayed migration of coil following embolization of an intracranial aneurysm is an extremely rare occurrence. An asymptomatic presentation, as in our patient, is even more unique. The stent-like configuration of the migrated spiral coil loop probably prevented complete occlusion of the blood vessel.

  17. Design of the outer poloidal field coils for ITER

    International Nuclear Information System (INIS)

    Sborchia, C.; Mitchell, N.; Yoshida, K.

    1995-01-01

    The ITER poloidal field (PF) system consists of a central solenoid (CS or PF-1), which is not subject of this paper, and six ring coils using a 40 kA forced flow cooled superconductor. The coils, placed around the toroidal field (TF) system, are used to start-up the plasma with typical ramp-up times of 100 s and burn duration of 1000 s. They also provide control and shaping of the plasma, with small, frequent current variations on a 1-5 s time scale. The magnetic field produced by the coils ranges from about 4.5 to 8 T and the AC losses in the conductor are significant: the largest coils require cooling path lengths up to 1000 m as well as the use of 2 in-hand winding. The field level and high thermal loads make the use of Nb 3 Sn strand attractive. This paper describes the basic design of the six ring (outer) coils developed by the ITER Joint Central Team in collaboration with the four Home Teams. The coil structural material is provided by a thick conductor jacket and by a bonded insulation system. The forces acting on the coils during typical operational scenarios and plasma disruption/vertical instabilities have been evaluated: radial forces are self-reacted by hoop stresses in the ring coil, with tensile stresses up to 300 MPa in the conductor jacket, and the vertical forces are resisted by a discrete support system, with shear stresses up to 10 MPa in the insulation. (orig./WL)

  18. Retrieval of a Migrated Coil Using an X6 MERCI Device.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-03-31

    Summary: Coil migration is a recognised but rare complication of endovascular coiling. Many techniques are available commercially for coil retrieval. We report the case of an acute subarachnoid hemorrhage in a 54-year-old woman in which a migrated coil was successfully retrieved using an X6 MERCI device.

  19. Current contact device for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Hieronymus, H.

    1987-01-01

    The invention concerns a current supply device for a superconducting magnet coil to be shortcircuited, with a separating device per coil end, which contains a fixed cooled contact and a moving contact connected to a power supply device and a mechanical actuating device for closing and opening the contacts. When closing the heated contact on to the cooled contact, relatively large quantities of heat can be transferred to the cooled contact and therefore to the connected superconducting coil end and can cause normal conduction there. The invention therefore provides that the mass ratio of the cooled contact to the moving contact is at least 5:1, preferably at least 10:1, and that the cooled contact part is provided, at the end away from the contact area, with means for increasing the area, for example cooling fins and is connected to the coil end has a thermal resistance between the contact area and the coil end of at least 0.2 k/W, preferably at least 0.5 k/W per 1000 A of current to be transmitted. (orig.) [de

  20. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  1. Investigation of nonplanar modular coil systems for stellarator fusion reactors

    International Nuclear Information System (INIS)

    Harmeyer, E.

    1988-12-01

    Steady-state stellarators constitute an important option for a future fusion reactor. The helical magnetic field required for plasma confinement can be produced by means of a set of modular nonplanar coils. In order to achieve optimum power density of the plasma, the magnetic flux density inside the torus is made as high as possible. State-of-the-art estimates allow values of the magnetic flux density on axis of B 0 = 4-7 T. The present report is concerned with investigations on modular nonplanar stellarator coil systems. Coil systems with poloidal periodicity l=2 and a coil system of the W VII-AS type with superposed l=0, 1, 2, 3 terms are treated. Furthermore, the parameters are simultaneously varied while keeping constant the ratios of certain magnitudes. In the parameter space of the geometric values and coil number the following quantities are evaluated: maximum magnetic flux density in the coil domain, stored magnetic energy of the coil system, magnetic force density distribution or magnetic forces, and mechanical stress distribution in the coils. Numerical methods are applied in the programme systems used for these calculations. The aim of the study is to determine an optimum regime for the above parameters. The numerical results are compared with those of analytical approximation solutions. (orig.)

  2. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  3. A 1.5 MJ cryostatic stable superconducting ohmic-heating coil

    International Nuclear Information System (INIS)

    Wang, S.-T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1978-01-01

    As early as FY 1975, ANL had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and proposed a five-year pulsed coil and power supply development program to ERDA. With modest funding made available by ERDA in FY 1977 and the use of substantial equipment inventory at ANL, a small but agressive development program was advanced to the construction of a 1.5 MJ model coil. The principle objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil with a dB/dt ranging from 2 T/s up to 14 T/s. The results of basic cable development and tests will be described. The design and construction of a prototype 1.5 MJ cryostable pulsed coil and its nonmetallic cryostat will be presented. (author)

  4. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  5. Cooling device of superconducting coils

    International Nuclear Information System (INIS)

    Duthil, R.; Lottin, J.C.

    1985-01-01

    This device is rotating around an horizontal axis. The superconducting coils are contained in a cryogenic enclosure feeded in liquid helium forced circulation. They are related to an electric generator by electric mains each of them comprising a gas exchanger, and an exchanger-evaporator set between the cryogenic device and those exchangers. The exchanger-evaporator is aimed at dissipating the heat arriving by conductors connected to the superconducting coils. According to the invention, the invention includes an annular canalization with horizontal axis in which the connection conductors bathe in liquid helium [fr

  6. Coil extensions improve line shapes by removing field distortions

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  7. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  8. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2017-11-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  9. Modeling of coupling mechanism of wireless power transfer system and vibration phenomenon of receiver-coil in three-coil system

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2017-11-01

    Wireless power transfer (WPT) via coupled magnetic resonances has become a focus recently, but the mechanisms responsible for such work are uncertain. We found that WPT system is a self-organization system by utilizing self-organization theory to judge. Firstly, the circuit model was established and transfer characteristic of a system was researched by utilizing circuit theories. Thus, with the introduction of entropy variable S, the energy equation of state can be established from the energy of the transmitter side and the energy of the receiver side. According to the energy equation of state, this paper obtains two equations when the reactance of the transmitter side and the receiver side equate to zero respectively. The vibration phenomenon of the receiver-coil in a three-coil WPT system was predicted and explained. Our findings illuminate the unusual self-organization in the WPT system and explain the vibration phenomenon of the receiver-coil in a three-coil WPT system.

  10. Program NICOLET to integrate energy loss in superconducting coils

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ∫ΔVdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures

  11. ITER toroidal field model coil (TFMC). Test and analysis summary report (testing handbook) chapter 3 TOSKA FACILITY

    International Nuclear Information System (INIS)

    Ulbricht, A.

    2001-05-01

    In the frame of a contract between the ITER (International Thermonuclear Experimental Reactor) Director and the European Home Team Director was concluded the extension of the TOSKA facility of the Forschungszentrum Karlsruhe as test bed for the ITER toroidal field model coil (TFMC), one of the 7 large research and development projects of the ITER EDA (Engineering Design Activity). The report describes the work and development, which were performed together with industry to extend the existing components and add new components. In this frame a new 2 kW refrigerator was added to the TOSKA facility including the cold lines to the Helium dewar in the TOSKA experimental area. The measuring and control system as well as data acquisition was renewed according to the state-of-the-art. Two power supplies (30 kA, 50 kA) were switched in parallel across an Al bus bar system and combined with an 80 kA dump circuit. For the test of the TFMC in the background field of the EURATOM LCT coil a new 20 kA power supply was taken into operation with the existing 20 kA discharge circuit. Two forced flow cooled 80 kA current leads for the TFMC were developed. The total lifting capacity for loads in the TOSKA building was increased by an ordered new 80 t crane with a suitable cross head (125 t lifting capacity +5 t net mass) to 130 t for assembling and installation of the test arrangement. Numerous pre-tests and development and adaptation work was required to make the components suitable for application. The 1.8 K test of the EURATOM LCT coil and the test of the W 7-X prototype coil count to these tests as overall pre-tests. (orig.)

  12. Primary calibration of coiled 103Pd brachytherapy sources

    International Nuclear Information System (INIS)

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-01

    Coiled 103 Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S K ) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S K of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S K of the longer coiled sources. The UW VAFAC has shown agreement in S K values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S K of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm

  13. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  14. Superconducting toroidal field coil power supply and protection system for NET

    International Nuclear Information System (INIS)

    Hicks, J.B.

    1986-01-01

    A power supply and quench protection system is proposed in which alternate coils are connected in series to produce two separate circuits, each with 8 coils. Both circuits are provided with power supplies comprising rectifier transformers and thyristor equipped Graetz bridges, which are operated at maximum forward voltage (125 V) to charge the coils to 24 kA, 17.75 GJ in ≅ 2 hours and are fully inverted for scheduled discharges. Pulsed firing of the thyristors allows the same power supplies to be used to maintain the currents against resistive losses, without increasing the reactive power consumption or harmonic current generation. Rapid discharges are initiated by opening d.c. circuit breakers to introduce discharge resistors between the coils of each circuit. The maximum possible value of peak voltage-to-ground is then limited to 2.25 times the discharge voltage applied to each coil. A 5 kV discharge voltage allows the coils to be discharged with a time constant of 18.5 s, which is sufficiently rapid to limit the quench ''hot spot'' temperature to 68 K. The coil connections impose sufficient symmetry on the coil current distribution to ensure that no out-of-plane forces are produced on the coils. Even if one circuit breaker fails to interrupt, the variation of coil currents is sufficiently small that the resulting symmetric variation of radial centring forces is acceptable

  15. Studies on normal-conducting coils for Wendelstein VII-X

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Rau, F.; Sapper, J.; Wobig, H.

    1990-08-01

    For Wendelstein VII-X, the next step stellarator experiment at IPP Garching, a Helias configuration has been chosen. The goals of Wendelstein VII-X are to continue the development of the modular stellarator and to demonstrate the reactor capability of this stellarator line. The main data of the selected HS5-10 configuration with five field periods are: major radius R 0 = 5.5 m, magnetic induction B 0 = 3 T and stored magnetic energy W ≅ 0.6 GJ. For comparison with the superconducting coil system which is foreseen for Wendelstein VII-X, a pulsed water-cooled normal-conducting version has been designed in order to explore the limitations and restrictions of this approach. Limitations are the high ohmic power dissipated in the coils and the electric energy currently available at IPP. Normal-conducting coils would allow to apply the well-known techniques in manufactoring these coils, as successful in use in the Wendelstein VII-AS experiment. But these techniques are applicable also for the conductor proposed for the superconducting coils of Wendelstein VII-X. In this report the time-dependent current and resistance of the coil system circuit is considered; the electric power needed, the total dissipated energy, and the temperature rise of the coil copper is calculated. Scaling laws are derived and parameter studies are made by varying the geometrical dimensions of the system. (orig.)

  16. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    International Nuclear Information System (INIS)

    Zhao, X.; Ramakrishnan, S.; Lawson, J.; Neumeyer, C.; Marsala, R.; Schneider, H.

    2009-01-01

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  17. Development work for the Japanese LCT coil and its design and construction

    International Nuclear Information System (INIS)

    Shimamoto, Susumu; Ando, Toshinari; Tsuji, Hiroshi; Yasukochi, Ko

    1984-01-01

    This paper describes design, verification tests, and construction of the Japanese test coil for the Large Coil Task (LCT). Japan Atomic Energy Research Institute (JAERI) signed on the LCT international agreement under the International Energy Agency (IEA) in 1978, and since then JAERI has been working to develop the Japanese LCT coil to explore the problems of design and construction of tokamak toroidal coil. Based on the common requirements of the LCT, the Japanese LCT coil was designed to be a pool-cooled NbTi fully-stabilized coil whose operating current is 10,220 A at 8 T. Through research and development of the Japanese LCT coil, new advances in the super-conducting coil technology were obtained, such as mechanically and chemically treated conductor surface that has high heat transfer about four times as much as usual ones, nitrogen-strengthened stainless steel that has the yield strength twice as much as usual stainless steel, NbTi filaments those have the critical current density twice as much as those before LCT, and so on. These advances have enabled to construct the Japanese LCT coil and it was completed in the spring of 1982. During the construction of the coil, new fabrication techniques were obtained to wind large current conductor into a mechanically rigid coil and thus to construct a totally stable large coil. (author)

  18. Strain and stress of the ASDEX multipole magnetic coils

    International Nuclear Information System (INIS)

    Jandl, O.; Pillsticker, M.

    1978-01-01

    A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de

  19. Productive international collaboration in the large coil task

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Komarek, P.; Shimamoto, S.; Vecsey, G.

    1987-01-01

    The Large Coil Task (LCT), initiated in 1977, has been very productive of useful technical information about superconducting toroidal field (TF) coil design and manufacture. Moreover, it has demonstrated close international collaboration in fusion technology development, including integration of large components built in four different countries. Each of six 40-t test coils was designed and produced by a major industrial team, with government laboratory guidance, to a common set of specifications. The six were assembled into a toroidal array for testing in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge. Testing was done by a team of representatives of EURATOM, Japan, Switzerland, and the United States, with each participant having full access to all data. Coils were thoroughly instrumented, enabling penetrating analysis of behavior

  20. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity