WorldWideScience

Sample records for inspired visual representation

  1. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Directory of Open Access Journals (Sweden)

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  2. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...... tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations...

  3. Collective form generation through visual participatory representation

    DEFF Research Database (Denmark)

    Day, Dennis; Sharma, Nishant; Punekar, Ravi

    2012-01-01

    In order to inspire and inform designers with the users data from participatory research, it may be important to represent data in a visual format that is easily understandable to the designers. For a case study in vehicle design, the paper outlines visual representation of data and the use...

  4. Mid-level Representation for Visual Recognition

    OpenAIRE

    Nabi, Moin

    2015-01-01

    Visual Recognition is one of the fundamental challenges in AI, where the goal is to understand the semantics of visual data. Employing mid-level representation, in particular, shifted the paradigm in visual recognition. The mid-level image/video representation involves discovering and training a set of mid-level visual patterns (e.g., parts and attributes) and represent a given image/video utilizing them. The mid-level patterns can be extracted from images and videos using the motion and appe...

  5. Conceptual size representation in ventral visual cortex.

    Science.gov (United States)

    Gabay, Shai; Kalanthroff, Eyal; Henik, Avishai; Gronau, Nurit

    2016-01-29

    Recent findings suggest that visual objects may be mapped along the ventral occipitotemporal cortex according to their real-world size (Konkle and Oliva, 2012). It has been argued that such mapping does not reflect an abstract, conceptual size representation, but rather the visual or functional properties associated with small versus big real-world objects. To determine whether a more abstract conceptual size representation may affect visual cortical activation we used meaningless geometrical shapes, devoid of semantic or functional associations, which were associated with specific size representations by virtue of extensive training. Following training, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a conceptual size comparison task on the geometrical shapes. In addition, a size comparison task was conducted for numeral digits denoting small and big numbers. A region-of-interest analysis revealed larger blood oxygenation level dependent (BOLD) responses for conceptually 'big' than for conceptually 'small' shapes, as well as for big versus small numbers, within medial (parahippocampal place area, PPA) and lateral (occipital place area, OPA) place-selective regions. Processing of the 'big' visual shapes further elicited enhanced activation in early visual cortex, possibly reflecting top-down projections from PPA. By using arbitrary shapes and numbers we minimized visual, categorical, or functional influences on fMRI measurement, providing evidence for a possible neural mechanism underlying the representation of abstract conceptual size within the ventral visual stream. PMID:26731198

  6. Learned image representations for visual recognition

    OpenAIRE

    Larsen, Anders Boesen Lindbo; Larsen, Rasmus; Dahl, Anders Bjorholm

    2016-01-01

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development. The solutions are inspired by and extend state-of-the-art techniques for describing and learning image content.More specifically, the thesis explores two approaches to constructing image representa...

  7. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Science.gov (United States)

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior. PMID:26280070

  8. Distorted representation in visual tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    2016-01-01

    . On this background, this paper develops the notion ‘distorted representation’ to illustrate that blurred and obscure photos can in fact be intelligible and sensible in understanding tourism. Through an exploration of the overwhelmed and unintended practices of visual fieldwork, distorted representation illustrates...

  9. Visual Knowledge Representation and Intelligent Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Automatic medical image analysis shows that image segmentation is a crucial task for any practical AI system in this field.On the basis of evaluation of the existing segmentation methods,a new image segmentation method is presented.To seek the perfct solution to knowledge representation in low level machine vision,a new knowledge representation approach--“Notebbok”approach is proposed and the processing of visual knowledge is discussed at all levels.To integrate the computer vision theory with Gestalt psychology and knowledge engineering,a new integrated method for intelligent image segmentation of sonargraphs- “Generalized-pattern guided segmentation”is proposed.With the methods and techniques mentioned above,the medical diagnosis expert system for sonargraphs can be built The work on the preliminary experiments is also introduced.

  10. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  11. Natural Scene Classification Inspired by Visual Perception and Cognition Mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui

    2011-01-01

    The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes. Inspired by this fact, we propose a biologically plausible approach for natural scene image classification. This approach consists of one visual perception model and two visual cognition models. The visual perception model, composed of two steps, is used to extract discriminative features from natural scene images. In the first step, we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform, which can decompose a natural scene image into a series of 2D spatial structure signals. In the second step, a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals. Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model. At last, we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization. Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.

  12. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked

  13. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Directory of Open Access Journals (Sweden)

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  14. Drawing Connections across Conceptually Related Visual Representations in Science

    Science.gov (United States)

    Hansen, Janice

    2013-01-01

    This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those…

  15. Visual representations are dominated by intrinsic fluctuations correlated between areas

    Science.gov (United States)

    Henriksson, Linda; Khaligh-Razavi, Seyed-Mahdi; Kay, Kendrick; Kriegeskorte, Nikolaus

    2015-01-01

    Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of representations between brain regions. We characterized the representations in several human visual areas by representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli. The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the representational geometries can be explained by coherent fluctuations of regional-mean activation within visual cortex, reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinctions between the representational geometries: a Gabor wavelet pyramid model explained representational geometry in visual areas V1–3 and a categorical animate–inanimate model in the object-responsive lateral occipital cortex. PMID:25896934

  16. Visual Representations of the Water Cycle in Science Textbooks

    Science.gov (United States)

    Vinisha, K.; Ramadas, J.

    2013-01-01

    Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textbook. This study…

  17. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    Science.gov (United States)

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  18. The epistemic representation: visual production and communication of scientific knowledge.

    Directory of Open Access Journals (Sweden)

    Francisco López Cantos

    2015-03-01

    Full Text Available Despite its great influence on the History of Science, visual representations have attracted marginal interest until very recently and have often been regarded as a simple aid for mere illustration or scientific demonstration. However, it has been shown that visualization is an integral element of reasoning and a highly effective and common heuristic strategy in the scientific community and that the study of the conditions of visual production and communication are essential in the development of scientific knowledge. In this paper we deal with the nature of the various forms of visual representation of knowledge that have been happening throughout the history of science, taking as its starting point the illustrated monumental works and three-dimensional models that begin to develop within the scientific community around the fifteenth century. The main thesis of this paper is that any scientific visual representations have common elements that allow us to approach them from epistemic nature, heuristic and communicative dimension.

  19. The epistemic representation: visual production and communication of scientific knowledge.

    OpenAIRE

    Francisco López Cantos

    2015-01-01

    Despite its great influence on the History of Science, visual representations have attracted marginal interest until very recently and have often been regarded as a simple aid for mere illustration or scientific demonstration. However, it has been shown that visualization is an integral element of reasoning and a highly effective and common heuristic strategy in the scientific community and that the study of the conditions of visual production and communication are essential in the developmen...

  20. Learned image representations for visual recognition

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development...

  1. Ambiguous science and the visual representation of the real

    Science.gov (United States)

    Newbold, Curtis Robert

    The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in visual representations of science inevitably creates ambiguous meanings. As a means to improve visual literacy in the sciences, I call awareness to the ubiquity of visual ambiguity and its importance and relevance in scientific discourse. To do this, I conduct a literature review that spans interdisciplinary research in communication, science, art, and rhetoric. Furthermore, I create a paradoxically ambiguous taxonomy, which functions to exploit the nuances of visual ambiguities and their role in scientific communication. I then extrapolate the taxonomy of visual ambiguity and from it develop an ambiguous, rhetorical heuristic, the Tetradic Model of Visual Ambiguity. The Tetradic Model is applied to a case example of a scientific image as a demonstration of how scientific communicators may increase their awareness of the epistemological effects of ambiguity in the visual representations of science. I conclude by demonstrating how scientific communicators may make productive use of visual ambiguity, even in communications of objective science, and I argue how doing so strengthens scientific communicators' visual literacy skills and their ability to communicate more ethically and effectively.

  2. Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries

    Directory of Open Access Journals (Sweden)

    Neil eBruce

    2011-07-01

    Full Text Available In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in the primate brain. This includes a detailed look at the role that stimulus familiarity plays in the determination of search performance. Overall, we demonstrate that all of these asymmetries have a common origin, namely, they are a consequence of the encoding that appears in the visual cortex. The analysis associated with these cases yields insight into the problem of visual search in general and predictions of novel search asymmetries.

  3. Carl Linnaeus and the visual representation of nature.

    Science.gov (United States)

    Charmantier, Isabelle

    2011-01-01

    The Swedish naturalist Carl Linnaeus (1707-1778) is reputed to have transformed botanical practice by shunning the process of illustrating plants and relying on the primacy of literary descriptions of plant specimens. Botanists and historians have long debated Linnaeus's capacities as a draftsman. While some of his detailed sketches of plants and insects reveal a sure hand, his more general drawings of landscapes and people seem ill-executed. The overwhelming consensus, based mostly on his Lapland diary (1732), is that Linnaeus could not draw. Little has been said, however, on the role of drawing and other visual representations in Linnaeus's daily work as seen in his other numerous manuscripts. These manuscripts, held mostly at the Linnean Society of London, are peppered with sketches, maps, tables, and diagrams. Reassessing these manuscripts, along with the printed works that also contain illustrations of plant species, shows that Linnaeus's thinking was profoundly visual and that he routinely used visual representational devices in his various publications. This paper aims to explore the full range of visual representations Linnaeus used through his working life, and to reevaluate the epistemological value of visualization in the making of natural knowledge. By analyzing Linnaeus's use of drawings, maps, tables, and diagrams, I will show that he did not, as has been asserted, reduce the discipline of botany to text, and that his visual thinking played a fundamental role in his construction of new systems of classification. PMID:22363966

  4. Data Representations, Transformations, and Statistics for Visual Reasoning

    CERN Document Server

    Maciejewski, Ross

    2011-01-01

    Analytical reasoning techniques are methods by which users explore their data to obtain insight and knowledge that can directly support situational awareness and decision making. Recently, the analytical reasoning process has been augmented through the use of interactive visual representations and tools which utilize cognitive, design and perceptual principles. These tools are commonly referred to as visual analytics tools, and the underlying methods and principles have roots in a variety of disciplines. This chapter provides an introduction to young researchers as an overview of common visual

  5. Physiological Responese Measrement to Identify Online Visual Representation Designs

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hsu

    2014-10-01

    Full Text Available This research involved the identification and validation of text-related visual display design principles from the literature. Representations were designed and developed that illustrated the intent of each visual display design principle included in the study. The representations were embedded in a research intervention and included validated examples of accurate displays of each principle and examples with varying degrees of inaccuracies. The representations were created based on design theories of human cognition: perceptual, attention memory, and mental models [1][2][3][4][5], and presented via a monitor in a controlled research environment. The environmental controls included space appropriate to the experiment, constant temperature, consistent lighting, management of distractions including sound, monitoring of operation of the measurement device and the use of standardized instructions. Bertin’s seven visual variables: position, size, color, shape, value, orientation and texture, were also examined within the design principles [6]. The result of the independent samples t test did not find significant differences between good and poor visual designs for all images across subjects. However, the results of the paired-samples t test found significant mean differences between Bertin’s principles for color, value and orientation of visual designs across subjects. The findings support future online instructional designs and investigate the implications for the design of online instruction.

  6. The neural representation of Arabic digits in visual cortex

    Directory of Open Access Journals (Sweden)

    Lien ePeters

    2015-09-01

    Full Text Available In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two fMRI experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length – number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled.We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions.

  7. The neural representation of Arabic digits in visual cortex

    Science.gov (United States)

    Peters, Lien; De Smedt, Bert; Op de Beeck, Hans P.

    2015-01-01

    In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length—number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant) or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled). We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex (V1) towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions. PMID:26441613

  8. Negative emotion boosts quality of visual working memory representation.

    Science.gov (United States)

    Xie, Weizhen; Zhang, Weiwei

    2016-08-01

    Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record PMID:27078744

  9. Visual Awareness Is Limited by the Representational Architecture of the Visual System.

    Science.gov (United States)

    Cohen, Michael A; Nakayama, Ken; Konkle, Talia; Stantić, Mirta; Alvarez, George A

    2015-11-01

    Visual perception and awareness have strict limitations. We suggest that one source of these limitations is the representational architecture of the visual system. Under this view, the extent to which items activate the same neural channels constrains the amount of information that can be processed by the visual system and ultimately reach awareness. Here, we measured how well stimuli from different categories (e.g., faces and cars) blocked one another from reaching awareness using two distinct paradigms that render stimuli invisible: visual masking and continuous flash suppression. Next, we used fMRI to measure the similarity of the neural responses elicited by these categories across the entire visual hierarchy. Overall, we found strong brain-behavior correlations within the ventral pathway, weaker correlations in the dorsal pathway, and no correlations in early visual cortex (V1-V3). These results suggest that the organization of higher level visual cortex constrains visual awareness and the overall processing capacity of visual cognition.

  10. Novice Interpretations of Visual Representations of Geosciences Data

    Science.gov (United States)

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    Past cognition research of individual's perception and comprehension of bar and line graphs are substantive enough that they have resulted in the generation of graph design principles and graph comprehension theories; however, gaps remain in our understanding of how people process visual representations of data, especially of geologic and atmospheric data. This pilot project serves to build on others' prior research and begin filling the existing gaps. The primary objectives of this pilot project include: (i) design a novel data collection protocol based on a combination of paper-based surveys, think-aloud interviews, and eye-tracking tasks to investigate student data handling skills of simple to complex visual representations of geologic and atmospheric data, (ii) demonstrate that the protocol yields results that shed light on student data handling skills, and (iii) generate preliminary findings upon which tentative but perhaps helpful recommendations on how to more effectively present these data to the non-scientist community and teach essential data handling skills. An effective protocol for the combined use of paper-based surveys, think-aloud interviews, and computer-based eye-tracking tasks for investigating cognitive processes involved in perceiving, comprehending, and interpreting visual representations of geologic and atmospheric data is instrumental to future research in this area. The outcomes of this pilot study provide the foundation upon which future more in depth and scaled up investigations can build. Furthermore, findings of this pilot project are sufficient for making, at least, tentative recommendations that can help inform (i) the design of physical attributes of visual representations of data, especially more complex representations, that may aid in improving students' data handling skills and (ii) instructional approaches that have the potential to aid students in more effectively handling visual representations of geologic and atmospheric data

  11. The body voyage as visual representation and art performance

    DEFF Research Database (Denmark)

    Olsén, Jan-Eric

    2011-01-01

    with it. A further aim with the paper is to discuss what kind of image of the body that is conveyed through medical visual technologies, such as endoscopy, and relate it to contemporary discussions on embodiment, embodied vision and bodily presence. The paper concludes with a recent exhibition......This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal...... by the French artist Christian Boltanski, which gives a somewhat different meaning to the idea of the body voyage....

  12. Lenses – Light, Bodies and Representations. A paper on the optical device that enables visual perception through representation

    DEFF Research Database (Denmark)

    Rehder, Mads

    I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating.......I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating....

  13. Enhanced image and video representation for visual recognition

    OpenAIRE

    Jain, Mihir

    2014-01-01

    The subject of this thesis is about image and video representations for visual recognition. This thesis first focuses on image search, both for image and textual queries, and then considers the classification and the localization of actions in videos. In image retrieval, images similar to the query image are retrieved from a large dataset. On this front, we propose an asymmetric version of the Hamming Embedding method, where the comparison of query and database descriptors relies on a vector-...

  14. COSFIRE : A Brain-Inspired Approach to Visual Pattern Recognition

    NARCIS (Netherlands)

    Azzopardi, G.; Petkov, N.

    2014-01-01

    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a

  15. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    Science.gov (United States)

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  16. Visual Attention: from Bio-Inspired Modeling to Real-Time Implementation

    OpenAIRE

    Ouerhani, Nabil; Hügli, Heinz

    2004-01-01

    Visual Attention: From Bio-Inspired Modeling to Visual attention is the ability of a vision system, be it biological or artificial, to rapidly select the most salient and thus the most relevant data about the environment in which the system is operating. The main goal of this visual mechanism is to drastically reduce the amount of visual information that must be processed by high level and thus complex tasks, such as object recognition, which leads to a considerable speed up of the entire vis...

  17. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    Science.gov (United States)

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-01-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…

  18. Robust image analysis with sparse representation on quantized visual features.

    Science.gov (United States)

    Bao, Bing-Kun; Zhu, Guangyu; Shen, Jialie; Yan, Shuicheng

    2013-03-01

    Recent techniques based on sparse representation (SR) have demonstrated promising performance in high-level visual recognition, exemplified by the highly accurate face recognition under occlusion and other sparse corruptions. Most research in this area has focused on classification algorithms using raw image pixels, and very few have been proposed to utilize the quantized visual features, such as the popular bag-of-words feature abstraction. In such cases, besides the inherent quantization errors, ambiguity associated with visual word assignment and misdetection of feature points, due to factors such as visual occlusions and noises, constitutes the major cause of dense corruptions of the quantized representation. The dense corruptions can jeopardize the decision process by distorting the patterns of the sparse reconstruction coefficients. In this paper, we aim to eliminate the corruptions and achieve robust image analysis with SR. Toward this goal, we introduce two transfer processes (ambiguity transfer and mis-detection transfer) to account for the two major sources of corruption as discussed. By reasonably assuming the rarity of the two kinds of distortion processes, we augment the original SR-based reconstruction objective with l(0) norm regularization on the transfer terms to encourage sparsity and, hence, discourage dense distortion/transfer. Computationally, we relax the nonconvex l(0) norm optimization into a convex l(1) norm optimization problem, and employ the accelerated proximal gradient method to optimize the convergence provable updating procedure. Extensive experiments on four benchmark datasets, Caltech-101, Caltech-256, Corel-5k, and CMU pose, illumination, and expression, manifest the necessity of removing the quantization corruptions and the various advantages of the proposed framework.

  19. Geological and hydrological visualization models for Digital Earth representation

    Science.gov (United States)

    Ziolkowska, Jadwiga R.; Reyes, Reuben

    2016-09-01

    This paper presents techniques and interactive models for multi-dimensional analyses and geospatial visualization in virtual globes based on three application examples: (1) earthquakes around the world, (2) groundwater well levels in Texas, and (3) geothermal subsurface heat indexes in Texas. While studies are known that represent multi-dimensional geospatial data points, we develop and suggest multi-dimensional models for virtual globes using KML and KMZ (compressed KML files) with a complete and static time series data set. The benefit of this approach for the user is the ability to view and analyze time-based correlations interactively over the entire time span in one instance, which is not possible with animated (dynamic) models. The methods embedded in our models include: (a) depth layered cueing within subsurface Earth visualization for a better orientation when maneuvering below the ground, (b) a technique with Ternary Visual Shape Logic (TVSL) as a quick indicator of change over time, and (c) different visual representations of multiple dimensions for the addressed case study examples. The models can be applied to a variety of problems in different disciplines, especially to support decision-making processes.

  20. Visual Literacy and Biochemistry Learning: The role of external representations

    Directory of Open Access Journals (Sweden)

    V.J.S.V. Santos

    2011-04-01

    Full Text Available Visual Literacy can bedefined as people’s ability to understand, use, think, learn and express themselves through external representations (ER in a given subject. This research aims to investigate the development of abilities of ERs reading and interpretation by students from a Biochemistry graduate course of theFederal University of São João Del-Rei. In this way, Visual Literacy level was  assessed using a questionnaire validatedin a previous educational research. This diagnosis questionnaire was elaborated according to six visual abilitiesidentified as essential for the study of the metabolic pathways. The initial statistical analysis of data collectedin this study was carried out using ANOVA method. Results obtained showed that the questionnaire used is adequate for the research and indicated that the level of Visual Literacy related to the metabolic processes increased significantly with the progress of the students in the graduation course. There was also an indication of a possible interference in the student’s performancedetermined by the cutoff punctuation in the university selection process.

  1. Online Metric-Weighted Linear Representations for Robust Visual Tracking.

    Science.gov (United States)

    Li, Xi; Shen, Chunhua; Dick, Anthony; Zhang, Zhongfei Mark; Zhuang, Yueting

    2016-05-01

    In this paper, we propose a visual tracker based on a metric-weighted linear representation of appearance. In order to capture the interdependence of different feature dimensions, we develop two online distance metric learning methods using proximity comparison information and structured output learning. The learned metric is then incorporated into a linear representation of appearance. We show that online distance metric learning significantly improves the robustness of the tracker, especially on those sequences exhibiting drastic appearance changes. In order to bound growth in the number of training samples, we design a time-weighted reservoir sampling method. Moreover, we enable our tracker to automatically perform object identification during the process of object tracking, by introducing a collection of static template samples belonging to several object classes of interest. Object identification results for an entire video sequence are achieved by systematically combining the tracking information and visual recognition at each frame. Experimental results on challenging video sequences demonstrate the effectiveness of the method for both inter-frame tracking and object identification. PMID:26390446

  2. Visual Awareness Is Limited by the Representational Architecture of the Visual System.

    Science.gov (United States)

    Cohen, Michael A; Nakayama, Ken; Konkle, Talia; Stantić, Mirta; Alvarez, George A

    2015-11-01

    Visual perception and awareness have strict limitations. We suggest that one source of these limitations is the representational architecture of the visual system. Under this view, the extent to which items activate the same neural channels constrains the amount of information that can be processed by the visual system and ultimately reach awareness. Here, we measured how well stimuli from different categories (e.g., faces and cars) blocked one another from reaching awareness using two distinct paradigms that render stimuli invisible: visual masking and continuous flash suppression. Next, we used fMRI to measure the similarity of the neural responses elicited by these categories across the entire visual hierarchy. Overall, we found strong brain-behavior correlations within the ventral pathway, weaker correlations in the dorsal pathway, and no correlations in early visual cortex (V1-V3). These results suggest that the organization of higher level visual cortex constrains visual awareness and the overall processing capacity of visual cognition. PMID:26226078

  3. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Science.gov (United States)

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  4. Inter-subject neural code converter for visual image representation.

    Science.gov (United States)

    Yamada, Kentaro; Miyawaki, Yoichi; Kamitani, Yukiyasu

    2015-06-01

    Brain activity patterns differ from person to person, even for an identical stimulus. In functional brain mapping studies, it is important to align brain activity patterns between subjects for group statistical analyses. While anatomical templates are widely used for inter-subject alignment in functional magnetic resonance imaging (fMRI) studies, they are not sufficient to identify the mapping between voxel-level functional responses representing specific mental contents. Recent work has suggested that statistical learning methods could be used to transform individual brain activity patterns into a common space while preserving representational contents. Here, we propose a flexible method for functional alignment, "neural code converter," which converts one subject's brain activity pattern into another's representing the same content. The neural code converter was designed to learn statistical relationships between fMRI activity patterns of paired subjects obtained while they saw an identical series of stimuli. It predicts the signal intensity of individual voxels of one subject from a pattern of multiple voxels of the other subject. To test this method, we used fMRI activity patterns measured while subjects observed visual images consisting of random and structured patches. We show that fMRI activity patterns for visual images not used for training the converter could be predicted from those of another subject where brain activity was recorded for the same stimuli. This confirms that visual images can be accurately reconstructed from the predicted activity patterns alone. Furthermore, we show that a classifier trained only on predicted fMRI activity patterns could accurately classify measured fMRI activity patterns. These results demonstrate that the neural code converter can translate neural codes between subjects while preserving contents related to visual images. While this method is useful for functional alignment and decoding, it may also provide a basis for

  5. Fixed-Rank Representation for Unsupervised Visual Learning

    CERN Document Server

    Liu, Risheng; De la Torre, Fernando; Su, Zhixun

    2012-01-01

    Subspace clustering and feature extraction are two of the most extensive unsupervised visual learning tasks in computer vision and pattern recognition. In this paper, we pose these two problems in a unified framework, named fixed-rank representation (FRR). For subspace clustering, our first contribution is to show that, when the data is clean, we can efficiently solve FRR in closed-form and the global optimal solution to FRR can exactly recover the multiple subspace structure. Furthermore, we prove that under some suitable conditions, even with insufficient observations, the memberships of data points still can be exactly recovered by FRR. In the case that the data is corrupted by noises and outliers, a sparse regularization is introduced to achieve robustness for FRR. For feature extraction, we provide some new insights to understand existing methods, which lead to a new approach for robust feature extraction. As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on b...

  6. Algebra of the Visual: The London Underground Map and the Art It Has Inspired

    OpenAIRE

    Alan Ashton-Smith

    2011-01-01

    "Algebra of the Visual: The London Underground Map and the Art It Has Inspired" by Alan Ashton-Smith. The London Underground symbolizes London, and the London Underground map, designed by Harry Beck in 1931, symbolizes the London Underground. Accordingly, Beck’s map has in itself come to be a recognizable signifier of London. Its impact resonates beyond this city though: it is also the prototype for metro maps worldwide, with its basic topological structure having been adopted for use on the ...

  7. A unified data representation theory for network visualization, ordering and coarse-graining

    Science.gov (United States)

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-09-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.

  8. A unified data representation theory for network visualization, ordering and coarse-graining

    CERN Document Server

    Kovács, István A; Csermely, Peter

    2014-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of huge data sets in science, by reve...

  9. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Science.gov (United States)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  10. Algebra of the Visual: The London Underground Map and the Art It Has Inspired

    Directory of Open Access Journals (Sweden)

    Alan Ashton-Smith

    2011-01-01

    Full Text Available "Algebra of the Visual: The London Underground Map and the Art It Has Inspired" by Alan Ashton-Smith. The London Underground symbolizes London, and the London Underground map, designed by Harry Beck in 1931, symbolizes the London Underground. Accordingly, Beck’s map has in itself come to be a recognizable signifier of London. Its impact resonates beyond this city though: it is also the prototype for metro maps worldwide, with its basic topological structure having been adopted for use on the subways of many other cities. (NANO: New American Notes Online

  11. A visual representation system for the scheduling and management of projects

    NARCIS (Netherlands)

    Pollalis, S.N.

    1992-01-01

    A VISUAL SCHEDULING AND MANAGEMENT SYSTEM (VSMS) This work proposes a new system for the visual representation of projects that displays the quantities of work, resources and cost. This new system, called Visual Scheduling and Management System, has a built-in hierarchical system to provide differen

  12. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.

    Science.gov (United States)

    Holzbach, Andreas; Cheng, Gordon

    2014-06-01

    In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture's focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations - making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to ∼+6%). PMID:24687170

  13. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  14. Virtual images inspired consolidate collaborative representation-based classification method for face recognition

    Science.gov (United States)

    Liu, Shigang; Zhang, Xinxin; Peng, Yali; Cao, Han

    2016-07-01

    The collaborative representation-based classification method performs well in the field of classification of high-dimensional images such as face recognition. It utilizes training samples from all classes to represent a test sample and assigns a class label to the test sample using the representation residuals. However, this method still suffers from the problem that limited number of training sample influences the classification accuracy when applied to image classification. In this paper, we propose a modified collaborative representation-based classification method (MCRC), which exploits novel virtual images and can obtain high classification accuracy. The procedure to produce virtual images is very simple but the use of them can bring surprising performance improvement. The virtual images can sufficiently denote the features of original face images in some case. Extensive experimental results doubtlessly demonstrate that the proposed method can effectively improve the classification accuracy. This is mainly attributed to the integration of the collaborative representation and the proposed feature-information dominated virtual images.

  15. Size-sensitive perceptual representations underlie visual and haptic object recognition.

    Directory of Open Access Journals (Sweden)

    Matt Craddock

    Full Text Available A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations.

  16. Weighted Graph Theory Representation of Quantum Information Inspired by Lie Algebras

    CERN Document Server

    Belhaj, Abdelilah; Machkouri, Larbi; Sedra, Moulay Brahim; Ziti, Soumia

    2016-01-01

    Borrowing ideas from the relation between simply laced Lie algebras and Dynkin diagrams, a weighted graph theory representation of quantum information is addressed. In this way, the density matrix of a quantum state can be interpreted as a signless Laplacian matrix of an associated graph. Using similarities with root systems of simply laced Lie algebras, one-qubit theory is analyzed in some details and is found to be linked to a non-oriented weighted graph having two vertices. Moreover, this one-qubit theory is generalized to n-qubits. In this representation, quantum gates correspond to graph weight operations preserving the probability condition. A speculation from string theory, via D-brane quivers, is also given.

  17. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-12-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  18. Scene statistics: neural representation of real-world structure in rapid visual perception

    NARCIS (Netherlands)

    I.I.A. Groen

    2014-01-01

    How does the brain represent our visual environment? Research has revealed brain areas that respond to specific information such as faces and objects, but how a representation of an entire visual scene is formed is still unclear. This thesis explores the idea that scene statistics play an important

  19. Spinal cord injury affects the interplay between visual and sensorimotor representations of the body

    Science.gov (United States)

    Ionta, Silvio; Villiger, Michael; Jutzeler, Catherine R; Freund, Patrick; Curt, Armin; Gassert, Roger

    2016-01-01

    The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs’ somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants’ body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations. PMID:26842303

  20. Evidence for optimal integration of visual feature representations across saccades

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Marshall, L.; Bays, P.M.

    2015-01-01

    We explore the visual world through saccadic eye movements, but saccades also present a challenge to visual processing by shifting externally stable objects from one retinal location to another. The brain could solve this problem in two ways: by overwriting preceding input and starting afresh with e

  1. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud;

    2011-01-01

    We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings...... and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success...

  2. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex.

    Science.gov (United States)

    Poort, Jasper; Khan, Adil G; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2015-06-17

    We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli.

  3. The spatiotopic representation of visual objects across time.

    Science.gov (United States)

    Collins, Thérèse

    2016-08-01

    Each eye movement introduces changes in the retinal location of objects. How a stable spatiotopic representation emerges from such variable input is an important question for the study of vision. Researchers have classically probed human observers' performance in a task requiring a location judgment about an object presented at different locations across a saccade. Correct performance on this task requires realigning or remapping retinal locations to compensate for the saccade. A recent study showed that performance improved with longer presaccadic viewing time, suggesting that accurate spatiotopic representations take time to build up. The first goal of the study was to replicate that finding. Two experiments, one an exact replication and the second a modified version, failed to replicate improved performance with longer presaccadic viewing time. The second goal of this study was to examine the role of attention in constructing spatiotopic representations, as theoretical and neurophysiological accounts of remapping have proposed that only attended targets are remapped. A third experiment thus manipulated attention with a spatial cueing paradigm and compared transsaccadic location performance of attended versus unattended targets. No difference in spatiotopic performance was found between attended and unattended targets. Although only negative results are reported, they might nevertheless suggest that spatiotopic representations are relatively stable over time. PMID:27349426

  4. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles. PMID:21527730

  5. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis

    Science.gov (United States)

    Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie

    2016-01-01

    Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance. PMID:27471460

  6. Visual cortex inspired CNN model for feature construction in text analysis

    Directory of Open Access Journals (Sweden)

    Hongping Fu

    2016-07-01

    Full Text Available Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM, which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance.

  7. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  8. Population coding of visual space: comparison of spatial representations in the dorsal and ventral pathways

    Directory of Open Access Journals (Sweden)

    Anne B Sereno

    2011-02-01

    Full Text Available Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT and lateral intraparietal cortex (LIP of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling, we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., next to or above.

  9. North Korea and the Politics of Visual Representation

    OpenAIRE

    Shim, David; Nabers, Dirk

    2011-01-01

    Within international discourses on security, North Korea is often associated with risk and danger, emanating paradoxically from what can be called its strengths - particularly military strength, as embodied by its missile and nuclear programs - and its weaknesses - such as its ever-present political, economic, and food crises - which are considered to be imminent threats to international peace and stability. We argue that images play an important role in these representations, and suggest tha...

  10. Challenging cavalier perspective: an iconological study of visual perception of depth in Chinese representational space

    OpenAIRE

    Xiao, Jing

    2013-01-01

    Cavalier Perspective has previously been described as merely a pictorial technique of spatial representation within the history of Chinese painting. It is a common belief that this unique visual system is capable of providing an experience of three-dimensional spatial perception in both representational art and actual space, in a manner similar to technique of foreshortening and perspective in post-renaissance western art. However, as Chinese ancient artists have a different understanding of ...

  11. Visual Representations Is Lexical Learning Environments: Application To The Alexia System

    OpenAIRE

    Chanier, Thierry; Selva, Thierry

    1998-01-01

    Cognition-based arguments in support of using multimedia aids for the learning of vocabulary have so far offered only an imprecise, general framework. CALL experimentalists have also tried to establish the effectiveness of multimedia for vocabulary learning, but their attempts reveal that the underlying representations have not been clearly defined. After reviewing these points, we propose criteria for evaluating the quality of a visual representation in a lexical environment. These criteria ...

  12. Girls' Visual Representations of Literacy in a Rural Ugandan Community

    Science.gov (United States)

    Kendrick, Maureen; Jones, Shelley

    2008-01-01

    This Ugandan-based study examined how visual modes of communication provide insights into girls' perceptions of literacy, and open broader dialogues on literacy, women, and development. Twenty-nine primary school girls used drawing and 15 secondary school girls used photography to depict local literacy practices in relation to their own lives and…

  13. Visual Metaphors in the Representation of Communication Technology.

    Science.gov (United States)

    Kaplan, Stuart Jay

    1990-01-01

    Examines the role of metaphors (particularly visual metaphors) in communicating social values associated with new communication technology by analyzing magazine advertisements for computing and advanced telecommunications products and services. Finds that the "lever" and the "synthesis of old and new values" metaphors are dominant in both general…

  14. Digital representations of the real world how to capture, model, and render visual reality

    CERN Document Server

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  15. Visual representations in portuguese produced english language teaching coursebooks

    Directory of Open Access Journals (Sweden)

    Nicolas Robert Hurst

    2014-01-01

    Full Text Available This paper examines the role of illustrations in the context of English Language Teaching (ELT coursebooks produced in Portugal. Taking illustrations to be one pilar in the construction of meaning through the representation of culture, the discussion shifts between their use over the last 35 years and their potential as a source of innovation and improvement in this area of ELT materials development. The central issue relates to the need for illustrations to perform something more than a decorative function in ELT coursebooks. Further discussion deals with the general issue of cultural content in language teaching materials, its importance in relation to situating language learning as both meaningful and purposeful. There are clear links themes related to foreign language teaching methodology (the learner-centred approach and to curriculum development (citizenship education.It is argued that local coursebook publishers and writers should pay closer attention to the importance of cultural representation in language teaching materials, in this case to the use of illustrations, as a way of optimising the long-held influence of coursebooks as significant educational instruments.

  16. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee

    Directory of Open Access Journals (Sweden)

    Michael eSchmuker

    2011-12-01

    Full Text Available The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory system, sensory input is first processed in the antennal lobe (AL network. Uniglomerular projection neurons (PNs convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT. Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.

  17. Occupational therapy intervention to inspire self-efficacy in a patient with spinal ataxia and visual disturbance.

    Science.gov (United States)

    Tohyama, Satsuki; Usuki, Fusako

    2015-02-09

    We report a case of a patient with severe ataxia and visual disturbance due to vitamin E deficiency, whose self-efficacy was inspired by intervention with an appropriate occupational therapy activity. Before the handloom intervention, her severe neurological deficits decreased her activities of daily living (ADL) ability, which made her feel pessimistic and depressed. The use of a handloom, however, inspired her sense of accomplishment because she could perform the weft movement by using her residual physical function, thereby relieving her pessimistic attitude. This perception of capability motivated her to participate in further rehabilitation. Finally, her eager practice enhanced her ADL ability and quality of life (QOL). The result suggests that it is important to provide an appropriate occupational therapy activity that can inspire self-efficacy in patients with chronic refractory neurological disorders because the perception of capability can enhance the motivation to improve performance in general activities, ADL ability and QOL.

  18. Berries Bittersweet: Visual Representations of Black Female Sexuality in Contemporary American Pornography

    OpenAIRE

    Cruz, Ariane Renee

    2010-01-01

    My dissertation, Berries Bittersweet: Visual Representations of Black Female Sexuality in Contemporary American Pornography interrogates how pornography, from the 1930s to the present, functions as an essential site in the production of black female sexuality. Closely reading a diverse pool of primary pornographic visual materials, across print, moving image and the internet, such as photographs, magazines, trade magazines, videos, DVDs, and internet website viewings, I argue that pornograph...

  19. The Role of Visual Experience on the Representation and Updating of Novel Haptic Scenes

    Science.gov (United States)

    Pasqualotto, Achille; Newell, Fiona N.

    2007-01-01

    We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to…

  20. The deaf utilize phonological representations in visually presented verbal memory tasks.

    Science.gov (United States)

    Okada, Rieko; Nakagawa, Jun; Takahashi, Muneyoshi; Kanaka, Noriko; Fukamauchi, Fumihiko; Watanabe, Katsumi; Namatame, Miki; Matsuda, Tetsuya

    2015-01-01

    The phonological abilities of congenitally deaf individuals are inferior to those of people who can hear. However, deaf individuals can acquire spoken languages by utilizing orthography and lip-reading. The present study used functional magnetic resonance imaging (fMRI) to show that deaf individuals utilize phonological representations via a mnemonic process. We compared the brain activation of deaf and hearing participants while they memorized serially visually presented Japanese kana letters (Kana), finger alphabets (Finger), and Arabic letters (Arabic). Hearing participants did not know which finger alphabets corresponded to which language sounds, whereas deaf participants did. All of the participants understood the correspondence between Kana and their language sounds. None of the participants knew the correspondence between Arabic and their language sounds, so this condition was used as a baseline. We found that the left superior temporal gyrus (STG) was activated by phonological representations in the deaf group when memorizing both Kana and Finger. Additionally, the brain areas associated with phonological representations for Finger in the deaf group were the same as the areas for Kana in the hearing group. Overall, despite the fact that they are superior in visual information processing, deaf individuals utilize phonological rather than visual representations in visually presented verbal memory.

  1. Representations of the Moon in Children's Literature: An Analysis of Written and Visual Text

    Science.gov (United States)

    Trundle, Kathy Cabe; Troland, Thomas H.; Pritchard, T. Gail

    2008-01-01

    This review focused on the written and visual representation of the moon in 80 children's books, including Caldecott Medal and Honor books over the past 20 years. Results revealed that many of these books misrepresent the moon and even reinforce misconceptions about lunar phases. Teachers who use children's literature that misrepresents the moon…

  2. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    Science.gov (United States)

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  3. A review of visual memory capacity: Beyond individual items and toward structured representations.

    Science.gov (United States)

    Brady, Timothy F; Konkle, Talia; Alvarez, George A

    2011-05-26

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted toward a representation-based emphasis, focusing on the contents of memory and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system--going beyond quantifying how many items can be remembered and moving toward structured representations--but how we model memory systems and memory processes.

  4. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. PMID:24631259

  5. Sparse representation of global features of visual images in human primary visual cortex: Evidence from fMRI

    Institute of Scientific and Technical Information of China (English)

    ZHAO SongNian; YAO Li; JIN Zhen; XIONG XiaoYun; WU Xia; ZOU Qi; YAO GuoZheng; CAI XiaoHong; LIU YiJun

    2008-01-01

    In fMRI experiments on object representation in visual cortex, we designed two types of stimuli: one is the gray face image and its line drawing, and the other is the illusion and its corresponding completed illusion. Both of them have the same global features with different minute details so that the results of fMRI experiments can be compared with each other. The first kind of visual stimuli was used in a block design fMRI experiment, and the second was used in an event-related fMRI experiment. Comparing and analyzing interesting visual cortex activity patterns and blood oxygenation level dependent (BOLD)-fMRI signal, we obtained results to show some invariance of global features of visual images. A plau-sible explanation about the invariant mechanism is related with the cooperation of synchronized re-sponse to the global features of the visual image with a feedback of shape perception from higher cortex to cortex V1, namely the integration of global features and embodiment of sparse representation and distributed population code.

  6. The visual language of spatial representation – a barrier, or a crossroad?

    Directory of Open Access Journals (Sweden)

    Tadeja Zupančič Strojan

    2003-01-01

    Full Text Available The article deals with techniques of representation of architectural and urbanistic ideas about space and its changes. It delves into the communication process between co-creators of space and points out the issue of different understanding of visual representation techniques that stem from different levels in capabilities of visual expression and understanding of visual messages. The issue of ignorance of specifics of professional language is emphasised as a consequence of its habitualness. The presented research checks and analyses the effect of abstract/concrete visual representation and their effectiveness in communicating messages to expert and lay publics. Following the discussion about results, numerous new issues arise, concerning possibilities for narrowing the gap between various publics and finding common ground. Amongst different solutions about improving communication between actors in the creation of space, the article emphasises the potential of permanent education. However the quest is not for improvements in general understanding of visual language, but consequentially to devise ways, modes and their positive consequences on the cultural environment and spatial culture.

  7. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  8. The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes.

    Science.gov (United States)

    Galeazzi, Juan M; Minini, Loredana; Stringer, Simon M

    2015-01-01

    Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  9. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  10. The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes.

    Science.gov (United States)

    Galeazzi, Juan M; Minini, Loredana; Stringer, Simon M

    2015-01-01

    Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions. PMID:26696876

  11. Women And Visual Representations Of Space In Two Chinese Film Adaptations Of Hamlet

    Directory of Open Access Journals (Sweden)

    CHEANG WAI FONG

    2014-12-01

    Full Text Available This paper studies two Chinese film adaptations of Shakespeare’s Hamlet, Xiaogang Feng’s The Banquet (2006 and Sherwood Hu’s Prince of the Himalayas (2006, by focusing on their visual representations of spaces allotted to women. Its thesis is that even though on the original Shakespearean stage details of various spaces might not be as vividly represented as in modern film productions, spaces are still crucial dramatic elements imbued with powerful significations. By analyzing the two Chinese film adaptations alongside the original Hamlet text, the paper attempts to reinterpret their different representations of spaces in relation to their different historical-cultural gender notions.

  12. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations.

    Science.gov (United States)

    Köcher, S S; Heydenreich, T; Glaser, S J

    2014-10-17

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  13. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex.

    Science.gov (United States)

    Poort, Jasper; Khan, Adil G; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2015-06-17

    We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421

  14. The Focus of Attention in Visual Working Memory: Protection of Focused Representations and Its Individual Variation

    Science.gov (United States)

    Heuer, Anna; Schubö, Anna

    2016-01-01

    Visual working memory can be modulated according to changes in the cued task relevance of maintained items. Here, we investigated the mechanisms underlying this modulation. In particular, we studied the consequences of attentional selection for selected and unselected items, and the role of individual differences in the efficiency with which attention is deployed. To this end, performance in a visual working memory task as well as the CDA/SPCN and the N2pc, ERP components associated with visual working memory and attentional processes, were analysed. Selection during the maintenance stage was manipulated by means of two successively presented retrocues providing spatial information as to which items were most likely to be tested. Results show that attentional selection serves to robustly protect relevant representations in the focus of attention while unselected representations which may become relevant again still remain available. Individuals with larger retrocueing benefits showed higher efficiency of attentional selection, as indicated by the N2pc, and showed stronger maintenance-associated activity (CDA/SPCN). The findings add to converging evidence that focused representations are protected, and highlight the flexibility of visual working memory, in which information can be weighted according its relevance. PMID:27099938

  15. Sharper, Stronger, Faster Upper Visual Field Representation in Primate Superior Colliculus.

    Science.gov (United States)

    Hafed, Ziad M; Chen, Chih-Yang

    2016-07-11

    Visually guided behavior in three-dimensional environments entails handling immensely different sensory and motor conditions across retinotopic visual field locations: peri-personal ("near") space is predominantly viewed through the lower retinotopic visual field (LVF), whereas extra-personal ("far") space encompasses the upper visual field (UVF). Thus, when, say, driving a car, orienting toward the instrument cluster below eye level is different from scanning an upcoming intersection, even with similarly sized eye movements. However, an overwhelming assumption about visuomotor circuits for eye-movement exploration, like those in the primate superior colliculus (SC), is that they represent visual space in a purely symmetric fashion across the horizontal meridian. Motivated by ecological constraints on visual exploration of far space, containing small UVF retinal-image features, here we found a large, multi-faceted difference in the SC's representation of the UVF versus LVF. Receptive fields are smaller, more finely tuned to image spatial structure, and more sensitive to image contrast for neurons representing the UVF. Stronger UVF responses also occur faster. Analysis of putative synaptic activity revealed a particularly categorical change when the horizontal meridian is crossed, and our observations correctly predicted novel eye-movement effects. Despite its appearance as a continuous layered sheet of neural tissue, the SC contains functional discontinuities between UVF and LVF representations, paralleling a physical discontinuity present in cortical visual areas. Our results motivate the recasting of structure-function relationships in the visual system from an ecological perspective, and also exemplify strong coherence between brain-circuit organization for visually guided exploration and the nature of the three-dimensional environment in which we function. PMID:27291052

  16. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Science.gov (United States)

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations. PMID:26575192

  17. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  18. Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    CERN Document Server

    Li, Xi; Shi, Qinfeng; Dick, Anthony; Hengel, Anton van den

    2012-01-01

    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity ...

  19. Gravity influences the visual representation of object tilt in parietal cortex.

    Science.gov (United States)

    Rosenberg, Ari; Angelaki, Dora E

    2014-10-22

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction.

  20. Visual representation of knowledge in the field of Library and Information Science of IRAN

    OpenAIRE

    Afsoon Sabetpour; Gholamreza Fadaie; Nader Naghshineh; Vafa Ghobadpour

    2015-01-01

    Purpose: The present research has been done to visual representation of knowledge and determination vacuum and density points of scientific trends of faculty members of state universities of IRAN in Library & Information Science field. Method: Curriculum Vitae of each faculty member with census method were collected and its content analyzed. Then using a checklist, the rate scientific tendencies were extracted. NodeXL software was deployed to map out the levels. Results: The results showed th...

  1. A Graphical Representation Framework for Enhanced Visualization of Construction Control Processes

    OpenAIRE

    Hays, Benjamin James

    2002-01-01

    Graphical representation for construction control information--processes such as scheduling, budgeting and RFIs--follows no formalized method. Many graphics neglect relevant information necessary to highlight trends in or relationships between processes. The principles of data graphics offer visual capabilities beyond those currently employed by the construction industry to display appropriate information in a manner that enhances comprehension of control processes. This paper describes a ...

  2. Invariance of brain-wave representations of simple visual images and their names

    OpenAIRE

    Suppes, Patrick; Han, Bing; Epelboim, Julie; Lu, Zhong-Lin

    1999-01-01

    In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A leas...

  3. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level

    Science.gov (United States)

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus’ motion coherence, creating a multiplicative scaling of the neuron’s coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  4. The influence of visual representations of “the Other” in the system of modern sociocultural communications

    Directory of Open Access Journals (Sweden)

    Kolodii Nataliya

    2016-01-01

    Full Text Available The paper deals with the way and the form of modern humanitaristics understanding of the problem of visual representation of “the Other”. The authors’ tasks were to comprehend the nature and dynamics of visualization, to give a distinct working definition of visual competence. Besides, the purpose of the paper was to state the components of visual competence, its criteria, estimation methods and in this context to interpret the image of “the Other” decoded in scientific philosophic and cultural literature and in daily cultural practices. And the final task was to reduce the visual message to the verbal one. The doctrine that the image may be read is the common prejudice, which prevents the formation of a new approach to visuality. The first step towards the solution of problem is to describe the techniques, which help in potential understanding of the visual structure. Understanding the image diversity and its possible text analogues should help in establishing the specific requirements, which can be and must be applicable to visual representation of “the Other”. Representations in the visual culture (photography, cinematography, media, painting, advertisement influence the social image, affects the daily social practices and communications. Visual representations are of interest for social theorists as well as cultural texts, as they give an idea on the context of cultural production, social interaction and individual experience.

  5. Invariance of brain-wave representations of simple visual images and their names.

    Science.gov (United States)

    Suppes, P; Han, B; Epelboim, J; Lu, Z L

    1999-12-01

    In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A least-squares criterion of fit between prototypes and test samples was used for classification. The most significant results were these. By averaging over different subjects, as well as trials, we created prototypes from brain waves evoked by simple visual images and test samples from brain waves evoked by auditory or visual words naming the visual images. We correctly recognized from 60% to 75% of the test-sample brain waves. The general conclusion is that simple shapes such as circles and single-color displays generate brain waves surprisingly similar to those generated by their verbal names. These results, taken together with extensive psychological studies of auditory and visual memory, strongly support the solution proposed for visual shapes, by Bishop Berkeley and David Hume in the 18th century, to the long-standing problem of how the mind represents simple abstract ideas.

  6. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    OpenAIRE

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2011-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based ...

  7. Social Categories Shape the Neural Representation of Emotion: Evidence from a Visual Face Adaptation Task.

    Directory of Open Access Journals (Sweden)

    Marte eOtten

    2012-02-01

    Full Text Available A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion. Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race trials than same race trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  8. A task-independent neural representation of subjective certainty in visual perception

    Science.gov (United States)

    Heereman, Johannes; Walter, Henrik; Heekeren, Hauke R.

    2015-01-01

    Am I really sure? This is a question not only scientists ask themselves but practically everybody every day. A recent study provides behavioral evidence supporting the view that one’s subjective confidence in a decision (i.e., feeling sure that a decision is correct) is represented in a task-independent format. Previous neuroimaging studies identified neural correlates of decision confidence but whether or not these are task-dependent remains unclear. Here, combining two perceptual decision tasks with functional magnetic resonance imaging (fMRI), we provide neural evidence for a task-independent representation of degrees of subjective certainty (i.e., a neural representation of subjective certainty that remains constant across two visual tasks). Importantly, due to the constant stimulus-intensity used this result is independent of task-difficulty and stimulus properties. Our data provide strong evidence for a generic mechanism underlying the computation of subjective perceptual certainty in vision. PMID:26500523

  9. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Science.gov (United States)

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  10. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    Science.gov (United States)

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  11. Superior visual performance in nocturnal insects: neural principles and bio-inspired technologies

    Science.gov (United States)

    Warrant, Eric J.

    2016-04-01

    At night, our visual capacities are severely reduced, with a complete loss in our ability to see colour and a dramatic loss in our ability to see fine spatial and temporal details. This is not the case for many nocturnal animals, notably insects. Our recent work, particularly on fast-flying moths and bees and on ball-rolling dung beetles, has shown that nocturnal animals are able to distinguish colours, to detect faint movements, to learn visual landmarks, to orient to the faint pattern of polarised light produced by the moon and to navigate using the stars. These impressive visual abilities are the result of exquisitely adapted eyes and visual systems, the product of millions of years of evolution. Nocturnal animals typically have highly sensitive eye designs and visual neural circuitry that is optimised for extracting reliable information from dim and noisy visual images. Even though we are only at the threshold of understanding the neural mechanisms responsible for reliable nocturnal vision, growing evidence suggests that the neural summation of photons in space and time is critically important: even though vision in dim light becomes necessarily coarser and slower, it also becomes significantly more reliable. We explored the benefits of spatiotemporal summation by creating a computer algorithm that mimicked nocturnal visual processing strategies. This algorithm dramatically increased the reliability of video collected in dim light, including the preservation of colour, strengthening evidence that summation strategies are essential for nocturnal vision.

  12. A self-organizing model of the visual development of hand-centred representations.

    Directory of Open Access Journals (Sweden)

    Juan M Galeazzi

    Full Text Available We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.

  13. A self-organizing model of the visual development of hand-centred representations.

    Science.gov (United States)

    Galeazzi, Juan M; Mender, Bedeho M W; Paredes, Mariana; Tromans, James M; Evans, Benjamin D; Minini, Loredana; Stringer, Simon M

    2013-01-01

    We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.

  14. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  15. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    Science.gov (United States)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about

  16. Visual Behaviour Based Bio-Inspired Polarization Techniques in Computer Vision and Robotics

    OpenAIRE

    Shabayek, Abd El Rahman; Morel, Olivier; Fofi, David

    2012-01-01

    For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual beha...

  17. DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking

    Science.gov (United States)

    Li, Hanxi; Li, Yi; Porikli, Fatih

    2016-04-01

    Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking because they require very long training time and a large number of training samples. In this work, we present an efficient and very robust tracking algorithm using a single Convolutional Neural Network (CNN) for learning effective feature representations of the target object, in a purely online manner. Our contributions are multifold: First, we introduce a novel truncated structural loss function that maintains as many training samples as possible and reduces the risk of tracking error accumulation. Second, we enhance the ordinary Stochastic Gradient Descent approach in CNN training with a robust sample selection mechanism. The sampling mechanism randomly generates positive and negative samples from different temporal distributions, which are generated by taking the temporal relations and label noise into account. Finally, a lazy yet effective updating scheme is designed for CNN training. Equipped with this novel updating algorithm, the CNN model is robust to some long-existing difficulties in visual tracking such as occlusion or incorrect detections, without loss of the effective adaption for significant appearance changes. In the experiment, our CNN tracker outperforms all compared state-of-the-art methods on two recently proposed benchmarks which in total involve over 60 video sequences. The remarkable performance improvement over the existing trackers illustrates the superiority of the feature representations which are learned

  18. DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking.

    Science.gov (United States)

    Hanxi Li; Yi Li; Porikli, Fatih

    2016-04-01

    Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking, because they require very long training time and a large number of training samples. In this paper, we present an efficient and very robust tracking algorithm using a single convolutional neural network (CNN) for learning effective feature representations of the target object in a purely online manner. Our contributions are multifold. First, we introduce a novel truncated structural loss function that maintains as many training samples as possible and reduces the risk of tracking error accumulation. Second, we enhance the ordinary stochastic gradient descent approach in CNN training with a robust sample selection mechanism. The sampling mechanism randomly generates positive and negative samples from different temporal distributions, which are generated by taking the temporal relations and label noise into account. Finally, a lazy yet effective updating scheme is designed for CNN training. Equipped with this novel updating algorithm, the CNN model is robust to some long-existing difficulties in visual tracking, such as occlusion or incorrect detections, without loss of the effective adaption for significant appearance changes. In the experiment, our CNN tracker outperforms all compared state-of-the-art methods on two recently proposed benchmarks, which in total involve over 60 video sequences. The remarkable performance improvement over the existing trackers illustrates the superiority of the feature representations, which are learned purely online via the proposed deep learning framework. PMID:26841390

  19. DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking.

    Science.gov (United States)

    Hanxi Li; Yi Li; Porikli, Fatih

    2016-04-01

    Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking, because they require very long training time and a large number of training samples. In this paper, we present an efficient and very robust tracking algorithm using a single convolutional neural network (CNN) for learning effective feature representations of the target object in a purely online manner. Our contributions are multifold. First, we introduce a novel truncated structural loss function that maintains as many training samples as possible and reduces the risk of tracking error accumulation. Second, we enhance the ordinary stochastic gradient descent approach in CNN training with a robust sample selection mechanism. The sampling mechanism randomly generates positive and negative samples from different temporal distributions, which are generated by taking the temporal relations and label noise into account. Finally, a lazy yet effective updating scheme is designed for CNN training. Equipped with this novel updating algorithm, the CNN model is robust to some long-existing difficulties in visual tracking, such as occlusion or incorrect detections, without loss of the effective adaption for significant appearance changes. In the experiment, our CNN tracker outperforms all compared state-of-the-art methods on two recently proposed benchmarks, which in total involve over 60 video sequences. The remarkable performance improvement over the existing trackers illustrates the superiority of the feature representations, which are learned purely online via the proposed deep learning framework.

  20. Building ensemble representations: How the shape of preceding distractor distributions affects visual search.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2016-08-01

    Perception allows us to extract information about regularities in the environment. Observers can quickly determine summary statistics of a group of objects and detect outliers. The existing body of research has, however, not revealed how such ensemble representations develop over time. Moreover, the correspondence between the physical distribution of features in the external world and their potential internal representation as a probability density function (PDF) by the visual system is still unknown. Here, for the first time we demonstrate that such internal PDFs are built during visual search and show how they can be assessed with repetition and role-reversal effects. Using singleton search for an oddly oriented target line among differently oriented distractors (a priming of pop-out paradigm), we test how different properties of previously observed distractor distributions (mean, variability, and shape) influence search times. Our results indicate that observers learn properties of distractor distributions over and above mean and variance; in fact, response times also depend on the shape of the preceding distractor distribution. Response times decrease as a function of target distance from the mean of preceding Gaussian distractor distributions, and the decrease is steeper when preceding distributions have small standard deviations. When preceding distributions are uniform, however, this decrease in response times can be described by a two-piece function corresponding to the uniform distribution PDF. Moreover, following skewed distributions response times function is skewed in accordance with the skew in distributions. Indeed, internal PDFs seem to be specifically tuned to the observed feature distribution. PMID:27232163

  1. How to Make a Good Animation: A Grounded Cognition Model of How Visual Representation Design Affects the Construction of Abstract Physics Knowledge

    Science.gov (United States)

    Chen, Zhongzhou; Gladding, Gary

    2014-01-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's…

  2. Representation of perceptually invisible image motion in extrastriate visual area MT of macaque monkeys.

    Science.gov (United States)

    Hohl, Sonja S; Lisberger, Stephen G

    2011-11-16

    Why does the world appear stable despite the visual motion induced by eye movements during fixation? We find that the answer must reside in how visual motion signals are interpreted by perception, because MT neurons in monkeys respond to the image motion caused by eye drifts in the presence of a stationary stimulus. Several features suggest a visual origin for the responses of MT neurons during fixation: spike-triggered averaging yields a peak image velocity in the preferred direction that precedes spikes by ∼60 ms; image velocity during fixation and firing rate show similar peaks in power at 4-5 Hz; and average MT firing during a period of fixation is related monotonically to the image speed along the preferred axis of the neurons 60 ms earlier. The percept caused by the responses of MT neurons during fixation depends on the distribution of activity across the population of neurons of different preferred speeds. For imposed stimulus motion, the population response peaks for neurons that prefer the actual target speed. For small image motions caused by eye drifts during fixation, the population response is large, but is noisy and does not show a clear peak. This representation of image motion in MT would be ignored if perception interprets the population response in the context of a prior of zero speed. Then, we would see a stable scene despite MT responses caused by eye drifts during fixation. PMID:22090483

  3. Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum.

    Science.gov (United States)

    Getzmann, Stephan; Lewald, Jörg

    2009-03-01

    Representational momentum refers to the tendency to displace the judged final position of a moving auditory or visual target as being too far forward along the path of motion. This phenomenon was investigated here by comparing apparent displacements in final position with constant or with irregularly varying target velocities. Final positions of auditory or visual targets, moving along the horizontal plane, were indicated by manual pointing. In both modalities, we found a significantly smaller displacement magnitude with varying velocities compared to constant velocity. The reduction in displacement occurred irrespective of whether or not the participants pursued the visual targets with their eyes. These findings indicate that the emergence of representational momentum critically depends on the constancy of target velocity. The results are compatible with a model in which changes in the motion signal can override the extrapolation mechanism that usually causes the forward displacement of representational momentum.

  4. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single......-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion...... into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment....

  5. Fast and automatic activation of an abstract representation of money in the human ventral visual pathway.

    Directory of Open Access Journals (Sweden)

    Catherine Tallon-Baudry

    Full Text Available Money, when used as an incentive, activates the same neural circuits as rewards associated with physiological needs. However, unlike physiological rewards, monetary stimuli are cultural artifacts: how are monetary stimuli identified in the first place? How and when does the brain identify a valid coin, i.e. a disc of metal that is, by social agreement, endowed with monetary properties? We took advantage of the changes in the Euro area in 2002 to compare neural responses to valid coins (Euros, Australian Dollars with neural responses to invalid coins that have lost all monetary properties (French Francs, Finnish Marks. We show in magneto-encephalographic recordings, that the ventral visual pathway automatically distinguishes between valid and invalid coins, within only ∼150 ms. This automatic categorization operates as well on coins subjects were familiar with as on unfamiliar coins. No difference between neural responses to scrambled controls could be detected. These results could suggest the existence of a generic, all-purpose neural representation of money that is independent of experience. This finding is reminiscent of a central assumption in economics, money fungibility, or the fact that a unit of money is substitutable to another. From a neural point of view, our findings may indicate that the ventral visual pathway, a system previously thought to analyze visual features such as shape or color and to be influenced by daily experience, could also able to use conceptual attributes such as monetary validity to categorize familiar as well as unfamiliar visual objects. The symbolic abilities of the posterior fusiform region suggested here could constitute an efficient neural substrate to deal with culturally defined symbols, independently of experience, which probably fostered money's cultural emergence and success.

  6. Let's Look at Style: Visual and Spatial Representation and Reasoning in Design

    Science.gov (United States)

    Jupp, Julie; Gero, John

    This chapter explores the perception and modeling of style in design relating to visuo-spatial representation and reasoning. We approach this subject via cognitive and contextual considerations significant to the role of style during designing. A designer's ability to represent and reason about design artifacts visually and spatially allows meaningful "chunks" of design information to be utilized relative to the designer's task and context. Central to cognitive and contextual notions of style are two issues, namely the level of semantic interpretation, and the comparative method's degree of contextual sensitivity. This compound problem requires some explicit and cognitively plausible ordering principle and adaptive measure capable of allowing for dependencies in reasoning about similarities. This chapter first investigates the perception of style in relation to these modeling requirements before demonstrating and testing their implementation. We then discuss style in relation to design tasks and how they can be supported via the classification and retrieval of designs from large databases of visuo-spatial information.

  7. Evidence for Integrated Visual Face and Body Representations in the Anterior Temporal Lobes.

    Science.gov (United States)

    Harry, Bronson B; Umla-Runge, Katja; Lawrence, Andrew D; Graham, Kim S; Downing, Paul E

    2016-08-01

    Research on visual face perception has revealed a region in the ventral anterior temporal lobes, often referred to as the anterior temporal face patch (ATFP), which responds strongly to images of faces. To date, the selectivity of the ATFP has been examined by contrasting responses to faces against a small selection of categories. Here, we assess the selectivity of the ATFP in humans with a broad range of visual control stimuli to provide a stronger test of face selectivity in this region. In Experiment 1, participants viewed images from 20 stimulus categories in an event-related fMRI design. Faces evoked more activity than all other 19 categories in the left ATFP. In the right ATFP, equally strong responses were observed for both faces and headless bodies. To pursue this unexpected finding, in Experiment 2, we used multivoxel pattern analysis to examine whether the strong response to face and body stimuli reflects a common coding of both classes or instead overlapping but distinct representations. On a voxel-by-voxel basis, face and whole-body responses were significantly positively correlated in the right ATFP, but face and body-part responses were not. This finding suggests that there is shared neural coding of faces and whole bodies in the right ATFP that does not extend to individual body parts. In contrast, the same approach revealed distinct face and body representations in the right fusiform gyrus. These results are indicative of an increasing convergence of distinct sources of person-related perceptual information proceeding from the posterior to the anterior temporal cortex. PMID:27054399

  8. Multi-source adaptation joint kernel sparse representation for visual classification.

    Science.gov (United States)

    Tao, JianWen; Hu, Wenjun; Wen, Shiting

    2016-04-01

    Most of the existing domain adaptation learning (DAL) methods relies on a single source domain to learn a classifier with well-generalized performance for the target domain of interest, which may lead to the so-called negative transfer problem. To this end, many multi-source adaptation methods have been proposed. While the advantages of using multi-source domains of information for establishing an adaptation model have been widely recognized, how to boost the robustness of the computational model for multi-source adaptation learning has only recently received attention. To address this issue for achieving enhanced performance, we propose in this paper a novel algorithm called multi-source Adaptation Regularization Joint Kernel Sparse Representation (ARJKSR) for robust visual classification problems. Specifically, ARJKSR jointly represents target dataset by a sparse linear combination of training data of each source domain in some optimal Reproduced Kernel Hilbert Space (RKHS), recovered by simultaneously minimizing the inter-domain distribution discrepancy and maximizing the local consistency, whilst constraining the observations from both target and source domains to share their sparse representations. The optimization problem of ARJKSR can be solved using an efficient alternative direction method. Under the framework ARJKSR, we further learn a robust label prediction matrix for the unlabeled instances of target domain based on the classical graph-based semi-supervised learning (GSSL) diagram, into which multiple Laplacian graphs constructed with the ARJKSR are incorporated. The validity of our method is examined by several visual classification problems. Results demonstrate the superiority of our method in comparison to several state-of-the-arts. PMID:26894961

  9. Object representations in visual working memory change according to the task context.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues.

  10. Object representations in visual working memory change according to the task context.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues. PMID:27160997

  11. Separating the Innocents from the Illegals: visual representation of the victims of sex trafficking in anti-trafficking campaigns

    OpenAIRE

    Stolic, Tijana

    2014-01-01

    This thesis critically explores the discursive formations around the visual representation of the victims of sex trafficking in six anti-trafficking campaigns totalling 18 photographs. Critical discourse analysis is utilised as a methodological approach, while semiotics and iconography are used as methods of visual analysis. Picking up on the previous studies of the discourses of trafficking, the study aims to place the dominant discourses of trafficking into the context of humanitarian appea...

  12. A Visualization of Evolving Clinical Sentiment Using Vector Representations of Clinical Notes

    Science.gov (United States)

    Mark, Roger G.

    2016-01-01

    Our objective in this paper was to visualize the evolution of clinical language and sentiment with respect to several common population-level categories including: time in the hospital, age, mortality, gender and race. Our analysis utilized seven years of unstructured free text notes from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) database. The text data was partitioned by category and used to generate several high dimensional vector space representations. We generated visualizations of the vector spaces using Distributed Stochastic Neighbor Embedding (tSNE) and Principal Component Analysis (PCA). We also investigated representative words from clusters in the vector space. Lastly, we inferred the general sentiment of the clinical notes toward each parameter by gauging the average distance between positive and negative keywords and all other terms in the space. We found intriguing differences in the sentiment of clinical notes over time, outcome, and demographic features. We noted a decrease in the homogeneity and complexity of clusters over time for patients with poor outcomes. We also found greater positive sentiment for females, unmarried patients, and patients of African ethnicity.

  13. Incidental learning of probability information is differentially affected by the type of visual working memory representation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Beck, Melissa R

    2015-12-01

    In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. PMID:26010021

  14. The Culture of Visual Representations in Spectroscopic Education and Laboratory Instruction

    Science.gov (United States)

    Hentschel, Klaus

    This study on spectroscopic training mainly from 1860-1914 drawing on archival documentation at the Massachusetts Institute of Technology and Wellesley College reveals a conspicuous emphasis on drawing skills and consultation of spectral maps, besides textbooks. This culture of visual representations liberated science education from a philologically dominated pedagogy in the late 19th century. Student notebooks are ladened with sketches from laboratory observations, lantern-slide projections, or posters. I describe the various didactic techniques used to facilitate visualization and memorization of specific spectroscopic Gestalten and show how these graphic resources were used to train the difficult skill of classifying stellar spectra. In its heyday, spectroscopy was firmly integrated in the curriculum to become an important part of the practical training not only of scientists but also of liberal arts students, even finding its way into vocational schools and Gymnasia. Within the framework of this Anschauungsunterricht I identify the teaching traditions and link them to the laboratory exercises by Kohlrausch, Pickering, Lockyer and Weinhold.

  15. When memory is not enough: electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention.

    Science.gov (United States)

    Carlisle, Nancy B; Woodman, Geoffrey F

    2011-10-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants' event-related potentials to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1 to 3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants' goal involved attending to memory-matching items, these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  16. VISUAL REPRESENTATION OF MAIN ACTORS POVERTY IN SERBIA: SEMIOTIC ANALYSIS OF TELEVISION IMAGE AND PHOTOGRAPHY IN MEDIA TEXTS

    Directory of Open Access Journals (Sweden)

    Brankica Drašković

    2012-12-01

    Full Text Available This paper analyzes the media's visual representation of various poverty groups within Serbia.The visual representation is not simply a reflection of reality, but rather an instrument that plays an important role in prescribing different meaning  to media events and their appearances in public.The aim of this research is to determine how the visual code transmits messages about poverty and socially excluded groups, in the analyzed television news, newspaper and online photographs. Based on the sample of  410 articles on poverty, collected between the 14th and  28th of  October 2010 and 2011, this paper critically analyses the medias representation of poverty within Serbian society through methods of content analysis, critical discourse studies, and the use of semiotic approahes to images. Analysis of the structure of discourse shows that the visual representation of the poor in Serbian society is highly simplified, stereotyped and is seperated from the wider societal context of poverty. It is rather reduced to bits and  pieces of media images, which do not properly indicate the seriousnes of the problem of poverty making it difficult for mass audiences to identify with.

  17. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  18. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    Science.gov (United States)

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime

  19. Evaluation of target and cardiac position during visually monitored deep inspiration breath-hold for breast radiotherapy.

    Science.gov (United States)

    Conroy, Leigh; Yeung, Rosanna; Watt, Elizabeth; Quirk, Sarah; Long, Karen; Hudson, Alana; Phan, Tien; Smith, Wendy L

    2016-01-01

    A low-resource visually monitored deep inspiration breath-hold (VM-DIBH) technique was successfully implemented in our clinic to reduce cardiac dose in left-sided breast radiotherapy. In this study, we retrospectively characterized the chest wall and heart positioning accuracy of VM-DIBH using cine portal images from 42 patients. Central chest wall position from field edge and in-field maximum heart distance (MHD) were manually measured on cine images and compared to the planned positions based on the digitally reconstructed radiographs (DRRs). An in-house program was designed to measure left anterior descending artery (LAD) and chest wall separation on the planning DIBH CT scan with respect to breath-hold level (BHL) during simulation to determine a minimum BHL for VM-DIBH eligibility. Systematic and random setup uncertainties of 3.0 mm and 2.6 mm, respectively, were found for VM-DIBH treatment from the chest wall measurements. Intrabeam breath-hold stability was found to be good, with over 96% of delivered fields within 3 mm. Average treatment MHD was significantly larger for those patients where some of the heart was planned in the field compared to patients whose heart was completely shielded in the plan (p < 0.001). No evidence for a minimum BHL was found, suggesting that all patients who can tolerate DIBH may yield a benefit from it. PMID:27455494

  20. Can Verbalisers Learn as well as Visualisers in Simulation-Based CAL with Predominantly Visual Representations? Preliminary Evidence from a Pilot Study

    Science.gov (United States)

    Liu, Tzu-Chien; Kinshuk; Lin, Yi-Chun; Wang, Ssu-Chin

    2012-01-01

    Simulation-based computer-assisted learning (CAL) is emerging as new technologies are finding a place in mainstream education. Dynamically linked multiple representations (DLMRs) is at the core of simulation-based CAL. DLMRs includes multiple visual representations, and it enables students to manipulate one representation and to immediately…

  1. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  2. Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate-Inanimate Distinction.

    Science.gov (United States)

    Proklova, Daria; Kaiser, Daniel; Peelen, Marius V

    2016-05-01

    Objects belonging to different categories evoke reliably different fMRI activity patterns in human occipitotemporal cortex, with the most prominent distinction being that between animate and inanimate objects. An unresolved question is whether these categorical distinctions reflect category-associated visual properties of objects or whether they genuinely reflect object category. Here, we addressed this question by measuring fMRI responses to animate and inanimate objects that were closely matched for shape and low-level visual features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral and lateral temporal cortex even for individually matched object pairs (e.g., snake-rope). Using representational similarity analysis, we mapped out brain regions in which the pairwise dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual dissimilarity was measured as the time it took participants to find a unique target among identical distractors in three visual search experiments, where we separately quantified overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual dissimilarity structures predicted neural dissimilarity in regions of visual cortex. Interestingly, these analyses revealed several clusters in which categorical dissimilarity predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results suggest that the animate-inanimate organization of human visual cortex is not fully explained by differences in the characteristic shape or texture properties of animals and inanimate objects. Instead, representations of visual object properties and object category may coexist in more anterior parts of the visual system. PMID:26765944

  3. Incremental learning of 3D-DCT compact representations for robust visual tracking.

    Science.gov (United States)

    Li, Xi; Dick, Anthony; Shen, Chunhua; van den Hengel, Anton; Wang, Hanzi

    2013-04-01

    Visual tracking usually requires an object appearance model that is robust to changing illumination, pose, and other factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon which the object appearance model is built. This approach has the following limitations: 1) The bases are data driven, so they can be easily corrupted, and 2) it is difficult to robustly update the bases in challenging situations. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact 3D-DCT-based object representation and a signal reconstruction-based similarity measure (reflecting the information loss from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness of the proposed tracker.

  4. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    Science.gov (United States)

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. PMID:26710821

  5. Contrasting vertical and horizontal representations of affect in emotional visual search.

    Science.gov (United States)

    Damjanovic, Ljubica; Santiago, Julio

    2016-02-01

    Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings. PMID:26106061

  6. Visual representation of knowledge in the field of Library and Information Science of IRAN

    Directory of Open Access Journals (Sweden)

    Afsoon Sabetpour

    2015-05-01

    Full Text Available Purpose: The present research has been done to visual representation of knowledge and determination vacuum and density points of scientific trends of faculty members of state universities of IRAN in Library & Information Science field. Method: Curriculum Vitae of each faculty member with census method were collected and its content analyzed. Then using a checklist, the rate scientific tendencies were extracted. NodeXL software was deployed to map out the levels. Results: The results showed that the trends are concentrated in Scientometrics, Research method in Library & Information Science, information organization, information resources, psychology, Education, Management, the Web, Knowledge management, Academic Libraries, Information services, Information Theories and collection management. Apparently, the Library & Information Science community of experts pays little or no attention to the Library & Information Science applications in the fields of chemistry, Cartography, museum, law, art, school libraries as well as to independent subject clusters such as minorities in library, information architecture, mentoring in library science, library automation, preservation, oral history, cybernetics, copyright, information marketing and information economy. Lack of efforts on these areas is remarkable.

  7. Images as representations : Visual sources on education and childhood in the past

    NARCIS (Netherlands)

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First

  8. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    Directory of Open Access Journals (Sweden)

    Zvi N Roth

    2016-03-01

    Full Text Available Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e. discriminative information may be less relevant than information regarding the relative location of two objects (i.e. relative information. For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action.We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in early visual cortex, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS, but not from EVC, where we find the spatial representation to be warped.We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model’s receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC.These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representation into relative spatial representation along the visual stream.

  9. Visual Communication on Instagram - a Case Study of Outdoor Clothing Companies´ Narrative Representations

    OpenAIRE

    Puustinen, Merja

    2016-01-01

    Objective of the Study The objective of the study was to examine the visual elements and the meanings of the messages in visual marketing communication of the selected case companies, Patagonia, Peak Performance and Norrøna. The aim of this study was to extend the understanding of the visual marketing communication while enabling customer experience in terms of visual marketing communication on Instagram. The visual elements on the visual communication were first studied. The study of vi...

  10. The problem with inspiration porn: a tentative definition and a provisional critique

    OpenAIRE

    2016-01-01

    The term ‘inspiration porn’ is associated with disability advocacy in general and the late activist and comedian Stella Young in particular. It has come into widespread usage over the last few years. I propose the following definition: ‘Inspiration porn is the representation of disability as a desirable but undesired characteristic, usually by showing impairment as a visually or symbolically distinct biophysical deficit in one person, a deficit that can and must be overcome through the displa...

  11. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System.

    Science.gov (United States)

    Roth, Zvi N

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.

  12. Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach.

    Science.gov (United States)

    Yildirim, Ilker; Jacobs, Robert A

    2015-06-01

    If a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities.

  13. Architectural drawing in the process of visual research: The new school concept of the representation of space

    Directory of Open Access Journals (Sweden)

    Kovač Vladimir

    2016-01-01

    Full Text Available The viewpoint of architect Đorđe Petrović on drawing as a research process, driven by his work at the Faculty of Architecture, University of Belgrade within the field of architectural drawing, is to be taken as a starting point for the analysis of the process of visual representation of architectural space in this paper. The analysis is primarily focused on the relevant period from the beginning of the seventies, when the concept of the New School was formed, and Petrović introduced the concepts of visual research and visual communications to the curriculum, in his reassessment of the role of architectural drawings as a purely technical and information resource. The basic methodological question concerns the interpretation of the concept of visual research, conducted within the reformed curriculum, as well as its position in the then socio-cultural context and in relation to the actual practice of the time and the period that preceded it. Looking at the drawing as a powerful means of representations of space, the paper discusses architectural discourse determined by architectural drawing as the product of social and theoretical practice, similar to the hypothesis of Henri Lefebvre, presented in his work The Production of Space.

  14. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  15. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Science.gov (United States)

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  16. Extrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects.

    Science.gov (United States)

    McCarthy, J Daniel; Kohler, Peter J; Tse, Peter U; Caplovitz, Gideon Paul

    2015-11-01

    When an object moves behind a bush, for example, its visible fragments are revealed at different times and locations across the visual field. Nonetheless, a whole moving object is perceived. Unlike traditional modal and amodal completion mechanisms known to support spatial form integration when all parts of a stimulus are simultaneously visible, relatively little is known about the neural substrates of the spatiotemporal form integration (STFI) processes involved in generating coherent object representations from a succession visible fragments. We used fMRI to identify brain regions involved in two mechanisms supporting the representation of stationary and rigidly rotating objects whose form features are shown in succession: STFI and position updating. STFI allows past and present form cues to be integrated over space and time into a coherent object even when the object is not visible in any given frame. STFI can occur whether or not the object is moving. Position updating allows us to perceive a moving object, whether rigidly rotating or translating, even when its form features are revealed at different times and locations in space. Our results suggest that STFI is mediated by visual regions beyond V1 and V2. Moreover, although widespread cortical activation has been observed for other motion percepts derived solely from form-based analyses [Tse, P. U. Neural correlates of transformational apparent motion. Neuroimage, 31, 766-773, 2006; Krekelberg, B., Vatakis, A., & Kourtzi, Z. Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94, 4373-4386, 2005], increased responses for the position updating that lead to rigidly rotating object representations were only observed in visual areas KO and possibly hMT+, indicating that this is a distinct and highly specialized type of processing.

  17. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    Science.gov (United States)

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  18. Retrieval from long-term memory reduces working memory representations for visual features and their bindings.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Beck, Melissa R; Elliott, Emily M

    2015-02-01

    The ability to remember feature bindings is an important measure of the ability to maintain objects in working memory (WM). In this study, we investigated whether both object- and feature-based representations are maintained in WM. Specifically, we tested the hypotheses that retaining a greater number of feature representations (i.e., both as individual features and bound representations) results in a more robust representation of individual features than of feature bindings, and that retrieving information from long-term memory (LTM) into WM would cause a greater disruption to feature bindings. In four experiments, we examined the effects of retrieving a word from LTM on shape and color-shape binding change detection performance. We found that binding changes were more difficult to detect than individual-feature changes overall, but that the cost of retrieving a word from LTM was the same for both individual-feature and binding changes. PMID:25301564

  19. TMRPres2D: high quality visual representation of transmembrane protein models.

    Science.gov (United States)

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  20. Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque.

    Science.gov (United States)

    Gil-da-Costa, Ricardo; Braun, Allen; Lopes, Marco; Hauser, Marc D; Carson, Richard E; Herscovitch, Peter; Martin, Alex

    2004-12-14

    Non-human primates produce a diverse repertoire of species-specific calls and have rich conceptual systems. Some of their calls are designed to convey information about concepts such as predators, food, and social relationships, as well as the affective state of the caller. Little is known about the neural architecture of these calls, and much of what we do know is based on single-cell physiology from anesthetized subjects. By using positron emission tomography in awake rhesus macaques, we found that conspecific vocalizations elicited activity in higher-order visual areas, including regions in the temporal lobe associated with the visual perception of object form (TE/TEO) and motion (superior temporal sulcus) and storing visual object information into long-term memory (TE), as well as in limbic (the amygdala and hippocampus) and paralimbic regions (ventromedial prefrontal cortex) associated with the interpretation and memory-encoding of highly salient and affective material. This neural circuitry strongly corresponds to the network shown to support representation of conspecifics and affective information in humans. These findings shed light on the evolutionary precursors of conceptual representation in humans, suggesting that monkeys and humans have a common neural substrate for representing object concepts. PMID:15583132

  1. Visual Word Recognition is Accompanied by Covert Articulation: Evidence for a Speech-like Phonological Representation

    OpenAIRE

    Eiter, Brianna M.; INHOFF, ALBRECHT W.

    2008-01-01

    Two lexical decision task (LDT) experiments examined whether visual word recognition involves the use of a speech-like phonological code that may be generated via covert articulation. In Experiment 1, each visual item was presented with an irrelevant spoken word (ISW) that was either phonologically identical, similar, or dissimilar to it. An ISW delayed classification of a visual word when the two were phonologically similar, and it delayed the classification of a pseudoword when it was ident...

  2. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  3. The Effect of Visual Representation Style in Problem-Solving : A Perspective from Cognitive Processes

    NARCIS (Netherlands)

    Nyamsuren, Enkhbold; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a ca

  4. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations

    NARCIS (Netherlands)

    Vandenbroucke, A.R.; Sligte, I.G.; Vries, J.G. de; Cohen, M.S.; Lamme, V.A.F.

    2015-01-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F.

  5. Visual representation of costs in the productive process: a case study on a footwear industry in Portugal

    Directory of Open Access Journals (Sweden)

    Levi da Silva Guimarães

    2015-12-01

    Full Text Available Over the last decades, conventional production systems have gone through changes in the face of intensified competition among companies. The occurrence of these changes has boosted the development of decision-making assistance tools for the production systems. However, most of these instruments do not allow the visualization of the costs involved throughout industrial operations. This study comprises the integration of the "Waste Identification Diagrams" (WID, current tool for visualization and analysis of production processes, along with "Time-Driven Activity-Based Costing" (TDABC, strategic management cost tool, seeking to create a model that visually demonstrates waste and relate its occurrence to operating costs. For that, the research adopted a descriptive-exploratory approach, based on a case study carried out in a footwear industry. The analysis showed that the integration of tools allowed for the representation of costs based on the time equations from the TDABC, associated with the visualization of the production process by the WID. The study concludes that the WID can be integrated to the TDABC tool, creating a management model for making decisions based on the operating costs of the production process.

  6. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  7. The time course of protecting a visual memory representation from perceptual interference

    Directory of Open Access Journals (Sweden)

    Dirk evan Moorselaar

    2015-01-01

    Full Text Available Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the SOA between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed.

  8. Visualization and Representation of Physical Systems: Wavemaker as an Aid to Conceptualizing Wave Phenomena.

    Science.gov (United States)

    Sadler, Philip M.; Whitney, Charles A.; Shore, Linda; Deutsch, Freeman

    1999-01-01

    Describes Wavemaker, a simulation environment developed to graphically reveal the behavior of periodic systems using a series of increasingly sophisticated visual tools. Results indicate that the software is helpful in connecting real to simulated systems. (Author/CCM)

  9. Resilience to the contralateral visual field bias as a window into object representations.

    Science.gov (United States)

    Garcea, Frank E; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z

    2016-08-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and is contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  10. The effects of visual control and distance in modulating peripersonal spatial representation.

    Directory of Open Access Journals (Sweden)

    Chiara Renzi

    Full Text Available In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs. far from the hand-about 30 cm from the starting position. Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets.

  11. The effects of visual control and distance in modulating peripersonal spatial representation.

    Science.gov (United States)

    Renzi, Chiara; Ricciardi, Emiliano; Bonino, Daniela; Handjaras, Giacomo; Vecchi, Tomaso; Pietrini, Pietro

    2013-01-01

    In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI) was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs. far from the hand-about 30 cm from the starting position). Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets.

  12. A modeling language for 3D process plant layout representation, exchange and visualization

    OpenAIRE

    Paviot, Thomas; Fortineau, Virginie; Lamouri, Samir; Louis-Sidney, Ludovic

    2012-01-01

    International Conference on Product Lifecycle Management (PLM12), IFIP WG5.1. In the nuclear industry, achieving Long Term Data Preservation is a requirement for nuclear power plants to be safely built, operated over five or six decades and retired. Among them, CAD data suffers from some strong dependencies on the software vendors and its data model thus leading to a possible weakness in the preservation workflow. This paper presents a modeling language, suitable for the 3D representation ...

  13. A STUDY ON MENTAL REPRESENTATIONS FOR REALISTIC VISUALIZATION THE PARTICULAR CASE OF SKI TRAIL MAPPING

    OpenAIRE

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-01-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with pai...

  14. The Theory and the Text of Visual Representation%视觉再现的理论与文本

    Institute of Scientific and Technical Information of China (English)

    段炼

    2012-01-01

    This article makes exploration of visual representation symbol's theory and its practice. In the carding of visual repre- sentation, it points out that from the perspective of semiotics, the visual representation and the "gaze" of western contemporary philosophy is closely related, and then analyzes its meaning and value from the view of text and the context. The symbol mecha- nism is the unique view of pitching-in, from the view of film symbol and painting, the mechanism has unique meaning. This arti- cle analyzes the form of semiotics mechanism and presents some text characteristics.%对视觉再现符号的理论与实践进行了开拓性的探索,在对再现理论的源流的梳理中,提出从符号学角度将再现观念与西方当代哲学和美学理论中的"凝视"相联系,从文本与语境角度分析其理论意义与价值。符号机制则是切入的特有角度,从电影符号与绘画角度来看,这一机制的形成具有意义阐释的特性。文章结合以伦勃朗绘画为题材的电影符号表达分析了符号机制的形态,展示了文本特性。

  15. A STUDY ON MENTAL REPRESENTATIONS FOR REALISTIC VISUALIZATION THE PARTICULAR CASE OF SKI TRAIL MAPPING

    Directory of Open Access Journals (Sweden)

    R. Balzarini

    2015-08-01

    Full Text Available This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  16. a Study on Mental Representations for Realistic Visualization the Particular Case of Ski Trail Mapping

    Science.gov (United States)

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-08-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  17. Visual Representation of Sports Activities in Secondary School English and Turkish Coursebooks

    Directory of Open Access Journals (Sweden)

    Mehmet Galip ZORBA

    2014-06-01

    Full Text Available Along with language teaching purposes, coursebooks also convey different kinds of cultural and social messages through both written texts and visualization. Therefore, studying coursebooks in terms of such qualities is necessary in foreign language education. In the learning process, visualization plays a pivotal role since visuals cater for concrete sensory stimuli and thus is an indispensable part in all co ursebooks. The aim of this study is to comparatively investigate how sports, including recreational activities, are portrayed in secondary school English and Turkish coursebooks prepared according to the new education system in relation to such variables a s which sports are particularly shown, and sex of persons doing sports and/or recreational activities. A total number of eight coursebooks (four English and four Turkish are studied and the findings are also compared with similar studies. The results show ed the problems associated with these coursebooks.

  18. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F

    2015-12-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on

  19. Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons.

    Directory of Open Access Journals (Sweden)

    Carlo Baldassi

    Full Text Available The anterior inferotemporal cortex (IT is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects. In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics, we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex.

  20. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    Science.gov (United States)

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  1. Modes of Self-Representation : Visualized Identities of former Yugoslav Migrant Women in The Netherlands

    NARCIS (Netherlands)

    van Gorp, Jasmijn

    2014-01-01

    This study investigates visualized identities of ‘former Yugoslav’ migrant women in the Netherlands. Ten women with roots in Serbia, Bosnia-Herzegovina or Croatia were asked to depict their identities in a series of photographs over the course of one week. Subsequently they were prompted to contextu

  2. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    Science.gov (United States)

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  3. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  4. Flow visualization study of a two-dimensional representation of the Space Shuttle launch pad configuration

    Science.gov (United States)

    Mclachland, B. G.; Zilliac, G. G.; Davis, S. S.

    1987-01-01

    The loss of the Space Shuttle Challenger was caused by the failure of the aft joint O-ring seals in its right solid rocket booster. It has been suggested by several sources that wind conditions through a reduction in temperature of the right solid rocket booster caused by the wind blowing across the cold external tank, played a role in the O-ring failure. To check the plausibility of the wind theory, an experiment was carried out in a water towing tank to visualize the flow past a two-dimensional model representing a cross section of the Space Shuttle launch configuration. The periodic formation of vortices was found to characterize the wake generated by the model. It is suggested that this organized motion in the flow is the dominant mechanism that accomplishes heat transfer from the external tank to the right solid rocket booster. Flow visualization results consisting of photographs that show instantaneous streamline patterns of the flow are presented.

  5. Impairments in part-whole representations of objects in two cases of integrative visual agnosia.

    Science.gov (United States)

    Behrmann, Marlene; Williams, Pepper

    2007-10-01

    How complex multipart visual objects are represented perceptually remains a subject of ongoing investigation. One source of evidence that has been used to shed light on this issue comes from the study of individuals who fail to integrate disparate parts of visual objects. This study reports a series of experiments that examine the ability of two such patients with this form of agnosia (integrative agnosia; IA), S.M. and C.R., to discriminate and categorize exemplars of a rich set of novel objects, "Fribbles", whose visual similarity (number of shared parts) and category membership (shared overall shape) can be manipulated. Both patients performed increasingly poorly as the number of parts required for differentiating one Fribble from another increased. Both patients were also impaired at determining when two Fribbles belonged in the same category, a process that relies on abstracting spatial relations between parts. C.R., the less impaired of the two, but not S.M., eventually learned to categorize the Fribbles but required substantially more training than normal perceivers. S.M.'s failure is not attributable to a problem in learning to use a label for identification nor is it obviously attributable to a visual memory deficit. Rather, the findings indicate that, although the patients may be able to represent a small number of parts independently, in order to represent multipart images, the parts need to be integrated or chunked into a coherent whole. It is this integrative process that is impaired in IA and appears to play a critical role in the normal object recognition of complex images.

  6. Linked Data based Health Information Representation, Visualization and Retrieval System on the Semantic Web

    OpenAIRE

    Tilahun, Binyam Chakilu

    2013-01-01

    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. To better facilitate health information dissemination, using flexible ways to represent, query and visualize health data becomes increasingly important. Semantic Web technologies, which provide a common framework by allowing data to be shared and reused between applications, can be applied to the management of health data. Linked open data - a new se...

  7. Identifying the functional architecture underlying multiple representations in visual working memory

    OpenAIRE

    Orme, Elizabeth

    2009-01-01

    ABSTRACT This thesis aimed to investigate how visual working memory takes advantage of long-term knowledge in order to allow semantic elaboration in the form of chunking and the role of the central executive in this process. Two leading theoretical frameworks of working memory which both emphasise the role of long-term memory are discussed. One of which views working memory as consisting of multiple discrete, modality specific subsystems (Baddeley, 2000) and one which views working memory as ...

  8. 'Investigating gender-based visual representations on the websites of entry-level occupational therapy programmes in Ireland and the United Kingdom.???

    OpenAIRE

    Mahon, Lochlainn

    2013-01-01

    non-peer-reviewed Objectives - The purpose of this research is to gain an insight into the online visual marketing of the occupational therapy undergraduate and graduate entry-level courses within Ireland and the United Kingdom. This study examines the specific characteristics of the current visual representations that exist across these university websites. As there are a small proportion of men within the occupational therapy profession, it has become imperative to explore the current pr...

  9. The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre

    2016-09-01

    The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements' instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates. PMID:27106480

  10. Preliminary tests of a possible outdoor light adaptation solution for a fly inspired visual sensor: a biomimetic solution - biomed 2011.

    Science.gov (United States)

    Dean, Brian K; Wright, Cameron H G; Barrett, Steven F

    2011-01-01

    Two previous papers, presented at RMBS in 2009 and 2010, introduced a fly inspired vision sensor that could adapt to indoor light conditions by mimicking the light adaptation process of the commonhousefly, Muscadomestica. A new system has been designed that should allow the sensor to adapt to outdoor light conditions which will enable the sensor’s use inapplications such as: unmanned aerial vehicle (UAV) obstacle avoidance, UAV landing support, target tracking, wheelchair guidance, large structure monitoring, and many other outdoor applications. A sensor of this type is especially suited for these applications due to features of hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line.Many of these qualities are beyond the ability of traditional computervision sensors such as charge coupled device (CCD) arrays.To achieve outdoor light adaptation, a variety of design obstacles have to be overcome such as infrared interference, dynamic range expansion, and light saturation. The newly designed system overcomes the latter two design obstacles by mimicking the fly’s solution of logarithmic compression followed by removal of the average background light intensity. This paper presents the new design and the preliminary tests that were conducted to determine its effectiveness. PMID:21525612

  11. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. PMID:25323417

  12. Physical Properties, Exciton Analysis, and Visualization of Core-Excited States: An Intermediate State Representation Approach.

    Science.gov (United States)

    Wenzel, Jan; Dreuw, Andreas

    2016-03-01

    The theoretical simulation of X-ray absorption spectra is in general a challenging task. However, for small and medium-sized organic molecules, the algebraic diagrammatic construction scheme (ADC) for the polarization operator in combination with the core-valence separation approximation (CVS) has proven to yield core-excitation energies and transition moments with almost quantitative accuracy allowing for reliable construction of X-ray absorption spectra. Still, to understand core-excitation processes in detail, it is not sufficient to only compute energies, but also properties like static dipole moments and state densities are important as they provide deeper insight into the nature of core-excited states. Here, we present for the first time an implementation of the intermediate state representation (ISR) approach in combination with the CVS approximation (CVS-ISR), which gives, in combination with the CVS-ADC method, direct access to core-excited state properties. The performance of the CVS-ADC/CVS-ISR approach is demonstrated by means of small- and medium-sized organic molecules. Besides the calculation of core-excited state dipole moments, advanced analyses of core-excited state densities are performed using descriptors like exciton sizes and distances. Plotting electron and hole densities helps to determine the character of the state, and in particular, the investigation of detachment/attachment densities provides information about orbital relaxation effects that are crucial for understanding core excitations. PMID:26845396

  13. Visual Representation of Body Shape in African-American and European American Women: Clinical Considerations

    Science.gov (United States)

    Capers, Patrice L.; Kinsey, Amber W.; Miskell, Edrika L.; Affuso, Olivia

    2016-01-01

    BACKGROUND Body mass index (BMI) has been used widely among clinicians to assess obesity in their patients due to its ease and availability. However, BMI has some diagnostic limitations and other measures related to health risks; in particular, body shape may be of greater relevance to health outcomes. OBJECTIVE The objective of this study was to illustrate the importance of body shape assessments above and beyond BMI and its relationship to health risk among a sample of African-American and European American women. METHODS African-American and European American women aged 19–78 years (n = 552) in Birmingham, Alabama, were recruited and stratified by menopausal status (ie, pre- or postmenopausal). Pictorial body shapes were derived from digital photographs, while body fat distribution defined by android–gynoid ratio (AGR) and body composition were obtained from dual-energy X-ray absorptiometry. RESULTS Images of BMI and age-matched women illustrate variability in fat distribution. Among both menopausal status groups, more than 50% of women had a pear body shape (AGR < 1). An apple body shape was associated with higher odds of having diabetes (unadjusted odds ratio [OR]: 4.1, 95% confidence interval [CI]: 1.9–9.3), hypertension (unadjusted OR: 3.1, 95% CI: 2.0–4.7), and high cholesterol (unadjusted OR: 3.0, 95% CI: 1.8–5.1). CONCLUSION Use of visual cues alongside traditional methods of weight status assessment may help to facilitate weight management conversations between physicians and female patients. However, next steps should include the validation of visual assessments of body shape in women for use by physicians. PMID:27478392

  14. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    International Nuclear Information System (INIS)

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  15. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Johan; Hjelstuen, Mari H.B.; Mjaaland, Ingvil; Dybvik, Kjell Ivar (Dept. of Radiotherapy, Stavanger Univ. Hospital, Stavanger (Norway)), e-mail: vijo@sus.no

    2011-01-15

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  16. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways.

    Science.gov (United States)

    Kersey, Alyssa J; Clark, Tyia S; Lussier, Courtney A; Mahon, Bradford Z; Cantlon, Jessica F

    2016-07-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4-8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  17. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    Science.gov (United States)

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM. PMID:26018644

  18. Spatial representations in dorsal hippocampal neurons during a tactile-visual conditional discrimination task.

    Science.gov (United States)

    Griffin, Amy L; Owens, Cullen B; Peters, Gregory J; Adelman, Peter C; Cline, Kathryn M

    2012-02-01

    Trajectory-dependent coding in dorsal CA1 of hippocampus has been evident in various spatial memory tasks aiming to model episodic memory. Hippocampal neurons are considered to be trajectory-dependent if the neuron has a place field located on an overlapping segment of two trajectories and exhibits a reliable difference in firing rate between the two trajectories. It is unclear whether trajectory-dependent coding in hippocampus is a mechanism used by the rat to solve spatial memory tasks. A first step in answering this question is to compare results between studies using tasks that require spatial working memory and those that do not. We recorded single units from dorsal CA1 of hippocampus during performance of a discrete-trial, tactile-visual conditional discrimination (CD) task in a T-maze. In this task, removable floor inserts that differ in texture and appearance cue the rat to visit either the left or right goal arm to receive a food reward. Our goal was to assess whether trajectory coding would be evident in the CD task. Our results show that trajectory coding was rare in the CD task, with only 12 of 71 cells with place fields on the maze stem showing a significant firing rate difference between left and right trials. For comparison, we recorded from dorsal CA1 during the acquisition and performance of a continuous spatial alternation task identical to that used in previous studies and found a proportion of trajectory coding neurons similar to what has been previously reported. Our data suggest that trajectory coding is not a universal mechanism used by the hippocampus to disambiguate similar trajectories, and instead may be more likely to appear in tasks that require the animal to retrieve information about a past trajectory, particularly in tasks that are continuous rather than discrete in nature.

  19. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    Science.gov (United States)

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM.

  20. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged

  1. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2015-09-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool—an interaction diagram (ID)—highlighting interactions between objects and addressing the learning demand related to N3 law. This approach had been successful in enhancing students' understanding of N3 law in pilot studies conducted by teacher-researchers. However, it was unclear whether teachers, who have neither been involved with the research nor received intensive tutoring, could replicate the positive results in ordinary school settings. To address this question, we present an empirical study conducted in 10 Finnish upper secondary schools with students (n = 261, aged 16) taking their mandatory physics course. The study design involved three groups: the heavy ID group (the TLS with seven to eight exercises on IDs), the light ID group (two to three exercises on IDs) and the no ID group (no exercises on IDs). The heavy and light ID groups answered eight ID questions, and all the students answered four questions on N3 law after teaching the force concept. The findings clearly suggest that systematic use of the IDs in teaching the force concept significantly fostered students' understanding of N3 law even with teachers who have no intensive tutoring or research background.

  2. Does using a visual-representation tool foster students' ability to identify forces and construct free-body diagrams?

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-06-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying interactions helps students in quantitative problem solving, there is no previous research investigating the effect of a visual-representation tool—an interaction diagram (ID)—on students’ ability to identify forces, and to construct the correct FBDs. We present an empirical study conducted in 11 Finnish high schools on students (n=335, aged 16) taking their first, mandatory, introductory physics course. The study design involved groups of students having heavy, light, or no use of IDs. The heavy and light ID groups answered eight pairs of ID and FBD questions in various physical contexts and the no ID group answered two of the eight FBD questions. The results indicate that the heavy ID group outperformed both the light and the no ID groups in identifying forces and constructing the correct FBDs. The analysis of these data indicates that the use of IDs is especially beneficial in identifying forces when constructing FBDs.

  3. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  4. The Subjectivities of the Female Lawbreaker in Visual Culture: Cinematic Trajectories of Representation in the Exploitation, Hollywood, and Independent Film in Depictions of the Carceral World

    OpenAIRE

    Adamson, Janet Stewart

    2014-01-01

    In a consumerist driven culture, crime interweaves within the everyday fabric of leisurely consumption of the filmic artefact, as a culturally constructed entertainment commodity that contours our understandings of the female penal subject and the closed world of the prison – performatively enacted on the visual screen. It is important to investigate popular cultural mediums such as film, because the epistemology created from mediated representations reaches a far greater audience than that g...

  5. Reduced lung dose and improved inspiration level reproducibility in visually guided DIBH compared to audio coached EIG radiotherapy for breast cancer patients

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Aznar, Marianne Camille; Pedersen, Anders Navrsted;

    2013-01-01

    Patients with left-sided breast cancer with lymph node involvement have routinely been treated with enhanced inspiration gating (EIG) for a decade at our institution. In a transition from EIG to deep inspiration breath hold (DIBH) we compared the two techniques with focus on target coverage, dose...

  6. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    International Nuclear Information System (INIS)

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients

  7. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  8. Automatic Activation of Prototype Representation in Insight: The Sources of Inspiration%顿悟中原型激活的大脑自动响应机制:灵感机制初探

    Institute of Scientific and Technical Information of China (English)

    张庆林; 田燕; 邱江

    2012-01-01

    In this study,we selected forty scientific invention problems(every problem had a prototype with heuristic function for problem solving) as the experiment material and adopted the two-stage experimental paradigm: prototype learning and problem solving.Through manipulating the number of learning prototypes(5 or 10),without marks vs.with marks highlighting the function of prototype and semantic similarity of function between prototypes and problems,we investigated the cognitive mechanism of insight.Regression analysis with the activation rate of prototypal representation as the independent variable and the accuracy of problem solving as the dependent variable showed that R2=0.85,p0.001,which proved that activation of prototypal representation was an important factor of problem solving.The activation rate of prototypal representation was not significantly affected by the number of learning prototypes,indicating that activation of prototypal representation might be an automatic process.The effects of without marks vs.with marks and semantic similarity of function were significant on the activation rate of prototypal representation,which proved that the link of semantics of function between problem and prototype might be the cognitive mechanism of activation of prototypal representation.The automatic activation of prototypal representation might be the sources of inspiration.%以40个科学发明创造领域的顿悟问题为实验材料,采用"学习多个原型—测试多个问题"的两阶段实验范式,通过操纵原型学习个数(5/10)、标志有无(原型材料中是否标志出特征性功能的词语)和功能语义相似度(原型的特征性功能与问题的需求性功能的语义相似度),考察了顿悟问题解决中原型表征自动激活的认知机制,为进一步探索灵感发生机制奠定了基础.结果发现:①以原型激活率为自变量,以问题解决正确率为因变量进行回归分析,得到R2=0.85(p〈0

  9. 基于多视觉码本的图像表示%Image Representation Based on Multiple Visual Codebooks

    Institute of Scientific and Technical Information of China (English)

    宋彦; 蒋兵; 戴礼荣

    2013-01-01

    基于词袋模型的图像表示方法的有效性主要受限于局部特征的量化误差。文中提出一种基于多视觉码本的图像表示方法,通过综合考虑码本构建和编码方法这两个方面的因素加以改进。具体包括:1)多视觉码本构建,以迭代方式构建多个紧凑且具有互补性的视觉码本;2)图像表示,首先针对多码本的情况,依次从各码本中选择相应的视觉单词并采用线性回归估计编码系数,然后结合图像的空间金字塔结构形成最终的图像表示。在一些标准测试集合的图像分类结果验证文中方法的有效性。%The effectiveness of the image representation based on bag-of-visual words( BoW) model is majorly limited by the quantization error. To address this issue, an improved image representation based on multiple visual codebooks is proposed in this paper, which considers both visual codebook construction and feature coding. The proposed method specifically consists of 1 ) multiple visual codebooks construction, in which the compact and complementary visual codebooks are iteratively generated; 2 ) image representation, in which the visual words are firstly selected from each individual visual codebook, then the coding coefficients are determined by using the regularized linear regression method, and finally the image is represented by combining the spatial pyramid structure. The experimental results on several benchmark image classification datasets demonstrate the consistent and significant improvement of the proposed method.

  10. What recent research on diagrams suggests about learning with rather than learning from visual representations in science

    Science.gov (United States)

    Tippett, Christine D.

    2016-03-01

    The move from learning science from representations to learning science with representations has many potential and undocumented complexities. This thematic analysis partially explores the trends of representational uses in science instruction, examining 80 research studies on diagram use in science. These studies, published during 2000-2014, were located through searches of journal databases and books. Open coding of the studies identified 13 themes, 6 of which were identified in at least 10% of the studies: eliciting mental models, classroom-based research, multimedia principles, teaching and learning strategies, representational competence, and student agency. A shift in emphasis on learning with rather than learning from representations was evident across the three 5-year intervals considered, mirroring a pedagogical shift from science instruction as transmission of information to constructivist approaches in which learners actively negotiate understanding and construct knowledge. The themes and topics in recent research highlight areas of active interest and reveal gaps that may prove fruitful for further research, including classroom-based studies, the role of prior knowledge, and the use of eye-tracking. The results of the research included in this thematic review of the 2000-2014 literature suggest that both interpreting and constructing representations can lead to better understanding of science concepts.

  11. Color image quality assessment with biologically inspired feature and machine learning

    Science.gov (United States)

    Deng, Cheng; Tao, Dacheng

    2010-07-01

    In this paper, we present a new no-reference quality assessment metric for color images by using biologically inspired features (BIFs) and machine learning. In this metric, we first adopt a biologically inspired model to mimic the visual cortex and represent a color image based on BIFs which unifies color units, intensity units and C1 units. Then, in order to reduce the complexity and benefit the classification, the high dimensional features are projected to a low dimensional representation with manifold learning. Finally, a multiclass classification process is performed on this new low dimensional representation of the image and the quality assessment is based on the learned classification result in order to respect the one of the human observers. Instead of computing a final note, our method classifies the quality according to the quality scale recommended by the ITU. The preliminary results show that the developed metric can achieve good quality evaluation performance.

  12. External and Internal Representations in the Acquisition and Use of Knowledge: Visualization Effects on Mental Model Construction

    Science.gov (United States)

    Schnotz, Wolfgang; Kurschner, Christian

    2008-01-01

    This article investigates whether different formats of visualizing information result in different mental models constructed in learning from pictures, whether the different mental models lead to different patterns of performance in subsequently presented tasks, and how these visualization effects can be modified by further external…

  13. Sociocultural Knowledge and Visual Re(-)Presentations of Black Masculinity and Community: Reading "The Wire" for Critical Multicultural Teacher Education

    Science.gov (United States)

    Brown, Keffrelyn D.; Kraehe, Amelia

    2011-01-01

    In this article we consider the implications of using popular visual media as a pedagogic tool for helping teachers acquire critical sociocultural knowledge to work more effectively with students of color, particularly Black males. Drawing from a textual analysis (McKee 2001, 2003; Rose 2001) conducted in the critical visual studies tradition…

  14. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-06-01

    Full Text Available The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects.

  15. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired

    Science.gov (United States)

    Jóhannesson, Ómar I.; Balan, Oana; Unnthorsson, Runar; Moldoveanu, Alin; Kristjánsson, Árni

    2016-01-01

    The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects. PMID:27355966

  16. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired.

    Science.gov (United States)

    Jóhannesson, Ómar I; Balan, Oana; Unnthorsson, Runar; Moldoveanu, Alin; Kristjánsson, Árni

    2016-01-01

    The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects. PMID:27355966

  17. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired.

    Science.gov (United States)

    Jóhannesson, Ómar I; Balan, Oana; Unnthorsson, Runar; Moldoveanu, Alin; Kristjánsson, Árni

    2016-06-27

    The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects.

  18. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    Science.gov (United States)

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading

  19. Inspirational Journey

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Artists from across Europe and Asia ventured into the remote Chinese countryside to seek inspiration from the Miao Ethnic group "I’ve never been to Asia before and everything is strange and wonderful:supermarkets and shopping mails,even the air- port seemed exotic!"wrote Ula Sickle,a choreographer from Poland on her blog under the name"chopstick diaries."Ula was one of the 18 foreign and domestic artists participating in a cultural exchange project called the Pointe to Point: Asia-Europe Dance Forum.It aims to empower aspiring young artists from Asia and Europe to reflect upon their views of

  20. Visual Representations of Language Knowledge and Teaching Application from Perspective of Visual Learning%视觉学习视角下的语言可视化表征与教学应用

    Institute of Scientific and Technical Information of China (English)

    严晓蓉; 何高大

    2015-01-01

    Visual learning is an emerging and important paradigm to learn, especially for the digital generation growing up with technology. In this “era of visual survival”, the dominant mode of presenting knowledge is visual, thus it has become an inevitable trend to learn visually. Visual learning is now transforming the methodology in classroom teaching, especially changing the way of acquiring knowledge for foreign language learners. Language knowledge visualization is a new educational model which emphasizes intelligent processing in presenting, transferring and acquiring knowledge of language. Appropriate application of visual representations in language teaching can enhance the effects of presenting implicit and explicit knowledge and assisting the conversion between these two kinds of knowledge so as to fulfill the objectives of transferring knowledge, cultivating creative thinking and facilitating language learning and acquisition.%视觉学习是一种新型的、符合现代数字一代成长的学习范式,也是图像化生存时代知识呈现可视化的必然趋势。它正在改变着课堂教学,特别是外语学习者获取知识的方式。语言知识的可视化是语言知识类型呈现、传递和习得的智能化,是一种新的教学理念和实践。在外语教学中,借助可视化手段,可以有效增强显性知识和隐性知识的表征效果及促进二者之间的相互转化,从而实现知识传递,培养创新思维,促进语言知识的学得与习得。

  1. Visual representation of costs in the productive process: a case study on a footwear industry in Portugal

    OpenAIRE

    Levi da Silva Guimarães; Alex Fabiano Bertollo Santana; Hyggor da Silva Medeiros; Jair Antonio Fagundes

    2015-01-01

    Over the last decades, conventional production systems have gone through changes in the face of intensified competition among companies. The occurrence of these changes has boosted the development of decision-making assistance tools for the production systems. However, most of these instruments do not allow the visualization of the costs involved throughout industrial operations. This study comprises the integration of the "Waste Identification Diagrams" (WID), current tool for visualization ...

  2. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  3. Representation is representation of similarities.

    Science.gov (United States)

    Edelman, S

    1998-08-01

    Advanced perceptual systems are faced with the problem of securing a principled (ideally, veridical) relationship between the world and its internal representation. I propose a unified approach to visual representation, addressing the need for superordinate and basic-level categorization and for the identification of specific instances of familiar categories. According to the proposed theory, a shape is represented internally by the responses of a small number of tuned modules, each broadly selective for some reference shape, whose similarity to the stimulus it measures. This amounts to embedding the stimulus in a low-dimensional proximal shape space spanned by the outputs of the active modules. This shape space supports representations of distal shape similarities that are veridical as Shepard's (1968) second-order isomorphisms (i.e., correspondence between distal and proximal similarities among shapes, rather than between distal shapes and their proximal representations). Representation in terms of similarities to reference shapes supports processing (e.g., discrimination) of shapes that are radically different from the reference ones, without the need for the computationally problematic decomposition into parts required by other theories. Furthermore, a general expression for similarity between two stimuli, based on comparisons to reference shapes, can be used to derive models of perceived similarity ranging from continuous, symmetric, and hierarchical ones, as in multidimensional scaling (Shepard 1980), to discrete and nonhierarchical ones, as in the general contrast models (Shepard & Arabie 1979; Tversky 1977). PMID:10097019

  4. Effect of temperature and light intensity on the representation of motion information in the fly's visual system

    OpenAIRE

    Spavieri, Deusdedit

    2009-01-01

    To comprehend how the brain performs efficient computation, it is important to understand the way sensory information is represented in the nervous system. Under natural conditions, sensory signals have to be processed with sufficient accuracy under functional and resources constraints. Here I use motion vision in the fly Calliphora vicina to study the influence of two behaviorally relevant environmental properties - temperature and light intensity - on the representation of motion informatio...

  5. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    Directory of Open Access Journals (Sweden)

    Daniel eKress

    2014-09-01

    Full Text Available During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride

  6. Pedagogy and Quality in Indian Slum School Settings: A Bernsteinian Analysis of Visual Representations in the Integrated Child Development Service

    Science.gov (United States)

    Chawla-Duggan, Rita

    2016-01-01

    This paper focuses upon the micro level of the pre-school classroom, taking the example of the Indian Integrated Child Development Service (ICDS), and the discourse of "child-centred" pedagogy that is often associated with quality pre-schooling. Through an analysis of visual data, semi-structured and film elicitation interviews drawn…

  7. Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements

    NARCIS (Netherlands)

    Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    2006-01-01

    Flying blowflies shift their gaze by saccadic turns of body and head, keeping their gaze basically fixed between saccades. For the head, this results in almost pure translational optic flow between saccades, enabling visual interneurons in the fly motion pathway to extract information about translat

  8. Effects of Solid Objects and Two-Dimensional Representation of the Objects on Visual Observation and Comparison Among Urban Children

    Science.gov (United States)

    Barufaldi, James P.; Dietz, Maureen A.

    1975-01-01

    A sample of 228 elementary school children in a large eastern city was administered tasks which tested visual perceptions of solid objects, and photographs and drawings of these objects. Results showed that children in grades one, four, and six demonstrate a tendency to perform more efficiently on observation and comparison tasks employing solid…

  9. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.

    Science.gov (United States)

    Shinkareva, Svetlana V; Wang, Jing; Kim, Jongwan; Facciani, Matthew J; Baucom, Laura B; Wedell, Douglas H

    2014-07-01

    There is converging evidence that people rapidly and automatically encode affective dimensions of objects, events, and environments that they encounter in the normal course of their daily routines. An important research question is whether affective representations differ with sensory modality. This research examined the nature of the dependency of affect and sensory modality at a whole-brain level of analysis in an incidental affective processing paradigm. Participants were presented with picture and sound stimuli that differed in positive or negative valence in an event-related functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the individual, demonstrated significant sensitivity to valence within modality, but not valence across modalities. Modality-general and modality-specific valence hypotheses predict distinctly different multidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of the data demonstrated separable dimensions for valence processing within each modality. These results provide support for modality-specific valence processing in an incidental affective processing paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-specific emotional decoding may be mediated by the physical properties of the stimuli.

  10. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  11. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  12. Representation of geographic information visualization for mobile devices%面向移动设备的地理信息可视化表达

    Institute of Scientific and Technical Information of China (English)

    辛欣; 姜华; 孟令学; 刘芳

    2011-01-01

    With the development of Mobile GIS and Mobile Computing of which two research domain there tend to be syncretic current. Due to the complicated application and environment, how to use and represent the geographic information effectively become more and more prominent. In this paper, The representation of geographic information visualization characteristic for mobile devices is summarized, based on which,methods and technology of the representation for mobile devices is researched.%随着Mobile GIS研究的深入和Mobile Computing技术的发展,这两个研究领域间出现一种相互融合的发展趋势,由于应用范围和环境的复杂性,使得移动设备中地理信息的有效利用和表达问题显得越来越突出.总结面向移动设备地理信息可视化表达的特殊性,在此基础上对面向移动设备的地理信息表达方法和手段进行研究.

  13. Unsupervised classification and visual representation of situations in surveillance videos using slow feature analysis for situation retrieval applications

    Science.gov (United States)

    Pagel, Frank

    2015-03-01

    Today, video surveillance systems produce thousands of terabytes of data. This source of information can be very valuable, as it contains spatio-temporal information about abnormal, similar or periodic activities. However, a search for certain situations or activities in unstructured large-scale video footage can be exhausting or even pointless. Searching surveillance video footage is extremely difficult due to the apparent similarity of situations, especially for human observers. In order to keep this amount manageable and hence usable, this paper aims at clustering situations regarding their visual content as well as motion patterns. Besides standard image content descriptors like HOG, we present and investigate novel descriptors, called Franklets, which explicitly encode motion patterns for certain image regions. Slow feature analysis (SFA) will be performed for dimension reduction based on the temporal variance of the features. By reducing the dimension with SFA, a higher feature discrimination can be reached compared to standard PCA dimension reduction. The effects of dimension reduction via SFA will be investigated in this paper. Cluster results on real data from the Hamburg Harbour Anniversary 2014 will be presented with both, HOG feature descriptors and Franklets. Furthermore, we could show that by using SFA an improvement to standard PCA techniques could be achieved. Finally, an application to visual clustering with self-organizing maps will be introduced.

  14. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    International Nuclear Information System (INIS)

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  15. Darsan (to See Lord Shiva in Varanasi. Visual Processes and the Representation of God by Seven Ricksha-Drivers

    Directory of Open Access Journals (Sweden)

    Owe Wikström

    1996-01-01

    Full Text Available In spite of its effort to be transculturally relevant, the psychology of religion is quite ethno- or rather Western-centric. This becomes very clear when one tries to "translate" Indian folk religiosity into concepts taken from mainline theories; i.e. social, cognitive or psychoanalytical psychology of religion. Not only do the norms and values differ, but the very ontological assumptions underlying the categories in which the researcher understand differs fundamentally from the internal Hindu anthropological and epistemiological apriori. For example, their words of the psyche include contextuality, from time to space, to ethics to groups. The subtle interrelatedness of the divine, spiritual and the mundane is obvious It includes the flows and exchanges of substances within and between persons with minimal outer boundaries. The author discusses the role of the visual and behavioural dimensions of the Indian religiosity.

  16. Visualizing Summary Statistics and Uncertainty

    KAUST Repository

    Potter, K.

    2010-08-12

    The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual portrayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create visual representations that show not only the data value, but also important characteristics of the data including uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an extension of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented, demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of the underlying data distribution. © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  17. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    Science.gov (United States)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; Vizzeri, G.

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  18. Translation-Invariant Representation for Cumulative Foot Pressure Images

    CERN Document Server

    Zheng, Shuai; Tan, Tieniu

    2010-01-01

    Human can be distinguished by different limb movements and unique ground reaction force. Cumulative foot pressure image is a 2-D cumulative ground reaction force during one gait cycle. Although it contains pressure spatial distribution information and pressure temporal distribution information, it suffers from several problems including different shoes and noise, when putting it into practice as a new biometric for pedestrian identification. In this paper, we propose a hierarchical translation-invariant representation for cumulative foot pressure images, inspired by the success of Convolutional deep belief network for digital classification. Key contribution in our approach is discriminative hierarchical sparse coding scheme which helps to learn useful discriminative high-level visual features. Based on the feature representation of cumulative foot pressure images, we develop a pedestrian recognition system which is invariant to three different shoes and slight local shape change. Experiments are conducted on...

  19. Fine-grained representation learning in convolutional autoencoders

    Science.gov (United States)

    Luo, Chang; Wang, Jie

    2016-03-01

    Convolutional autoencoders (CAEs) have been widely used as unsupervised feature extractors for high-resolution images. As a key component in CAEs, pooling is a biologically inspired operation to achieve scale and shift invariances, and the pooled representation directly affects the CAEs' performance. Fine-grained pooling, which uses small and dense pooling regions, encodes fine-grained visual cues and enhances local characteristics. However, it tends to be sensitive to spatial rearrangements. In most previous works, pooled features were obtained by empirically modulating parameters in CAEs. We see the CAE as a whole and propose a fine-grained representation learning law to extract better fine-grained features. This representation learning law suggests two directions for improvement. First, we probabilistically evaluate the discrimination-invariance tradeoff with fine-grained granularity in the pooled feature maps, and suggest the proper filter scale in the convolutional layer and appropriate whitening parameters in preprocessing step. Second, pooling approaches are combined with the sparsity degree in pooling regions, and we propose the preferable pooling approach. Experimental results on two independent benchmark datasets demonstrate that our representation learning law could guide CAEs to extract better fine-grained features and performs better in multiclass classification task. This paper also provides guidance for selecting appropriate parameters to obtain better fine-grained representation in other convolutional neural networks.

  20. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, W.; Jansen, Yvonne; Dragicevic, P.

    2016-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.......We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...... are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion...

  1. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    Science.gov (United States)

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum. PMID:26540694

  2. Retina-inspired Filter

    OpenAIRE

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2016-01-01

    This paper introduces a novel filter which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model “virtual retina”. This model is the cornerstone to derive the non-separable spatiotemporal OPL retina-inspired filter, briefly renamed retina- insp...

  3. Fotografías de indígenas en manuales escolares argentinos: representaciones visuales y connotaciones textuales Photographs of indigenous people in argentinian school textbooks: visual representations and textual connotations

    Directory of Open Access Journals (Sweden)

    María José Saletta

    2012-07-01

    Full Text Available El objetivo de este trabajo es analizar las fotografías de pueblos originarios argentinos utilizadas en manuales escolares de 2o y 3o ciclo publicados por dos editoriales: Santillana y Aique. Se presentan los resultados de un análisis cuantitativo y cualitativo de 93 fotografías correspondientes a 38 manuales publicados entre los anos 2000 y 2005. Se reconoce qué tipo de imágenes son utilizadas, la presencia o no de cultura material autóctona, la utilización de epígrafes y la adscripción étnica de los retratados. Se concluye que existe una representación diferencial a favor de aquellas imágenes que muestran pueblos originarios con su cultura material, pero, al mismo tiempo, una utilización de un lenguaje que emplea términos como "aborigen", que implica un sesgo homogeneizador. Las fotografías son empleadas sólo en su función denotativa, mientras que se deja de lado la connotación visual en privilegio de la textual. La información presente en epígrafes y textos que acompanan a las imágenes no cumple con los requisitos necesarios de precisión y rigurosidad.The aim of this paper is to analyze photographs of native people in Argentinean primary and secondary school textbooks published by two companies, Santillana and Aique. Results from quantitative and qualitative analyses of 93 images taken from 38 school text books published between 2000 and 2005 are presented. Type of image used, presence of autochthonous material culture, use of epigraphs, and the ethnic adscription of the subjects portrayed are analyzed. It is concluded that there is differential representation in favor of those images showing native people with their material culture, although the use of language that contains derogative terms such as "aborigen" (i.e., native people at the same time clearly indicates an homogenizing bias. Images are used mostly denotatively, while textual connotation is privileged over visual connotation. Information on the epigraphs and

  4. Computing with scale-invariant neural representations

    Science.gov (United States)

    Howard, Marc; Shankar, Karthik

    The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.

  5. Biologically Inspired Model for Inference of 3D Shape from Texture.

    Science.gov (United States)

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer.

  6. Biologically Inspired Model for Inference of 3D Shape from Texture.

    Science.gov (United States)

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  7. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  8. Bio-inspired vision

    International Nuclear Information System (INIS)

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  9. Enhancing Assisted Living Technology with Extended Visual Memory

    Directory of Open Access Journals (Sweden)

    Joo-Hwee Lim

    2011-05-01

    Full Text Available Human vision and memory are powerful cognitive faculties by which we understand the world. However, they are imperfect and further, subject to deterioration with age. We propose a cognitive-inspired computational model, Extended Visual Memory (EVM, within the Computer-Aided Vision (CAV framework, to assist human in vision-related tasks. We exploit wearable sensors such as cameras, GPS and ambient computing facilities to complement a user's vision and memory functions by answering four types of queries central to visual activities, namely, Retrieval, Understanding, Navigation and Search. Learning of EVM relies on both frequency-based and attention-driven mechanisms to store view-based visual fragments (VF, which are abstracted into high-level visual schemas (VS, both in the visual long-term memory. During inference, the visual short-term memory plays a key role in visual similarity computation between input (or its schematic representation and VF, exemplified from VS when necessary. We present an assisted living scenario, termed EViMAL (Extended Visual Memory for Assisted Living, targeted at mild dementia patients to provide novel functions such as hazard-warning, visual reminder, object look-up and event review. We envisage EVM having the potential benefits in alleviating memory loss, improving recall precision and enhancing memory capacity through external support.

  10. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  11. Elementary School Students' Mental Representation of Fractions

    Science.gov (United States)

    Pitta-Pantazi, Demetra; Gray, Eddie M.; Christou, Constantinos

    2004-01-01

    Based on psychological approaches that evoke mental representations through verbal and visual cues, this paper investigates the different kinds of mental representations projected by 8 to 11 year old children of identified arithmetical achievement when responding to verbal and visual stimuli associated with fractions. It examines how the visual…

  12. Interaction for visualization

    CERN Document Server

    Tominski, Christian

    2015-01-01

    Visualization has become a valuable means for data exploration and analysis. Interactive visualization combines expressive graphical representations and effective user interaction. Although interaction is an important component of visualization approaches, much of the visualization literature tends to pay more attention to the graphical representation than to interaction.The goal of this work is to strengthen the interaction side of visualization. Based on a brief review of general aspects of interaction, we develop an interaction-oriented view on visualization. This view comprises five key as

  13. Cognitive Imaging in Visual Data-Driven Decision-Support Systems

    Science.gov (United States)

    Gorohov, V.; Vitkovskiy, V.

    2010-12-01

    Within data-driven types of decision-support systems (DDDSS, DSS), visual decision-support systems are those that try to inspire operator to find solution (decision) by producing visual representation of the data. Traditional approaches, that utilize traditional scientific visualization techniques such as 2D and 3D plots, vector fields, surface maps etc, works well when subject to represent is relatively simply structured data, low-dimensioned and weak interconnected. However, modern scientific experiments, as those in astrophysics observations, generate huge volumes of multidimensional complicated data. More sophisticated approach for visualizing of big volumes of multidimensional data is that based on the cognitive machine graphics techniques, which, for example, are used in visualization system Space Walker (SW). In contrast to illustrative ones, the cognitive images are aimed to make clear and evident some difficult scientific concepts and promote us with a new knowledge.

  14. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...... be written up and disseminated. The article takes a methodological focus, considering general aims and methods of the research project, before turning to the elaboration on how poetic representations have been constructed and employed as a vehicle for certain kinds of participation, representation...

  15. 工作记忆表征引导视觉注意选择的眼动研究%Working Memory Representation Does Guide Visual Attention:Evidence from Eye Movements

    Institute of Scientific and Technical Information of China (English)

    张豹; 黄赛; 祁禄

    2013-01-01

    工作记忆表征能否引导视觉注意选择?目前实验结果尚不一致.有研究者认为能否观察到注意引导效应取决于视觉搜索类型.研究采用工作记忆任务与视觉搜索任务相结合的双任务范式,结合眼动追踪技术,对不同视觉搜索类型下的注意引导效应进行验证.实验1结果发现,不管视觉搜索任务的靶子是否变化,在早期的眼动指标上都发现了显著的注意引导效应,但注意引导效应在靶子固定的视觉搜索任务下表现得更强.实验2在平衡两种视觉搜索任务中的工作记忆负载后发现,两种视觉搜索任务下都出现了显著的注意引导效应,但没有发现实验1中所出现的任务间差异.实验结果否定了视觉搜索类型对注意引导效应的决定性影响,同时也提示工作记忆负载可能在注意引导效应中起重要作用.%Whether the working memory representations could guide visual attention to select the matching stimuli in visual search is still controversial. By requiring the participants to perform a visual search task while online keeping some objects in working memory, some researchers have observed a stronger interference from the distractor when it was identical or related to the object held in memory. But other researchers did not observe such attentional guidance effect even using similar procedures. Olivers (2009) examined several possible influencing factors through a series of experiments and finally attributed the discrepancy to the search type whether the search target was varied or not across trials throughout the experiment. However, according to our analysis, there were several factors might confound the results in the critical experiment of Olivers (2009). So here, we used the classic dual task combined with eye movement tracking technology to reexamine and evaluate the effect of the search type on the top-down guiding process of visual attention from working memory representations

  16. Symbolic representations of living with chronic kidney disease.

    Science.gov (United States)

    Makaroff, Kara Schick; Sheilds, Laurene; Molzahn, Anita

    2013-01-01

    Visual or aesthetic data can contribute to understanding experiences that may not be able to be fully understood through spoken or written words. This article describes stories of symbols that represent the experiences of individuals living with chronic kidney disease. Symbols included both objects (i.e., a family photograph) and intangible representations (i.e., apiece of music) that were chosen because they innately held meaning to the person. Descriptive themes of the symbols included hopes and inspirations, reflections on "who I am," and confrontations of illness. Participants' expressions through symbols were further described through the use of stories of memories, emotions, and poetic devices. We contend that symbols convey aspects of experience that cannot easily be translated into oral expression. PMID:24579398

  17. Visually Exploring Transportation Schedules.

    Science.gov (United States)

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration.

  18. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  19. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    Science.gov (United States)

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  20. Value Representations

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...... are fictional, value-driven concepts developed to promote dialogue with users about their values and how they may materialize with respect to interaction design in their everyday lives....

  1. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  2. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  3. An Ark of Inspiration.

    Science.gov (United States)

    King, Steve

    2001-01-01

    Describes an art project suitable for middle and high school students in which they either combine identifiable parts from different animals to create one creature or take one animal and creatively distort it. Explains that this lesson enables students to be satisfied with their animal-inspired artwork. (CMK)

  4. Icon of the Holy Mandylion and representation of multi-layered visual identity of Božidar Vuković

    Directory of Open Access Journals (Sweden)

    Borozan Igor

    2015-01-01

    Full Text Available It was in the monastery of Saint Francis in Venice in the year 1520 when Božidar Vuković purchased the icon of the Holy Mandylion. By that particular acquisition, this prominent publisher originating from Zeta has visualized his new position in the sixteenth century Venice. The multi-layered identity of Božidar Vuković was manifested by the subsequent inclusion of the noble coat of arms of the House of Vuković on the back of the icon. By the use of verbal and visual language the artificial initiation of Božidar Vuković within the distinguished members of Venetian society has been confirmed. [Projekat Ministarstva nauke Republike Srbije, br. 177001: Predstave identiteta u verbalno-vizuelnoj kulturi novog doba

  5. An active system for visually-guided reaching in 3D across binocular fixations.

    Science.gov (United States)

    Martinez-Martin, Ester; del Pobil, Angel P; Chessa, Manuela; Solari, Fabio; Sabatini, Silvio P

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  6. An active system for visually-guided reaching in 3D across binocular fixations.

    Science.gov (United States)

    Martinez-Martin, Ester; del Pobil, Angel P; Chessa, Manuela; Solari, Fabio; Sabatini, Silvio P

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data.

  7. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    Directory of Open Access Journals (Sweden)

    Ester Martinez-Martin

    2014-01-01

    Full Text Available Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity generated from the egocentric representation of the visual information (image coordinates. In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching. The approach’s performance is evaluated through experiments on both simulated and real data.

  8. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    Directory of Open Access Journals (Sweden)

    Na Shu

    Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  9. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  10. Symbolic Representation of Visual Perception in the Art Symbols%视知觉在艺术符号中的象征表现

    Institute of Scientific and Technical Information of China (English)

    许茜; 王谦

    2014-01-01

    视觉心理是关乎艺术和心理的结合。艺术本身就属于哲学范畴,而心理学最初也是哲学中的一部分。艺术学院纷纷开设视觉心理学课程,可见心理学在艺术教学中已逐渐引起广泛认识。当今的感觉世界越来越丰富,接受的信息也越来越复杂,让人眼花缭乱。好在人类具有处理复杂信息的能力,大脑和视觉会选择性的提取具有象征性的表现形式。这也是艺术的基本追求之一,也是艺术表现的重要手段。%Psychology is a combination of visual art and psychological concerns. Art itself belongs to the philosophical cat-egory, but psychology is part of the original philosophy. Art Institute have set up visual psychology courses, psychology has gradually seen widespread understanding of the art teaching. Today's feeling world is becoming increasingly rich, and the in-formation accepted has become increasingly complex, dazzling. Fortunately, humans have the ability to handle complex in-formation, the brain and visual selectively extracting symbolic manifestations. This is also an important means of artistic pur-suit of basic, but also artistic expression.

  11. Data specifications for INSPIRE

    Science.gov (United States)

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  12. 图形表征对听障学生视觉注意捕获的影响%The Effects of Graphical Representation on the Capture of Visual Attention in Hearing-impaired Students

    Institute of Scientific and Technical Information of China (English)

    张雷; 蔡勇刚

    2014-01-01

    目的:探究听障学生基于工作记忆内容的视觉注意捕获特征。方法分别选取20名听障学生和健听学生,采用双任务范式,要求被试在工作记忆保持阶段完成注意探测任务。结果相对于健听学生,听障学生基于图形表征的注意捕获反应时更快。结论在工作记忆内容保持阶段听障学生的视觉通路表现出一定的敏感性。%Objective To explore the characteristics of the capture of visual attention based on working memory in hearing-impaired students. Methods Twenty hearing-impaired students and twenty normal-hearing students were recruited to participate in the study. A dual-task paradigm was used and the subjects were asked to complete the attentional capture task during working memory maintainance. Results The attentional capture reaction of hearing-impaired students based on graphical representation was faster than that of normal-hearing students. Conclusion The visual pathway of hearing-impaired students is sensitive during working memory maintainance.

  13. Inspiral into Gargantua

    CERN Document Server

    Gralla, Samuel E; Warburton, Niels

    2016-01-01

    We model the inspiral of a compact object into a more massive black hole rotating very near the theoretical maximum. We find that once the body enters the near-horizon regime the gravitational radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an exponentially damped profile. This contrasts with the usual "chirping" behavior and, if detected, would constitute a "smoking gun" for a near-extremal black hole in nature.

  14. Matroids, hereditary collections and simplicial complexes having boolean representations

    OpenAIRE

    Rhodes, John; Silva, Pedro V.

    2012-01-01

    Inspired by the work of Izakhian and Rhodes, a theory of representation of hereditary collections by boolean matrices is developed. This corresponds to representation by finite $\\vee$-generated lattices. The lattice of flats, defined for hereditary collections, lattices and matrices, plays a central role in the theory. The representations constitute a lattice and the minimal and strictly join irreducible elements are studied, as well as various closure operators.

  15. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  16. Quantum-Inspired Maximizer

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  17. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    Science.gov (United States)

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  18. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  19. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... representation? How is virtual reality used in public participation and how do virtual environments affect participatory decision making? How does VR thus affect the physical world of built environment? Given the practical collaborative possibilities of immersive technology, how can they best be implemented...

  20. 3D hierarchical spatial representation and memory of multimodal sensory data

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine

  1. Eesti õpetaja pälvis Inspiration Software'i stipendiumi / Ave Lauringson

    Index Scriptorium Estoniae

    Lauringson, Ave

    2007-01-01

    USA tarkvarafirma Inspiration Software tegi teatavaks 30 õpetaja nimed üle maailma, kes saavad 2007. aasta haridusstipendiumi (Inspired Teacher Scholarships for Visual Learning). Nende seas on ka Lasnamäe Lasteaia-Algkooli õpetaja, Tiigrihüppe SA ekspert ja koolitaja ning Tiigri Tegija 2007 auhinnasaaja Ingrid Maadvere

  2. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  3. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  4. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  5. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation.

  6. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  7. “图像”的“图像”--论信息图表的视觉表征与建构%“Image” in “Image”:The visual representation and construction of information graphic

    Institute of Scientific and Technical Information of China (English)

    廖宏勇

    2016-01-01

    媒介中的“大数据”并非是一个单纯的技术征候,当“大数据”以信息图表的方式演化为一种视觉叙事手段时,已悄然开始了文本化,进而转变为一种被媒介所左右的话语形态。在“大数据—图像”的逻辑关联中,信息图表的“精确”叙事在“图像主因型”的文化中已不由自主地开始了“奇观”之旅,其视觉性的实践不但是对他者的“表征”,也是对主体的“建构”。信息图表的视觉表征与建构应是逐步建立数据与“真实”的相关性的过程,这个过程不是单纯的技术命题,也不是设计范畴的视觉化,而是对数据社会性的挖掘与解读方式。在后现代视阈中,“表征”让信息图表的视觉实践可见可知,而“建构”则让这种新媒体姿态的视觉形式可行可塑。“表征”与“建构”并非是两种截然的“视觉”过程,将二者统一思考,才能让我们深切理解媒介言说的“大数据”以及作为视觉性实践的信息图表。%The “Big Data” in medium is not a simple sign of technique. When the “Big Data” evolved as a recounting measure in the form of information graphic, its journey of textuality began. In the logical relationship of “Big-data-image,” the accurate narrative of the information graphic became a marvelous spectacle in the culture of “image as the major cause,” whose visuality is practically not only a representation of the Object, but also a construction of the Subject. The visual representation and construction of information graphic should be a process which is gradually established on the correlation of data and “the real.” This process is not a purely technical proposition, nor a visual design, but a way of mining and understanding the data. Under the postmodern perspective, the “representation” lets the infographic practice visible and knowable, and the “construction” renders such a new

  8. Biologically Inspired Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications. PMID:27014918

  9. DAPPER: a database-inspired approach to persistent memory

    OpenAIRE

    Cintra, Marcelo; Chatzistergiou, Andreas; Joshi, Arpit; Nagarajan, Vijayanand; Viglas, Stratis D

    2015-01-01

    Persistent memory collapses the boundaries between the in memory and secondary storage representations of data structures,and enables the programmer to process data directly from an imperative run time. We present the early results of the DAPPER project, which takes a database-inspired approach to persistent memory. It supports recoverable data structures in persistent memory at the imperative language level, algorithms optimized for the performance characteristics of the new medium and a run...

  10. Tree-inspired piezoelectric energy harvesting

    Science.gov (United States)

    Hobbs, William B.; Hu, David L.

    2012-01-01

    We design and test micro-watt energy-harvesters inspired by tree trunks swaying in the wind. A uniform flow vibrates a linear array of four cylinders affixed to piezoelectric energy transducers. Particular attention is paid to measuring the energy generated as a function of cylinder spacing, flow speed, and relative position of the cylinder within the array. Peak power is generated using cylinder center-to-center spacings of 3.3 diameters and flow speeds in which the vortex shedding frequency is 1.6 times the natural frequency of the cylinders. Using these flow speeds and spacings, the power generated by downstream cylinders can exceed that of leading cylinders by more than an order of magnitude. We visualize the flow in this system by studying the behavior of a dynamically matched flowing soap film with imbedded styrofoam disks. Our qualitative visualizations suggest that peak energy harvesting occurs under conditions in which vortices have fully detached from the leading cylinder.

  11. Geophysics in INSPIRE

    Science.gov (United States)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  12. Manipulating Representations.

    Science.gov (United States)

    Recchia-Luciani, Angelo N M

    2012-04-01

    The present paper proposes a definition for the complex polysemic concepts of consciousness and awareness (in humans as well as in other species), and puts forward the idea of a progressive ontological development of consciousness from a state of 'childhood' awareness, in order to explain that humans are not only able to manipulate objects, but also their mental representations. The paper builds on the idea of qualia intended as entities posing regular invariant requests to neural processes, trough the permanence of different properties. The concept of semantic differential introduces the properties of metaphorical qualia as an exclusively human ability. Furthermore this paper proposes a classification of qualia, according to the models-with different levels of abstraction-they are implied in, in a taxonomic perspective. This, in turn, becomes a source of categorization of divergent representations, sign systems, and forms of intentionality, relying always on biological criteria. New emerging image-of-the-world-devices are proposed, whose qualia are likely to be only accessible to humans: emotional qualia, where emotion accounts for the invariant and dominant property; and the qualic self where continuity, combined with the oneness of the self, accounts for the invariant and dominant property. The concept of congruence between different domains in a metaphor introduces the possibility of a general evaluation of truth and falsity of all kinds of metaphorical constructs, while the work of Matte Blanco enables us to classify conscious versus unconscious metaphors, both in individuals and in social organizations. PMID:22347988

  13. A Biologically Inspired Classifier

    CERN Document Server

    Bagnoli, Franco

    2007-01-01

    We present a method for measuring the distance among records based on the correlations of data stored in the corresponding database entries. The original method (F. Bagnoli, A. Berrones and F. Franci. Physica A 332 (2004) 509-518) was formulated in the context of opinion formation. The opinions expressed over a set of topic originate a ``knowledge network'' among individuals, where two individuals are nearer the more similar their expressed opinions are. Assuming that individuals' opinions are stored in a database, the authors show that it is possible to anticipate an opinion using the correlations in the database. This corresponds to approximating the overlap between the tastes of two individuals with the correlations of their expressed opinions. In this paper we extend this model to nonlinear matching functions, inspired by biological problems such as microarray (probe-sample pairing). We investigate numerically the error between the correlation and the overlap matrix for eight sequences of reference with r...

  14. Visualization analysis and design

    CERN Document Server

    Munzner, Tamara

    2015-01-01

    Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form. The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case stu...

  15. 面向导航型网页关键词自动抽取的视觉模型与算法%Visual representation model and automatic keywords extraction algorithm for hub Web pages

    Institute of Scientific and Technical Information of China (English)

    彭浩; 蔡美玲; 陈继锋; 刘炽; 余炳锐

    2012-01-01

    导航型网页中往往包含了大量的噪声信息,为自动提取网页中的关键词带来了较大的困难.为此,提出一个新的网页表示模型PIX-PAGE和导航型网页关键词自动抽取算法P-KEA.PIX-PAGE模型利用提出的区域合并算法,将一张网页分割为适当粒度的区域;然后,依据人类视觉特点,对各区域进行视觉“奇异性”量化,同时利用奇异性传递规则进一步强化关键词相关区域的视觉“奇异性”.P-KEA根据PIX-PAGE模型模型的视觉量化结果,能够较准确地找到视觉突出区域中的关键词.实验结果表明,与基于DocView模型的算法DVM相比,P-KEA的准确率平均提高了20.9%.%It is very hard to exactly extract keywords from hub Web pages because of its topic noise. To resolve this problem, a new sub Web page representation model and its automatic keywords extraction algorithm were proposed in this paper. At first, the new model segmented Web page into some blocks by using the block composition algorithm. Secondly, according to the visual recognition method of humanity, the new model computed the visual measurement of these blocks. At the same time, the transmission rule of visual measurement made blocks special where keywords were contained more specially. The automatic keywords extraction algorithm could exactly fmd these keywords in the most special hlocks. The experimental results show that the proposed algorithm has bumped up by 20. 9% on average in accuracy compared with keywords extraction algorithm based on DocView model.

  16. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  17. Biologically inspired emotion recognition from speech

    Science.gov (United States)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  18. Immuno-inspired robotic applications: a review

    CERN Document Server

    Raza, Ali

    2012-01-01

    Artificial immune systems primarily mimic the adaptive nature of biological immune functions. Their ability to adapt to varying pathogens makes such systems a suitable choice for various robotic applications. Generally, AIS-based robotic applications map local instantaneous sensory information into either an antigen or a co-stimulatory signal, according to the choice of representation schema. Algorithms then use relevant immune functions to output either evolved antibodies or maturity of dendritic cells, in terms of actuation signals. It is observed that researchers, in an attempt to solve the problem in hand, do not try to replicate the biological immunity but select necessary immune functions instead, resulting in an ad-hoc manner these applications are reported. Authors, therefore, present a comprehensive review of immuno-inspired robotic applications in an attempt to categorize them according to underlying immune definitions. Implementation details are tabulated in terms of corresponding mathematical expr...

  19. Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation

    OpenAIRE

    Wei, Chao; Luo, Senlin; Ma, Xincheng; Ren, Hao; Zhang, Ji; Pan, Limin

    2016-01-01

    Topic models and neural networks can discover meaningful low-dimensional latent representations of text corpora; as such, they have become a key technology of document representation. However, such models presume all documents are non-discriminatory, resulting in latent representation dependent upon all other documents and an inability to provide discriminative document representation. To address this problem, we propose a semi-supervised manifold-inspired autoencoder to extract meaningful la...

  20. Learning Word Representations with Hierarchical Sparse Coding

    OpenAIRE

    Yogatama, Dani; Faruqui, Manaal; Dyer, Chris; Smith, Noah A.

    2014-01-01

    We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentim...

  1. Visualizing the analysis process: CZSaw's History View

    OpenAIRE

    Kadivar, Nazanin

    2011-01-01

    Capturing and visualizing the data analysis process is a growing research domain. Visual Analytics tool designers try to understand the analysis process in order to provide better tools. Existing research in process visualization suggests that capturing and visualizing the history of the analysis process is an effective form of process visualization. CZSaw is a Visual Analytics tool that provides visual representations of both data and the analysis process. In this thesis, we discuss the desi...

  2. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  3. Microflyers: inspiration from nature

    Science.gov (United States)

    Sirohi, Jayant

    2013-04-01

    Over the past decade, there has been considerable interest in miniaturizing aircraft to create a class of extremely small, robotic vehicles with a gross mass on the order of tens of grams and a dimension on the order of tens of centimeters. These are collectively refered to as micro aerial vehicles (MAVs) or microflyers. Because the size of microflyers is on the same order as that of small birds and large insects, engineers are turning to nature for inspiration. Bioinspired concepts make use of structural or aerodynamic mechanisms that are observed in insects and birds, such as elastic energy storage and unsteady aerodynamics. Biomimetic concepts attempt to replicate the form and function of natural flyers, such as flapping-wing propulsion and external appearance. This paper reviews recent developments in the area of man-made microflyers. The design space for microflyers will be described, along with fundamental physical limits to miniaturization. Key aerodynamic phenomena at the scale of microflyers will be highlighted. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed wing micro air vehicles and microhelicopters will not be addressed. A few representative bioinspired and biomimetic microflyer concepts developed by researchers will be described in detail. Finally, some of the sensing mechanisms used by natural flyers that are being implemented in man-made microflyers will be discussed.

  4. IMAGES AND SOCIAL REPRESENTATION: SEMIOTIC ANALYSIS CONTRIBUTIONS

    Directory of Open Access Journals (Sweden)

    Izabela Gonçalves Terra

    2016-09-01

    Full Text Available The common sense knowledge formation is object of study of the Social Representation Theory, which highlights the role of communication in the production of comprehension by the subjects. The visual images favor the socialization of meanings and are active elements in the formation of social representations. Given the expressive role of the images in the formation of representational contents, this paper aims to present a semiotics analysis method for researches on social representations. The semiotic analysis of images was selected as a theoretical and methodological basis, for offering the means required for guidance for an effective research method to identify the social representations of socially shared iconic signs. The analysis method was explored by means of analytical procedures, employed for the apprehension of social representations of the feminine in posters for Brazilian Ministry of Health campaigns, which allowed access to the network of meanings associated with the analyzed visual image. It should be emphasized that the relevance of the use of semiotic analysis to analyze social representations, which presents itself as a fertile perspective for further studies expanding the possibilities of exploitation of visual content.

  5. Understanding Confidence Intervals With Visual Representations

    OpenAIRE

    Navruz, Bilgin; DELEN, Erhan

    2014-01-01

    In the present paper, we showed how confidence intervals (CIs) are valuable and useful in research studies when they are used in the correct form with correct interpretations. The sixth edition of the APA (2010) Publication Manual strongly recommended reporting CIs in research studies, and it was described as “the best reporting strategy” (p. 34). Misconceptions and correct interpretations of CIs were presented from several textbooks. In addition, limitations of the null hypothesis statistica...

  6. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  7. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  8. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  9. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models.

    Science.gov (United States)

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068

  10. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    Directory of Open Access Journals (Sweden)

    George eAzzopardi

    2014-07-01

    Full Text Available The remarkable abilities of the primate visual cortex have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 -> V4 -> TEO. Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. A S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.

  11. Factorizations and Physical Representations

    OpenAIRE

    Revzen, M.; F. C. Khanna(Edmonton, Canada); Mann, A.; Zak, J.

    2005-01-01

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the prime numbers decomposition of M. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (J. Zak, Phys. Today, {\\bf 23} (2), 51 (1970)), and related representations termed $q_{1}q_{2}$ representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter repre...

  12. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  13. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  14. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    Science.gov (United States)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-12-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  15. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  16. Inspiring to inspire: Developing teaching in higher education

    Directory of Open Access Journals (Sweden)

    Louise Williams

    2016-12-01

    Full Text Available Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through individual reflections to a set of pre-determined questions, a group of Higher Education teachers (n = 5 with a responsibility for the development of learning, teaching and assessment, share their thoughts, feelings and beliefs on inspiring teaching. The interpretive analysis of the data shows from a staff perspective that the notion of inspiring teaching has three main components which are all interrelated, those being; the actual teaching and learning experience; the design of the curriculum and the teacher/student relationship. Staff development initiatives were found to help people explore and develop their own teaching philosophy, to develop new practices and to share and learn from others. However, individual’s mindset, beliefs and attitudes were found to be a challenge. Teachers can frame their development around the different aspects of inspiring teaching and with support from senior leadership as well as a positive culture, teaching communities can work together towards inspiring teaching.

  17. Institutionalizing New Ideas Through Visualization

    DEFF Research Database (Denmark)

    Meyer, Renate; Jancsary, Dennis; Höllerer, Markus A.;

    How do visualization and visual forms of communication influence the process of transforming a novel idea into established organizational practice? In this paper, we build theory with regard to the role of visuals in manifesting and giving form to an innovative idea as it proceeds through various...... representations diffuse more rapidly and further than the practices themselves. Consolidating the relationship between abstract ideas and specific practice, such visual or multi-modal representations facilitate the implementation of novel ideas, reinforce particular translations, and imbue associated...

  18. Human vision inspired framework for facial expressions recognition

    OpenAIRE

    R. A. Khan; Meyer, A.; Konik, Hubert; Bouakaz, Saïda

    2012-01-01

    We present a novel human vision inspired framework that can recognize facial expressions very efficiently and accurately. We propose to computationally process small, salient region of the face to extract features as it happens in human vision. To determine which facial region(s) is perceptually salient for a particular expression, we conducted a psycho-visual experimental study with an eye-tracker. A novel feature space conducive for recognition task is proposed, which is created by extracti...

  19. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  20. Deep generative learning of location-invariant visual word recognition.

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective

  1. Deep generative learning of location-invariant visual word recognition

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words—which was the model's learning objective

  2. Deep generative learning of location-invariant visual word recognition

    Directory of Open Access Journals (Sweden)

    Maria Grazia eDi Bono

    2013-09-01

    Full Text Available It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters from their eye-centred (i.e., retinal locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Conversely, there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words – which was the model’s learning objective – is largely based on letter-level information.

  3. Unmanned Aerial Vehicles Target Detection Based on Bio-inspired Visual Attention%基于仿生视觉注意机制的无人机目标检测

    Institute of Scientific and Technical Information of China (English)

    王晓华; 张聪; 李聪; 段海滨; 邓亦敏

    2015-01-01

    A novel method of target detection for unmanned aerial vehicles (UAV) was proposed based on the mechanism of biological visual attention. Different features including intensity, orientation and region contract were utilized in the proposed algorithm. The AdaBoost clasififer was utilized to analyze the saliency features and fuse the feature maps into the ifnal saliency map. Then, target region that has the largest value in the saliency map was detected by image segmentation. Series of experimental results demonstrate the feasibility and effectiveness of the proposed approach of target detection for UAVs, which has high adaptive ability and can detect the target region precisely.%提出了一种基于仿生视觉注意机制的无人机目标检测方法,该方法使用了亮度、方向和区域对比度特征,针对提取的多个显著性特征,利用AdaBoost分类器对其进行分析和融合,得到最终的显著图。对显著图进行图像分割,从中找出显著度最高的区域即目标区域。仿真结果表明,所提出的无人机目标检测方法可以比较准确地确定目标区域,自适应能力强。

  4. Geometric Algebra Model of Distributed Representations

    CERN Document Server

    Patyk, Agnieszka

    2010-01-01

    Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.

  5. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    Science.gov (United States)

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  6. Nursing Ways to Inspire Hope

    OpenAIRE

    Forsberg, Birgit

    2013-01-01

    The purpose of this Bachelor’s thesis was to search for nursing ways to inspire hope in acute care patients. There was an abundance of general material found on the theme of hope, but research articles specifically on hope inspiration and hope maintenance in acute care were limited, especially from the nursing point of view. This theme of hope is in itself a fluctuating value throughout one’s lifespan, and so it has been difficult to measure. And lastly, finding evidence based research result...

  7. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    The research of Odile Meulien and Dietmar Ohlmann is about perceiving a multidimensional world. Not about the cyberspace created for new cinema creation, nor the reality which seems to be created by communication. It's the search for the reality we perceive, when the mind "touches" an object with its senses. In fact, it is a study of the surface of an object, which we can record in its visual appearing, its structure, shape and colors. When using photographic media, the tactile sense of the structure is missing, when using some other reproductive media; we experience somewhere a sensation of fault, something different. When using holography, we are able to record some three dimensional shape which has in fact a lot of parameter of a realistic copy. What is missing is the touch, the smell, the way we can go close and far, surround the object, relate the reflected light to its surrounding. The only interesting attribute of a hologram is for Dietmar Ohlmann its capacity to illustrate a continuum. He likes its changing diffractive character during daytime and surrounds lighting. For Odile Meulien the continuum of a hologram represents a new possible model for understanding wholeness in a social context. In fact, both are working on an educational process together, helping children and adults to find a new position of their own in harmony with living surrounding. Dietmar Ohlmann is working on his artistic side, while Odile Meulien works on educational programs experiencing the perspective of a curator and social analyst. New is the implication of using the latest of the techniques like the atomic force microscopy, which make possible to touch the holographic grating while the holographic image remains untouched. In other words it is the reverse of the usual approach of objects which at first we touch to investigate further. Their difference in experiencing and perceiving scientific and technical approach brings a lot of paradigm in their discussion. Together they will

  8. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop had much to…

  9. Inversion exercises inspired by mechanics

    Science.gov (United States)

    Groetsch, C. W.

    2016-02-01

    An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.

  10. Curriculum: Managed Visual Reality.

    Science.gov (United States)

    Gueulette, David G.

    This paper explores the association between the symbolized and the actualized, beginning with the prehistoric notion of a "reality double," in which no practical difference exists between pictorial representations, visual symbols, and real-life events and situations. Alchemists of the Middle Ages, with their paradoxical vision of the universe…

  11. Visualizing guided tours

    DEFF Research Database (Denmark)

    Poulsen, Signe Herbers; Fjord-Larsen, Mads; Hansen, Frank Allan;

    This paper identifies several problems with navigating and visualizing guided tours in traditional hypermedia systems. We discuss solutions to these problems, including the representation of guided tours as 3D metro maps with content preview. Issues regarding navigation and disorientation are...

  12. The representational consequences of intentional forgetting: Impairments to both the probability and fidelity of long-term memory.

    Science.gov (United States)

    Fawcett, Jonathan M; Lawrence, Michael A; Taylor, Tracy L

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1-E3). Memory was tested using an old-new (E1-E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2-E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more "old" or "remember" responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2-E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory.

  13. Visual Mining of Epidemic Networks

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi; 10.1007/978-3-642-21498-1_35

    2012-01-01

    We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.

  14. Representación visual de la movilización estudiantil en Chile: las fotografías de las marchas como espacios de narración, actuación e identificación política (Visual representation of the student mobilization in Chile: the photographs of marches as spaces of narrative, action and political identification

    Directory of Open Access Journals (Sweden)

    Camila Cárdenas Neira

    2014-12-01

    Full Text Available El artículo explora la representación visual de las marchas estudiantiles suscitadas en Chile durante el 2011, con el propósito de describir los actores e identidades grupales simbolizadas, así como las acciones sociales y los modos como son legitimadas o deslegitimadas en la interacción. Se analiza un corpus fotográfico del libro "Marchas" (Yutronic y Ortiz, 2012, desde un marco teórico-metodológico que considera aportaciones de los Estudios Críticos del Discurso y la Semiótica Social. Se plantea que las fotografías de las marchas constituyen una narración capaz de organizar significados que estructuran formas de actuación e identificación política en oposición, excluyendo a otros participantes críticos del conflicto educativo, como las élites políticas y económicas. Se construye así un tipo de confrontación entre jóvenes y fuerzas policiales, que simplifica la lucha ideológica y refuerza estereotipos sobre grupos cuya acción, al ser objeto de una mediatización permanente, es cognitivamente reforzada. Se concluye que la narración indagada constituye una opción de representación que enfatiza el carácter histórico de la protesta estudiantil, proveyendo un espacio de visibilización de la acción juvenil postdictatorial. (This paper explores the visual representation of student’s protests raised in Chile during 2011. The purpose is to describe the actors and symbolized group identities, as well as the social actions and the ways in which these specific actions are legitimized or delegitimized in the interaction. The corpus is a photographic book entitled "Marchas" (Marches (Yutronic & Ortiz, 2012, which is analyzed from a theoretical and methodological framework that considers input from Critical Discourse Studies and Social Semiotics. The paper claims that the photographs of marches are able to organize narrative meanings which structure opposite forms of performance and political identification, excluding other

  15. E6 inspired composite Higgs model

    CERN Document Server

    Nevzorov, R

    2015-01-01

    We consider a composite Higgs model embedded into a Grand Unified Theory(GUT) based on the E_6 gauge group. The phenomenological viability of this E_6 inspired composite Higgs model (E6CHM) implies that standard model (SM) elementary fermions with different baryon or lepton number should stem from different 27 representations of E_6. We present a six-dimensional orbifold GUT model in which the E_6 gauge symmetry is broken to the SM gauge group so that the appropriate splitting of the bulk 27-plets takes place. In this model the strongly coupled sector is localised on one of the branes and possesses an SU(6) global symmetry that contains the SU(3)_C\\times SU(2)_W\\times U(1)_Y subgroup. In this case the approximate gauge coupling unification can be attained if the right-handed top quark is a composite state and the elementary sector involves extra exotic matter beyond the SM which ensures anomaly cancellation. The breakdown of the approximate SU(6) symmetry at low energies in this model results in a set of the ...

  16. Information Graphic Classification, Decomposition and Alternative Representation

    Science.gov (United States)

    Gao, Jinglun

    2012-01-01

    This thesis work is mainly focused on two problems related to improving accessibility of information graphics for visually impaired users. The first problem is automated analysis of information graphics for information extraction and the second problem is multi-modal representations for accessibility. Information graphics are graphical…

  17. Using models and representations in learning and teaching about the atom : A systematic literature review

    OpenAIRE

    Netzell, Elisabeth

    2015-01-01

    This study is a systematic literature review on the role of models and representations in the teaching, learning and understanding of the atom and atomic concepts. The aim of the study is to investigate the role of different visual representations, what models and representations are used in the science classroom, how learners interpret different external representations of the atom, what mental models students construct, and how the representations can be used and designed for meaningful lea...

  18. Cognitive and artificial representations in handwriting recognition

    Science.gov (United States)

    Lenaghan, Andrew P.; Malyan, Ron

    1996-03-01

    Both cognitive processes and artificial recognition systems may be characterized by the forms of representation they build and manipulate. This paper looks at how handwriting is represented in current recognition systems and the psychological evidence for its representation in the cognitive processes responsible for reading. Empirical psychological work on feature extraction in early visual processing is surveyed to show that a sound psychological basis for feature extraction exists and to describe the features this approach leads to. The first stage of the development of an architecture for a handwriting recognition system which has been strongly influenced by the psychological evidence for the cognitive processes and representations used in early visual processing, is reported. This architecture builds a number of parallel low level feature maps from raw data. These feature maps are thresholded and a region labeling algorithm is used to generate sets of features. Fuzzy logic is used to quantify the uncertainty in the presence of individual features.

  19. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  20. Dissociation Between Visual Attention and Visual Mental Imagery

    OpenAIRE

    Thompson, William L.; Hsiao, Yaling; Kosslyn, Stephen Michael

    2010-01-01

    Visual mental imagery (which involves generating and transforming visual mental representations, i.e., seeing with the mind's eye) and visual attention appear to be distinct processes. However, some researchers have claimed that imagery effects can be explained by appeal to attention (and thus, that imagery is nothing more than a form of attention). In this study, we used a size manipulation to demonstrate that imagery and attention are distinct processes. We reasoned that if participants are...

  1. Learning warps object representations in the ventral temporal cortex

    OpenAIRE

    Clarke, Alex; Pell, Philip J.; Ranganath, Charan; Tyler, Lorraine K.

    2016-01-01

    The human ventral temporal cortex (VTC) plays a critical role in object recognition. Although it is well established that visual experience shapes VTC object representations, the impact of semantic and contextual learning is unclear. In this study, we tracked changes in representations of novel visual objects that emerged after learning meaningful information about each object. Over multiple training sessions, participants learned to associate semantic features (e.g. ?made of wood?, ?floats?)...

  2. The Spatial Representation of Dynamic Scenes - An Integrative Approach

    Science.gov (United States)

    Huff, Markus; Schwan, Stephan; Garsoffky, Bärbel

    This paper addresses the spatial representation of dynamic scenes, particularly the question whether recognition performance is viewpoint dependent or viewpoint invariant. Beginning with the delimitation of static and dynamic scene recognition, the viewpoint dependency of visual recognition performance and the structure of the underlying mental representation are discussed. In the following, two parameters (an easy to identify event model and salient static features) are identified which appeared to be accountable for viewpoint dependency or viewpoint invariance of visual recognition performance for dynamic scenes.

  3. Orienting Attention to Sound Object Representations Attenuates Change Deafness

    Science.gov (United States)

    Backer, Kristina C.; Alain, Claude

    2012-01-01

    According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…

  4. Unsupervised Representation Learning of Structured Radio Communication Signals

    OpenAIRE

    O'Shea, Timothy J.; Corgan, Johnathan; Clancy, T. Charles

    2016-01-01

    We explore unsupervised representation learning of radio communication signals in raw sampled time series representation. We demonstrate that we can learn modulation basis functions using convolutional autoencoders and visually recognize their relationship to the analytic bases used in digital communications. We also propose and evaluate quantitative met- rics for quality of encoding using domain relevant performance metrics.

  5. Learning Deep Face Representation

    OpenAIRE

    Fan, Haoqiang; Cao, Zhimin; Jiang, Yuning; Yin, Qi; Doudou, Chinchilla

    2014-01-01

    Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyrami...

  6. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein...

  7. Representation of Performance Data in Grid Systems

    Institute of Scientific and Technical Information of China (English)

    时培植; 李三立

    2004-01-01

    The increasingly frequent exchange of performance data in grid systems across heterogeneous platforms requires a uniform "representation" of various types of performance data.This paper reviews the current related research,considers the defect of existing methods,and proposes a new portable description method: grid performance data description (GPDD) using an extensible markup language (XML)-based grid performance data representation language (XGPDRL).GPDD describes the abstract structure,which has excellent extensibility (all types of performance data can be described in one format),efficiency,and flexibility.XGPDRL defines the grammar of the GPDD performance data representation,and is both extensible and portable.For benchmarking purposes,performance data can be collected during runtime,represented in XGPDRL,and analyzed visually using a browser across heterogeneous platforms.GPDD and XGPDRL can conveniently ensure data comprehension across various platforms,and are very suitable for grid performance data representation.

  8. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  9. Decrypting $SO(10)$-inspired leptogenesis

    CERN Document Server

    Di Bari, Pasquale; Fiorentin, Michele Re

    2014-01-01

    Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...

  10. Jellyfish inspired underwater unmanned vehicle

    Science.gov (United States)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  11. Visualization of Social Networks

    Science.gov (United States)

    Chen, Ing-Xiang; Yang, Cheng-Zen

    With the ubiquitous characteristic of the Internet, today many online social environments are provided to connect people. Various social relationships are thus created, connected, and migrated from our real lives to the Internet environment from different social groups. Many social communities and relationships are also quickly constructed and connected via instant personal messengers, blogs, Twitter, Facebook, and a great variety of online social services. Since social network visualizations can structure the complex relationships between different groups of individuals or organizations, they are helpful to analyze the social activities and relationships of actors, particularly over a large number of nodes. Therefore, many studies and visualization tools have been investigated to present social networks with graph representations. In this chapter, we will first review the background of social network analysis and visualization methods, and then introduce various novel visualization applications for social networks. Finally, the challenges and the future development of visualizing online social networks are discussed.

  12. Visual Signs of Ageing

    Directory of Open Access Journals (Sweden)

    Helle Rexbye

    2007-07-01

    Full Text Available Consumer culture has placed the ageing body in a dilemma of representation. Physical appearance has become increasingly important as a symbol of identity, and at the same time society idealizes youth. This study explores visual ageing empirically. By using photographs of older persons (70+ as starting point, it is explored how visual age is assessed and interpreted. It is shown that informants read age in a spread of stages and categories. Main age indicators are biological markers: skin, eyes, and hair colour, but supplemented by vigour, style, and grooming. Furthermore, in-depth interviews indicate that visual age is mainly interpreted into categories and moral regulations rooted in early modernity. Subsequently the question of a postmodern perspective of visual ageing is discussed in this article. The empirical findings in the study question a postmodern fluidity of visual signs – at least when the concern is signs of ageing.

  13. Biologically-inspired machine vision

    OpenAIRE

    Tsitiridis, A

    2013-01-01

    This thesis summarises research on the improved design, integration and expansion of past cortex-like computer vision models, following biologically-inspired methodologies. By adopting early theories and algorithms as a building block, particular interest has been shown for algorithmic parameterisation, feature extraction, invariance properties and classification. Overall, the major original contributions of this thesis have been: 1. The incorporation of a salient feature-based method for sem...

  14. Deep learning of orthographic representations in baboons.

    Science.gov (United States)

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.

  15. Deep learning of orthographic representations in baboons.

    Science.gov (United States)

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  16. Deep learning of orthographic representations in baboons.

    Directory of Open Access Journals (Sweden)

    Thomas Hannagan

    Full Text Available What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.

  17. Deep Learning of Orthographic Representations in Baboons

    Science.gov (United States)

    Hannagan, Thomas; Ziegler, Johannes C.; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  18. Integrated Visualization Environment for Science Mission Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  19. Symbol Systems and Pictorial Representations

    Science.gov (United States)

    Diederich, Joachim; Wright, Susan

    All problem-solvers are subject to the same ultimate constraints -- limitations on space, time, and materials (Minsky, 1985). He introduces two principles: (1) Economics: Every intelligence must develop symbol-systems for representing objects, causes and goals, and (2) Sparseness: Every evolving intelligence will eventually encounter certain very special ideas -- e.g., about arithmetic, causal reasoning, and economics -- because these particular ideas are very much simpler than other ideas with similar uses. An extra-terrestrial intelligence (ETI) would have developed symbol systems to express these ideas and would have the capacity of multi-modal processing. Vakoch (1998) states that ...``ETI may rely significantly on other sensory modalities (than vision). Particularly useful representations would be ones that may be intelligible through more than one sensory modality. For instance, the information used to create a three-dimensional representation of an object might be intelligible to ETI heavily reliant on either visual or tactile sensory processes.'' The cross-modal representations Vakoch (1998) describes and the symbol systems Minsky (1985) proposes are called ``metaphors'' when combined. Metaphors allow for highly efficient communication. Metaphors are compact, condensed ways of expressing an idea: words, sounds, gestures or images are used in novel ways to refer to something they do not literally denote. Due to the importance of Minsky's ``economics'' principle, it is therefore possible that a message heavily relies on metaphors.

  20. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems.

  1. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. PMID:27113732

  2. CT anatomy of the diaphragm: changes in end inspiration and end expiration

    International Nuclear Information System (INIS)

    To assess the change in configuration of the diaphragm between scans obtained at end inspiration and end expiration. Two series of CT scans at end inspiration and at end expiration were obtained in 37 patients. We evaluated the changes in the type of anterior diaphragm, pseudotumor, undulation of the diaphragm, and diaphragmatic defect during the respiratory phases. The configuration of the anterior portion of the diaphragm changed between end inspiratory and end expiratory CT scans in 25(67.6%) of 37 patients. Diaphragmatic defect, diaphragmatic pseudotumor, and undulation of the diaphragm were more frequent at end inspiration (13.5%, 18.9%, 37.8%, respectively) than at end expiration (0%, 5.4%, 10.8%, respectively). There is a change in the configuration of the anterior portion of the diaphragm and we also observed differences in the visualization of diaphragmatic defects, pseudotumor, and undulation between scans obtained at end inspiration and end expiration

  3. Student Visual Communication of Evolution

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin

    2016-05-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  4. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  5. Analysis of graphic representations of activity theory in international journals

    Directory of Open Access Journals (Sweden)

    Marco André Mazzarotto

    2016-05-01

    Full Text Available Activity theory is a relevant framework for the Design field, and their graphic representations are cognitive artifacts that aid the understanding, use and communication of this theory. However, there is a lack of consistency around the graphics and labels used in these representations. Based on this, the aim of this study was to identify, analyze and evaluate these differences and propose a representation that aims to be more suitable for the theory. For this, uses as method a literature review based on Engeström (2001 and its three generations of visual models, combined with graphical analysis of representations collected in a hundred papers from international journals.

  6. Human-inspired lighting the intention control in robot systems with of glare avoidance%Human-inspired lighting the intention control in robot systems with of glare avoidance

    Institute of Scientific and Technical Information of China (English)

    Chen Shengyong; Guan Qiu; Liu Sheng; Bi Dexue

    2011-01-01

    This paper presents some human-inspired strategies for lighting control in a robot system for best scene interpretation, where the main intention is to avoid possible glares or highlights occurring in images. It firstly compares the characteristics of human eyes and robot eyes. Then some evaluation criteria are addressed to assess the lighting conditions. A bio-inspired method is adopted to avoid the visual glare which is caused by either direct illumination from large light sources or indirect illumination reflected by smooth surfaces. Appropriate methods are proposed to optimize the pose and optical parameters of the light source and the vision camera.

  7. Normal ECG Recognition for Express-Diagnostics Based on Scale-Space Representation and Dynamic Matching

    OpenAIRE

    Bilous, Nataliya; Bondarenko, Michael; Kobzar, Gleb; Krasov, Alexey; Rogozyanov, Artyom

    2008-01-01

    A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.

  8. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  9. Towards Ecology Inspired Software Engineering

    OpenAIRE

    Baudry, Benoit; Monperrus, Martin

    2012-01-01

    Les écosystèmes sont des systèmes complexes et dynamiques. Au cours de l'évolution, ils ont développé des capacités avancées pour fournir des fonctions stables, et ce malgré des changements constants dans l'environnement. Dans ce papier, nous discutons l'hypothèse que les lois dirigeant l'organisation et le développement des écosystèmes sont une source d'inspiration riche pour l'architecture et la construction des logiciels.

  10. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  11. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  12. XML-BASED REPRESENTATION

    Energy Technology Data Exchange (ETDEWEB)

    R. KELSEY

    2001-02-01

    For focused applications with limited user and use application communities, XML can be the right choice for representation. It is easy to use, maintain, and extend and enjoys wide support in commercial and research sectors. When the knowledge and information to be represented is object-based and use of that knowledge and information is a high priority, then XML-based representation should be considered. This paper discusses some of the issues involved in using XML-based representation and presents an example application that successfully uses an XML-based representation.

  13. Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Bjørnsen Fredberg; Dueck, Jenny;

    2016-01-01

    BACKGROUND AND PURPOSE: Deep inspiration breath hold (DIBH) increases lung volume and can potentially reduce treatment-related toxicity in locally advanced lung cancer. We estimated geometric uncertainties in visually guided voluntary DIBH and derived the appropriate treatment margins for differe...

  14. Exploring the Structure of Spatial Representations.

    Science.gov (United States)

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these 'cognitive maps' are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants' psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants' cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants' spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  15. Visual Image Sensor Organ Replacement: Implementation

    Science.gov (United States)

    Maluf, A. David (Inventor)

    2011-01-01

    Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.

  16. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    conference were elegant, but most importantly closely related to experimental findings. On the first day of the meeting we were able to celebrate Adrian Parsegian's 70th birthday. A worldwide renowned figure in modern biological physics, its distinguished veteran, a former President of the Biophysical Society and an author of many seminal, pioneering papers, Adrian has worked at the NIH for four decades and over the last two has led a vibrant Structural and Physical Biology Laboratory, created by him. Adrian has done a lot for physicists and biologists coming closer together. That summer, full of his ever young energy—an example for many young scientists—he is moving to build a new research team as a Professor at the University of Massachusetts at Amherst. My feeling is that something is beginning to move in the difficult interactions between the physical and biological communities, the progress noticeable at least at the scale of 130 people present in Trieste. A few years ago, Paul Selvin, a biophysicist at the University of Illinois who has made crucial contributions to the visualization and characterization of biomolecular motility, suggested that if Rutherford was alive today, he would have possibly conclude that 'All science is either....biology or tool-making for biology... or not fundable'. Generally, 'pride and prejudice' today is no longer on the side of physicists. But in order to overcome the barrier of skepticism we, physicists, not only should not be shy about what we were able to demonstrate in the test tube, but also have to think how we could show that our 'beautiful physical effects' work equally inside the cell! This is much more difficult. Many of us will not be able to do it alone without finding a biologist match. Crick was not only a great mind, he was also lucky to meet his biologist. But Crick himself was very serious about real biology rather than just 'biologically-inspired physics'. And this is what Adrian advised all of us to do in his 1997

  17. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  18. Visual Vocabulary Learning and Its Application to 3D and Mobile Visual Search

    OpenAIRE

    Cao, Liujuan

    2012-01-01

    In this technical report, we review related works and recent trends in visual vocabulary based web image search, object recognition, mobile visual search, and 3D object retrieval. Especial focuses would be also given for the recent trends in supervised/unsupervised vocabulary optimization, compact descriptor for visual search, as well as in multi-view based 3D object representation.

  19. Towards Dense Visual SLAM

    OpenAIRE

    Pietzsch, Tobias

    2011-01-01

    Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to repr...

  20. Investigating Physical Visualizations

    OpenAIRE

    Jansen, Yvonne; Dragicevic, Pierre; Fekete, Jean-Daniel

    2012-01-01

    [poster] International audience Physical visualizations have been around for several decades and remained mostly unnoticed. They recently became popular in the form of data sculptures, due to a proliferation of data-driven artifacts produced by the art and design communities, and to a wider availability of rapid prototyping facilities such as fab labs. It has been recently suggested that such physical data representations are suitable for demonstrative, artistic or communicative purpose...

  1. Multimodal Brain Visualization

    OpenAIRE

    Nadeem, Saad; Kaufman, Arie

    2016-01-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, spl...

  2. MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking

    OpenAIRE

    Zhibin, Hong; Chen, Zhe; WANG, CHAOHUI; Mei, Xue; Prokhorov, Danil; Tao, Dacheng

    2015-01-01

    Variations in the appearance of a tracked object, such as changes in geometry/photometry, camera viewpoint, illumination , or partial occlusion, pose a major challenge to object tracking. Here, we adopt cognitive psychology principles to design a flexible representation that can adapt to changes in object appearance during tracking. Inspired by the well-known Atkinson-Shiffrin Memory Model, we propose MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short-and long-term me...

  3. Configuration space representation in parallel coordinates

    Science.gov (United States)

    Fiorini, Paolo; Inselberg, Alfred

    1989-01-01

    By means of a system of parallel coordinates, a nonprojective mapping from R exp N to R squared is obtained for any positive integer N. In this way multivariate data and relations can be represented in the Euclidean plane (embedded in the projective plane). Basically, R squared with Cartesian coordinates is augmented by N parallel axes, one for each variable. The N joint variables of a robotic device can be represented graphically by using parallel coordinates. It is pointed out that some properties of the relation are better perceived visually from the parallel coordinate representation, and that new algorithms and data structures can be obtained from this representation. The main features of parallel coordinates are described, and an example is presented of their use for configuration space representation of a mechanical arm (where Cartesian coordinates cannot be used).

  4. The Roles of Representations in Building Design

    DEFF Research Database (Denmark)

    Harty, Chris; Tryggestad, Kjell

    2012-01-01

    Mock-ups, scale models and drawings are ubiquitous in building design processes, circulating between various stakeholders. They contribute to the gradual evolution of design, but what else can specific material representations do for the building design and project? The full scale model...... of a hospital single bed room can be different in terms of detail and medium, but in what sense might it perform different and similar functions? The mobilization of multiple forms of representations and visualizations suggest that design materialization might have several important roles to play in negotiating...... and matters of fact, we compare these two representations to provide insights into the way different media produce specific senses of the design or imagined space, with consequences for on-going design work, and for the settling of controversy....

  5. Materiality and Visualization in Hospital Design

    DEFF Research Database (Denmark)

    Harty, Chris; Tryggestad, Kjell

    Different forms of representation are ubiquitous in building design processes, circulating across and between various actors. They are mediators in the development of design. The mobilization of multiple forms of representations and visualizations suggest that design materialization might have...... of the way they differently represent and visualize ‘space’ within the design, and in terms of the kinds of materiality and collaboration they perform....

  6. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    Science.gov (United States)

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  7. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    Science.gov (United States)

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  8. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  9. Event Rates for Binary Inspiral

    CERN Document Server

    Kalogera, V

    2001-01-01

    Double compact objects (neutron stars and black holes) found in binaries with small orbital separations are known to spiral in and are expected to coalesce eventually because of the emission of gravitational waves. Such inspiral and merger events are thought to be primary sources for ground based gravitational-wave interferometric detectors (such as LIGO). Here, we present a brief review of estimates of coalescence rates and we examine the origin and relative importance of uncertainties associated with the rate estimates. For the case of double neutron star systems, we compare the most recent rate estimates to upper limits derived in a number of different ways. We also discuss the implications of the formation of close binaries with two non-recycled pulsars.

  10. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  11. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  12. Decrypting SO(10-inspired leptogenesis

    Directory of Open Access Journals (Sweden)

    Pasquale Di Bari

    2015-04-01

    Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sin⁡δ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.

  13. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  14. Perceptions of Talented Students in Their Visual Representations about the Future World and Technology (Üstün Yetenekli Öğrencilerin Görsel Anlatımlarında Geleceğin Dünyasına ve Teknolojisine İlişkin Algıları

    Directory of Open Access Journals (Sweden)

    S. Duygu Erişti

    2012-12-01

    Full Text Available Purpose and significance: The present study aimed at investigating talented students’ artistic representations and perceptions regarding the future world and technology through their animated designs according to their design-based representations. A learning environment which allows talented students to use their ability, thoughts and creativity in the process of design-based instructional activities is of great interest for them. It is important for talented students to have instructional experiences which provide independent and unique learning opportunities and special application areas that allow these students to show their abilities (CfBT, 2008. Results: The participants of the study were talented elementary school students attending the Education Programs for Talented Students (EPTS at Anadolu University. The criterion sampling method was used to select the research participants. The criterion for selecting the participants was attendance in the course of ‘Computer-Aided Graphics Design’ offered in the EPTS. The participants included a total of 35 elementary school 6th, 7th and 8th grade talented students. The study was conducted in three phases: instruction process, design process and evaluation process. Some preliminary preparations related to the design program were carried out considering that the students would use them while doing animated designs through the instruction process. The instruction phase involved an animated representation study during which the students designed their own animations. In the last phase, all the animate designs of the talented students were analyzed. The thematic analysis based on qualitative research method along with art-based inquiry was used. The thematic coding system for analyzing concepts revealed from the research data was implemented. The visual language used in pictorial representations produce messages, with its specialized codes. The degree of students’ understanding and explaining

  15. Child representations of disease according to age, educational level and socioeconomic status

    OpenAIRE

    Ma. Lourdes Ruda Santolaria

    2009-01-01

    The study explores child representations on the identity and origin of disease according to age, educational level and socioeconomic status. Ninety children were assessed using the Child Disease Representations Interview (CDRI) inspired in seven cards graphically repre­senting the usual treatment of children with cancer. Results show that the same element of reality can be conceptualized in multiple ways and that smaller children tend to appeal to non-serious diseases whereas older children r...

  16. Beyond sensory images: Object-based representation in the human ventral pathway

    OpenAIRE

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactil...

  17. New Inspirations in Nature: A Survey

    Directory of Open Access Journals (Sweden)

    Nitesh Maganlal Sureja

    2012-11-01

    Full Text Available Over the past few decades, the studies on algorithms inspired by nature have shown that these methods can be efficiently used to eliminate most of the difficulties of classical methods. Nature inspired algorithms are widely used to solve optimization problems with complex nature. Various research works are carried out and algorithms are presented based on that during last few decades. Recently, some new algorithms inspired from nature are proposed to further improve the solutions obtained by the algorithms presented before. In this paper, a survey of five recently introduced Nature inspired algorithms is carried out. They include Firefly algorithm (FA, Cuckoo Search (CS, and Bat Inspired Algorithm (BA. Each of these algorithms are introduced and applied on various numerical optimization functions by various authors. We have tried to review and study the papers published by the authors and present a conclusion of this survey based on the results obtained.

  18. From Physical Space to Visual Image Space

    Institute of Scientific and Technical Information of China (English)

    YE Zetian; LIN Hui; LIU Xianlin

    2003-01-01

    The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space.Last, the prototype system, surveying & mapping virtual Reality (SMVR),is developed, and the space simulation above is realized. By use of SMVR,the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.

  19. A Survey of Visual Analytic Pipelines

    Institute of Scientific and Technical Information of China (English)

    Xu-Meng Wang; Tian-Ye Zhang; Yu-Xin Ma; Jing Xia; Wei Chen

    2016-01-01

    Visual analytics has been widely studied in the past decade. One key to make visual analytics practical for both research and industrial applications is the appropriate definition and implementation of the visual analytics pipeline which provides effective abstractions for designing and implementing visual analytics systems. In this paper we review the previous work on visual analytics pipelines and individual modules from multiple perspectives: data, visualization, model and knowledge. In each module we discuss various representations and descriptions of pipelines inside the module, and compare the commonalities and the differences among them.

  20. Bio-inspired method and system for actionable intelligence

    Science.gov (United States)

    Khosla, Deepak; Chelian, Suhas E.

    2009-05-01

    This paper describes a bio-inspired VISion based actionable INTelligence system (VISINT) that provides automated capabilities to (1) understand objects, patterns, events and behaviors in vision data; (2) translate this understanding into timely recognition of novel and anomalous entities; and (3) discover underlying hierarchies and relationships between disparate labels entered by multiple users to provide a consistent data representation. VISINT is both a system and a novel collection of novel bio-inspired algorithms/modules. These modules can be used independently for various aspects of the actionable intelligence problem or sequenced together for an end-to-end actionable intelligence system. The algorithms can be useful in many other applications such as scene understanding, behavioral analysis, automatic surveillance systems, etc. The bio-inspired algorithms are a novel combination of hierarchical spatial and temporal networks based on the Adaptive Resonance Theory (ART). The novel aspects of this work are that it is an end-to-end system for actionable intelligence that combines existing and novel implementations of various modules in innovative ways to develop a system concept for actionable intelligence. Although there are other algorithms/implementations of several of the modules in VISINT, they suffer from various limitations and often system integration is not considered. The overall VISINT system can be viewed an incremental learning system where no offline training is required and data from multiple sources and times can be seamlessly integrated. The user is in the loop, but due to the semi-supervised nature of the underlying algorithms, only significant variations of entities, not all false alarms, are shown to the user. It does not forget the past even with new learning. While VISINT is designed as a vision-based system, it could also work with other kinds of sensor data that can recognize and locate individual objects in the scene. Beyond that stage

  1. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity

    Science.gov (United States)

    Qi, Dianpeng; Zheng, Liyan; Cao, Xuebo; Jiang, Yueyue; Xu, Hongbo; Zhang, Yanyan; Yang, Bingjie; Sun, Yinghui; Hng, Huey Hoon; Lu, Nan; Chi, Lifeng; Chen, Xiaodong

    2013-11-01

    A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion.A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion. Electronic supplementary information (ESI) available: HRTEM image and XRD pattern of a ZnO nanorod; schematic representation of the photoanode behavior, as well as the concentration change of rhodamine 6G through the photodegradation process over many repeats. See DOI: 10.1039/c3nr04011a

  2. A toolbox for representational similarity analysis.

    Directory of Open Access Journals (Sweden)

    Hamed Nili

    2014-04-01

    Full Text Available Neuronal population codes are increasingly being investigated with multivariate pattern-information analyses. A key challenge is to use measured brain-activity patterns to test computational models of brain information processing. One approach to this problem is representational similarity analysis (RSA, which characterizes a representation in a brain or computational model by the distance matrix of the response patterns elicited by a set of stimuli. The representational distance matrix encapsulates what distinctions between stimuli are emphasized and what distinctions are de-emphasized in the representation. A model is tested by comparing the representational distance matrix it predicts to that of a measured brain region. RSA also enables us to compare representations between stages of processing within a given brain or model, between brain and behavioral data, and between individuals and species. Here, we introduce a Matlab toolbox for RSA. The toolbox supports an analysis approach that is simultaneously data- and hypothesis-driven. It is designed to help integrate a wide range of computational models into the analysis of multichannel brain-activity measurements as provided by modern functional imaging and neuronal recording techniques. Tools for visualization and inference enable the user to relate sets of models to sets of brain regions and to statistically test and compare the models using nonparametric inference methods. The toolbox supports searchlight-based RSA, to continuously map a measured brain volume in search of a neuronal population code with a specific geometry. Finally, we introduce the linear-discriminant t value as a measure of representational discriminability that bridges the gap between linear decoding analyses and RSA. In order to demonstrate the capabilities of the toolbox, we apply it to both simulated and real fMRI data. The key functions are equally applicable to other modalities of brain-activity measurement. The

  3. Hyperfinite Representation of Distributions

    Indian Academy of Sciences (India)

    J Sousa Pinto; R F Hoskins

    2000-11-01

    Hyperfinite representation of distributions is studied following the method introduced by Kinoshita [2, 3], although we use a different approach much in the vein of [4]. Products and Fourier transforms of representatives of distributions are also analysed.

  4. Image Representation Using EPANECHNIKOV Density Feature Points Estimator

    Directory of Open Access Journals (Sweden)

    Tranos Zuva

    2013-02-01

    Full Text Available In image retrieval most of the existing visual content based representation methods are usually application dependent or non robust, making them not suitable for generic applications. These representation methods use visual contents such as colour, texture, shape, size etc. Human image recognition is largely based on shape, thus making it very appealing for image repr esentation algorithms in computer vision. In this paper we propose a generic image representation algorithm using Epanechnikov Density Feature Points Estimator (EDFPE. It is invariant to rotation, scale and translation. The image density feature points within defined rectangular rings around the gravitational centre of the image are obtained in the form of a vector. The EDFPE is applied to the vecto r representation of the image. The Cosine Angle Distance (CAD algorithm is used to measure similarity of the images in the database. Quantitative evaluation of the performance of the system and comparison with other algorithms was done.

  5. "地方"的视觉表征与社会构建——西方旅游广告研究的"文化转向"思潮%Visual Representation and Social Construction of Place: Cultural Turn in Western Tourism Advertising Researches

    Institute of Scientific and Technical Information of China (English)

    刘丹萍

    2007-01-01

    20世纪90年代后,西方人文地理学出现"文化转向"(cultural turn)的理论思潮,学者们格外重视对地理现象进行文化层面的解释,视觉分析(visual analysis)等定性方法(qualitative methods)得到较多的应用.旅游是现代社会的重要地理现象之一,旅游地的视觉表征(visual representation)成为"文化转向"思潮中最活跃的研究议题.西方学者援引地理学、符号学、语用学以及社会批判学派等诸多理论,将旅游营销图片作为"文本"(text)进行文化研究(cultural studies),揭示出旅游地是一个想象的空间这一本质,阐述其被社会性地构建(socially constructed)的过程和意义.国外同行的相关研究工作对我们具有重要的借鉴意义.

  6. Multimodal brain visualization

    Science.gov (United States)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, split these surfaces into separate patches, and cluster functional and diffusion tractography MRI connections between pairs of these patches. The resulting visualizations are easier to compute on and more visually intuitive to interact with than the original data, and facilitate simultaneous exploration of multiple data sets, modalities, and statistical maps.

  7. Representational neglect for words as revealed by bisection tasks.

    Science.gov (United States)

    Arduino, Lisa S; Marinelli, Chiara Valeria; Pasotti, Fabrizio; Ferrè, Elisa Raffaella; Bottini, Gabriella

    2012-03-01

    In the present study, we showed that a representational disorder for words can dissociate from both representational neglect for objects and neglect dyslexia. This study involved 14 brain-damaged patients with left unilateral spatial neglect and a group of normal subjects. Patients were divided into four groups based on presence of left neglect dyslexia and representational neglect for non-verbal material, as evaluated by the Clock Drawing test. The patients were presented with bisection tasks for words and lines. The word bisection tasks (with words of five and seven letters) comprised the following: (1) representational bisection: the experimenter pronounced a word and then asked the patient to name the letter in the middle position; (2) visual bisection: same as (1) with stimuli presented visually; and (3) motor bisection: the patient was asked to cross out the letter in the middle position. The standard line bisection task was presented using lines of different length. Consistent with the literature, long lines were bisected to the right and short lines, rendered comparable in length to the words of the word bisection test, deviated to the left (crossover effect). Both patients and controls showed the same leftward bias on words in the visual and motor bisection conditions. A significant difference emerged between the groups only in the case of the representational bisection task, whereas the group exhibiting neglect dyslexia associated with representational neglect for objects showed a significant rightward bias, while the other three patient groups and the controls showed a leftward bisection bias. Neither the presence of neglect alone nor the presence of visual neglect dyslexia was sufficient to produce a specific disorder in mental imagery. These results demonstrate a specific representational neglect for words independent of both representational neglect and neglect dyslexia.

  8. Implicit body representations and the conscious body image

    OpenAIRE

    Longo, M. R.; Haggard, P.

    2012-01-01

    Recent studies have revealed that somatosensory processing relies on a class of implicit body representations showing large distortions of size and shape. The relation between these representations and the conscious body image remains unclear. Dissociations have been reported in the clinical literature on eating disorders between different body image measures, with larger and more consistent distortions found with depictive measures, in which participants compare their body to a visual depict...

  9. The application of manifold based visual speech units for visual speech recognition

    OpenAIRE

    Yu, Dahai

    2008-01-01

    This dissertation presents a new learning-based representation that is referred to as a Visual Speech Unit for visual speech recognition (VSR). The automated recognition of human speech using only features from the visual domain has become a significant research topic that plays an essential role in the development of many multimedia systems such as audio visual speech recognition(AVSR), mobile phone applications, human-computer interaction (HCI) and sign language recognition. The inclusio...

  10. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  11. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  12. Nature Inspired Hay Fever Therapy

    Institute of Scientific and Technical Information of China (English)

    Andrei P.Sommer; Dan Zhu

    2008-01-01

    The survival oriented adaptation of evolved biosystems to variations in their environment is a selective optimization process. Recognizing the optimised end product and its functionality is the classical arena of bionic engineering. In a primordial world, however, the molecular organization and functions of prebiotic systems were solely defined by formative processes in their physical and chemical environment, for instance, the interplay between interracial water layers on surfaces and solar light. The formative potential of the interplay between light (laser light) and interfacial water layers on surfaces was recently exploited in the formation of supercubane carbon nanocrystals. In evolved biosystems the formative potential of interracial water layers can still be activated by light. Here we report a case of hay fever, which was successfully treated in the course of a facial reju-venation program starting in November 2007. Targeting primarily interfacial water layers on elastin fibres in the wrinkled areas, we presumably also activated mast cells in the nasal mucosa, reported to progressively decrease in the nasal mucosa of the rabbit, when frequently irradiated. Hay fever is induced by the release of mediators, especially histamine, a process associated with the degranulation of mast cells. Decrease in mast cells numbers implies a decrease in the release of histamine. To the best of our knowledge this is the first report on the treatment of hay fever with visible light. This approach was inspired by bionic thinking, and could help ameliorating the condition of millions of people suffering from hay fever world wide.

  13. A Visual Information Retrieval Tool.

    Science.gov (United States)

    Zhang, Jin

    2000-01-01

    Discussion of visualization for information retrieval, that transforms unseen internal semantic representation of a document collection into visible geometric displays, focuses on DARE (Distance Angle Retrieval Environment). Highlights include expression of information need; interpretation and manipulation of information retrieval models; ranking…

  14. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  15. Analytic Representations of Yang-Mills Amplitudes

    CERN Document Server

    Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo

    2016-01-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  16. Visual Training for Sustainable Forest Management

    Science.gov (United States)

    Aik, Chong-Tek; Tway, Duane C.

    2004-01-01

    It is increasingly important for timber companies to train managers in the principles and practices of sustainable forest management. One of the most effective ways to conduct such training is through use of visual training methods. This is partly because visual representations encode large amounts of information and help learners to grasp…

  17. Full Restoration of Visual Encrypted Color Images

    CERN Document Server

    Persson, Simeon

    2011-01-01

    While strictly black and white images have been the basis for visual cryptography, there has been a lack of an easily implemented format for colour images. This paper establishes a simple, yet secure way of implementing visual cryptography with colour, assuming a binary data representation.

  18. Large-scale functional models of visual cortex for remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, Steven P [Los Alamos National Laboratory; Kenyon, Garrett [Los Alamos National Laboratory; Rasmussen, Craig E [Los Alamos National Laboratory; Swaminarayan, Sriram [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Landecker, Will [PORTLAND STATE UNIV.

    2009-01-01

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simple region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.

  19. Visual Mementos: Reflecting Memories with Personal Data.

    Science.gov (United States)

    Thudt, Alice; Baur, Dominikus; Huron, Samuel; Carpendale, Sheelagh

    2016-01-01

    In this paper we discuss the creation of visual mementos as a new application area for visualization. We define visual mementos as visualizations of personally relevant data for the purpose of reminiscing, and sharing of life experiences. Today more people collect digital information about their life than ever before. The shift from physical to digital archives poses new challenges and opportunities for self-reflection and self-representation. Drawing on research on autobiographical memory and on the role of artifacts in reminiscing, we identified design challenges for visual mementos: mapping data to evoke familiarity, expressing subjectivity, and obscuring sensitive details for sharing. Visual mementos can make use of the known strengths of visualization in revealing patterns to show the familiar instead of the unexpected, and extend representational mappings beyond the objective to include the more subjective. To understand whether people's subjective views on their past can be reflected in a visual representation, we developed, deployed and studied a technology probe that exemplifies our concept of visual mementos. Our results show how reminiscing has been supported and reveal promising new directions for self-reflection and sharing through visual mementos of personal experiences.

  20. Visual agnosia.

    Science.gov (United States)

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes.

  1. Crossmodal Association of Visual and Haptic Material Properties of Objects in the Monkey Ventral Visual Cortex.

    Science.gov (United States)

    Goda, Naokazu; Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Komatsu, Hidehiko

    2016-04-01

    Just by looking at an object, we can recognize its non-visual properties, such as hardness. The visual recognition of non-visual object properties is generally accurate [1], and influences actions toward the object [2]. Recent studies suggest that, in the primate brain, this may involve the ventral visual cortex, which represents objects in a way that reflects not only visual but also non-visual object properties, such as haptic roughness, hardness, and weight [3-7]. This new insight raises a fundamental question: how does the visual cortex come to represent non-visual properties--knowledge that cannot be acquired directly through vision? Here we addressed this unresolved question using fMRI in macaque monkeys. Specifically, we explored whether and how simple visuo-haptic experience--just seeing and touching objects made of various materials--can shape representational content in the visual cortex. We measured brain activity evoked by viewing images of objects before and after the monkeys acquired the visuo-haptic experience and decoded the representational space from the activity patterns [8]. We show that simple long-term visuo-haptic experience greatly impacts representation in the posterior inferior temporal cortex, the higher ventral visual cortex. After the experience, but not before, the activity pattern in this region well reflected the haptic material properties of the experienced objects. Our results suggest that neural representation of non-visual object properties in the visual cortex emerges through long-term crossmodal exposure to objects. This highlights the importance of unsupervised learning of crossmodal associations through everyday experience [9-12] for shaping representation in the visual cortex. PMID:26996504

  2. Role of Inspiration in Creating Textile Design

    Directory of Open Access Journals (Sweden)

    Bakhtawer Sabir Malik

    2015-05-01

    Full Text Available In design-making process, Source of inspiration has a vital role, both in defining the characteristics of a new design and in informing the creation of a distinct design. This study was based on the idea to promote creative and original textile designs by using a source of inspiration. The purpose of the study was to create some original and innovative designs for textiles by using natural paintings of William Morris as an inspiration and incorporating modern elements in the design. Several designs were made and three were selected that were innovative and suitable for textile designing. This study marks the significance of a source of inspiration in textile designing.

  3. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  4. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  5. Engaging Students through Astronomically Inspired Music

    Science.gov (United States)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  6. Innovative Didactics in an International Internship - inspiration

    DEFF Research Database (Denmark)

    Lembcke, Steen; Skibsted, Else Bengaard; Mølgaard, Niels;

    An inspiration handbook for the international team from the teacher education programme in VIA. Aimed to assist internship supervisors and students during international internships in regards to innovation, social entrepreneurship and development of the international teacher. Introduces why and h...

  7. Towards gecko-feet-inspired bandages.

    Science.gov (United States)

    Yanik, Mehmet Fatih

    2009-01-01

    A novel bandage inspired by gecko feet might one day be used during emergencies and internal surgeries. The bandage uses a combination of nanofabricated structures, biodegradable materials and adhesive surface chemistry that allows adhesion onto even wet, moving tissue.

  8. Olfaction spontaneously highlights visual saliency map.

    Science.gov (United States)

    Chen, Kepu; Zhou, Bin; Chen, Shan; He, Sheng; Zhou, Wen

    2013-10-01

    Attention is intrinsic to our perceptual representations of sensory inputs. Best characterized in the visual domain, it is typically depicted as a spotlight moving over a saliency map that topographically encodes strengths of visual features and feedback modulations over the visual scene. By introducing smells to two well-established attentional paradigms, the dot-probe and the visual-search paradigms, we find that a smell reflexively directs attention to the congruent visual image and facilitates visual search of that image without the mediation of visual imagery. Furthermore, such effect is independent of, and can override, top-down bias. We thus propose that smell quality acts as an object feature whose presence enhances the perceptual saliency of that object, thereby guiding the spotlight of visual attention. Our discoveries provide robust empirical evidence for a multimodal saliency map that weighs not only visual but also olfactory inputs.

  9. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  10. Voice Coil Controlled Inspiration and Expiration Valves

    OpenAIRE

    Bergqvist, Per; Kemmler, Linus

    2012-01-01

    This master thesis was performed at Maquet Critical Care located in Solna, Stockholm. Maquet Critical Care is a market leader in high performance medical ventilators. A ventilator is a medical device that helps patients to breathe. Two of the most vital components of a ventilator are the valves that are closest to the patient. These are the inspiration valve and the expiration valve. The main purpose with this thesis is to get, theoretical as well as practical insights into the inspiration an...

  11. Old Ohrid features - inspiration for contemporary exterior

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    The old architecture of Ohrid from the 18th century, is a strong inspiration that is associated with the location of the city (The Macedonian Pearl), and it is an artistic influence of architects, artists, esthetes in Macedonia and beyond. The coastal area of Lake Ohrid is the perfect place for arranging the cafe patio, which will be also a sample of past and a contemporary reflection of the present. The Inspiration of the folklore is incorporated in contemporary and appropriate materials to ...

  12. Voros product and noncommutative inspired black holes

    OpenAIRE

    Gangopadhyay, Sunandan

    2013-01-01

    We emphasize the importance of the Voros product in defining noncommutative inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordstr\\"{o}m black holes show that the area law holds upto order $\\frac{1}{\\sqrt{\\theta}}e^{-M^2/\\theta}$. The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy $E$ for these black holes is then obtained and a deviation from the standard id...

  13. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  14. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  15. Indians in view : The representation of British Indians in magic lantern presentations, film and on postcards, 1870-1915

    NARCIS (Netherlands)

    Siebenga, J.A.

    2015-01-01

    This thesis researched the representation of British Indians in three types of visual media which were enormously popular at the end of the nineteenth and beginning of the twentieth century. Together they reached a wider public than any other visual representations had done before. Magic lantern pre

  16. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  17. Towards Multimodal Content Representation

    CERN Document Server

    Bunt, Harry

    2009-01-01

    Multimodal interfaces, combining the use of speech, graphics, gestures, and facial expressions in input and output, promise to provide new possibilities to deal with information in more effective and efficient ways, supporting for instance: - the understanding of possibly imprecise, partial or ambiguous multimodal input; - the generation of coordinated, cohesive, and coherent multimodal presentations; - the management of multimodal interaction (e.g., task completion, adapting the interface, error prevention) by representing and exploiting models of the user, the domain, the task, the interactive context, and the media (e.g. text, audio, video). The present document is intended to support the discussion on multimodal content representation, its possible objectives and basic constraints, and how the definition of a generic representation framework for multimodal content representation may be approached. It takes into account the results of the Dagstuhl workshop, in particular those of the informal working group...

  18. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work...... regarding use and design. The article proposes that abstraction, elevating the representation from the situation, is not the only way to do this, and it proposes alternatives....

  19. Memetics of representation

    Directory of Open Access Journals (Sweden)

    Roberto De Rubertis

    2012-06-01

    Full Text Available This article will discuss about the physiological genesis of representation and then it will illustrate the developments, especially in evolutionary perspective, and it will show how these are mainly a result of accidental circumstances, rather than of deliberate intention of improvement. In particular, it will be argue that the representation has behaved like a meme that has arrived to its own progressive evolution coming into symbiosis with the different cultures in which it has spread, and using in this activity human work “unconsciously”. Finally it will be shown how in this action the geometry is an element key, linked to representation both to construct images using graphics operations and to erect buildings using concrete operations.

  20. Effects of healthy aging on human primary visual cortex

    OpenAIRE

    2012-01-01

    Aging often results in reduced visual acuity from changes in both the eye and neural circuits [1-4]. In normally aging subjects, primary visual cortex has been shown to have reduced responses to visual stimulation [5]. It is not known, however, to what extent aging affects visual field representations and population receptive sizes in human primary visual cortex. Here we use functional MRI (fMRI) and population receptive field (pRF) modeling [6] to measure angular and eccentric retinotopic re...

  1. Observations and Measurements Design Patterns within INSPIRE

    Science.gov (United States)

    Schleidt, K.; Cox, S.; Grellet, S.; Lowe, D.; Lutz, M.; Portele, C.; Sarretta, A.; Ventouras, S.

    2012-04-01

    Several INSPIRE spatial data themes have been specified so that their scope, in addition to classical geographic information, includes measured, modelled or simulated data. The FprEN ISO 19156 standard on Observations and Measurements (O&M) was designed for the explicit purpose of creating application schemas for such data, and thus shall be used in INSPIRE as a basis for developing data models for these themes. The following INSPIRE themes have identified O&M as integrally relevant to their thematic domain and are including elements of O&M in their data specifications: • Geology • Oceanographic geographical features • Atmospheric conditions and Meteorological geographical features • Environmental monitoring facilities • Soil In addition to these themes, several other INSPIRE themes have been identified to which observational information, while not at the core of the data specification, is relevant. Some examples of this are the INSPIRE theme "Species distribution", where primary occurrence data could be provided together with the aggregate distribution, as well as "Industrial and production facilities", where the provision of emissions data on such facilities would be useful for various environmental reporting obligations. While the O&M standard provides a generic framework for the provision of measurement data, it is also kept very abstract, and there are many ways of implementing the core structures in specific application schemas. In order to assure the consistent application of the O&M classes and properties across different INSPIRE themes, a cross-thematic working group on the use of O&M in INSPIRE has been convened. This group has analysed the requirements towards O&M within INSPIRE, identified the types of O&M design patterns required in INSPIRE and developed both additional classes identified as necessary within INSPIRE as well as guidelines detailing how this standard is to be used within INSPIRE. Some examples for these additional classes are

  2. Scientific Representation and Realism

    Directory of Open Access Journals (Sweden)

    Michel Ghins

    2011-12-01

    Full Text Available After a brief presentation of what I take to be the representational démarche in science, I stress the fundamental role of true judgements in model construction. The success and correctness of a representation rests on the truth of judgements which attribute properties to real targeted entities, called “ontic judgements”. I then present what van Fraassen calls “the Loss of Reality objection”. After criticizing his dissolution of the objection, I offer an alternative way of answering the Loss of Reality objection by showing that the contact of our models with reality is grounded on the truth of ontic judgements. I conclude by examining.

  3. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  4. Visualization of Mined Pattern and Its Human Aspects

    CERN Document Server

    Jain, Ratnesh Kumar; Kasana, Dr R S

    2009-01-01

    Researchers got success in mining the Web usage data effectively and efficiently. But representation of the mined patterns is often not in a form suitable for direct human consumption. Hence mechanisms and tools that can represent mined patterns in easily understandable format are utilized. Different techniques are used for pattern analysis, one of them is visualization. Visualization can provide valuable assistance for data analysis and decision making tasks. In the data visualization process, technical representations of web pages are replaced by user attractive text interpretations. Experiments with the real world problems showed that the visualization can significantly increase the quality and usefulness of web log mining results. However, how decision makers perceive and interact with a visual representation can strongly influence their understanding of the data as well as the usefulness of the visual presentation. Human factors therefore contribute significantly to the visualization process and should p...

  5. Updating representations of temporal intervals.

    Science.gov (United States)

    Danckert, James; Anderson, Britt

    2015-12-01

    Effectively engaging with the world depends on accurate representations of the regularities that make up that world-what we call mental models. The success of any mental model depends on the ability to adapt to changes-to 'update' the model. In prior work, we have shown that damage to the right hemisphere of the brain impairs the ability to update mental models across a range of tasks. Given the disparate nature of the tasks we have employed in this prior work (i.e. statistical learning, language acquisition, position priming, perceptual ambiguity, strategic game play), we propose that a cognitive module important for updating mental representations should be generic, in the sense that it is invoked across multiple cognitive and perceptual domains. To date, the majority of our tasks have been visual in nature. Given the ubiquity and import of temporal information in sensory experience, we examined the ability to build and update mental models of time. We had healthy individuals complete a temporal prediction task in which intervals were initially drawn from one temporal range before an unannounced switch to a different range of intervals. Separate groups had the second range of intervals switch to one that contained either longer or shorter intervals than the first range. Both groups showed significant positive correlations between perceptual and prediction accuracy. While each group updated mental models of temporal intervals, those exposed to shorter intervals did so more efficiently. Our results support the notion of generic capacity to update regularities in the environment-in this instance based on temporal information. The task developed here is well suited to investigations in neurological patients and in neuroimaging settings. PMID:26303026

  6. Learning Hierarchical Speech Representations Using Deep Convolutional Neural Networks

    OpenAIRE

    Hau, Darren

    2014-01-01

    Deep learning has proven to be an effective methodology in handling complex AI problems, especially for visual perception tasks. Key to the success of deep learning is its ability to learn hierarchical feature representations of increasing levels of abstraction. Motivated by the success of deep learning in the visual domain, researchers have recently begun to apply deep learning to speech. In this study, we are interested in investigating the feasibility of using deep convolutional neural net...

  7. Modality-specific organization in the representation of sensorimotor sequences

    OpenAIRE

    Boutin, Arnaud; Massen, Cristina; Heuer, Herbert

    2013-01-01

    Sensorimotor representations of movement sequences are hierarchically organized. Here we test the effects of different stimulus modalities on such organizations. In the visual group, participants responded to a repeated sequence of visually presented stimuli by depressing spatially compatible keys on a response pad. In the auditory group, learners were required to respond to auditorily presented stimuli, which had no direct spatial correspondence with the response keys: the lowest pitch corre...

  8. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  9. A bio-inspired image coder with temporal scalability

    CERN Document Server

    Masmoudi, Khaled; Kornprobst, Pierre

    2011-01-01

    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalians retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, compared to the JPEG standards, our decoded images do not show annoying art...

  10. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    Science.gov (United States)

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations.

  11. [The fragmentation of representational space in schizophrenia].

    Science.gov (United States)

    Plagnol, A; Oïta, M; Montreuil, M; Granger, B; Lubart, T

    2003-01-01

    compatible with numerous etiological factors. Multiple clinical forms can be differentiated in accordance with the persistence of parasitic areas, the degree of fragmentation, and the formation of sutures. We use this approach to account for an empirical study concerning the analysis of analogical representations in schizophrenia. We used the Parallel Visual Information Processing Test (PVIPT) which assesses the analysis of interfering visual information. Subjects were asked to connect several small geometric figures printed on a transparency. The transparency was displayed above four photographs which were the interfering material. Then, subjects completed three tasks concerning the photographs: a recognition task, a recall task, and an affective qualification task. Using a case-by-case study, this test allows us to access the defense processes of the subjects, which is not possible with the usual methods in cognitive psychopathology. Twelve clinically-stable schizophrenic subjects participated in the study which also included a self-assessment of alexithymia by the Toronto Alexithymia Scale. We obtained 2 main results: (a) creation of items in recall or false recognition by 8 subjects, and (b) lack of the usual -negative correlations between the alexithymia score and the recall, recognition and affective qualification scores in the PVIPT. These 2 results contrast with what has been previously observed for alexithymia using the same methodology. The result (a) confirms an interfering activation in schizophrenic memory, which can be interpreted in our framework as indicative of parasitic areas. The creation of items suggests the formation of sutures between the semantic content of photographs and some delusional fragments. The result (b) suggests that the apparent alexithymia in schizophrenia is a defense against interfering activation in parasitic areas. We underline the interest of individual protocols to exhibit the dynamic interplay between an interfering activity in

  12. Moment graphs and representations

    DEFF Research Database (Denmark)

    Jantzen, Jens Carsten

    2012-01-01

    Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...

  13. Proportional Representation with Uncertainty

    OpenAIRE

    Francesco De Sinopoli; Giovanna Iannantuoni; Elena Manzoni; Carlos Pimienta

    2014-01-01

    We introduce a model with strategic voting in a parliamentary election with proportional representation and uncertainty about voters’ preferences. In any equilibrium of the model, most voters only vote for those parties whose positions are extreme. In the resulting parliament, a consensus government forms and the policy maximizing the sum of utilities of the members of the government is implemented.

  14. Representation and human reasoning

    NARCIS (Netherlands)

    ter Meulen, Alice G.B.

    2003-01-01

    Interpretation and reasoning are two sides of sharing information. Representations of the context and common ground must capture the rich content of what has been said, by linking to situations in the world as well as to what has been said before, common sense and to the presuppositions and entailme

  15. Between Representation and Eternity

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2016-01-01

    . At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...

  16. The nature of the visual field, a phenomenological analysis

    NARCIS (Netherlands)

    Koenderink, Jan; van Doorn, A.J.; Wagemans, Johan

    2015-01-01

    Abstract The visual field is the spatial form of visual awareness, that is, immediate visual experience ignoring qualities and meanings. Such an entity only exists in the discursive representation, for the awareness as such is quality and meaning throughout. Thus the discursive, formal treatment is

  17. Knowledge Representations for Planning Manipulation Tasks

    CERN Document Server

    Zacharias, Franziska

    2012-01-01

    In this book, the capability map, a novel general representation of the kinematic capabilities of a robot arm, is introduced. The capability map allows to determine how well regions of the workspace are reachable for the end effector in different orientations. It is a representation that can be machine processed as well as intuitively visualized for the human. The capability map and the derived algorithms are a valuable source of information for high- and low-level planning processes. The versatile applicability of the capability map is shown by examples from several distinct application domains. In human-robot interaction, a bi-manual interface for tele-operation is objectively evaluated. In low-level geometric planning, more human-like motion is planned for a humanoid robot while also reducing the computation time. And in high-level task reasoning, the suitability of a robot for a task is evaluated.    

  18. The Trade-offs with Space Time Cube Representation of Spatiotemporal Patterns

    CERN Document Server

    Kristensson, Per Ola; Anundi, Daniel; Bjornstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Martensson, Ingrid; Nordvall, Matttias; Stahl, Josefin

    2007-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rat...

  19. Design and globalization can graphic design in mass communication inspire a global culture?

    OpenAIRE

    Nguyen, V. (V.); Prebys, C. (C.)

    2010-01-01

    In this paper I deliver four points which support my assertion that graphic design in mass communication can inspire a global culture informed by Christianity. First, I argue that the environment in which people consistently find themselves will over time influence and affect the interior dispositions of the person, and when occurring in great numbers, the culture. I argue for the importance of graphic design as a vital component in the development of culture and how as visual ...

  20. Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    OpenAIRE

    Russell S A Brinkworth; David C O'Carroll

    2009-01-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adapt...

  1. CT scans of the hypopharynx and larynx during inspiration, expiration, breath holding and phonation

    International Nuclear Information System (INIS)

    CT scans of the hypopharynx and larynx during inspiration, expiration, breath holding and phonation of the letter E were performed on seven volunteers. Two mm contiguous scans were obtained to span the glottis and supraglottic area. The vocal cords were shown in the paramedian or median position on breath holding and phonation. The ditails of the arytenoid cartilages were better visualized with thin slices. The laryngeal ventricles were demonstrable on phonation scans. (author)

  2. Visualizing structures of speech expressiveness

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Jensen, Karl Kristoffer; Graugaard, Lars

    2008-01-01

    Speech is both beautiful and informative. In this work, a conceptual study of the speech, through investigation of the tower of Babel, the archetypal phonemes, and a study of the reasons of uses of language is undertaken in order to create an artistic work investigating the nature of speech....... The Babel myth speaks about distance created when aspiring to the heaven as the reason for language division. Meanwhile, Locquin states through thorough investigations that only a few phonemes are present throughout history. Our interpretation is that a system able to recognize archetypal phonemes through...... vowels and consonants, and which converts the speech energy into visual particles that form complex visual structures, provides us with a mean to present the expressiveness of speech into a visual mode. This system is presented in an artwork whose scenario is inspired from the reasons of language...

  3. Short and long term representation of an unfamiliar tone distribution.

    Science.gov (United States)

    Cui, Anja X; Diercks, Charlette; Troje, Nikolaus F; Cuddy, Lola L

    2016-01-01

    We report on a study conducted to extend our knowledge about the process of gaining a mental representation of music. Several studies, inspired by research on the statistical learning of language, have investigated statistical learning of sequential rules underlying tone sequences. Given that the mental representation of music correlates with distributional properties of music, we tested whether participants are able to abstract distributional information contained in tone sequences to form a mental representation. For this purpose, we created an unfamiliar music genre defined by an underlying tone distribution, to which 40 participants were exposed. Our stimuli allowed us to differentiate between sensitivity to the distributional properties contained in test stimuli and long term representation of the distributional properties of the music genre overall. Using a probe tone paradigm and a two-alternative forced choice discrimination task, we show that listeners are able to abstract distributional properties of music through mere exposure into a long term representation of music. This lends support to the idea that statistical learning is involved in the process of gaining musical knowledge. PMID:27635355

  4. A new image representation for compact and secure communication

    International Nuclear Information System (INIS)

    In many areas of nuclear materials management there is a need for communication, archival, and retrieval of annotated image data between heterogeneous platforms and devices to effectively implement safety, security, and safeguards of nuclear materials. Current image formats such as JPEG are not ideally suited in such scenarios as they are not scalable to different viewing formats, and do not provide a high-level representation of images that facilitate automatic object/change detection or annotation. The new Scalable Vector Graphics (SVG) open standard for representing graphical information, recommended by the World Wide Web Consortium (W3C) is designed to address issues of image scalability, portability, and annotation. However, until now there has been no viable technology to efficiently field images of high visual quality under this standard. Recently, LANL has developed a vectorized image representation that is compatible with the SVG standard and preserves visual quality. This is based on a new geometric framework for characterizing complex features in real-world imagery that incorporates perceptual principles of processing visual information known from cognitive psychology and vision science, to obtain a polygonal image representation of high fidelity. This representation can take advantage of all textual compression and encryption routines unavailable to other image formats. Moreover, this vectorized image representation can be exploited to facilitate automated object recognition that can reduce time required for data review. The objects/features of interest in these vectorized images can be annotated via animated graphics to facilitate quick and easy display and comprehension of processed image content.

  5. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti;

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization te...

  6. Highly eccentric inspirals into a black hole

    CERN Document Server

    Osburn, Thomas; Evans, Charles R

    2015-01-01

    We model the inspiral of a compact stellar-mass object into a massive non-rotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as $e\\sim0.8$ and initial separations as large as $\\sim 100M$ to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within $\\sim0.1$ radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  7. Dictionary learning in visual computing

    CERN Document Server

    Zhang, Qiang

    2015-01-01

    The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster c

  8. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  9. Understanding Deep Representations Learned in Modeling Users Likes.

    Science.gov (United States)

    Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W

    2016-08-01

    Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by  ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes. PMID:27295666

  10. A Common Representation of Spatial Features Drives Action and Perception

    DEFF Research Database (Denmark)

    Christiansen, Jens H; Christensen, Jeppe Høy; Grünbaum, Thor;

    2014-01-01

    Spatial features of an object can be specified using two different response types: either by use of symbols or motorically by directly acting upon the object. Is this response dichotomy reflected in a dual representation of the visual world: one for perception and one for action? Previously...

  11. Cultural Shifts, Multimodal Representations, and Assessment Practices: A Case Study

    Science.gov (United States)

    Curwood, Jen Scott

    2012-01-01

    Multimodal texts involve the presence, absence, and co-occurrence of alphabetic text with visual, audio, tactile, gestural, and spatial representations. This article explores how teachers' evaluation of students' multimodal work can be understood in terms of cognition and culture. When teachers apply a paradigm of assessment rooted in print-based…

  12. The Influence of Different Pictorial Representations during Idea Generation

    Science.gov (United States)

    Cardoso, Carlos; Badke-Schaub, Petra

    2011-01-01

    During creative problem-solving, designers frequently come across a variety of rich visual displays. While browsing for different sources of information, pictorial representations of existing concepts take prominence. However, once designers start generating new solution ideas to design problems, they often become too attached to some of the…

  13. Learning Warps Object Representations in the Ventral Temporal Cortex.

    Science.gov (United States)

    Clarke, Alex; Pell, Philip J; Ranganath, Charan; Tyler, Lorraine K

    2016-07-01

    The human ventral temporal cortex (VTC) plays a critical role in object recognition. Although it is well established that visual experience shapes VTC object representations, the impact of semantic and contextual learning is unclear. In this study, we tracked changes in representations of novel visual objects that emerged after learning meaningful information about each object. Over multiple training sessions, participants learned to associate semantic features (e.g., "made of wood," "floats") and spatial contextual associations (e.g., "found in gardens") with novel objects. fMRI was used to examine VTC activity for objects before and after learning. Multivariate pattern similarity analyses revealed that, after learning, VTC activity patterns carried information about the learned contextual associations of the objects, such that objects with contextual associations exhibited higher pattern similarity after learning. Furthermore, these learning-induced increases in pattern information about contextual associations were correlated with reductions in pattern information about the object's visual features. In a second experiment, we validated that these contextual effects translated to real-life objects. Our findings demonstrate that visual object representations in VTC are shaped by the knowledge we have about objects and show that object representations can flexibly adapt as a consequence of learning with the changes related to the specific kind of newly acquired information. PMID:26967942

  14. Hypermedia and visual technology

    Science.gov (United States)

    Walker, Lloyd

    1990-01-01

    Applications of a codified professional practice that uses visual representations of the thoughts and ideas of a working group are reported in order to improve productivity, problem solving, and innovation. This visual technology process was developed under the auspices of General Foods as part of a multi-year study. The study resulted in the validation of this professional service as a way to use art and design to facilitate productivity and innovation and to define new opportunities. It was also used by NASA for planning Lunar/Mars exploration and by other companies for general business and advanced strategic planning, developing new product concepts, and litigation support. General Foods has continued to use the service for packaging innovation studies.

  15. Fast Sequences of Non-spatial State Representations in Humans.

    Science.gov (United States)

    Kurth-Nelson, Zeb; Economides, Marcos; Dolan, Raymond J; Dayan, Peter

    2016-07-01

    Fast internally generated sequences of neural representations are suggested to support learning and online planning. However, these sequences have only been studied in the context of spatial tasks and never in humans. Here, we recorded magnetoencephalography (MEG) while human subjects performed a novel non-spatial reasoning task. The task required selecting paths through a set of six visual objects. We trained pattern classifiers on the MEG activity elicited by direct presentation of the visual objects alone and tested these classifiers on activity recorded during periods when no object was presented. During these object-free periods, the brain spontaneously visited representations of approximately four objects in fast sequences lasting on the order of 120 ms. These sequences followed backward trajectories along the permissible paths in the task. Thus, spontaneous fast sequential representation of states can be measured non-invasively in humans, and these sequences may be a fundamental feature of neural computation across tasks. PMID:27321922

  16. Modality-specific organization in the representation of sensorimotor sequences

    Directory of Open Access Journals (Sweden)

    Arnaud eBoutin

    2013-12-01

    Full Text Available Sensorimotor representations of movement sequences are hierarchically organized. Here we test the effects of different stimulus modalities on such organizations. In the visual group, participants responded to a repeated sequence of visually presented stimuli by depressing spatially compatible keys on a response pad. In the auditory group, learners were required to respond to auditorily presented stimuli, which had no direct spatial correspondence with the response keys: the lowest pitch corresponded to the leftmost key and the highest pitch to the rightmost key. We demonstrate that hierarchically and auto-organised sensorimotor representations are developed through practice, which are specific both to individuals and stimulus modalities. These findings highlight the dynamic and sensory-specific modulation of chunk processing during sensorimotor learning – sensorimotor chunking – and provide evidence that modality-specific mechanisms underlie the hierarchical organization of sequence representations.

  17. Modality-specific organization in the representation of sensorimotor sequences.

    Science.gov (United States)

    Boutin, Arnaud; Massen, Cristina; Heuer, Herbert

    2013-01-01

    Sensorimotor representations of movement sequences are hierarchically organized. Here we test the effects of different stimulus modalities on such organizations. In the visual group, participants responded to a repeated sequence of visually presented stimuli by depressing spatially compatible keys on a response pad. In the auditory group, learners were required to respond to auditorily presented stimuli, which had no direct spatial correspondence with the response keys: the lowest pitch corresponded to the leftmost key and the highest pitch to the rightmost key. We demonstrate that hierarchically and auto-organized sensorimotor representations are developed through practice, which are specific both to individuals and stimulus modalities. These findings highlight the dynamic and sensory-specific modulation of chunk processing during sensorimotor learning - sensorimotor chunking - and provide evidence that modality-specific mechanisms underlie the hierarchical organization of sequence representations. PMID:24376432

  18. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  19. Visual Space Constructed by Saccade Motor Maps

    Science.gov (United States)

    Zimmermann, Eckart; Lappe, Markus

    2016-01-01

    How visual space is represented in the brain is an open question in neuroscience. Embodiment theories propose that spatial perception is structured by neural motor maps. Especially, maps which code the targets for saccadic eye movements contain a precise representation of external space. In this review article, we examine how modifications in saccade maps are accompanied by changes in visual space perception. Saccade adaptation, a method which systematically modifies saccade amplitudes, alters the localization of visual objects in space. We illustrate how information about saccade amplitudes is transferred from the cerebellum (CB) to the frontal eye field (FEF). We argue that changes in visual localization after adaptation of saccade maps provide evidence for a shared representation of visual and motor space. PMID:27242488

  20. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  1. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-03-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  2. Realizations of the Canonical Representation

    Indian Academy of Sciences (India)

    M K Vemuri

    2008-02-01

    A characterisation of the maximal abelian subalgebras of the bounded operators on Hilbert space that are normalised by the canonical representation of the Heisenberg group is given. This is used to classify the perfect realizations of the canonical representation.

  3. String and string-inspired phenomenology

    CERN Document Server

    López, J L

    1994-01-01

    In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)

  4. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  5. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  6. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  7. Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior

    OpenAIRE

    Berman, Rebecca A.; Heiser, Laura M; Catherine A Dunn; Saunders, Richard C.; Colby, Carol L.

    2007-01-01

    Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Her...

  8. Mental Representations in Art Discourse

    Directory of Open Access Journals (Sweden)

    Katja Sudec

    2014-03-01

    Full Text Available The paper starts by examining the content included in the museum environment, where I write about the type of relations that emerge in a museum or artistic setting. This is followed by an observation of a social act (socialising and a chapter on the use of food in an artistic venue. At the end, I address art education via the format that I developed at the 6th Berlin Biennale. This is followed by an overview of the cognitive model of the fort-da game based on Freud’s theory via two discourse models. Here, I address discourse on art works in the form of a lecture or reading, where the art space is fictitiously present, and then move on to discuss discourse on art works in real, “present” art space. This is followed by a section on actions (Handlungen in German and methods supporting the fort-da model. The last part of the article examines the issue of “mental representations”, defining and explaining the function of mental representations with regard to the target audience of the blind and visually impaired.

  9. Ventral-stream-like shape representation : from pixel intensity values to trainable object-selective COSFIRE models

    NARCIS (Netherlands)

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted Filter REsponse

  10. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    NARCIS (Netherlands)

    Azzopardi, G.; Petkov, N.

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponse

  11. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  12. Visual Language in Visual Communication

    OpenAIRE

    Jia Wang

    2009-01-01

    In visual communication the design information is mainly communicated by visual language, the correct use of which is the standard of evaluation of a graphic design composition. Therefore it is necessary to understand and percept visual language properly. It will be helpful for viewers to percept the desired information from the designer as well as the significance within the work.

  13. Shape representation by a network of V4-like cells.

    Science.gov (United States)

    Murphy, Thomas M; Finkel, Leif H

    2007-10-01

    Cells in extrastriate visual cortex have been reported to be selective for various configurations of local contour shape [Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-specific tuning for boundary conformation. The Journal of Neurophysiology, 86 (5), 2505-2519; Hegdé, J., & Van Essen, D. C. (2003). Strategies of shape representation in macaque visual area V2. Visual Neuroscience, 20 (3), 313-328]. Specifically, Pasupathy and Connor found that in area V4 most cells are strongly responsive to a particular local contour conformation located at a specific position on the object's boundary. We used a population of "V4-like cells"-units sensitive to multiple shape features modeled after V4 cell behavior-to generate representations of different shapes. Standard classification algorithms (earth mover's distance, support vector machines) applied to this population representation demonstrate high recognition accuracies classifying handwritten digits in the MNIST database and objects in the MPEG-7 Shape Silhouette database. We compare the performance of the V4-like unit representation to the "shape context" representation of Belongie et al. [Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (24), 509-522]. Results show roughly comparable recognition accuracies using the two representations when tested on portions of the MNIST database. We analyze the relative contributions of various V4-like feature sensitivities to recognition accuracy and robustness to noise - feature sensitivities include curvature magnitude, direction of curvature, global orientation of the contour segment, distance of the contour segment from object center, and modulatory effect of adjacent contour regions. Among these, local curvature appears to be the most informative variable for shape recognition. Our results support the hypothesis that V4

  14. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  15. Quantum-inspired resonance for associative memory

    International Nuclear Information System (INIS)

    A new kind of dynamics for simulations based upon quantum-classical hybrid is discussed. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen potentials. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for quantum-inspired information processing. In this paper, the retrieval of stored items from an exponentially large unsorted database is performed by quantum-inspired resonance using polynomial resources due to quantum-like superposition effect.

  16. Comprehension and Representation in Translation

    Institute of Scientific and Technical Information of China (English)

    徐玉萍

    2010-01-01

    Transhfion is the faithful rcpresentation in one language of the thought, content, feeling and style written in another language. It involves two processes: comprehension and representation. Correct comprehension is the base for adequate representation. Criteria for good representation lies in two points: the version should be faithful to the original, and the version should be as intelligible as possible.

  17. Multiple Forms of Dynamic Representation

    Science.gov (United States)

    Ainsworth, Shaaron; VanLabeke, Nicolas

    2004-01-01

    The terms dynamic representation and animation are often used as if they are synonymous, but in this paper we argue that there are multiple ways to represent phenomena that change over time. Time-persistent representations show a range of values over time. Time-implicit representations also show a range of values but not the specific times when…

  18. Developing representations of compound stimuli

    NARCIS (Netherlands)

    I. Visser; M.E.J. Raijmakers

    2012-01-01

    Classification based on multiple dimensions of stimuli is usually associated with similarity-based representations, whereas uni-dimensional classifications are associated with rule-based representations. This paper studies classification of stimuli and category representations in school-aged childre

  19. [Time perceptions and representations].

    Science.gov (United States)

    Tordjman, S

    2015-09-01

    Representations of time and time measurements depend on subjective constructs that vary according to changes in our concepts, beliefs, societal needs and technical advances. Similarly, the past, the future and the present are subjective representations that depend on each individual's psychic time and biological time. Therefore, there is no single, one-size-fits-all time for everyone, but rather a different, subjective time for each individual. We need to acknowledge the existence of different inter-individual times but also intra-individual times, to which different functions and different rhythms are attached, depending on the system of reference. However, the construction of these time perceptions and representations is influenced by objective factors (physiological, physical and cognitive) related to neuroscience which will be presented and discussed in this article. Thus, studying representation and perception of time lies at the crossroads between neuroscience, human sciences and philosophy. Furthermore, it is possible to identify several constants among the many and various representations of time and their corresponding measures, regardless of the system of time reference. These include the notion of movements repeated in a stable rhythmic pattern involving the recurrence of the same interval of time, which enables us to define units of time of equal and invariable duration. This rhythmicity is also found at a physiological level and contributes through circadian rhythms, in particular the melatonin rhythm, to the existence of a biological time. Alterations of temporality in mental disorders will be also discussed in this article illustrated by certain developmental disorders such as autism spectrum disorders. In particular, the hypothesis will be developed that children with autism would need to create discontinuity out of continuity through stereotyped behaviors and/or interests. This discontinuity repeated at regular intervals could have been

  20. The field representation language.

    Science.gov (United States)

    Tsafnat, Guy

    2008-02-01

    The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field. PMID:17434811