WorldWideScience

Sample records for inspiratory muscle training

  1. Inspiratory muscle training in patients with cystic fibrosis

    NARCIS (Netherlands)

    de Jong, W.; van Aalderen, W.M.C.; Kraan, J.; Koeter, G.H.; van der Schans, C.P.

    Little information is available about the effects of inspiratory muscle training in patients with cystic fibrosis (CF). In this study the effects of inspiratory-threshold loading in patients with CF on strength and endurance of the inspiratory muscles, pulmonary function, exercise capacity, dyspnoea

  2. Inspiratory muscle training in patients with Amyotrophic Lateral Sclerosis: A systematic review.

    Science.gov (United States)

    Eidenberger, Margit; Nowotny, Silvia

    2014-01-01

    Amyotrophic Lateral Sclerosis is a neurodegenerative disease with rapid involvement of the inspiratory muscles, leading to respiratory insufficiency. Death often occurs by aspiration and pneumonia. Endurance- and strength therapy within ALS are discussed controversially. To review the current literature to assess the efficacy of inspiratory muscle training for ALS. Systematic review, using databases as PubMed, PEDro, Cochrane and Google Scholar. Inspiratory muscle training vs. sham training or inspiratory muscle training alone. Inspiratory muscle strength, dyspnoea, quality of life and survival time. Four studies could be included in this review, two RCT's, one pre-experimental study and one with a historical control group. In total 73 patients underwent inspiratory muscle training. Studies varied in onset of the training, the training protocol and the outcomes measured. At time, there is limited evidence that inspiratory muscle training leads to strengthening of inspiratory muscles in ALS. Improvements made were minor, in only a few parameters and also in control groups. Survival time was significantly longer in the experimental group in one study. Interesting suppositions (diaphragm training vs. other IM training, improvement of chest wall and lung compliance) need to be examined in robustly designed future trials, defining exact therapeutic windows and interventions.

  3. The effect of the inspiratory muscle training on functional ability in stroke patients.

    Science.gov (United States)

    Jung, Nam-Jin; Na, Sang-Su; Kim, Seung-Kyu; Hwangbo, Gak

    2017-11-01

    [Purpose] This study was to find out an inspiratory muscle training (IMT) program therapeutic effects on stroke patients' functional ability. [Subjects and Methods] Twenty stroke patients were assigned to one of two groups: inspiratory muscle training (n=10), and control (n=10), randomization. The inspiratory muscle training participants undertook an exercise program for 30 minute per times, 5 times a week for 6 weeks. The investigator measured the patients' trunk impairment scale (TIS) and 6 minute walking test (6MW) for functional ability before and after IMT. [Results] The TIS appeared some significant differences in both groups before and after the training. The 6MW test showed some significant differences in the inspiratory muscle training group, but didn't show any significant difference in the control group. And the differences in both groups after depending the inspiratory muscle training were significantly found in the tests of TIS and 6MW test [Conclusion] The results showed that the inspiratory muscle training in stroke patients are correlated with the trunk stability and locomotion ability, suggesting that physical therapist must take into consideration the inspiratory muscle training, as well as functional training to improve physical function in stroke patients.

  4. Inspiratory muscle training in bronchiectasis patients: a prospective randomized controlled study.

    Science.gov (United States)

    Liaw, Mei-Yun; Wang, Yi-Hsi; Tsai, Yu-Chin; Huang, Kuo-Tung; Chang, Pei-Wen; Chen, Yung-Che; Lin, Meng-Chih

    2011-06-01

    To investigate the efficacy and feasibility of home-based inspiratory muscle training in patients with bronchiectasis. A prospective, single-blind, randomized, controlled study. Outpatient clinic of a tertiary care medical centre. Twenty-six patients with bronchiectasis were randomly divided into inspiratory muscle training and control groups. In the inspiratory muscle training group (n = 13), the training programme started with an intensity of 30% maximal inspiratory pressure (MIP), which was increased by 2 cmH(2)O each week, for 30 minutes daily, 5 days a week for eight weeks. The control group (n = 13) did not receive inspiratory muscle training. Main outcome measures included spirometry, resting oxyhaemoglobin saturation by pulse oximetry (SpO(2)), lowest SpO(2) and Borg Scale during 6-minute walking tests, 6-minute walking distance (6MWD), 6-minute walking work (6M(work)), MIP, maximal expiratory pressure (MEP) and St George's Respiratory Questionnaire. There were significant differences in change from baseline in 6MWD (411.9 (133.5) vs. 473.2 (117.2) m, P = 0.021), 6M(work) (21 051.0 (8286.7) vs. 23 915.5 (8343.0) kg-m, P = 0.022), MIP (60.8 (21.8) vs. 84.6 (29.0) cmH(2)O, P = 0.004), and MEP (72.3 (31.1) vs. 104.2 (35.7) cmH(2)O, P = 0.004) in the inspiratory muscle training group. Significant improvements in both MIP (23.8 (25.3) vs. 2.3 (16.4) cmH(2)O, adjusted P-value = 0.005) and MEP (31.9 (30.8) vs. 11.5 (20.8) cmH(2)O, adjusted P-value = 0.038) levels after adjusting for age by linear regression analysis were observed between groups. An eight-week home-based inspiratory muscle training is feasible and effective in improving both inspiratory and expiratory muscle strength, but has no effect on respiratory function and quality of life in patients with bronchiectasis.

  5. Systematic Review of Inspiratory Muscle Training After Cerebrovascular Accident.

    Science.gov (United States)

    Martín-Valero, Rocío; De La Casa Almeida, Maria; Casuso-Holgado, Maria Jesus; Heredia-Madrazo, Alfonso

    2015-11-01

    This systematic review examines levels of evidence and recommendation grades of various therapeutic interventions of inspiratory muscle training in people who have had a stroke. Benefits from different levels of force and resistance in respiratory muscles are shown in this population. This review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) directives and was completed in November 2014. The search limits were studies published in English between 2004 and 2014. Relevant studies were searched for in MEDLINE, PEDro, OAIster, Scopus, PsycINFO, Web of Knowledge, CINAHL, SPORTDiscus, DOAJ, Cochrane, Embase, Academic Search Complete, Fuente Académica, and MedicLatina. Initially, 20 articles were identified. After analyzing all primary documents, 14 studies were excluded. Only 6 studies were relevant to this review. Three different types of interventions were found (maximum inspiratory training, controlled training, and nonintervention) in 3 different groups. One specific study compared 3 inspiratory muscle training groups with a group of breathing exercises (diaphragmatic exercises with pursed lips) and a control group. Future long-term studies with larger sample sizes are needed. It is necessary to apply respiratory muscle training as a service of the national health system and to consider its inclusion in the conventional neurological program. Copyright © 2015 by Daedalus Enterprises.

  6. Inspiratory muscle training is used in some intensive care units, but many training methods have uncertain efficacy: a survey of French physiotherapists

    Directory of Open Access Journals (Sweden)

    Tristan Bonnevie

    2015-10-01

    Full Text Available Questions: How common is inspiratory muscle training by physiotherapists in the intensive care unit (ICU? Which patients receive the training? What methods are used to administer the training? Is maximal inspiratory pressure used to evaluate the need for the training and the patient's outcome after training? Design: Cross-sectional survey of all ICUs in France. Participants: Two hundred and sixty-five senior physiotherapists. Results: The response rate was 99% among eligible units. Therapist experience in ICU was significantly associated with the use of inspiratory muscle training (p = 0.02. Therapists mainly used inspiratory muscle training either systematically or specifically in patients who failed to wean from mechanical ventilation. The training was used significantly more in non-sedated patients (p < 0.0001. The most commonly nominated technique that respondents claimed to use to apply the training was controlled diaphragmatic breathing (83% of respondents, whereas 13% used evidence-based methods. Among those who applied some form of inspiratory muscle training, 16% assessed maximal inspiratory pressure. Six respondents (2%, 95% CI 1 to 5 used both an evidence-based method to administer inspiratory muscle training and the recommended technique for assessment of inspiratory muscle strength. Conclusion: Most physiotherapists in French ICUs who apply inspiratory muscle training use methods of uncertain efficacy without assessment of maximal inspiratory pressure. Further efforts need to be made in France to disseminate information regarding evidence-based assessment and techniques for inspiratory muscle training in the ICU. The alignment of inspiratory muscle training practice with evidence could be investigated in other regions. [Bonnevie T, Villiot-Danger J-C, Gravier F-E, Dupuis J, Prieur G, Médrinal C (2015 Inspiratory muscle training is used in some intensive care units, but many training methods have uncertain efficacy: a survey of

  7. "Functional" Inspiratory and Core Muscle Training Enhances Running Performance and Economy.

    Science.gov (United States)

    Tong, Tomas K; McConnell, Alison K; Lin, Hua; Nie, Jinlei; Zhang, Haifeng; Wang, Jiayuan

    2016-10-01

    Tong, TK, McConnell, AK, Lin, H, Nie, J, Zhang, H, and Wang, J. "Functional" inspiratory and core muscle training enhances running performance and economy. J Strength Cond Res 30(10): 2942-2951, 2016-We compared the effects of two 6-week high-intensity interval training interventions. Under the control condition (CON), only interval training was undertaken, whereas under the intervention condition (ICT), interval training sessions were followed immediately by core training, which was combined with simultaneous inspiratory muscle training (IMT)-"functional" IMT. Sixteen recreational runners were allocated to either ICT or CON groups. Before the intervention phase, both groups undertook a 4-week program of "foundation" IMT to control for the known ergogenic effect of IMT (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets per day, 6 days per week). The subsequent 6-week interval running training phase consisted of 3-4 sessions per week. In addition, the ICT group undertook 4 inspiratory-loaded core exercises (10 repetitions per set, 2 sets per day, inspiratory load set at 50% post-IMT P0) immediately after each interval training session. The CON group received neither core training nor functional IMT. After the intervention phase, global inspiratory and core muscle functions increased in both groups (p ≤ 0.05), as evidenced by P0 and a sport-specific endurance plank test (SEPT) performance, respectively. Compared with CON, the ICT group showed larger improvements in SEPT, running economy at the speed of the onset of blood lactate accumulation, and 1-hour running performance (3.04% vs. 1.57%, p ≤ 0.05). The changes in these variables were interindividually correlated (r ≥ 0.57, n = 16, p ≤ 0.05). Such findings suggest that the addition of inspiratory-loaded core conditioning into a high-intensity interval training program augments the influence of the interval program on endurance running performance and that this may be

  8. Benefits of short inspiratory muscle training on exercise capacity, dyspnea, and inspiratory fraction in COPD patients

    Directory of Open Access Journals (Sweden)

    Barakat Shahin

    2008-10-01

    Full Text Available Barakat Shahin1, Michele Germain2, Alzahouri Kazem3, Guy Annat41Department of Physiology, University of Claude Bernard Lyon I, Lyon, France; 2Chef of the Service of EFR, Hospital of the Croix-Rousse at Lyon, France; 3Department of Medical Informatics, Hospital of St. Julien, Nancy, France; 4Department of Physiology, UFR Médecine Lyon Grange-Blanche Université Claude Bernard Lyon I, INSERM ESPRI ERI 22, Lyon, FranceAbstract: Static lung hyperinflation has important clinical consequences in patients with chronic obstructive pulmonary disease (COPD. Given that most of these patients have respiratory and peripheral muscle weakness, dyspnea and functional exercise capacity may improve as a result of inspiratory muscle training (IMT. The present study is designed to investigate the benefits of a short outpatient program of IMT on inspiratory muscle performance, exercise capacity, perception of dyspnea, and the inspiratory fraction (IF. Thirty patients (24 males, 6 females with significant COPD (forced expiratory volume in one second [FEV1] = 46.21% ± 6.7% predicted, FEV1 = 33.6% ± 8.04% predicted were recruited for this study and had 3 months of IMT (30 minutes/day for 6 days/week in an outpatient clinic. Following IMT, there was a statistically significant increase in inspiratory muscle performance (an increase of the maximal inspiratory pressure from 59% ± 19.1% to 79% ± 21.85% predicted; p = 0.0342, a decrease in dyspnea (from 5.8 ± 0.78 to 1.9 ± 0.57; p = 0.0001, an increase in the distance walked during the 6 minute walk test, from 245 ± 52.37 m to 302 ± 41.30 m, and finally an increase in the IF (the new prognostic factor in COPD from 27.6 ± 9.7% to 31.4% ± 9.8%. The present study concludes that in patients with significant COPD, IMT results in improvement in performance, exercise capacity, sensation of dyspnea, and moreover an improvement in the IF prognostic factor.Keywords: inspiratory muscle training, dyspnea, inspiratory

  9. Benefits of combining inspiratory muscle with 'whole muscle' training in children with cystic fibrosis: a randomised controlled trial

    NARCIS (Netherlands)

    Santana-Sosa, Elena; Gonzalez-Saiz, Laura; Groeneveld, Iris F.; Villa-Asensi, José R.; Barrio Gómez de Aguero, María I.; Fleck, Steven J.; López-Mojares, Luis M.; Pérez, Margarita; Lucia, Alejandro

    2014-01-01

    The purpose of this study (randomised controlled trial) was to assess the effects of an 8-week combined 'whole muscle' (resistance+aerobic) and inspiratory muscle training (IMT) on lung volume, inspiratory muscle strength (PImax) and cardiorespiratory fitness (VO2 peak) (primary outcomes), and

  10. Inspiratory Muscle Training and Arterial Blood Oxygen Saturation in Patients With Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Bakhshandeh Bavarsad

    2015-01-01

    Full Text Available Background One of the problems of the patients with chronic obstructive pulmonary disease (COPD is the weakness of the respiratory muscles that causes oxygen desaturation at rest and activity and decreases exercise tolerance. Objectives This study aimed to investigate the effect of inspiratory muscle training on arterial oxygen saturation (SPO2. Patients and Methods Forty patients with mild to very severe COPD were recruited for this study, which is a randomized control trail. The patients were randomized to IMT (inspiratory muscle training and control group. Training was performed with Respivol (a kind of inspiratory muscle trainer for 8 weeks (15 min/d for 6 d/week. SPSS software version 16 was used to analyze the data by performing independent t test, paired t test, and Fisher exact test. Results Results showed that, after 8 weeks of inspiratory muscle training, there was a little increase (but not statistically significant improvement in SPO2 (from 92.6 ± 8.71 % to 95.13 ± 7.08 %, with P = 0.06, whereas it remained unchanged in the control group (from 96.0 ± 3.46 % to 96.4 ± 3.35 % with P = 0.51. No statistically significant difference was seen between the two groups (P > 0.05. Conclusions Although inspiratory muscles training can prevent desaturation, which is caused by activity, it fails to improve it.

  11. Inspiratory muscle training in pediatrics: main indications and technical characteristics of the protocols

    Directory of Open Access Journals (Sweden)

    Cristhiele Tais Woszezenki

    Full Text Available Abstract Introduction: Inspiratory muscle training (IMT is a resource widely used in pediatrics. However, there is great variability in relation to the characteristics of the protocols used. Objective: To identify the main clinical conditions and IMT protocols used in the pediatric age group. Methods: Integrative review of the literature by searching on Pubmed, Scielo, PEDro and EMBASE databases using the following strategy: threshold OR inspiratory muscle training OR muscle endurance OR muscle resistance OR endurance training OR maximal inspiratory pressure AND respiratory muscle. We have selected clinical trials that performed IMT in children and adolescents (0 to 18 years old, with a clinical diagnosis, and published in English, Portuguese and Spanish. Results: 17 studies were included. From these, 11 underwent IMT in patients with some neuromuscular disorder, being Duchenne Muscular Dystrophy the most common. The selected articles included a total sample of 327 participants. As for the characteristics of the protocols, 7 performed strength training, 5 endurance and 5 strength and endurance. The training load ranged from 30 to 80% of maximal inspiratory pressure. Moreover, 8 studies performed IMT twice daily and the session duration and the training period varied between 10 and 30 minutes, and from 3 weeks to 24 months, respectively. Conclusion: The IMT was used more frequently in patients with some neuromuscular disorder. Although there is no consensus as to the characteristics of the protocols, the choice of the load should take into account the purpose of IMT and the disease severity.

  12. Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD

    Directory of Open Access Journals (Sweden)

    Petrovic M

    2012-11-01

    Full Text Available Milos Petrovic,1 Michael Reiter,2 Harald Zipko,3 Wolfgang Pohl,1 Theodor Wanke11Pulmonary Department and Karl Landsteiner Institute for Clinical and Experimental Pulmology, Hietzing Hospital, Vienna, Austria; 2Department of Respiratory and Critical Care Medicine, Otto Wagner Hospital, Vienna, Austria; 3FH Campus Vienna, University of Applied Sciences – Health Department, Vienna, AustriaAbstract: Dynamic hyperinflation has important clinical consequences in patients with chronic obstructive pulmonary disease (COPD. Given that most of these patients have respiratory and peripheral muscle weakness, dyspnea and functional exercise capacity may improve as a result of inspiratory muscle training (IMT. The aim of the study was to analyze the effects of IMT on exercise capacity, dyspnea, and inspiratory fraction (IF during exercise in patients with COPD. Daily inspiratory muscle strength and endurance training was performed for 8 weeks in 10 patients with COPD GOLD II and III. Ten patients with COPD II and III served as a control group. Maximal inspiratory pressure (Pimax and endurance time during resistive breathing maneuvers (tlim served as parameter for inspiratory muscle capacity. Before and after training, the patients performed an incremental symptom limited exercise test to maximum and a constant load test on a cycle ergometer at 75% of the peak work rate obtained in the pretraining incremental test. ET was defined as the duration of loaded pedaling. Following IMT, there was a statistically significant increase in inspiratory muscle performance of the Pimax from 7.75 ± 0.47 to 9.15 ± 0.73 kPa (P < 0.01 and of tlim from 348 ± 54 to 467 ± 58 seconds (P < 0.01. A significant increase in IF, indicating decreased dynamic hyperinflation, was observed during both exercise tests. Further, the ratio of breathing frequency to minute ventilation (bf/V'E decreased significantly, indicating an improved breathing pattern. A significant decrease in

  13. The effectiveness of combining inspiratory muscle training with manual therapy and a therapeutic exercise program on maximum inspiratory pressure in adults with asthma: a randomized clinical trial.

    Science.gov (United States)

    López-de-Uralde-Villanueva, Ibai; Candelas-Fernández, Pablo; de-Diego-Cano, Beatriz; Mínguez-Calzada, Orcález; Del Corral, Tamara

    2018-06-01

    The objective of this study was to evaluate whether the addition of manual therapy and therapeutic exercise protocol to inspiratory muscle training was more effective in improving maximum inspiratory pressure than inspiratory muscle training in isolation. This is a single-blinded, randomized controlled trial. In total, 43 patients with asthma were included in this study. The patients were allocated into one of the two groups: (1) inspiratory muscle training ( n = 21; 20-minute session) or (2) inspiratory muscle training (20-minute session) combined with a program of manual therapy (15-minute session) and therapeutic exercise (15-minute session; n = 22). All participants received 12 sessions, two days/week, for six weeks and performed the domiciliary exercises protocol. The main measures such as maximum inspiratory pressure, spirometric measures, forward head posture, and thoracic kyphosis were recorded at baseline and after the treatment. For the per-protocol analysis, between-group differences at post-intervention were observed in maximum inspiratory pressure (19.77 cmH 2 O (11.49-28.04), P < .05; F = 22.436; P < .001; η 2 p  = 0.371) and forward head posture (-1.25 cm (-2.32 to -0.19), P < .05; F = 5.662; P = .022; η 2 p  = 0.13). The intention-to-treat analysis showed the same pattern of findings. The inspiratory muscle training combined with a manual therapy and therapeutic exercise program is more effective than its application in isolation for producing short-term maximum inspiratory pressure and forward head posture improvements in patients with asthma.

  14. Effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation: a randomized controlled trial.

    Science.gov (United States)

    Zeren, Melih; Demir, Rengin; Yigit, Zerrin; Gurses, Hulya N

    2016-12-01

    To investigate the effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. Prospective randomized controlled single-blind study. Cardiology department of a university hospital. A total of 38 patients with permanent atrial fibrillation were randomly allocated to either a treatment group (n = 19; age 66.2 years (8.8)) or a control group (n = 19; age 67.1 years (6.4)). The training group received inspiratory muscle training at 30% of maximal inspiratory pressure for 15 minutes twice a day, 7 days a week, for 12 weeks alongside the standard medical treatment. The control group received standard medical treatment only. Spirometry, maximal inspiratory and expiratory pressures and 6-minute walking distance was measured at the beginning and end of the study. There was a significant increase in maximal inspiratory pressure (27.94 cmH 2 O (8.90)), maximal expiratory pressure (24.53 cmH 2 O (10.34)), forced vital capacity (10.29% (8.18) predicted), forced expiratory volume in one second (13.88% (13.42) predicted), forced expiratory flow 25%-75% (14.82% (12.44) predicted), peak expiratory flow (19.82% (15.62) predicted) and 6-minute walking distance (55.53 m (14.13)) in the training group (p  0.05). Inspiratory muscle training can improve pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. © The Author(s) 2016.

  15. Inspiratory muscle training in difficult to wean patients: work it harder, make it better, do it faster, makes us stronger.

    Science.gov (United States)

    Nava, Stefano; Fasano, Luca

    2011-01-01

    Weaning from prolonged mechanical ventilation is a complex, time-consuming process that involves the loss of force/generating capacity of the inspiratory muscle. In their study 'Inspiratory muscle strength training improves the outcome in failure to wean patients: a randomized trial', Martin and colleagues showed that the use of an inspiratory muscle strength program increased the maximal inspiratory pressure and improved weaning success compared to a control group. The study was performed mainly in post-surgical patients, however, and the results, therefore, may not be generalizable to other subsets of patients, such as those with chronic obstructive pulmonary disease or congestive heart failure. Indeed, the study applied so-called 'strength training' and not 'endurance training', which may be more appropriate in certain circumstances.

  16. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients

    Directory of Open Access Journals (Sweden)

    Wang K

    2017-09-01

    Full Text Available Kai Wang,1,* Guang-qiao Zeng,2,* Rui Li,1,* Yu-wen Luo,1 Mei Wang,1 Yu-he Hu,1 Wen-hui Xu,1 Lu-qian Zhou,2 Rong-chang Chen,2 Xin Chen1 1Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; 2Department of Respiratory Medicine, The State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China *These authors contributed equally to this work Background: Cycle ergometer training (CET has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment.Materials and methods: Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group, 27 received 8 weeks of CET alone (CET group, and 26 only received 8 weeks of free walking (control group. Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program.Results: Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05 after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O

  17. Effect of inspiratory muscle training with load compared with sham training on blood pressure in individuals with hypertension: study protocol of a double-blind randomized clinical trial.

    Science.gov (United States)

    Posser, Simone Regina; Callegaro, Carine Cristina; Beltrami-Moreira, Marina; Moreira, Leila Beltrami

    2016-08-02

    Hypertension is a complex chronic condition characterized by elevated arterial blood pressure. Management of hypertension includes non-pharmacologic strategies, which may include techniques that effectively reduce autonomic sympathetic activity. Respiratory exercises improve autonomic control over cardiovascular system and attenuate muscle metaboreflex. Because of these effects, respiratory exercises may be useful to lower blood pressure in subjects with hypertension. This randomized, double-blind clinical trial will test the efficacy of inspiratory muscle training in reducing blood pressure in adults with essential hypertension. Subjects are randomly allocated to intervention or control groups. Intervention consists of inspiratory muscle training loaded with 40 % of maximum inspiratory pressure, readjusted weekly. Control sham intervention consists of unloaded exercises. Systolic and diastolic blood pressures are co-primary endpoint measures assessed with 24 h ambulatory blood pressure monitoring. Secondary outcome measures include cardiovascular autonomic control, inspiratory muscle metaboreflex, cardiopulmonary capacity, and inspiratory muscle strength and endurance. Previously published work suggests that inspiratory muscle training reduces blood pressure in persons with hypertension, but the effectiveness of this intervention is yet to be established. We propose an adequately sized randomized clinical trial to test this hypothesis rigorously. If an effect is found, this study will allow for the investigation of putative mechanisms to mediate this effect, including autonomic cardiovascular control and metaboreflex. ClinicalTrials.gov NCT02275377 . Registered on 30 September 2014.

  18. Extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Cader SA

    2012-10-01

    Full Text Available Samária Ali Cader,1 Rodrigo Gomes de Souza Vale,1 Victor Emmanuel Zamora,2 Claudia Henrique Costa,2 Estélio Henrique Martin Dantas11Laboratory of Human Kinetics Bioscience, Federal University of Rio de Janeiro State, 2Pedro Ernesto University Hospital, School of Medicine, State University of Rio de Janeiro, Rio de Janeiro, BrazilBackground: The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT and identify predictors of successful weaning.Methods: Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14 that received conventional physiotherapy plus IMT with a Threshold IMT® device or to a control group (n = 14 that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients' Tobin index values were measured using a ventilometer.Results: The maximum inspiratory pressure increased significantly (by 7 cm H2O, 95% confidence interval [CI] 4–10, and the Tobin index decreased significantly (by 16 breaths/min/L, 95% CI −26 to 6 in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (Χ2 = 1.47; P = 0.20. However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08–18.06. The receiver

  19. Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players.

    Science.gov (United States)

    Goosey-Tolfrey, V; Foden, E; Perret, C; Degens, H

    2010-07-01

    There is considerable evidence that respiratory muscle training improves pulmonary function, quality of life and exercise performance in healthy athletic populations. The benefits for wheelchair athletes are less well understood. Therefore, in the present study, influence of inspiratory muscle training (IMT) on respiratory function and repetitive propulsive sprint performance in wheelchair basketball players was examined. Using a placebo-controlled design, 16 wheelchair athletes were divided to an experimental (IMT; n=8) or placebo (sham-IMT; n=8) group based on selective grouping criteria. 30 dynamic breaths were performed by the IMT group twice daily at a resistance equivalent to 50% maximum inspiratory pressure (MIP), and 60 slow breaths were performed by the sham-IMT group once a day at 15% MIP for a period of 6 weeks. In the IMT group, both MIP and maximum expiratory pressure (17% and 23%, respectively; ptraining device suggested "less breathlessness" and "less tightness in the chest during the training". Although there was no improvement in sprint performance, an improved respiratory muscle function and quality of life were reported by participants in both the IMT and sham-IMT groups.

  20. Inspiratory muscle load and capacity in chronic heart failure

    OpenAIRE

    Hart, N; Kearney, M T; Pride, N B; Green, M; Lofaso, F; Shah, A M; Moxham, J; Polkey, M I

    2004-01-01

    Background: Although breathlessness is common in chronic heart failure (CHF), the role of inspiratory muscle dysfunction remains unclear. We hypothesised that inspiratory muscle endurance, expressed as a function of endurance time (Tlim) adjusted for inspiratory muscle load and inspiratory muscle capacity, would be reduced in CHF.

  1. Extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training: a randomized clinical trial.

    Science.gov (United States)

    Cader, Samária Ali; de Souza Vale, Rodrigo Gomes; Zamora, Victor Emmanuel; Costa, Claudia Henrique; Dantas, Estélio Henrique Martin

    2012-01-01

    The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT) and identify predictors of successful weaning. Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14) that received conventional physiotherapy plus IMT with a Threshold IMT(®) device or to a control group (n = 14) that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients' Tobin index values were measured using a ventilometer. The maximum inspiratory pressure increased significantly (by 7 cm H(2)O, 95% confidence interval [CI] 4-10), and the Tobin index decreased significantly (by 16 breaths/ min/L, 95% CI -26 to 6) in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (χ(2) = 1.47; P = 0.20). However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08-18.06). The receiver-operating characteristic curve showed an area beneath the curve of 0.877 ± 0.06 for the Tobin index and 0.845 ± 0.07 for maximum inspiratory pressure. The IMT intervention significantly increased maximum inspiratory pressure and significantly reduced the Tobin index; both measures are considered to be good extubation indices. IMT was associated with a reduction in noninvasive positive

  2. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of pilates method on inspiratory and expiratory muscle strength in the elderly

    Directory of Open Access Journals (Sweden)

    Beatriz Mendes Tozim

    2018-03-01

    Full Text Available With aging, the respiratory muscle strength decreases and the pilates method is a technique that uses respiration as one of its principles. The present study has the aim of analyzing the influence of the pilates method on respiratory muscle strength in older women. For the evaluation of respiratory muscle strength (inspiratory and expiratory, manovacuometer was used. Thirty-one older women were divided into two groups: 14 participated in the pilates group and 17 in the control group. Participants of the pilates group performed 16 sessions of pilates method with an hour of training, twice week for eight weeks. The control group participated in four educational lectures for eight weeks. For statistical analysis, Shapiro-Wilk, ANOVA for repeated measures (p <0.05 and Cohen’s D index were performed. The results showed significant difference and the mean effect for the Cohen’s D index expiratory muscle strength of the pilates group when comparing before (69.71 ± 25.48 and after (85.23 ± 22.21 training (p<0.05 with an increase of 23%. The results of inspiratory muscle strength were not significant but presented an average effect for the Cohen’s D index for the pilates group before (69.71 ± 35.46 and after (88.00 ± 34.87 training, with an increase of 27%. The control group did not present significant differences for the variables evaluated. It could be concluded that the pilates method is effective in improving expiratory muscle strength and provides positive effects on the increase in inspiratory muscle strength.

  4. Functional Magnetic Stimulation of Inspiratory and Expiratory Muscles in Subjects With Tetraplegia.

    Science.gov (United States)

    Zhang, Xiaoming; Plow, Ela; Ranganthan, Vinoth; Huang, Honglian; Schmitt, Melissa; Nemunaitis, Gregory; Kelly, Clay; Frost, Frederick; Lin, Vernon

    2016-07-01

    voluntary inspiratory and expiratory functions. FMS may be a noninvasive technology for respiratory muscle training in persons with tetraplegia. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Diagnostic methods to assess inspiratory and expiratory muscle strength

    Directory of Open Access Journals (Sweden)

    Pedro Caruso

    2015-04-01

    Full Text Available Impairment of (inspiratory and expiratory respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation; and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength.

  6. Treinamento de músculos inspiratórios em pacientes com quadriplegia Inspiratory muscle training in quadriplegic patients

    Directory of Open Access Journals (Sweden)

    Janne Marques Silveira

    2010-06-01

    Full Text Available OBJETIVO: Determinar se o treinamento de músculos inspiratórios pode aumentar a força e endurance desses músculos em pacientes com quadriplegia. MÉTODOS: Oito pacientes quadriplégicos (7 homens e 1 mulher com lesão medular cervical entre C4 e C7 foram submetidos ao treinamento de músculos inspiratórios utilizando-se um resistor de carga linear ajustado em 30% da PImáx. As sessões de treinamento foram realizadas com os pacientes sentados 5 vezes por semana por 8 semanas. Tempo de endurance, PImáx, PEmáx e CVF foram medidos antes do treinamento e nas semanas 4 e 8. RESULTADOS: Em comparação ao valor basal médio, houve um aumento da PImáx, mensurada na posição sentada, nas semanas 4 e 8 (-83,0 ± 18,9 cmH2O vs. -104,0 ± 19,4 e -111,3 ± 22,7 cmH2O. Houve aumento da PEmáx, também na posição sentada, na semana 4 (de 36,8 ± 8,1 a 42,6 ± 8,8 cmH2O. Houve uma melhora na FVC na 4ª semana (de 2,1 ± 0,8 a 2,5 ± 0,6 L, representando um incremento de 24 ± 22%. O tempo de endurance (sentado não apresentou um aumento significativo entre o momento basal e a semana 8 (29,8 ± 21,0 min vs. 35,9 ± 15,5 min; aumento de 173 ± 233%. CONCLUSÕES: Pacientes com quadriplegia podem se beneficiar com o treinamento com baixas cargas (30% da PImáx, com melhora da força dos músculos inspiratórios, CVF e efetividade dos músculos expiratórios.OBJECTIVE: To determine whether inspiratory muscle training can increase strength and endurance of these muscles in quadriplegic patients. METHODS: Eight quadriplegic patients (7 males and 1 female with injury to the lower cervical spine (segments C4-C7 were submitted to inspiratory muscle training with a threshold inspiratory muscle trainer adjusted to 30% of MIP. The training sessions were carried out with the patients in a sitting position, 5 days a week for 8 weeks. Endurance time, MIP, MEP and FVC were determined at baseline, week 4 and week 8. RESULTS: In comparison with the mean baseline value

  7. Neuromuscular electrical stimulation and inspiratory muscle training as potential adjunctive rehabilitation options for patients with heart failure.

    Science.gov (United States)

    Arena, Ross; Pinkstaff, Sherry; Wheeler, Emma; Peberdy, Mary Ann; Guazzi, Marco; Myers, Jonathan

    2010-01-01

    Aerobic and resistance exercise training programs produce an abundance of physiologic and clinical benefits in patients with heart failure (HF). Improved maximal aerobic capacity, submaximal aerobic endurance, muscle force production, perceived quality of life, and skeletal muscle characteristics are among the more established outcomes resulting from these rehabilitation techniques. Moreover, both aerobic and resistance exercise training appear to portend a low risk to patients with HF when appropriate exercise prescription methods are followed. While the aforementioned training techniques will undoubtedly continue to be at the center of a well-formulated rehabilitation program, other adjunctive interventions, which are presently underutilized in clinical practice, may prove beneficial in patients with HF. Specifically, both neuromuscular electrical stimulation (NMES) and inspiratory muscle training (IMT) appear to significantly improve several physiologic, exercise, symptomatologic, and quality-of-life parameters. NMES targets skeletal muscle abnormalities, whereas IMT primarily targets the weakened respiratory musculature, both often encountered in patients with HF. A PubMed search using relevant key words identified 19 original investigations examining the impact of NMES (13 studies) and IMT (6 studies) training programs in patients with HF. The resultant review (1) provides a summary of the original research outcomes of both NMES and IMT in patients with HF; (2) addresses current research gaps, providing a direction for future investigations; and (3) provides clinical scenarios where NMES and IMT may prove to be beneficial during the rehabilitation of patients with HF.

  8. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    Science.gov (United States)

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (pcooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of a pre-operative home-based inspiratory muscle training programme on perceived health-related quality of life in patients undergoing coronary artery bypass graft surgery.

    Science.gov (United States)

    Valkenet, K; Trappenburg, J C A; Hulzebos, E H; van Meeteren, N L U; Backx, F J G

    2017-09-01

    Pre-operative inspiratory muscle training has been shown to decrease the incidence of postoperative pneumonia and length of hospital stay in patients undergoing coronary artery bypass graft surgery (CABG). This study investigated if this decrease acted as a mediator on the time course of quality of life. Complementary analyses of a published randomised controlled trial. The initial trial included patients awaiting CABG surgery at a Dutch university hospital. The secondary analyses used data from the initial trial for patients who had completed at least one quality-of-life questionnaire. Participants were allocated at random to the intervention group or the usual care group. The intervention group followed a home-based pre-operative inspiratory muscle training programme. Quality of life was measured at five time points. Between-group differences in quality-of-life scores were analysed using mixed linear modelling. The secondary analyses used data for 235 patients. In line with the initial trial, pneumonia and length of hospital stay were decreased significantly in the intervention group. The time courses for all patients showed significant improvements in quality of life after surgery compared with baseline. No significant differences in quality of life were observed over time between the two groups. Despite decreased incidence of pneumonia and length of hospital stay in the intervention group, this study did not find any improvements in quality of life due to the pre-operative home-based inspiratory muscle training programme. Clinical trial registration number ISRCTN17691887. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  10. Are glucose levels, glucose variability and autonomic control influenced by inspiratory muscle exercise in patients with type 2 diabetes? Study protocol for a randomized controlled trial.

    Science.gov (United States)

    Schein, Aso; Correa, Aps; Casali, Karina Rabello; Schaan, Beatriz D

    2016-01-20

    Physical exercise reduces glucose levels and glucose variability in patients with type 2 diabetes. Acute inspiratory muscle exercise has been shown to reduce these parameters in a small group of patients with type 2 diabetes, but these results have yet to be confirmed in a well-designed study. The aim of this study is to investigate the effect of acute inspiratory muscle exercise on glucose levels, glucose variability, and cardiovascular autonomic function in patients with type 2 diabetes. This study will use a randomized clinical trial crossover design. A total of 14 subjects will be recruited and randomly allocated to two groups to perform acute inspiratory muscle loading at 2 % of maximal inspiratory pressure (PImax, placebo load) or 60 % of PImax (experimental load). Inspiratory muscle training could be a novel exercise modality to be used to decrease glucose levels and glucose variability. ClinicalTrials.gov NCT02292810 .

  11. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial.

    Science.gov (United States)

    González-Saiz, Laura; Fiuza-Luces, Carmen; Sanchis-Gomar, Fabian; Santos-Lozano, Alejandro; Quezada-Loaiza, Carlos A; Flox-Camacho, Angela; Munguía-Izquierdo, Diego; Ara, Ignacio; Santalla, Alfredo; Morán, María; Sanz-Ayan, Paz; Escribano-Subías, Pilar; Lucia, Alejandro

    2017-03-15

    Pulmonary arterial hypertension is often associated with skeletal-muscle weakness. The purpose of this randomized controlled trial was to determine the effects of an 8-week intervention combining muscle resistance, aerobic and inspiratory pressure-load exercises on upper/lower-body muscle power and other functional variables in patients with this disease. Participants were allocated to a control (standard care) or intervention (exercise) group (n=20 each, 45±12 and 46±11years, 60% women and 10% patients with chronic thromboembolic pulmonary hypertension per group). The intervention included five, three and six supervised (inhospital) sessions/week of aerobic, resistance and inspiratory muscle training, respectively. The primary endpoint was peak muscle power during bench/leg press; secondary outcomes included N-terminal pro-brain natriuretic peptide levels, 6-min walking distance, five-repetition sit-to-stand test, maximal inspiratory pressure, cardiopulmonary exercise testing variables (e.g., peak oxygen uptake), health-related quality of life, physical activity levels, and safety. Adherence to training sessions averaged 94±0.5% (aerobic), 98±0.3% (resistance) and 91±1% (inspiratory training). Analysis of variance showed a significant interaction (group×time) effect for leg/bench press (Pexercise group (P0.1). We found a significant interaction effect (Pexercise. An 8-week exercise intervention including aerobic, resistance and specific inspiratory muscle training is safe for patients with pulmonary arterial hypertension and yields significant improvements in muscle power and other functional variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. DIFFERENT TYPES OF INSPIRATORY MUSCLE TRAINING PROVIDES BETTERMENT IN ALTERED PULMONARY FUNCTIONS IN UPPER THORACIC SPINAL CORD INJURIES

    Directory of Open Access Journals (Sweden)

    Muruganandam Periyasamy

    2016-08-01

    Full Text Available Background: Respiratory problems are usual in upper thoracic spinal cord injuries when compared to Lower thoracic spinal cord injuries. Generally there are frequent respiratory complications in the individuals with spinal cord injuries. The complications of the respiratory system are severe and more prevalent source of morbidity and mortality after the spinal cord injury due to the inefficient breathing capacity including inspiratory and expiratory abilities. The present study represents the inspiratory muscle training especially in upper thoracic spinal cord injury patients to assess the improvement in the pulmonary functions. Methods: Twenty five patients with the age between 25 -40 years with the upper spinal cord injuries were selected in the present study in order to assess the efficacy of the training. Several types of exercises were practiced including diaphragmatic breathing exercises, incentive spirometry, active cycle of breathing technique and weight training. COPD Conditions, Chest wall deformities, Hypertensive patients, Cardio vascular problems were excluded in the study. Results: The results from the study showed that significant changes were found in the patients treated with all the above mentioned techniques. Axillary level, nipple level, Xiphisternum levels were analysed and the results found to be significant after the treatment. Incentive spirometry and peak flow meter observations were also found to be significant when compare to the pretreatment. Conclusion: The present study conclude that the combined effect of incentive spriometry, diaphragmatic breathing exercises, and active cycle of breathing technique is more effective in improving the pulmonary functions in upper thoracic spinal cord injuries than single method efficiency.

  13. Specific inspiratory muscle warm-up enhances badminton footwork performance.

    Science.gov (United States)

    Lin, Hua; Tong, Tom Kwokkeung; Huang, Chuanye; Nie, Jinlei; Lu, Kui; Quach, Binh

    2007-12-01

    The effects of inspiratory muscle (IM) warm-up on IM function and on the maximum distance covered in a subsequent incremental badminton-footwork test (FWmax) were examined. Ten male badminton players were recruited to perform identical tests in three different trials in a random order. The control trial did not involve an IM warm-up, whereas the placebo and experimental trials did involve an IM warm-up consisting of two sets of 30-breath manoeuvres with an inspiratory pressure-threshold load equivalent to 15% (PLA) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In the IMW trial, IM function was improved with 7.8%+/-4.0% and 6.9%+/-3.5% increases from control found in maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD), respectively (pbadminton-footwork test. The improved footwork was partly attributable to the reduced breathless sensation resulting from the enhanced IM function, whereas the contribution of the concomitant reduction in [La-]b accumulation was relatively minor.

  14. Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of running.

    Science.gov (United States)

    Tong, Tom K; Fu, Frank H; Eston, Roger; Chung, Pak-Kwong; Quach, Binh; Lu, Kui

    2010-11-01

    This study examined the hypothesis that chronic (training) and acute (warm-up) loaded ventilatory activities applied to the inspiratory muscles (IM) in an integrated manner would augment the training volume of an interval running program. This in turn would result in additional improvement in the maximum performance of the Yo-Yo intermittent recovery test in comparison with interval training alone. Eighteen male nonprofessional athletes were allocated to either an inspiratory muscle loading (IML) group or control group. Both groups participated in a 6-week interval running program consisting of 3-4 workouts (1-3 sets of various repetitions of selected distance [100-2,400 m] per workout) per week. For the IML group, 4-week IM training (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets·d-1, 6 d·wk-1) was applied before the interval program. Specific IM warm-up (2 sets of 30 inspiratory efforts at 40% P0) was performed before each workout of the program. For the control group, neither IML was applied. In comparison with the control group, the interval training volume as indicated by the repeatability of running bouts at high intensity was approximately 27% greater in the IML group. Greater increase in the maximum performance of the Yo-Yo test (control: 16.9 ± 5.5%; IML: 30.7 ± 4.7% baseline value) was also observed after training. The enhanced exercise performance was partly attributable to the greater reductions in the sensation of breathlessness and whole-body metabolic stress during the Yo-Yo test. These findings show that the combination of chronic and acute IML into a high-intensity interval running program is a beneficial training strategy for enhancing the tolerance to high-intensity intermittent bouts of running.

  15. Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis.

    Science.gov (United States)

    Illi, Sabine K; Held, Ulrike; Frank, Irène; Spengler, Christina M

    2012-08-01

    Two distinct types of specific respiratory muscle training (RMT), i.e. respiratory muscle strength (resistive/threshold) and endurance (hyperpnoea) training, have been established to improve the endurance performance of healthy individuals. We performed a systematic review and meta-analysis in order to determine the factors that affect the change in endurance performance after RMT in healthy subjects. A computerized search was performed without language restriction in MEDLINE, EMBASE and CINAHL and references of original studies and reviews were searched for further relevant studies. RMT studies with healthy individuals assessing changes in endurance exercise performance by maximal tests (constant load, time trial, intermittent incremental, conventional [non-intermittent] incremental) were screened and abstracted by two independent investigators. A multiple linear regression model was used to identify effects of subjects' fitness, type of RMT (inspiratory or combined inspiratory/expiratory muscle strength training, respiratory muscle endurance training), type of exercise test, test duration and type of sport (rowing, running, swimming, cycling) on changes in performance after RMT. In addition, a meta-analysis was performed to determine the effect of RMT on endurance performance in those studies providing the necessary data. The multiple linear regression analysis including 46 original studies revealed that less fit subjects benefit more from RMT than highly trained athletes (6.0% per 10 mL · kg⁻¹ · min⁻¹ decrease in maximal oxygen uptake, 95% confidence interval [CI] 1.8, 10.2%; p = 0.005) and that improvements do not differ significantly between inspiratory muscle strength and respiratory muscle endurance training (p = 0.208), while combined inspiratory and expiratory muscle strength training seems to be superior in improving performance, although based on only 6 studies (+12.8% compared with inspiratory muscle strength training, 95% CI 3

  16. Normal values for inspiratory muscle function in children

    International Nuclear Information System (INIS)

    Mellies, Uwe; Stehling, Florian; Dohna-Schwake, Christian

    2014-01-01

    Assessment of inspiratory muscle function (IMF) is limited in children with neuromuscular disorders, because respiratory muscle tests are poorly standardized and valid normative data are unavailable. We investigated maximum inspiratory pressure after exhalation to residual volume (MIP), mouth occlusion pressure (P0.1) and time of inspiration during quiet breathing and derived inspiratory muscle load (P0.1/MIP), and tension time index (TTI) in 301 healthy schoolchildren 6–16 years old. Gender-specific and age-dependent percentile curves for MIP were drawn with the median, 5%, 10%, 25%, 75% and 95% percentile. P0.1 was equal in boys and girls (0.23  ±  0.11 kPa), while MIP was significantly higher in boys (6.8  ±  2.2 versus 5.8  ±  2.4 kPa). Consequently, P0.1/MIP (4.8% ± 3.2% versus 4.0% ± 3.1%) and TTI (0.2  ±  0.14 versus 0.16  ±  0.14) were significantly higher in girls. MIP was 2.90 + 0.36 × age (kPa) and 3.19 + 0.24 × age (kPa) in boys and girls, respectively. The 95% confidence intervals for boys and girls, respectively, were MIP, 6.3–7.3 kPA and 5.4–6.2 kPa; P0.1/MIP, 3.5%–4.5% and 4.3%–5.3%; TTI, 0.14–0.18 and 0.18–0.22; and P0.1, 0.20–0.24 kPa for both. IMF in children has a wide interindividual variability; however percentile curves facilitate a longitudinal assessment of individual patients. Furthermore, narrow confidence intervals allow for comparisons of study populations, making IMF an appropriate endpoint for clinical trials. (paper)

  17. Respiratory muscle weakness and respiratory muscle training in severely disabled multiple sclerosis patients.

    Science.gov (United States)

    Gosselink, R; Kovacs, L; Ketelaer, P; Carton, H; Decramer, M

    2000-06-01

    To evaluate the contribution of respiratory muscle weakness (part 1) and respiratory muscle training (part 2) to pulmonary function, cough efficacy, and functional status in patients with advanced multiple sclerosis (MS). Survey (part 1) and randomized controlled trial (part 2). Rehabilitation center for MS. Twenty-eight bedridden or wheelchair-bound MS patients (part 1); 18 patients were randomly assigned to a training group (n = 9) or a control group (n = 9) (part 2). The training group (part 2) performed three series of 15 contractions against an expiratory resistance (60% maximum expiratory pressure [PEmax]) two times a day, whereas the control group performed breathing exercises to enhance maximal inspirations. Forced vital capacity (FVC), inspiratory, and expiratory muscle strength (PImax and PEmax), neck flexion force (NFF), cough efficacy by means of the Pulmonary Index (PI), and functional status by means of the Extended Disability Status Scale (EDSS). Part 1 revealed a significantly reduced FVC (43% +/- 26% predicted), PEmax (18% +/- 8% predicted), and PImax (27% +/- 11% predicted), whereas NFF was only mildly reduced (93% +/- 26% predicted). The PI (median score, 10) and EDSS (median score, 8.5) were severely reduced. PEmax was significantly correlated to FVC, EDSS, and PI (r = .77, -.79, and -.47, respectively). In stepwise multiple regression analysis. PEmax was the only factor contributing to the explained variance in FVC (R2 = .60), whereas body weight (R2 = .41) was the only factor for the PI. In part 2, changes in PImax and PEmax tended to be higher in the training group (p = .06 and p = .07, respectively). The PI was significantly improved after 3 months of training compared with the control group (p functional status. Expiratory muscle training tended to enhance inspiratory and expiratory muscle strength. In addition, subjectively and objectively rated cough efficacy improved significantly and lasted for 3 months after training cessation.

  18. Postoperative inspiratory muscle training in addition to breathing exercises and early mobilization improves oxygenation in high-risk patients after lung cancer surgery: a randomized controlled trial.

    Science.gov (United States)

    Brocki, Barbara Cristina; Andreasen, Jan Jesper; Langer, Daniel; Souza, Domingos Savio R; Westerdahl, Elisabeth

    2016-05-01

    The aim was to investigate whether 2 weeks of inspiratory muscle training (IMT) could preserve respiratory muscle strength in high-risk patients referred for pulmonary resection on the suspicion of or confirmed lung cancer. Secondarily, we investigated the effect of the intervention on the incidence of postoperative pulmonary complications. The study was a single-centre, parallel-group, randomized trial with assessor blinding and intention-to-treat analysis. The intervention group (IG, n = 34) underwent 2 weeks of postoperative IMT twice daily with 2 × 30 breaths on a target intensity of 30% of maximal inspiratory pressure, in addition to standard postoperative physiotherapy. Standard physiotherapy in the control group (CG, n = 34) consisted of breathing exercises, coughing techniques and early mobilization. We measured respiratory muscle strength (maximal inspiratory/expiratory pressure, MIP/MEP), functional performance (6-min walk test), spirometry and peripheral oxygen saturation (SpO2), assessed the day before surgery and again 3-5 days and 2 weeks postoperatively. Postoperative pulmonary complications were evaluated 2 weeks after surgery. The mean age was 70 ± 8 years and 57.5% were males. Thoracotomy was performed in 48.5% (n = 33) of cases. No effect of the intervention was found regarding MIP, MEP, lung volumes or functional performance at any time point. The overall incidence of pneumonia was 13% (n = 9), with no significant difference between groups [IG 6% (n = 2), CG 21% (n = 7), P = 0.14]. An improved SpO2 was found in the IG on the third and fourth postoperative days (Day 3: IG 93.8 ± 3.4 vs CG 91.9 ± 4.1%, P = 0.058; Day 4: IG 93.5 ± 3.5 vs CG 91 ± 3.9%, P = 0.02). We found no association between surgical procedure (thoracotomy versus thoracoscopy) and respiratory muscle strength, which was recovered in both groups 2 weeks after surgery. Two weeks of additional postoperative IMT, compared with standard physiotherapy alone, did not preserve

  19. Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study.

    Science.gov (United States)

    Laoutaris, Ioannis D; Adamopoulos, Stamatis; Manginas, Athanassios; Panagiotakos, Demosthenes B; Kallistratos, Manolis S; Doulaptsis, Costas; Kouloubinis, Alexandros; Voudris, Vasilis; Pavlides, Gregory; Cokkinos, Dennis V; Dritsas, Athanasios

    2013-09-01

    We hypothesised that combined aerobic training (AT) with resistance training (RT) and inspiratory muscle training (IMT) could result in additional benefits over AT alone in patients with chronic heart failure (CHF). Twenty-seven patients, age 58 ± 9 years, NYHA II/III and LVEF 29 ± 7% were randomly assigned to a 12-week AT (n=14) or a combined AT/RT/IMT (ARIS) (n=13) exercise program. AT consisted of bike exercise at 70-80% of max heart rate. ARIS training consisted of AT with RT of the quadriceps at 50% of 1 repetition maximum (1RM) and upper limb exercises using dumbbells of 1-2 kg as well as IMT at 60% of sustained maximal inspiratory pressure (SPI(max)). At baseline and after intervention patients underwent cardiopulmonary exercise testing, echocardiography, evaluation of dyspnea, muscle function and quality of life (QoL) scores. The ARIS program as compared to AT alone, resulted in additional improvement in quadriceps muscle strength (1RM, p=0.005) and endurance (50%1 RM × number of max repetitions, p=0.01), SPI(max) (pexercise time (p=0.01), circulatory power (peak oxygen consumption × peak systolic blood pressure, p=0.05), dyspnea (p=0.03) and QoL (p=0.03). ARIS training was safe and resulted in incremental benefits in both peripheral and respiratory muscle weakness, cardiopulmonary function and QoL compared to that of AT. The present findings may add a new prospective to cardiac rehabilitation programs of heart failure patients whilst the clinical significance of these outcomes need to be addressed in larger randomised studies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Optimal arrangement of magnetic coils for functional magnetic stimulation of the inspiratory muscles in dogs.

    Science.gov (United States)

    Lin, Vernon Weh-Hau; Zhu, Ercheng; Sasse, Scott A; Sassoon, Catherine; Hsiao, Ian N

    2005-12-01

    In an attempt to maximize inspiratory pressure and volume, the optimal position of a single or of dual magnetic coils during functional magnetic stimulation (FMS) of the inspiratory muscles was evaluated in twenty-three dogs. Unilateral phrenic magnetic stimulation (UPMS) or bilateral phrenic magnetic stimulation (BPMS), posterior cervical magnetic stimulation (PCMS), anterior cervical magnetic stimulation (ACMS) as well as a combination of PCMS and ACMS were performed. Trans-diaphragmatic pressure (Pdi), flow, and lung volume changes with an open airway were measured. Transdiaphragmatic pressure was also measured with an occluded airway. Changes in inspiratory parameters during FMS were compared with 1) electrical stimulation of surgically exposed bilateral phrenic nerves (BPES) and 2) ventral root electrical stimulation at C5-C7 (VRES C5-C7). Relative to the Pdi generated by BPES of 36.3 +/- 4.5 cm H2O (Mean +/- SEM), occluded Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and a combined PCMS + ACMS were 51.7%, 61.5%, 22.4%, 100.3%, and 104.5% of the maximal Pdi, respectively. Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and combined ACMS + PCMS were 38.0%, 45.2%, 16.5%, 73.8%, and 76.8%, respectively, of the Pdi induced by VRES (C5-C7) (48.0 +/- 3.9 cm H2O). The maximal Pdi(s) generated during ACMS and combined PCMS + ACMS were higher than the maximal Pdi(s) generated during UPMS, BPMS, or PCMS (p BPMS or PCMS. ACMS can be used to generate sufficient inspiratory pressure, flow, and volume for activation of the inspiratory muscles.

  1. Simulation of late inspiratory rise in airway pressure during pressure support ventilation.

    Science.gov (United States)

    Yu, Chun-Hsiang; Su, Po-Lan; Lin, Wei-Chieh; Lin, Sheng-Hsiang; Chen, Chang-Wen

    2015-02-01

    Late inspiratory rise in airway pressure (LIRAP, Paw/ΔT) caused by inspiratory muscle relaxation or expiratory muscle contraction is frequently seen during pressure support ventilation (PSV), although the modulating factors are unknown. We investigated the effects of respiratory mechanics (normal, obstructive, restrictive, or mixed), inspiratory effort (-2, -8, or -15 cm H2O), flow cycle criteria (5-40% peak inspiratory flow), and duration of inspiratory muscle relaxation (0.18-0.3 s) on LIRAP during PSV using a lung simulator and 4 types of ventilators. LIRAP occurred with all lung models when inspiratory effort was medium to high and duration of inspiratory muscle relaxation was short. The normal lung model was associated with the fastest LIRAP, whereas the obstructive lung model was associated with the slowest. Unless lung mechanics were normal or mixed, LIRAP was unlikely to occur when inspiratory effort was low. Different ventilators were also associated with differences in LIRAP speed. Except for within the restrictive lung model, changes in flow cycle level did not abolish LIRAP if inspiratory effort was medium to high. Increased duration of inspiratory relaxation also led to the elimination of LIRAP. Simulation of expiratory muscle contraction revealed that LIRAP occurred only when expiratory muscle contraction occurred sometime after the beginning of inspiration. Our simulation study reveals that both respiratory resistance and compliance may affect LIRAP. Except for under restrictive lung conditions, LIRAP is unlikely to be abolished by simply lowering flow cycle criteria when inspiratory effort is strong and relaxation time is rapid. LIRAP may be caused by expiratory muscle contraction when it occurs during inspiration. Copyright © 2015 by Daedalus Enterprises.

  2. Medicinal clays improve the endurance of loaded inspiratory muscles in COPD: a randomized clinical trial of nonpharmacological treatment

    Directory of Open Access Journals (Sweden)

    Baldi S

    2015-10-01

    Endur as the dependent variable, ΔIL-6 after intervention predicted LnVO2Endur in the MBT group, but not in the LTA group. Adverse events occurred in two individuals in the MBT group, but they were mainly transient. One patient in the LTA group dropped out.Conclusion: MBT model improves ET upon a moderate IRB challenge, indicating the occurrence of a training effect. The LnVO2Endur/ΔIL-6 suggests a physiologic adaptive mechanism in respiratory muscles of COPD patients allocated to treatment. Both thermal interventions are safe. Keywords: hydrotherapy, cytokine IL-6, inspiratory resistive breathing, balneotherapy, pulmonary rehabilitation

  3. Reliability and validity of the test of incremental respiratory endurance measures of inspiratory muscle performance in COPD.

    Science.gov (United States)

    Formiga, Magno F; Roach, Kathryn E; Vital, Isabel; Urdaneta, Gisel; Balestrini, Kira; Calderon-Candelario, Rafael A; Campos, Michael A; Cahalin, Lawrence P

    2018-01-01

    The Test of Incremental Respiratory Endurance (TIRE) provides a comprehensive assessment of inspiratory muscle performance by measuring maximal inspiratory pressure (MIP) over time. The integration of MIP over inspiratory duration (ID) provides the sustained maximal inspiratory pressure (SMIP). Evidence on the reliability and validity of these measurements in COPD is not currently available. Therefore, we assessed the reliability, responsiveness and construct validity of the TIRE measures of inspiratory muscle performance in subjects with COPD. Test-retest reliability, known-groups and convergent validity assessments were implemented simultaneously in 81 male subjects with mild to very severe COPD. TIRE measures were obtained using the portable PrO2 device, following standard guidelines. All TIRE measures were found to be highly reliable, with SMIP demonstrating the strongest test-retest reliability with a nearly perfect intraclass correlation coefficient (ICC) of 0.99, while MIP and ID clustered closely together behind SMIP with ICC values of about 0.97. Our findings also demonstrated known-groups validity of all TIRE measures, with SMIP and ID yielding larger effect sizes when compared to MIP in distinguishing between subjects of different COPD status. Finally, our analyses confirmed convergent validity for both SMIP and ID, but not MIP. The TIRE measures of MIP, SMIP and ID have excellent test-retest reliability and demonstrated known-groups validity in subjects with COPD. SMIP and ID also demonstrated evidence of moderate convergent validity and appear to be more stable measures in this patient population than the traditional MIP.

  4. Respiratory muscle training for cystic fibrosis.

    Science.gov (United States)

    Hilton, Nathan; Solis-Moya, Arturo

    2018-05-24

    Cystic fibrosis is the most common autosomal recessive disease in white populations, and causes respiratory dysfunction in the majority of individuals. Numerous types of respiratory muscle training to improve respiratory function and health-related quality of life in people with cystic fibrosis have been reported in the literature. Hence a systematic review of the literature is needed to establish the effectiveness of respiratory muscle training (either inspiratory or expiratory muscle training) on clinical outcomes in cystic fibrosis. This is an update of a previously published review. To determine the effectiveness of respiratory muscle training on clinical outcomes in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 17 April 2018.A hand search of the Journal of Cystic Fibrosis and Pediatric Pulmonology was performed, along with an electronic search of online trial databases up until 07 May 2018. Randomised controlled studies comparing respiratory muscle training with a control group in people with cystic fibrosis. Review authors independently selected articles for inclusion, evaluated the methodological quality of the studies, and extracted data. Additional information was sought from trial authors where necessary. The quality of the evidence was assessed using the GRADE system MAIN RESULTS: Authors identified 19 studies, of which nine studies with 202 participants met the review's inclusion criteria. There was wide variation in the methodological and written quality of the included studies. Four of the nine included studies were published as abstracts only and lacking concise details, thus limiting the information available. Seven studies were parallel studies and two of a cross-over design. Respiratory

  5. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD

    Directory of Open Access Journals (Sweden)

    Yilmaz Yelvar GD

    2016-06-01

    Full Text Available Gul Deniz Yilmaz Yelvar,1 Yasemin Çirak,2 Yasemin Parlak Demir,3 Murat Dalkilinç,1 Bülent Bozkurt4 1Department of Musculoskeletal Physiotherapy, 2Department of Cardiopulmonary Physiotherapy, 3Department of Neurological Rehabilitation, School of Physiotherapy and Rehabilitation, 4Department of Respiratory Medicine, Faculty of Medicine, Turgut Özal University, Ankara, Turkey Objective: The objective of this study was to investigate the immediate effect of manual therapy (MT on respiratory functions and inspiratory muscle strength in patients with COPD.Participants and methods: Thirty patients with severe COPD (eight females and 22 males; mean age 62.4±6.8 years referred to pulmonary physiotherapy were included in this study. The patients participated in a single session of MT to measure the short-term effects. The lung function was measured using a portable spirometer. An electronic pressure transducer was used to measure respiratory muscle strength. Heart rate, breathing frequency, and oxygen saturation were measured with a pulse oximeter. For fatigue and dyspnea perception, the modified Borg rating of perceived exertion scale was used. All measurements were taken before and immediately after the first MT session. The ease-of-breathing visual analog scale was used for rating patients’ symptoms subjectively during the MT session.Results: There was a significant improvement in the forced expiratory volume in the first second, forced vital capacity, and vital capacity values (P<0.05. The maximal inspiratory pressure and maximal expiratory pressure values increased significantly after MT, compared to the pre-MT session (P<0.05. There was a significant decrease in heart rate, respiratory rate (P<0.05, and dyspnea and fatigue perception (P<0.05.Conclusion: A single MT session immediately improved pulmonary function, inspiratory muscle strength, and oxygen saturation and reduced dyspnea, fatigue, and heart and respiratory rates in patients with

  6. Effects of respiratory muscle training (RMT) in children with infantile-onset Pompe disease and respiratory muscle weakness.

    Science.gov (United States)

    Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S

    2014-01-01

    Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.

  7. Effect of acute inspiratory muscle exercise on blood flow of resting and exercising limbs and glucose levels in type 2 diabetes.

    Science.gov (United States)

    Corrêa, Ana Paula dos Santos; Antunes, Cristiano Fetter; Figueira, Franciele Ramos; de Castro, Marina Axmann; Ribeiro, Jorge Pinto; Schaan, Beatriz D'Agord

    2015-01-01

    To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (Pexercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (Pexercise that recruits the diaphragm can abruptly reduce glucose levels.

  8. Reliability and validity of the test of incremental respiratory endurance measures of inspiratory muscle performance in COPD

    Directory of Open Access Journals (Sweden)

    Formiga MF

    2018-05-01

    Full Text Available Magno F Formiga,1,2 Kathryn E Roach,1 Isabel Vital,3 Gisel Urdaneta,3 Kira Balestrini,3 Rafael A Calderon-Candelario,3,4 Michael A Campos,3,4,* Lawrence P Cahalin1,* 1Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA; 2CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil; 3Pulmonary Section, Miami Veterans Administration Medical Center, Miami, FL, USA; 4Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA *These authors contributed equally to this work Purpose: The Test of Incremental Respiratory Endurance (TIRE provides a comprehensive assessment of inspiratory muscle performance by measuring maximal inspiratory pressure (MIP over time. The integration of MIP over inspiratory duration (ID provides the sustained maximal inspiratory pressure (SMIP. Evidence on the reliability and validity of these measurements in COPD is not currently available. Therefore, we assessed the reliability, responsiveness and construct validity of the TIRE measures of inspiratory muscle performance in subjects with COPD. Patients and methods: Test–retest reliability, known-groups and convergent validity assessments were implemented simultaneously in 81 male subjects with mild to very severe COPD. TIRE measures were obtained using the portable PrO2 device, following standard guidelines. Results: All TIRE measures were found to be highly reliable, with SMIP demonstrating the strongest test–retest reliability with a nearly perfect intraclass correlation coefficient (ICC of 0.99, while MIP and ID clustered closely together behind SMIP with ICC values of about 0.97. Our findings also demonstrated known-groups validity of all TIRE measures, with SMIP and ID yielding larger effect sizes when compared to MIP in distinguishing between subjects of different COPD status. Finally, our analyses confirmed convergent validity for both SMIP

  9. Absence of inspiratory laryngeal constrictor muscle activity during nasal neurally adjusted ventilatory assist in newborn lambs.

    Science.gov (United States)

    Hadj-Ahmed, Mohamed Amine; Samson, Nathalie; Bussières, Marie; Beck, Jennifer; Praud, Jean-Paul

    2012-07-01

    In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.

  10. Reduced Inspiratory Muscle Strength in Patients with Type 2 Diabetes Mellitus and Obstructive Sleep Apnoea

    DEFF Research Database (Denmark)

    Rehling, Thomas; Banghoj, Anne Margareta; Kristiansen, Marie Hvelplund

    2017-01-01

    Background: Obstructive sleep apnoea (OSA) is related to type 2 diabetes (T2DM), and it may be associated with reduced inspiratory muscle strength (IMS). The aim of this study was to investigate the IMS in patients with T2DM, with or without OSA. Methods: Patients with T2DM with OSA (n = 33...

  11. Reference Values for Maximal Inspiratory Pressure: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Isabela MB Sclauser Pessoa

    2014-01-01

    Full Text Available BACKGROUND: Maximal inspiratory pressure (MIP is the most commonly used measure to evaluate inspiratory muscle strength. Normative values for MIP vary significantly among studies, which may reflect differences in participant demographics and technique of MIP measurement.

  12. Inspiratory Muscle Training and Functional Electrical Stimulation for Treatment of Heart Failure With Preserved Ejection Fraction: The TRAINING-HF Trial.

    Science.gov (United States)

    Palau, Patricia; Domínguez, Eloy; López, Laura; Ramón, José María; Heredia, Raquel; González, Jessika; Santas, Enrique; Bodí, Vicent; Miñana, Gema; Valero, Ernesto; Mollar, Anna; Bertomeu González, Vicente; Chorro, Francisco J; Sanchis, Juan; Lupón, Josep; Bayés-Genís, Antoni; Núñez, Julio

    2018-03-16

    Despite the prevalence of heart failure with preserved ejection fraction (HFpEF), there is currently no evidence-based effective therapy for this disease. This study sought to evaluate whether inspiratory muscle training (IMT), functional electrical stimulation (FES), or a combination of both (IMT + FES) improves 12- and 24-week exercise capacity as well as left ventricular diastolic function, biomarker profile, and quality of life in HFpEF. A total of 61 stable symptomatic patients (New York Heart Association II-III) with HFpEF were randomized (1:1:1:1) to receive a 12-week program of IMT, FES, or IMT + FES vs usual care. The primary endpoint of the study was to evaluate change in peak exercise oxygen uptake at 12 and 24 weeks. Secondary endpoints were changes in quality of life, echocardiogram parameters, and prognostic biomarkers. We used a mixed-effects model for repeated-measures to compare endpoints changes. Mean age and peak exercise oxygen uptake were 74 ± 9 years and 9.9 ± 2.5mL/min/kg, respectively. The proportion of women was 58%. At 12 weeks, the mean increase in peak exercise oxygen uptake (mL/kg/min) compared with usual care was 2.98, 2.93, and 2.47 for IMT, FES, and IMT + FES, respectively (P < .001) and this beneficial effect persisted after 6 months (1.95, 2.08, and 1.56; P < .001). Significant increases in quality of life scores were found at 12 weeks (P < .001). No other changes were found. In HFpEF patients with low aerobic capacity, IMT and FES were associated with a significant improvement in exercise capacity and quality of life. This trial was registered at ClinicalTrials.gov (Identifier: NCT02638961).. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern.

    Science.gov (United States)

    Loveridge, B; Badour, M; Dubo, H

    1989-10-01

    We examined the effects of ventilatory muscle endurance training on resting breathing pattern in 12 C6-C7 traumatic quadriplegics at least 1 year post-injury. All subjects had complete motor loss below the lesion level. Subjects were randomly assigned to a training (N = 6), or a control group (N = 6). Baseline tests included measurement of resting ventilation and breathing pattern using mercury in rubber strain gauges for 20 minutes in a seated position; maximum inspiratory mouth pressure (MIP) at FRC, and sustainable inspiratory mouth pressure for 10 minutes (SIP); lung volumes, and arterial blood gases (ABG's). The training protocol consisted of breathing through an inspiratory resistor equivalent to 85% SIP for 15 minutes twice daily, 5 days a week for 8 weeks. Both trainers and controls attended the lab every 2 weeks for reassessment of MIP and SIP and the inspiratory resistance was increased in the training group as SIP increased. At the end of 8 weeks, baseline tests were repeated. All subjects had normal ABG's. There was a significant increase in mean MIP and SIP in both the control group (30% +/- 19% and 31% +/- 18% respectively), and in the training group (42% +/- 24% and 78% +/- 49% respectively). Although the absolute values for both MIP and SIP were greater in the training group than in the control group, the differences were not significant. The alterations in resting breathing pattern were also the same in both groups. Mean frequency decreased significantly in the control group (20.2/minute to 16.9/minute) and, while insignificant, the change in frequency in the training group was the same, 19.4/minute to 16.4/minute. Mean tidal volume (Vt) increased 18.2% of baseline Vt in the control group and 17.0% baseline in the trainers, resulting in no change in minute ventilation. As MIP and SIP increased similarly in both groups, the data from the control and trainers was pooled and timing changes re-evaluated pre- and post-study. A significant decrease in

  14. Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure?

    Science.gov (United States)

    Frankenstein, Lutz; Meyer, Franz Joachim; Sigg, Caroline; Nelles, Manfred; Schellberg, Dieter; Remppis, Andrew; Katus, Hugo A; Zugck, Christian

    2008-04-01

    Little data exists on the prognostic role of inspiratory muscle strength (PImax) in chronic heart failure (CHF). Training studies, however, frequently use it as a therapeutic target and surrogate marker for prognosis. The prognostic value of changes of PImax that allow this extrapolation is unknown. Patients with stable CHF were prospectively included and 1-year and all-time event rates recorded for endpoint analysis. In 158 patients (85% men; New York Heart Association functional class: 2.4+/-0.6), PImax was measured along with clinical evaluations at two visits, the initial visit and the second visit, 6.4+/-1.4 months apart. The mean follow-up was 59+/-34 months. Overall, 59 patients (37%) reached the primary endpoint of death or hospitalization (endpoint positive), and overall mortality rate (secondary endpoint) was 26% (42 patients). PImax did not differ between endpoint-negative and endpoint-positive patients, both at the initial and at the second visit (8.3+/-5.6 vs. 7.3+/-3.4 kPa and 8.8+/-6.0 vs. 7.9+/-3.6 kPa, respectively; P=NS), and both groups showed increased PImax (0.6+/-2.6 vs. 0.6+/-2.8 kPa; P=NS). Cox analyses found neither the absolute nor the relative change of PImax to be significant predictors for the primary and secondary endpoints (P=NS for both), both for the 1-year and for the all-time event rates. Endpoint rates did not differ between patients showing increasing or decreasing PImax (P=NS; relative risk (RR): 0.77; 95% confidence interval: 0.47-1.27). Trials focusing on inspiratory muscle function should use the actual levels of PImax as a surrogate marker to represent prognostic information, rather than relative or absolute changes. This is the first study to investigate the prognostic information of the changes of PImax over time, regarding both short-term and long-term morbidity and mortality in patients with stable CHF.

  15. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48hours or more: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F

    2018-02-02

    To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  16. Effects of thoracic dorsal rhizotomy or vagotomy on inspiratory muscle activity at various levels of chemical drive.

    Science.gov (United States)

    D'Angelo, E; Schieppati, M

    1982-11-01

    The relationship between relative peak activity (moving average EMG) of the diaphragm (Adi) and of the cranial (2nd and 3rd) external intercostal or parasternal muscles (Aic) was assessed during rebreathing in animals before and after bilateral thoracic (T1-T4) dorsal rhizotomy (TDR) and/or bilateral vagotomy (VGT). The relationship had the form Aic=a Adib under all conditions. In intact rabbits and cats mean values for b were 1.48 and 1.79, respectively, a being unity by definition. Neither TDR nor VGT changed b; a decreased to about 0.15 with TDR and halved with VGT only if performed before TDR. Selective reflex facilitation of inspiratory intercostals with occlusions at FRC was observed after VGT and was abolished by TDR. Neither VGT nor TDR affected Adi time course. Hence: (1) central command to alpha-motoneurones of the major inspiratory muscles differs; (2) proprioceptive feedback markedly increases external intercostal activity, apparently by multiplying Aic due to central command to alpha-motoneurones by a factor independent of chemical drive; (3) vagally mediated augmentation of Aic depends entirely on intact proprioceptive feedback. The possible role of fusimotor drive is discussed.

  17. Effect of Aerobic Exercise Training on Ventilatory Efficiency and Respiratory Drive in Obese Subjects.

    Science.gov (United States)

    Chlif, Mehdi; Chaouachi, Anis; Ahmaidi, Said

    2017-07-01

    Obese patients show a decline in exercise capacity and diverse degrees of dyspnea in association with mechanical abnormalities, increased ventilatory requirements secondary to the increased metabolic load, and a greater work of breathing. Consequently, obese patients may be particularly predisposed to the development of respiratory muscle fatigue during exercise. The aim of this study was to assess inspiratory muscle performance during incremental exercise in 19 obese male subjects (body mass index 41 ± 6 kg/m 2 ) after aerobic exercise training using the noninvasive, inspiratory muscle tension-time index (T T0.1 ). Measurements performed included anthropometric parameters, lung function assessed by spirometry, rate of perceived breathlessness with the modified Borg dyspnea scale (0-10), breathing pattern, maximal exercise capacity, and inspiratory muscle performance with a breath-by-breath automated exercise metabolic system during an incremental exercise test. T T0.1 was calculated using the equation, T T0.1 = P 0.1 /P Imax × T I /T tot (where P 0.1 represents mouth occlusion pressure, P Imax is maximal inspiratory pressure, and T I /T tot is the duty cycle). At rest, there was no statistically significant difference for spirometric parameters and cardiorespiratory parameters between pre- and post-training. At maximal exercise, the minute ventilation, the rate of exchange ratio, the rate of perceived breathlessness, and the respiratory muscle performance parameters were not significantly different pre- and post-training; in contrast, tidal volume ( P = .037, effect size = 1.51), breathing frequency ( P = .049, effect size = 0.97), power output ( P = .048, effect size = 0.79), peak oxygen uptake ( P = .02, effect size = 0.92) were significantly higher after training. At comparable work load, training induces lower minute ventilation, mouth occlusion pressure, ratio of occlusion pressure to maximal inspiratory pressure, T T0.1 , and rate of perceived

  18. Reference Values for Inspiratory Muscle Endurance in Healthy Children and Adolescents.

    Directory of Open Access Journals (Sweden)

    Cristhiele Taís Woszezenki

    Full Text Available To generate reference values for two inspiratory muscle endurance (IME protocols in healthy children and adolescents.This is an observational, cross-sectional study, in healthy children and adolescents from 4 to 18 years of age. Weight, height, maximal inspiratory pressure (MIP and IME were measured using two protocols. A fixed load of 30% of MIP with a 10% increment every 2 minutes was used in the incremental threshold loading protocol. As for the maximal loading protocol, a fixed load of 70% of MIP was used and the time limit (Tlim achieved until fatigue was measured.A total of 462 participants were included, 281 corresponding to the incremental loading protocol and 181 to maximal loading. There were moderate and positive correlations between IME and age, MIP, weight and height in the incremental threshold loading. However, the regression model demonstrated that MIP and age were the best variables to predict the IME. Otherwise, weak and positive correlations with age, weight and height were found in the maximal loading. Only age and height influenced endurance in the regression model. The predictive power (r2 of the incremental threshold loading protocol was 0.65, while the maximal loading was 0.15. The reproducibility measured by the intraclass correlation coefficient (ICC was higher in the incremental loading (0.96 compared to the maximal loading test (0.69.IME in healthy children and adolescents can be explained by age, height and MIP. The incremental threshold loading protocol showed more reliable results and should be the model of choice to evaluate IME in the pediatric age group.

  19. Simple artificial training device for respiratory muscle strength and lung volumes in healthy young male and female subjects: A pilot study.

    Science.gov (United States)

    Leelarungrayub, Jirakrit; Pinkaew, Decha; Yankai, Araya; Chautrakoon, Busaba; Kuntain, Rungtiwa

    2017-10-01

    The aim of this study was to evaluate the efficiency of a simple artificial device for respiratory muscle strength training and lung volumes using either combined or non-combined exercise with elastic bands in healthy young participants. Forty healthy young participants (20 male and 20 female) aged 19-24 years old were randomized into two main experiments with four sub-groups; (1) artificial device (n = 10) & standard device (n = 10) training, and (2) artificial device training combined with elastic band (EB) exercise (n = 10) & standard device training combined with EB (n = 10) exercise. Respiratory muscle strength with maximal peak inspiratory pressure (PImax), and lung volumes; tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve volume (ERV) and vital capacity (VC) were evaluated before and after training once daily for 3 weeks. Moreover, the peak dyspnea score and vital sign parameters were compared between the experimental groups after final training. All parameters had no statistical differences (p > 0.5) between the training devices alone and those combined with EB exercise prior to any experiments. Results from the first experiment showed that training with an artificial device increased all parameters (PImax, VC, IRV, ERV) significantly (p artificial device training combined with EB exercise showed a significant increase in all parameters, except for TV, and they were the same as the increased results in training with the standard device combined with EB exercise. There was no significant difference of data between these groups after the training period. Finally, the results of peak dyspnea score and all vital sign parameters from using the artificial device, with or without EB exercise, showed no statistical difference when compared to use of the standard device. This study proposed that a simple artificial device can be used to train the respiratory muscle with or without elastic band exercise in healthy young subjects

  20. Does respiratory muscle training increase physical performance?

    Science.gov (United States)

    Sperlich, Billy; Fricke, Hannes; de Marées, Markus; Linville, John W; Mester, Joachim

    2009-09-01

    Special force units and military personnel undergo demanding physical exercise and might benefit from high-intensity respiratory muscle training (RMT) by increasing their endurance performance. This study examined the effects of a 6-week high-intensity RMT on running performance and oxygen uptake (VO2max) in a group of German Special Force Squad members. 17 participants were randomly assigned to a training or control group. Baseline and post-testing included a ramp test, as well as an incremental test on a treadmill, performed to physical exhaustion. VO2, respiratory exchange ratio, and heart rate were measured breath by breath. Furthermore, maximum running speed (V(max)), 4 mmol x 1(-1) lactate threshold (V4) and perception of respiratory effort were determined. During pulmonary testing, sustained maximum inspiratory and expiratory pressure (PI(max) and PE(max)) were obtained. RMT was performed daily at approximately 90% PI(max) for 6 weeks with 2 x 30 breath cycles using an Ultrabreathe lung trainer. No statistical differences were detected between the groups for any parameter after RMT. High-intensity RMT did not show any benefits on VO2max and endurance performance and are unlikely to be of benefit to military or paramilitary training programs for an increase in endurance performance.

  1. Effects of inspiratory muscle exercise in the pulmonary function, autonomic modulation, and hemodynamic variables in older women with metabolic syndrome

    Science.gov (United States)

    Feriani, Daniele Jardim; Coelho, Hélio José; Scapini, Kátia Bilhar; de Moraes, Oscar Albuquerque; Mostarda, Cristiano; Ruberti, Olivia Moraes; Uchida, Marco Carlos; Caperuto, Érico Chagas; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2017-01-01

    The aim of the present study was to investigate the effects of inspiratory muscle exercise (IME) on metabolic and hemodynamic parameters, cardiac autonomic modulation and respiratory function of older women with metabolic syndrome (MS). For this, sixteen older women with MS and 12 aged-matched controls participated of the present study. Two days before and 2 days after the main experiment, fasting blood samples (i.e., total cholesterol, triglycerides and blood glucose), cardiac autonomic modulation (i.e., heart rate variability), and respiratory muscle function were obtained and evaluated. The sessions of physical exercise was based on a IME, which was performed during 7 days. Each session of IME was performed during 20 min, at 30% of maximal static inspiratory pressure. In the results, MS group presented higher levels of triglycerides, blood glucose, and systolic blood pressure when compared to control group. IME was not able to change these variables. However, although MS group showed impaired respiratory muscle strength and function, as well as cardiac autonomic modulation, IME was able to improve these parameters. Thus, the data showed that seven days of IME are capable to improve respiratory function and cardiac autonomic modulation of older women with MS. These results indicate that IME can be a profitable therapy to counteracting the clinical markers of MS, once repeated sessions of acute IME can cause chronical alterations on respiratory function and cardiac autonomic modulation. PMID:28503537

  2. Development of a theory-based intervention to increase prescription of inspiratory muscle training by health professionals in the management of people with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Simms, Alanna M; Li, Linda C; Reid, W Darlene

    2011-01-01

    The purpose of this paper is twofold: (1) to provide an overview of the literature on barriers to evidence-based practice (EBP) and the effectiveness of implementation interventions in health care; and (2) to outline the development of an implementation intervention for improving the prescription of inspiratory muscle training (IMT) by physical therapists and other health professionals for people with chronic obstructive pulmonary disease (COPD). Individuals, organizations, and the research itself present barriers to EBP in physical therapy. Despite the evidence supporting the use of IMT, this treatment continues to be under-used in managing COPD. Current health services research shows that traditional information-based approaches to implementation, such as didactic lectures, do not adequately address the challenges health professionals face when trying to make changes in practice. We propose the development of a theory-based intervention to improve health professionals' use of IMT in the management of COPD. It is postulated that a behavioural intervention, based on the theory of planned behaviour (TPB), may be more effective than an information-based strategy in increasing the prescription of IMT by health professionals. TPB may be used to understand the antecedents of health professionals' behaviour and to guide the development of implementation interventions. Further research is needed to evaluate the effectiveness of this proposed intervention in the management of people with COPD.

  3. Effects of body temperature, passive limb motion and level of anesthesia on the activity of the inspiratory muscles.

    Science.gov (United States)

    D'Angelo, E

    1984-04-01

    The relationships between relative tidal activity (moving average EMG) of the diaphragm (AdiT) and of the external intercostal or parasternal muscles (AicT) and between the rate of rise of these activities (Adi and Aic) were assessed during rebreathing in rabbits with various body temperatures (BT: 34-41 degrees C) before and after vagotomy (VGT), at rest and during passive limb motion (PLM), and in vagotomized rabbits with or without thoracic dorsal rhizotomy (TDR) under light (LBA) or deep barbiturate anesthesia (DBA). Both relationships had the form AicT = a AdiTb and Aic = a' Adib'. In intact normothermic animals under LBA mean values for b and b' were 1.47 and 1.37, a and a' being unity by definition. No changes in b or b' occurred even with TDR: this suggests that the relation between the central command to phrenic and to inspiratory intercostal alpha-motoneurones was the same under all conditions. Neither BT nor PLM modified a', but a changed owing to BT and PLM dependence of the relation between central inspiratory drive and off-switch threshold. Both VGT, independently of BT, and DBA decreased a and a' before but not after TDR, when a and a' reached the lowest values (0.12 and 0.22). Hence VGT and DBA, but not BT and PLM, change the relation between the central command to inspiratory intercostal alpha- and gamma-motoneurones, the multiplicative effect of alpha-gamma linkage on AicT and Aic being prevented by TDR.

  4. Effect of volume-oriented versus flow-oriented incentive spirometry on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly.

    Science.gov (United States)

    Lunardi, Adriana C; Porras, Desiderio C; Barbosa, Renata Cc; Paisani, Denise M; Marques da Silva, Cibele C B; Tanaka, Clarice; Carvalho, Celso R F

    2014-03-01

    Aging causes physiological and functional changes that impair pulmonary function. Incentive spirometry is widely used for lung expansion, but the effects of volume-oriented incentive spirometry (VIS) versus flow-oriented incentive spirometry (FIS) on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly are poorly understood. We compared VIS and FIS in elderly subjects and healthy adult subjects. Sixteen elderly subjects (9 women, mean ± SD age 70.6 ± 3.9 y, mean ± SD body mass index 23.8 ± 2.5 kg/m(2)) and 16 healthy adults (8 women, mean ± age 25.9 ± 4.3 y, mean ± body mass index 23.6 ± 2.4 kg/m(2)) performed quiet breathing, VIS, and FIS in randomized sequence. Chest wall kinematics (via optoelectronic plethysmography) and inspiratory muscle activity (via surface electromyography) were assessed simultaneously. Synchrony between the superior thorax and abdominal motion was calculated (phase angle). In the elderly subjects both types of incentive spirometry increased chest wall volumes similarly, whereas in the healthy adult subjects VIS increased the chest wall volume more than did FIS. FIS and VIS triggered similar lower thoracoabdominal synchrony in the elderly subjects, whereas in the healthy adults FIS induced lower synchrony than did VIS. FIS required more muscle activity in the elderly subjects to create an increase in chest wall volume. Incentive spirometry performance is influenced by age, and the differences between elderly and healthy adults response should be considered in clinical practice.

  5. Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease: toward a pathophysiological concept.

    NARCIS (Netherlands)

    Ottenheijm, C.A.C.; Heunks, L.M.A.; Dekhuijzen, P.N.R.

    2007-01-01

    Inspiratory muscle weakness in patients with chronic obstructive pulmonary disease (COPD) is of major clinical relevance; maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to

  6. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: A comprehensive review of the literature

    NARCIS (Netherlands)

    B. Schoser; Fong, E. (Edward); Geberhiwot, T. (Tarekegn); Hughes, D. (Derralynn); Kissel, J.T. (John T.); Madathil, S.C. (Shyam C.); Orlikowski, D. (David); Polkey, M.I. (Michael I.); M. Roberts (Mark); H.A.W.M. Tiddens (Harm); Young, P. (Peter)

    2017-01-01

    textabstractRespiratory muscle strength is a proven predictor of long-term outcome of neuromuscular disease (NMD), including amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and spinal muscular atrophy. Maximal inspiratory pressure (MIP), a sensitive measure of respiratory muscle

  7. Guiding Inspiratory Flow: Development of the In-Check DIAL G16, a Tool for Improving Inhaler Technique

    Directory of Open Access Journals (Sweden)

    Mark Jeremy Sanders

    2017-01-01

    Full Text Available Portable inhalers are divisible into those that deliver medication by patient triggering (pMDIs: a gentle slow inhalation and those that use the patient’s inspiratory effort as the force for deaggregation and delivery (DPIs: a stronger deeper inspiratory effort. Patient confusion and poor technique are commonplace. The use of training tools has become standard practice, and unique amongst these is an inspiratory flow meter (In-Check which is able to simulate the resistance characteristics of different inhalers and, thereby, guide the patient to the correct effort. In-Check’s origins lie in the 1960s peak expiratory flow meters, the development of the Mini-Wright peak flow meter, and inspiratory flow assessment via the nose during the 1970s–1980s. The current device (In-Check DIAL G16 is the third iteration of the original 1998 training tool, with detailed and ongoing assessments of all common inhaler resistances (including combination and breath-actuated inhaler types summarised into resistance ranges that are preset within the device. The device works by interpolating one of six ranges with the inspiratory effort. Use of the tool has been shown to be contributory to significant improvements in asthma care and control, and it is being advocated for assessment and training in irreversible lung disease.

  8. Respiratory muscle endurance training reduces chronic neck pain: A pilot study.

    Science.gov (United States)

    Wirth, B; Ferreira, T Duarte; Mittelholzer, M; Humphreys, B K; Boutellier, U

    2016-11-21

    Patients with chronic neck pain show also respiratory dysfunctions. To investigate the effects of respiratory muscle endurance training (RMET) on chronic neck pain. In this pilot study (single-subject design: 3 baseline measurements, 4 measurements during RMET), 15 neck patients (49.3 ± 13.7 years; 13 females) conducted 20 sessions of home-based RMET using a SpiroTiger® (normocapnic hyperpnoea). Maximal voluntary ventilation (MVV), maximal inspiratory (Pimax) and expiratory (Pemax) pressure were measured before and after RMET. Neck flexor endurance, cervical and thoracic mobility, forward head posture, chest wall expansion and self-assessed neck disability [Neck Disability Index (NDI), Bournemouth questionnaire] were weekly assessed. Repeated measure ANOVA (Bonferroni correction) compared the first and last baseline and the last measurement after RMET. RMET significantly increased MVV (p= 0.025), Pimax (p= 0.001) and Pemax (pneck pain. The underlying mechanisms, including blood gas analyses, need further investigation in a randomized controlled study.

  9. The effect of ventilatory muscle training on respiratory function and capacity in ambulatory and bed-ridden patients with neuromuscular disease.

    Science.gov (United States)

    Gross, D; Meiner, Z

    1993-08-01

    Most patients with neuromuscular disease develop muscle weakness, including the ventilatory muscles leading to respiratory difficulty and, at times, respiratory insufficiency. We studied the effect of ventilatory muscle training on the ventilatory function and capacity of patients with various types of neuromuscular disease. The ambulatory patients were divided into three major groups. Group I (n = 6) patients with motor neuron disease (MND), such as amyotrophic latera sclerosis; Group II (n = 11) patients with myoneural junction disease (MNJ), such as myasthenia gravis and: Group III (n = 7) patients with muscle diseases such as progressive muscular disease. Patients were evaluated for their neuromuscular diagnosis and status of the disease. A complete physical examination and the various neuromuscular tests were performed. A complete respiratory evaluation was applied: pulmonary function tests (PFT), maximum inspiratory pressure (MIP). Patients then started ventilatory muscle training by resistive breathing, as a prophylactic treatment, for 10 min, three times daily, with a resistance which would induce fatigue. All tests were repeated every six weeks, and the results were as follow: forced vital capacity (FVC) changed from 38.8 +/- 12.3 to 53.2 +/- 9.6% (NS) of predicted value in group I, from 49.8 +/- 8.7 to 66.1 +/- 7.5% (p < 0.002) in group II, and from 47.0 +/- 7.5 to 53.3 +/- 7.6% (p < 0.04) in group III. Forced expiratory volume in one second (FEV1) was 34.8 +/- 11.0, 46.3 +/- 5, and 45.1 +/- 9% for the three groups, respectively, and did not change with training.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  11. Role of chemical drive in recruiting upper airway and inspiratory intercostal muscles in patients with obstructive sleep apnea.

    Science.gov (United States)

    Okabe, S; Chonan, T; Hida, W; Satoh, M; Kikuchi, Y; Takishima, T

    1993-01-01

    Upper airway dilating muscle activity increases during apneic episodes in patients with obstructive sleep apnea (OSA). To elucidate the relative contribution of chemical and nonchemical stimuli to augmentation of the upper airway dilating muscle, we measured the response of genioglossus muscle (GG) and inspiratory intercostal muscle (IIM) activities to obstructive apnea during non-REM sleep and compared them with the response to progressive hypoxia and hypercapnia during awake periods in seven male patients with OSA. GG EMG was measured with a wire electrode inserted percutaneously, and IIM EMG was measured with surface electrodes placed in the second intercostal space parasternally. Responses to hypoxia and to hypercapnia were assessed by rebreathing methods in the supine position while awake. Following these measurements, a sleep study was conducted with the EMG electrodes placed in the same locations. The relationship between GG and IIM activities during the cycle of apnea and postapneic ventilation in non-REM sleep was quasi-linear, and the slope of the regression line was significantly greater than those during progressive hypoxia and progressive hypercapnia. The amplitude of GG activity at 70% of maximum IIM activities in the hypoxic test was 140 +/- 20% (mean +/- SEM) during non-REM sleep, which was also significantly greater than that during hypoxia (51 +/- 10%) and that during hypercapnia (59 +/- 15%). These results suggest that nonchemical factors contribute considerably to augmentation of GG activity during obstructive apneic episodes. The nonchemical stimuli may arise from mechanoreceptors activated by upper airway obstruction and behavioral factors associated with change in sleep states.

  12. Strength training and aerobic exercise training for muscle disease.

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise

  13. Mind-muscle connection training principle: influence of muscle strength and training experience during a pushing movement.

    Science.gov (United States)

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2017-07-01

    To investigate the effect of different attentional focus conditions on muscle activity during the push-up exercise and to assess the possible influence of muscle strength and training experience. Eighteen resistance-trained men performed 1RM bench press testing and were familiarized with the procedure during the first session. In the second session, three different conditions were randomly performed: regular push-up and push-up focusing on using the pectoralis major and triceps brachii muscles, respectively. Surface electromyography (EMG) was recorded and analyzed (EMG normalized to max; nEMG) for the triceps brachii and pectoralis major muscles. Participants had on average 8 (SD 6) years of training experience and 1RM of 1.25 (SD 0.28) kg per kg bodyweight. Focusing on using pectoralis major increased activity in this muscle by 9% nEMG (95% CI 5-13; Cohen's d 0.60) compared with the regular condition. Triceps activity was not significantly influenced by triceps focus although borderline significant, with a mean difference of 5% nEMG (95% CI 0-10; Cohen's d 0.30). However, years of training experience was positively associated with the ability to selectively activate the triceps (β = 0.41, P = 0.04), but not the pectoralis. Bench press 1RM was not significantly associated with the ability to selectively activate the muscles. Pectoralis activity can be increased when focusing on using this muscle during push-ups, whereas the ability to do this for the triceps is dependent on years of training experience. Maximal muscle strength does not appear to be a decisive factor for the ability to selectively activate these muscles.

  14. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Science.gov (United States)

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  15. Training-specific muscle architecture adaptation after 5-wk training in athletes.

    Science.gov (United States)

    Blazevich, Anthony J; Gill, Nicholas D; Bronks, Roger; Newton, Robert U

    2003-12-01

    This study examined changes in the muscle size, muscle architecture, strength, and sprint/jump performances of concurrently training athletes during 5 wk of "altered" resistance training (RT). Eight female and 15 male athletes performed 4 wk of sprint, jump, and resistance training in addition to their sports training (standardization) before adopting one of three different programs for 5 wk: 1) squat lift training (SQ, N = 8) with sprint/jump training; 2) forward hack squat training (FHS, N = 7) with sprint/jump training; or 3) sprint/jump training only (SJ, N = 8). Muscle size, fascicle angle, and fascicle length of the vastus lateralis (VL) and rectus femoris (RF) muscles (using ultrasound procedures) as well as 20-m sprint run, vertical jump, and strength performance changes were examined. A small increase in VL fascicle angle in SQ and FHS was statistically different to the decrease in SJ subjects (P < 0.05 at distal, P < 0.1 at proximal). VL fascicle length increased for SJ only (P < 0.05 at distal, P < 0.1 at proximal) and increased in RF in SQ subjects (P < 0.05). Muscle thickness of VL and RF increased in all training groups (P < 0.05) but only at proximal sites. There were no between-group differences in squat, forward hack squat, or isokinetic strength performances, or in sprint or jump performances, despite improvements in some of the tests across the groups. Significant muscle size and architectural adaptations can occur in concurrently training athletes in response to a 5-wk training program. These adaptations were possibly associated with the force and velocity characteristics of the training exercises but not the movement patterns. Factors other than, or in addition to, muscle architecture must mediate changes in strength, sprint, and jump performance.

  16. Changes in muscle coordination with training.

    Science.gov (United States)

    Carson, Richard G

    2006-11-01

    Three core concepts, activity-dependent coupling, the composition of muscle synergies, and Hebbian adaptation, are discussed with a view to illustrating the nature of the constraints imposed by the organization of the central nervous system on the changes in muscle coordination induced by training. It is argued that training invoked variations in the efficiency with which motor actions can be generated influence the stability of coordination by altering the potential for activity-dependent coupling between the cortical representations of the focal muscles recruited in a movement task and brain circuits that do not contribute directly to the required behavior. The behaviors that can be generated during training are also constrained by the composition of existing intrinsic muscle synergies. In circumstances in which attempts to produce forceful or high velocity movements would otherwise result in the generation of inappropriate actions, training designed to promote the development of control strategies specific to the desired movement outcome may be necessary to compensate for protogenic muscle recruitment patterns. Hebbian adaptation refers to processes whereby, for neurons that release action potentials at the same time, there is an increased probability that synaptic connections will be formed. Neural connectivity induced by the repetition of specific muscle recruitment patterns during training may, however, inhibit the subsequent acquisition of new skills. Consideration is given to the possibility that, in the presence of the appropriate sensory guidance, it is possible to gate Hebbian plasticity and to promote greater subsequent flexibility in the recruitment of the trained muscles in other task contexts.

  17. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  18. Effect of hyperinflation on inspiratory function of the diaphragm.

    Science.gov (United States)

    Minh, V D; Dolan, G F; Konopka, R F; Moser, K M

    1976-01-01

    The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.

  19. Inspiratory flow pattern in humans.

    Science.gov (United States)

    Lafortuna, C L; Minetti, A E; Mognoni, P

    1984-10-01

    The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.

  20. Reference values of inspiratory spirometry for Finnish adults.

    Science.gov (United States)

    Kainu, Annette; Timonen, Kirsi L; Vanninen, Esko; Sovijärvi, Anssi R

    2018-03-07

    Inspiratory spirometry is used in evaluation of upper airway disorders e.g. fixed or variable obstruction. There are, however, very few published data on normal values for inspiratory spirometry. The main aim of this study was to produce reference values for inspiratory spirometry for healthy Finnish adults. Inspiratory spirometry was preplanned to a sample of the Finnish spirometry reference values sample. Data was successfully retrieved from 368 healthy nonsmoking adults (132 males) between 19 and 83 years of age. Reference equations were produced for forced inspiratory vital capacity (FIVC), forced inspiratory volume in one second (FIV1), FIV1/FIVC, peak inspiratory flow (PIF) and the ratios of FIV1/forced expiratory volume in one second and PIF/peak expiratory flow. The present values were compared to PIF values from previously used Finnish study of Viljanen et al. (1982) reference values and Norwegian values for FIV1, FIVC and FIV1/FIVC presented by Gulsvik et al. (2001). The predicted values from the Gulsvik et al. (2001), provided a good fit for FIVC, but smaller values for FIV1 with mean 108.3 and 109.1% of predicted values for males and females, respectively. PIF values were 87.4 and 91.2% of Viljanen et al. (1982) predicted values in males and females, respectively. Differences in measurement methods and selection of results may contribute to the observed differences. Inspiratory spirometry is technically more demanding and needs repeatability criteria to improve validity. New reference values are suggested to clinical use in Finland when assessing inspiratory spirometry. Utility of inspiratory to expiratory values indices in assessment of airway collapse need further study.

  1. Respiratory muscle training in Duchenne muscular dystrophy.

    OpenAIRE

    Rodillo, E; Noble-Jamieson, C M; Aber, V; Heckmatt, J Z; Muntoni, F; Dubowitz, V

    1989-01-01

    Twenty two boys with Duchenne muscular dystrophy were entered into a randomised double blind crossover trial to compare respiratory muscle training with a Triflow II inspirometer and 'placebo' training with a mini peak flow meter. Supine posture was associated with significantly impaired lung function, but respiratory muscle training showed no benefit.

  2. Ventilatory responses to exercise training in obese adolescents.

    Science.gov (United States)

    Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2012-10-15

    The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Core Muscle Activation in Suspension Training Exercises.

    Science.gov (United States)

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  4. Mathematical models of human paralyzed muscle after long-term training.

    Science.gov (United States)

    Law, L A Frey; Shields, R K

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

  5. Static respiratory muscle work during immersion with positive and negative respiratory loading.

    Science.gov (United States)

    Taylor, N A; Morrison, J B

    1999-10-01

    Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.

  6. Strength training and aerobic exercise training for muscle disease

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2013-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES: To examine the safety and

  7. Efeitos de um programa de reabilitação da musculatura inspiratória no pós-operatório de cirurgia cardíaca Efectos de un programa de rehabilitación de la musculatura inspiratoria en el postoperatorio de cirugía cardiaca Effects of an inspiratory muscle rehabilitation program in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Gomes Ferreira

    2009-04-01

    waiting for myocardial revascularization and/or cardiac valve surgery, were randomly assigned to two groups. Fifteen patients were included in a domiciliary program of at least 2 weeks of preoperative training of the inspiratory muscles, using a device with a load corresponding to 40% of the maximum inspiratory pressure. The other 15 patients received general advice and did not train the inspiratory muscle. Spirometry, before and after the training program, as well as the evolution of the arterial blood gases and of the maximum inspiratory and expiratory pressure, before and after the operation were evaluated in both group. The clinical outcomes of the two groups were also compared. RESULTS: We observed that inspiratory muscle training increased the forced vital capacity, the maximum voluntary ventilation and the ratio between the forced expired volume during the first second and the forced vital capacity. The evolution of the arterial blood gases and of the maximum inspiratory and expiratory pressures before and after the operation was similar in both groups, with the outcomes also being similar. CONCLUSION: We concluded that our domiciliary program of inspiratory muscle training was safe and improved the forced vital capacity and the maximum voluntary ventilation, although the clinical benefits of this program were not clearly demonstrable in the present study.

  8. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial

    Directory of Open Access Journals (Sweden)

    Wada JT

    2016-10-01

    Full Text Available Juliano T Wada,1 Erickson Borges-Santos,1 Desiderio Cano Porras,1 Denise M Paisani,1 Alberto Cukier,2 Adriana C Lunardi,1 Celso RF Carvalho1 1Department of Physical Therapy, 2Department of Cardiopneumology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil Background: Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown.Objective: The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD.Design: This study was a randomized and controlled trial.Participants: A total of 30 patients were allocated to a treatment group (TG or a control group (CG; n=15, each group.Intervention: The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks of aerobic training.Evaluations: Functional exercise capacity (6-minute walk test, thoracoabdominal kinematics (optoelectronic plethysmography, and respiratory muscle activity (surface electromyography were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%.Results: After the intervention, the TG showed improved abdominal (ABD contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01. The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001.Conclusion: Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional

  9. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  10. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  11. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations.

    Science.gov (United States)

    Ruas, Cassio V; Brown, Lee E; Lima, Camila D; Gregory Haff, G; Pinto, Ronei S

    2018-05-01

    The aim of this study was to compare three specific concentric and eccentric muscle action training protocols on quadriceps-hamstrings neuromuscular adaptations. Forty male volunteers performed 6 weeks of training (two sessions/week) of their dominant and non-dominant legs on an isokinetic dynamometer. They were randomly assigned to one of four groups; concentric quadriceps and concentric hamstrings (CON/CON, n=10), eccentric quadriceps and eccentric hamstrings (ECC/ECC, n=10), concentric quadriceps and eccentric hamstrings (CON/ECC, n=10), or no training (CTRL, n=10). Intensity of training was increased every week by decreasing the angular velocity for concentric and increasing it for eccentric groups in 30°/s increments. Volume of training was increased by adding one set every week. Dominant leg quadriceps and hamstrings muscle thickness, muscle quality, muscle activation, muscle coactivation, and electromechanical delay were tested before and after training. Results revealed that all training groups similarly increased MT of quadriceps and hamstrings compared to control (p0.05). These findings suggest that different short-term muscle action isokinetic training protocols elicit similar muscle size increases in hamstrings and quadriceps, but not for other neuromuscular variables. Nevertheless, effect sizes indicate that CON/ECC and ECC/ECC may elicit the greatest magnitude of change in muscle hypertrophy. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  14. Concentric resistance training increases muscle strength without affecting microcirculation

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Hildebrandt, Wulf; Schroeder, Leif; Kinscherf, Ralf; Krix, Martin; Bachert, Peter; Delorme, Stefan; Essig, Marco; Kauczor, Hans-Ulrich; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 ± 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P 2 after training) and in absolute muscle strength (isometric, 146 ± 44 vs. 174 ± 50 Nm; isokinetic, 151 ± 53 vs. 174 ± 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 ± 75 vs. 326 ± 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 ± 1.2 vs. 1.1 ± 1.1 ml/min/100 g; blood flow velocity, 0.49 ± 0.44 vs. 0.52 ± 0.74 mm s -1 ). Also, the intensities of high-energy phosphates phosphocreatine and β-adenosintriphosphate were not different after training within the skeletal muscle at rest (β-ATP/phosphocreatine, 0.29 ± 0.06 vs. 0.28 ± 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at

  15. Concentric resistance training increases muscle strength without affecting microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany)], E-mail: MarcAndre.Weber@med.uni-heidelberg.de; Hildebrandt, Wulf [Immunochemistry, German Cancer Research Center (dkfz), Heidelberg (Germany); Schroeder, Leif [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kinscherf, Ralf [Department of Anatomy and Developmental Biology, University of Heidelberg, Heidelberg (Germany); Krix, Martin [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Bachert, Peter [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Delorme, Stefan; Essig, Marco [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [National Center for Tumor Diseases (NCT), Heidelberg (Germany)

    2010-03-15

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 {+-} 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P < 0.001) increase in CSA (60 {+-} 16 before vs. 64 {+-} 15 cm{sup 2} after training) and in absolute muscle strength (isometric, 146 {+-} 44 vs. 174 {+-} 50 Nm; isokinetic, 151 {+-} 53 vs. 174 {+-} 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 {+-} 75 vs. 326 {+-} 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 {+-} 1.2 vs. 1.1 {+-} 1.1 ml/min/100 g; blood flow velocity, 0.49 {+-} 0.44 vs. 0.52 {+-} 0.74 mm s{sup -1}). Also, the intensities of high-energy phosphates phosphocreatine and {beta}-adenosintriphosphate were not different after training within the skeletal muscle at rest ({beta}-ATP/phosphocreatine, 0.29 {+-} 0.06 vs. 0.28 {+-} 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric

  16. Muscle hypertrophy: a narrative review on training principles for increasing muscle mass

    OpenAIRE

    Howe, Louis; Read, Paul; Waldron, Mark

    2017-01-01

    Developing muscle cross-sectional area has the potential to enhance performance for many athletes. Because emerging evidence challenges traditional beliefs regarding the prescription of hypertrophy-focused training programs, this review provides an overview of the current literature relating, specifically, to programming variables. Evidence-based recommendations are provided for the design of effective resistance-training programs, with the goal of increasing an athlete's skeletal muscle mass.

  17. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension.

    Science.gov (United States)

    Ublosakka-Jones, Chulee; Tongdee, Phailin; Pachirat, Orathai; Jones, David A

    2018-03-28

    Hypertension and reduced lung function are important features of aging. Slow loaded breathing training reduces resting blood pressure and the question is whether this can also improve lung function. Thirty-two people (67 ± 5 years, 16 male) with controlled isolated systolic hypertension undertook an eight weeks randomised controlled training trial with an inspiratory load of 25% maximum inspiratory pressure (MIP) at 6 breaths per minute (slow loaded breathing; SLB) or deep breathing control (CON). Outcome measures were resting blood pressure (BP) and heart rate; MIP; lung capacity; chest and abdominal expansion; arm cranking exercise endurance at 50% heart rate reserve. Home based measurement of resting systolic BP decreased by 20 mm Hg (15 to 25) (Mean and 95%CI) for SLB and by 5 mm Hg (1 to 7) for CON. Heart rate and diastolic BP also decreased significantly for SLB but not CON. MIP increased by 15.8 cm H 2 O (11.8 to 19.8) and slow vital capacity by 0.21 L (0.15 to 0.27) for SLB but not for CON. Chest and abdominal expansion increased by 2.3 cm (2.05 to 2.55) and 2.5 cm (2.15 to 2.85), respectively for SLB and by 0.5 cm (0.26 to 0.74) and 1.7 cm (1.32 to 2.08) for CON. Arm exercise time increased by 4.9 min (3.65 to 5.15) for SLB with no significant change for CON. Slow inspiratory muscle training is not only effective in reducing resting BP, even in older people with well controlled isolated systolic hypertension but also increases inspiratory muscle strength, lung capacity and arm exercise duration. Copyright © 2018. Published by Elsevier Inc.

  18. Muscle adaptations to plyometric vs. resistance training in untrained young men

    DEFF Research Database (Denmark)

    Vissing, Kristian; Brink, Mads; Lønbro, Simon

    2008-01-01

    The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8......) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning...... was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p Plyometric training increased maximum CMJ height (10...

  19. Effect of upper extremity proprioceptive neuromuscular facilitation combined with elastic resistance bands on respiratory muscle strength: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Guilherme P. T. Areas

    2013-12-01

    Full Text Available BACKGROUND: Elastic resistance bands (ERB combined with proprioceptive neuromuscular facilitation (PNF are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. OBJECTIVES: The assessment of the effects of PNF combined with ERB on respiratory muscle strength. METHOD: Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10 or the control group (CG, n=10. Maximal expiratory pressure (MEP and inspiratory pressure (MIP were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. RESULTS: PNF combined with ERB showed significant increases in MIP and MEP (p<0.05. In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01 and ∆MEP (p=0.04. CONCLUSIONS: PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.

  20. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780 Section 868.1780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount...

  1. Muscle Damage Indicators after Land and Aquatic Plyometric Training Programmes

    Directory of Open Access Journals (Sweden)

    Vlatka Wertheimer

    2018-03-01

    Full Text Available Plyometric training is an important part of athletic conditioning with many significant benefits, including improved motor abilities and performance, but it can also increase the serum indices of muscle damage, collagen breakdown, muscle swelling, and soreness. Due to the physical characteristics of water, plyometric training in water presents less eccentric contraction, facilitates faster transition from the eccentric to concentric phase of a jump and offers greater resistance during concentric contraction with acute lower indices of muscle damage. To advance our understanding of the long-term effects of an eight-week plyometric training programme on land and in water on muscle damage indicators (lactate dehydrogenase (LDH, creatine kinase (CK and serum urea (SU, two experimental groups of physically active men (a group on land (EG1 and a group in water (EG2 were tested before and after the first and the last plyometric training to monitor muscle damage indicators and adaptations. The results showed changes in CK activity after both plyometric trainings for EG1 and only after the first training for EG2. Moreover, after the eight-week programme, significant difference was observed in CK activity in comparison with EG2. There were no observed changes in LDH activity while SU showed greater changes for the group on land. The plyometric training programme in water resulted in smaller levels of muscle damage indicators. Although both experimental groups conducted the same plyometric training with the same jump volume, the eccentric and concentric loads were not the same, so it can be concluded that adaptations in muscle damage processes are faster with smaller eccentric loads.

  2. Inspiratory time and tidal volume during intermittent positive pressure ventilation.

    OpenAIRE

    Field, D; Milner, A D; Hopkin, I E

    1985-01-01

    We measured the tidal volume achieved during intermittent positive pressure ventilation using various inspiratory times with a minimum of 0.2 seconds. Results indicate that tidal volume shows no reduction with inspiratory times down to 0.4 seconds. An inspiratory time of 0.3 seconds, however, is likely to reduce tidal volume by 8%, and at 0.2 seconds a 22% fall may be anticipated.

  3. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.

    Science.gov (United States)

    Bou-Flores, C; Berger, A J

    2001-04-01

    Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18 alpha-glycyrrhetinic acid, 18 beta-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABA(A) and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal

  4. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  5. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2017-02-02

    The vast majority of dynamometer-based animal models for investigation of the response to chronic muscle contraction exposure has been limited to analysis of isometric, lengthening, or shortening contractions in isolation. An exception to this has been the utilization of a rat model to study stretch-shortening contractions (SSCs), a sequence of consecutive isometric, lengthening, and shortening contractions common during daily activity and resistance-type exercise. However, the availability of diverse genetic strains of rats is limited. Therefore, the purpose of the present study was to develop a dynamometer-based SSC training protocol to induce increased muscle mass and performance in plantarflexor muscles of mice. Young (3 months old) C57BL/6 mice were subjected to 1 month of plantarflexion SSC training. Hindlimb muscles were analyzed for muscle mass, quantitative morphology, myogenesis/myopathy relevant gene expression, and fiber type distribution. The main aim of the research was achieved when training induced a 2-fold increase in plantarflexion peak torque output and a 19% increase in muscle mass for the agonist plantaris (PLT) muscle. In establishing this model, several outcomes emerged which raised the value of the model past that of being a mere recapitulation of the rat model. An increase in the number of muscle fibers per transverse muscle section accounted for the PLT muscle mass gain while the antagonist tibialis anterior (TA) muscle atrophied by 30% with preferential atrophy of type IIb and IIx fibers. These alterations were accompanied by distinct gene expression profiles. The findings confirm the development of a stretch-shortening contraction training model for the PLT muscle of mice and demonstrate that increased cross-sectional fiber number can occur following high-intensity SSC training. Furthermore, the TA muscle atrophy provides direct evidence for the concept of muscle imbalance in phasic non-weight bearing muscles, a concept largely

  6. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2016-01-01

    INTRODUCTION: Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET) and resistance training (RT), may both be efficient in improving muscle strength, exercise capacity, and health-related quality...... and after the training intervention to assess muscle morphology and metabolic and angiogenic factors. Symptom burden, exercise capacity (6-minute walking and cycle ergometer tests), and vascular function were also assessed. RESULTS: Both training modalities improved symptom burden and exercise capacity...... with no difference between the two groups. The mean (SD) proportion of glycolytic type IIa muscle fibers was reduced after ET (from 48% [SD 11] to 42% [SD 10], Ptraining modality on muscle...

  7. Training-induced adaptation of oxidative phosphorylation in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-01-01

    Muscle training/conditioning improves the adaptation of oxidative phosphorylation in skeletal muscles to physical exercise. However, the mechanisms underlying this adaptation are still not understood fully. By quantitative analysis of the existing experimental results, we show that training-induced acceleration of oxygen-uptake kinetics at the onset of exercise and improvement of ATP/ADP stability due to physical training are mainly caused by an increase in the amount of mitochondrial protein...

  8. The improvement of suspension training for trunk muscle power in Sanda athletes

    Directory of Open Access Journals (Sweden)

    Xiujie Ma

    2017-12-01

    Full Text Available The aim of this study was to investigate whether both suspension training (ST and traditional training (TT can improve Sanda athlete's strength quality of trunk muscles and to explore the effect of suspension training on Sanda athletes' trunk muscle power production. Twelve elite Sanda athletes from the Competitive Sports School of Shanghai University of Sport were randomly assigned to experimental group (EG and control group (CG. EG and CG were regularly trained with suspension training and traditional strength training for 40 minutes three times per week. The total duration of training was 10 weeks. The measurements including peak torque (PT, PT/body weight (BW, and rate of force development (RFD were used to assess trunk muscles strength. The results showed that there were significant differences between the two groups' performance when it was tested at the higher velocity of dynamometer (test of muscle power, but less significant differences when the two groups performance was tested at the lower velocity of dynamometer (test of maximum strength. The conclusion of this study is that compared with traditional training methods, suspension training can improve back and trunk flexion muscles strength more effectively. In particular, suspension training can improve the explosive power of trunk extension and flexion muscles.

  9. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    Science.gov (United States)

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  10. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2017-04-01

    Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm 2 , P muscle fibre, P muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm 2 , P muscle fibre, P muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  11. Skeletal muscle plasticity with marathon training in novice runners.

    Science.gov (United States)

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (Pmarathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  12. Effects of wheelchair sports on respiratory muscle strength and thoracic mobility of individuals with spinal cord injury.

    Science.gov (United States)

    Moreno, Marlene Aparecida; Zamunér, Antonio Roberto; Paris, Juliana Viana; Teodori, Rosana Macher; Barros, Ricardo M L

    2012-06-01

    The aim of this study was to evaluate the effects of wheelchair sports on respiratory muscle strength and the thoracic mobility of individuals with spinal cord injury. Thirty male subjects with chronic spinal cord injury (American Spinal Injury Association Impairment Scale grade A) took part in the study and were divided into four groups: sedentary subjects with quadriplegia (S-QUAD, n = 7), wheelchair rugby athletes with quadriplegia (A-QUAD, n = 8), sedentary subjects with paraplegia (S-PARA, n = 6), and wheelchair basketball athletes with paraplegia (A-PARA, n = 9). The main outcome measures were maximal inspiratory and expiratory pressure and the respiratory coefficients at the axillary and xiphoid levels. A-QUAD group presented values significantly higher for all respiratory variables studied compared with the S-QUAD group. No significant differences in any of the respiratory variables were observed between S-PARA and A-PARA groups. There was a negative correlation between spinal cord injury level and respiratory variables for the S-QUAD and S-PARA groups. There were positive correlations in the A-QUAD group between time of training and maximal inspiratory pressure (adjusted R = 0.84; P = 0.001) and respiratory coefficients at the axillary level (adjusted R = 0.80; P = 0.002). Physical training seems to have a positive influence on respiratory muscle strength and thoracic mobility, especially in subjects with quadriplegia.

  13. Exercise and training effects on ceramide metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Dobrzyn, Agnieszka; Saltin, Bengt

    2004-01-01

    in skeletal muscle in untrained and trained subjects before and after prolonged exercise. Healthy male subjects were recruited into an untrained (n = 8, VO2,max 3.8 +/- 0.2 1 min1) and a trained (n = 8, Vo2,max 5.1 +/- 0.1 1 min2) group. Before and after a 3-h exercise bout (58 +/- 1% VO2,max) a muscle biopsy...... was measured using N-[14CH3]-sphingomyelin as a substrate. Prior to exercise, the muscle total ceramide fatty acid content in both groups was similar (201 +/- 18 and 197 +/- 9 nmol g(-1) in the untrained and trained group, respectively) and after exercise a 25% increase in the content was observed in each...... group. At rest, the muscle total sphingomyelin fatty acid content was higher in untrained than in trained subjects (456 +/- 10, 407 +/- 7 nmol g(-1), respectively; P trained subjects. The muscle neutral, Mg...

  14. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Layner, Kayla N; Triscuit, Alyssa M; Chetlin, Robert D; Ensey, James; Baker, Brent A

    2017-04-01

    Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms

  15. Effects of training and weight support on muscle activation in Parkinson's disease.

    Science.gov (United States)

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH, insulin like grow factor 1 (IGF-1 and interleukin 6 (IL-6], or intramuscular [skeletal muscle androgen receptor (AR protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. RESULTS: Mean fiber area increased by 20% (range: -7 to 80%; P<0.001. Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19; however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023. Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007. There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019. CONCLUSION: Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  17. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  18. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Lotte Janssens

    Full Text Available Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD. However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness.Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control.Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037. Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047, decreased anterior body sway during back muscle vibration (p = 0.025, and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002. Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037.Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the

  19. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  20. Coordinated Respiratory Motor Activity in Nerves Innervating the Upper Airway Muscles in Rats.

    Directory of Open Access Journals (Sweden)

    Satoshi Tachikawa

    Full Text Available Maintaining the patency of the upper airway during breathing is of vital importance. The activity of various muscles is related to the patency of the upper airway. In the present study, we examined the respiratory motor activity in the efferent nerves innervating the upper airway muscles to determine the movements of the upper airway during respiration under normocapnic conditions (pH = 7.4 and in hypercapnic acidosis (pH = 7.2. Experiments were performed on arterially perfused decerebrate rats aged between postnatal days 21-35. We recorded the efferent nerve activity in a branch of the cervical spinal nerve innervating the infrahyoid muscles (CN, the hypoglossal nerve (HGN, the external branch of the superior laryngeal nerve (SLN, and the recurrent laryngeal nerve (RLN with the phrenic nerve (PN. Inspiratory nerve discharges were observed in all these nerves under normocapnic conditions. The onset of inspiratory discharges in the CN and HGN was slightly prior to those in the SLN and RLN. When the CO2 concentration in the perfusate was increased from 5% to 8% to prepare for hypercapnic acidosis, the peak amplitudes of the inspiratory discharges in all the recorded nerves were increased. Moreover, hypercapnic acidosis induced pre-inspiratory discharges in the CN, HGN, SLN, and RLN. The onset of pre-inspiratory discharges in the CN, HGN, and SLN was prior to that of discharges in the RLN. These results suggest that the securing of the airway that occurs a certain time before dilation of the glottis may facilitate ventilation and improve hypercapnic acidosis.

  1. Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development

    OpenAIRE

    Feriche, Bel?n; Garc?a-Ramos, Amador; Morales-Artacho, Antonio J.; Padial, Paulino

    2017-01-01

    The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated. Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of...

  2. Skeletal Muscle Response to Endurance Training in IL-6-/- Mice.

    Science.gov (United States)

    Wojewoda, M; Kmiecik, K; Majerczak, J; Ventura-Clapier, R; Fortin, D; Onopiuk, M; Rog, J; Kaminski, K; Chlopicki, S; Zoladz, J A

    2015-12-01

    We examined effects of moderate-intensity endurance training on muscle COX/CS activities and V'O2max in control WT and IL-6(-/-) mice. Animals were exercised for 10 weeks on treadmill for 1 h, 5 days a week at velocity of 6 m·min(-1) which was increased by 0.5 m·min(-1) every 2 weeks up to 8 m·min(-1) . Training triggered an increase of enzyme activities in soleus muscle of WT mice (COX: 480.3±8.9 U·g(-1) in sedentary group vs. 773.3±62.6 U·g(-1) in trained group, P<0.05 and CS: 374.0±6.0 U·g(-1) in sedentary group vs. 534.2±20.5 U·g(-1) in trained group, P<0.01, respectively) whereas no changes were observed in soleus of IL6(-/-) mice. Moreover, in mixed gastrocnemius muscle of trained IL-6(-/-) mice enzyme activities tended to be lower (COX: 410.7±48.4 U·g(-1) for sedentary vs. 277.0±36.5 U·g(-1) for trained group and CS: 343.8±24.6 U·g(-1) for sedentary vs. 251.7±27.1 U·g(-1) for trained group). No changes in V'O2max were observed in WT and IL-6(-/-) mice after training. Concluding, moderate-velocity endurance training-induced increase in COX and CS activities in muscles of WT mice only which suggests that IL-6 regulates training-induced skeletal muscle responses to exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  4. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  5. Effects of training and weight support on muscle activation in Parkinson's disease

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight...... healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3km/h) were measured before, at the mid-point, and after training. Increasing BW support...... decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without...

  6. Bioelectrical activity of the pelvic floor muscles after 6-week biofeedback training in nulliparous continent women.

    Science.gov (United States)

    Chmielewska, Daria; Stania, Magdalena; Smykla, Agnieszka; Kwaśna, Krystyna; Błaszczak, Edward; Sobota, Grzegorz; Skrzypulec-Plinta, Violetta

    2016-01-01

    The aim of the study was to evaluate the effects of a 6-week sEMG-biofeedback-assisted pelvic floor muscle training program on pelvic floor muscle activity in young continent women. Pelvic floor muscle activity was recorded using a vaginal probe during five experimental trials. Biofeedback training was continued for 6 weeks, 3 times a week. Muscle strenghtening and endurance exercises were performed alternately. SEMG (surface electromyography) measurements were recorded on four different occasions: before training started, after the third week of training, after the sixth week of training, and one month after training ended. A 6-week sEMG-biofeedback-assisted pelvic floor muscle training program significantly decreased the resting activity of the pelvic floor muscles in supine lying and standing. The ability to relax the pelvic floor muscles after a sustained 60-second contraction improved significantly after the 6-week training in both positions. SEMG-biofeedback training program did not seem to affect the activity of the pelvic floor muscles or muscle fatigue during voluntary pelvic floor muscle contractions. SEMG-biofeedback-assisted pelvic floor muscle training might be recommended for physiotherapists to improve the effectiveness of their relaxation techniques.

  7. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study.

    Science.gov (United States)

    Yasuda, Tomohiro; Fujita, Satoshi; Ogasawara, Riki; Sato, Yoshiaki; Abe, Takashi

    2010-09-01

    Single-joint resistance training with blood flow restriction (BFR) results in significant increases in arm or leg muscle size and single-joint strength. However, the effect of multijoint BFR training on both blood flow restricted limb and non-restricted trunk muscles remain poorly understood. To examine the impact of BFR bench press training on hypertrophic response to non-restricted (chest) and restricted (upper-arm) muscles and multi-joint strength, 10 young men were randomly divided into either BFR training (BFR-T) or non-BFR training (CON-T) groups. They performed 30% of one repetition maximal (1-RM) bench press exercise (four sets, total 75 reps) twice daily, 6 days week(-1) for 2 weeks. During the exercise session, subjects in the BFR-T group placed elastic cuffs proximally on both arms, with incremental increases in external compression starting at 100 mmHg and ending at 160 mmHg. Before and after the training, triceps brachii and pectoralis major muscle thickness (MTH), bench press 1-RM and serum anabolic hormones were measured. Two weeks of training led to a significant increase (Pbench press strength in BFR-T (6%) but not in CON-T (-2%). Triceps and pectoralis major MTH increased 8% and 16% (Pbench press training leads to significant increases in muscle size for upper arm and chest muscles and 1-RM strength.

  8. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, L.L.; Tufekovic, G.; Zebis, M.K.

    2005-01-01

    of resistance training combined with timed ingestion of isoenergetic protein vs carbohydrate supplementation on muscle fiber hypertrophy and mechanical muscle performance. Supplementation was administered before and immediately after each training bout and, in addition, in the morning on nontraining days...

  9. The effects of passive leg press training on jumping performance, speed, and muscle power.

    Science.gov (United States)

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p training (p training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p training only increased participants' 30-m sprint performance and peak power (p training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  10. Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training

    Directory of Open Access Journals (Sweden)

    Dan Newmire

    2015-10-01

    Full Text Available The factors that regulate skeletal muscle hypertrophy in human adults in response to resistance training (RT has largely focused on endogenous endocrine responses. However, the endocrine response to RT as having an obligatory role in muscle hypertrophy has come under scrutiny, as other mechanisms and pathways seem to also be involved in up-regulating muscle protein synthesis (MPS. Skeletal muscle myogenesis is a multifactorial process of tissue growth and repair in response to resistance training is regulated by many factors.  As a result, satellite cell-fused myogenesis is a possible factor in skeletal muscle regeneration and hypertrophy in response to RT.  The Wnt family ligands interact with various receptors and activate different downstream signaling pathways and have been classified as either canonical (β-catenin dependent or non-canonical (β-catenin independent.  Wnt is secreted from numerous tissues in a paracrine fashion. The Wnt/β-catenin signaling pathway is a highly-regulated and intricate pathway that is essential to skeletal muscle myogenesis.  The canonical Wnt/β-catenin pathway may influence satellite cells to myogenic commitment, differentiation, and fusion into muscle fibers in response to injury or trauma, self-renewal, and normal basal turnover.  The current literature has shown that, in response mechanical overload from acute resistance exercise and chronic resistance training, that the Wnt/β-catenin signaling pathway is stimulated which may actuate the process of muscle repair and hypertrophy in response to exercise-induced muscle damage. The purpose of this review is to elaborate on the Wnt/β-catenin signaling  pathway, the current literature investigating the relationship of the Wnt/β-catenin pathway and its effects on myogenesis is response to muscle damage and resistance exercise and training.      Keywords: skeletal muscle, hypertrophy, myogenesis, cell signaling, protein synthesis, resistance

  11. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  12. Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review.

    Science.gov (United States)

    Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel

    2018-01-01

    Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.

  13. Multi-muscle electrical stimulation and stand training: Effects on standing.

    Science.gov (United States)

    Momeni, Kamyar; Ramanujam, Arvind; Garbarini, Erica L; Forrest, Gail F

    2018-02-15

    To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). Single-subject, longitudinal study. Neuroplasticity laboratory. A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSL A/P =54.0 kg.cm, TSL M/L =14.5 kg.cm), compared to ES-alone (TSL A/P =8.5 kg.cm, TSL M/L =3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.

  14. Effects of concurrent training on oxidative capacity in rat gastrocnemius muscle

    NARCIS (Netherlands)

    Furrer, R.; Bravenboer, N.; Kos, D.; Lips, P.; de Haan, A.; Jaspers, R.T.

    2013-01-01

    PURPOSE: Training for improvement of oxidative capacity of muscle fibers may be attenuated when concurrently training for peak power. However, because of fiber type-specific recruitment, such attenuation may only account for high-oxidative muscle fibers. Here, we investigate the effects of

  15. Training-induced adaptation of oxidative phosphorylation in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-08-15

    Muscle training/conditioning improves the adaptation of oxidative phosphorylation in skeletal muscles to physical exercise. However, the mechanisms underlying this adaptation are still not understood fully. By quantitative analysis of the existing experimental results, we show that training-induced acceleration of oxygen-uptake kinetics at the onset of exercise and improvement of ATP/ADP stability due to physical training are mainly caused by an increase in the amount of mitochondrial proteins and by an intensification of the parallel activation of ATP usage and ATP supply (increase in direct stimulation of oxidative phosphorylation complexes accompanying stimulation of ATP consumption) during exercise.

  16. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter Møller

    2018-01-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO2 -m.......3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers....

  17. Skeletal muscle architectural adaptations to marathon run training.

    Science.gov (United States)

    Murach, Kevin; Greever, Cory; Luden, Nicholas D

    2015-01-01

    We assessed lateral gastrocnemius (LG) and vastus lateralis (VL) architecture in 16 recreational runners before and after 12 weeks of marathon training. LG fascicle length decreased 10% while pennation angle increased 17% (p training can modify skeletal muscle architectural features.

  18. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2018-04-01

    Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by

  19. Inspiratory and expiratory HRCT findings in healthy smokers' lung

    International Nuclear Information System (INIS)

    Park, Hyeon Seon; Kwak, Byung Kook; Choi, Chi Hoon; Yang, Keun Mung; Lee, Chang Joon; Joo, Dong Il; Kim, Yang Soo

    1998-01-01

    The purpose of this study is to evaluate the lung changes in healthy smokers, as seen on inspiratory and expiratory high-resolution computed tomography (HRCT). Twenty-seven healthy smokers (light smokers, below 20 pack-years, n=16; heavy smokers, above 20 pack-years, n=11) and 25 nonsmokers underwent inspiratory and expiratory HRCT. All healthy smokers had normal pulmonary function and chest radiography. Parenchymal and subpleural micronodules, ground-glass attenuation, centrilobular and paraseptal emphysema, bronchial wall thickening, bronchiectasis and septal line were evaluated on inspiratory scan and by air-trapping on expiratory scan. According to the findings of HRCT, heavy smokers and higher frequency of parenchymal micronodules, ground-glass attenuation, centrilobular and paraseptal emphysema, and air-trapping than nonsmokers and light smokers. (author). 13 refs., 1 tab., 4 figs

  20. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial.

    Science.gov (United States)

    Braekken, Ingeborg Hoff; Hoff Braekken, Ingeborg; Majida, Memona; Engh, Marie Ellström; Bø, Kari

    2010-02-01

    To investigate morphological and functional changes after pelvic floor muscle training in women with pelvic organ prolapse. This randomized controlled trial was conducted at a university hospital and a physical therapy clinic. One hundred nine women with pelvic organ prolapse stages I, II, and III were randomly allocated by a computer-generated random number system to pelvic floor muscle training (n=59) or control (n=50). Both groups received lifestyle advice and learned to contract the pelvic floor muscles before and during increases in intraabdominal pressure. In addition the pelvic floor muscle training group did individual strength training with a physical therapist and daily home exercise for 6 months. Primary outcome measures were pelvic floor muscle (pubovisceral muscle) thickness, levator hiatus area, pubovisceral muscle length at rest and Valsalva, and resting position of bladder and rectum, measured by three-dimensional ultrasonography. Seventy-nine percent of women in the pelvic floor muscle training group adhered to at least 80% of the training protocol. Compared with women in the control group, women in the pelvic floor muscle training group increased muscle thickness (difference between groups: 1.9 mm, 95% confidence interval [CI] 1.1-2.7, Ppelvic floor muscle stiffness. Supervised pelvic floor muscle training can increase muscle volume, close the levator hiatus, shorten muscle length, and elevate the resting position of the bladder and rectum. www.clinicaltrials.gov, NCT00271297. I.

  1. TRAINING-INDUCED CHANGES IN THE TOPOGRAPHY OF MUSCLE TORQUES AND MAXIMAL MUSCLE TORQUES IN BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Krzysztof Buśko

    2012-01-01

    Full Text Available The aim of the study was to detect changes in the maximal muscle torques in male basketball players during a two-year training cycle. We verified the hypothesis that different workloads applied during the preparation and competition periods would result in changes in the maximal muscle torques of the athletes (increase during the former and decrease or no change during the latter period accompanied by no alteration of the percent muscle topography of all the muscle groups tested. The examinations were conducted on nine senior male basketball players from the Polish national team. Estimations of the muscle torques in static conditions were performed at the end of the preparation (measurements I and III and competition (measurements II and IV periods of a two-year training cycle. Eleven muscle groups were studied including flexors and extensors of the trunk and flexors and extensors of the shoulder, the elbow, the hip, the knee, and the ankle. Muscle torques of the shoulder and the elbow insignificantly decreased except for the muscle torque of the flexors of the shoulder. Muscle torques of the flexors and extensors of the trunk as well as of the flexors and extensors of the hip, the knee, and the ankle increased between measurements I and III and between measurements I and IV with the only exception being the muscle torque of the flexors of the knee (which significantly decreased by 7.4% In the case of the flexors and extensors of the trunk and the flexors and extensors of the hip, the changes appeared to be significant. The sum of the muscle torques of the upper limbs markedly decreased between the preparation (measurement I and competition (measurement IV periods. The sum of the muscle torques of the trunk and the lower limbs and the sum of the muscle torques of the eleven muscle groups significantly increased between measurements I and IV. Percent muscle topography significantly decreased for the flexors and extensors of the shoulder and the

  2. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons

    DEFF Research Database (Denmark)

    Del Negro, Christopher A; Hayes, John A; Rekling, Jens C

    2011-01-01

    to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We measured Ca(2+) transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca(2+) accumulation frequently precedes inspiratory bursts, particularly at recording...

  3. High-frequency resistance training is not more effective than low-frequency resistance training in increasing muscle mass and strength in well-trained men.

    Science.gov (United States)

    Gomes, Gederson K; Franco, Cristiane M; Nunes, Paulo Ricardo P; Orsatti, Fábio L

    2018-02-27

    We studied the effects of two different weekly frequency resistance training (RT) protocols over eight weeks on muscle strength and muscle hypertrophy in well-trained men. Twenty-three subjects (age: 26.2±4.2 years; RT experience: 6.9±3.1 years) were randomly allocated into the two groups: low frequency (LFRT, n = 12) or high frequency (HFRT, n = 11). The LFRT performed a split-body routine, training each specific muscle group once a week. The HFRT performed a total-body routine, training all muscle groups every session. Both groups performed the same number of sets (10-15 sets) and exercises (1-2 exercise) per week, 8-12 repetitions maximum (70-80% of 1RM), five times per week. Muscle strength (bench press and squat 1RM) and lean tissue mass (dual-energy x-ray absorptiometry) were assessed prior to and at the end of the study. Results showed that both groups improved (ptrained subjects when the sets and intensity are equated per week.

  4. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions.

    Science.gov (United States)

    Chaabene, Helmi; Prieske, Olaf; Negra, Yassine; Granacher, Urs

    2018-03-28

    There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate- to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small- to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to

  5. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  6. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Science.gov (United States)

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  7. MUSCLE STRENGTH AND DAMAGE FOLLOWING TWO MODES OF VARIABLE RESISTANCE TRAINING

    Directory of Open Access Journals (Sweden)

    Saied Jalal Aboodarda

    2011-12-01

    Full Text Available Nautilus Machine (NM and Elastic Resistance (ER have gained considerable popularity among athletes and recreational lifters seeking to increase muscle strength. However, there is controversy concerning the use of ER for increasing muscle hypertrophy and strength among healthy-trained individuals. The aim of the study was to compare the effect of repeated near maximal contractions by ER/NM on indicators of muscle damage including: maximal strength decrement (MVIC, rate of muscle soreness (DOMS, concentration of plasma creatine kinase (CK and increased high muscle signal on T2 weighted images using magnetic resonance imaging (MRI. Nine healthy male subjects completed two modalities of exercise (5 sets × 10RM ER/NM in a counterbalance cross-over study design with three weeks "wash-out" period between experiments. The MVIC was measured and DOMS rated and recorded for 4 consecutive days while blood samples were collected on day 1, 3, 5 and 7. Prior to and forty eight hours after completion of each mode of exercise, subjects underwent MRI scanning. The average of applied forces demonstrated significantly higher value for NM compared with ER (362 ± 34.2 N vs 266.73 ± 44.6 N respectively throughout the 5 sets of dynamic exercise (all p < 0.05. However, the indicators of muscle damage (T2 relaxation time, DOMS, MVIC and serum CK exhibited a very similar response across both modes of training. Plasma CK increased significantly following both modes of training with the peak value on Day 3 (p < 0.05. The time course of muscle soreness reached a significant level after both modes of exercise and showed a peak value on the 2nd day (p < 0.05. The T2 relaxation time demonstrated a statistically significant increase following ER and NM compared with the pre-test value (p < 0.05. The similarity of these responses following both the ER and NM exercise training session suggests that both modes of training provide a similar training stress; despite a considerably

  8. Effect of a step-training program on muscle strength in older women

    Directory of Open Access Journals (Sweden)

    Daniela Coelho Zazá

    2010-04-01

    Full Text Available Step-training is associated with strength improvement of the lower limbs. Muscle strength is a critical component for the maintenance of functional capacity. The objective of the present study was to determine the effect of 6 weeks of step-training on work and power of the lower limbs in older women. Thirteen healthy and active women volunteered to participate in the study. All subjects underwent step-training classes three times per week for 60 min. Strength variables of the knee extensor and flexor muscles were measured with a Biodex System 3 Pro isokinetic dynamometer. Muscle work and power were assessed at an angular velocity of 60 and 180°/s. A significant difference (p<0.05 in knee flexor muscle work was observed between pre- and post-test at 60 and 180°/s. There was a significant difference (p<0.05 in knee extensor muscle work between pre- and post-test at 60°/s. Significant differences were observed between pre- and post-test values of knee flexor muscle power at 60°/s (p<0.05 and knee extensor muscle power at 60 and 180°/s (p<0.05. In conclusion, step-training can be recommended as an alternative physical activity to increase strength performance (work and power of the knee extensor and flexor muscles in older subjects.

  9. Effect of strength training on muscle function in elderly hospitalized patients

    DEFF Research Database (Denmark)

    Suetta, C; Magnusson, S P; Beyer, N

    2007-01-01

    Immobilization due to hospitalization and major surgery leads to an increased risk of morbidity, disability and a decline in muscle function especially in frail elderly individuals. In fact, many elderly patients fail to regain their level of function and self-care before admission to hospital....... Given that reduced lower limb muscle strength and loss of skeletal muscle mass (i.e. sarcopenia) have been associated with functional impairments and disability with aging, attempts to counteract this process seem highly relevant. In recent years, strength training has emerged as an effective method...... to induce muscle hypertrophy and increase muscle strength and functional performance in frail elderly individuals. Furthermore, there is increasing evidence that strength training is an effective method to restore muscle function in post-operative patients and in patients with chronic diseases. Despite this...

  10. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  11. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners

    Science.gov (United States)

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.

    2018-01-01

    Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907

  12. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners.

    Directory of Open Access Journals (Sweden)

    Paula Finatto

    Full Text Available Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet and an improvement in running performance is feasible with strength training of the postural and trunk muscles.Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16 or the Pilates group (PG, n = 16.Confirming our hypothesis, a significant improvement (p<0.05 was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min. Similarly, the PG (4.33±0.07 J.kg-1.m-1 had better responses than the CG (4.71±0.11 J.kg-1.m-1 during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG.Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.

  13. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners.

    Science.gov (United States)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens

    2018-02-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  15. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.

    Science.gov (United States)

    Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro

    2017-08-01

    The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  17. Low Volume Aerobic Training Heightens Muscle Deoxygenation in Early Post-Angina Pectoris Patients.

    Science.gov (United States)

    Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to investigate the effect of low volume aerobic exercise training on muscle O2 dynamics during exercise in early post-angina pectoris (AP) patients, as a pilot study. Seven AP patients (age: 72 ± 6 years) participated in aerobic exercise training for 12 weeks. Training consisted of continuous cycling exercise for 30 min at the individual's estimated lactate threshold, and the subjects trained for 15 ± 5 exercise sessions over 12 weeks. Before and after training, the subjects performed ramp cycling exercise until exhaustion. Muscle O2 saturation (SmO2) and relative changes from rest in deoxygenated hemoglobin concentration (∆Deoxy-Hb) and total hemoglobin concentration (∆Total-Hb) were monitored at the vastus lateralis by near infrared spatial resolved spectroscopy during exercise. The SmO2 was significantly lower and ∆Deoxy-Hb was significantly higher after training than before training, while there were no significant changes in ∆Total-Hb. These results indicated that muscle deoxygenation and muscle O2 extraction were potentially heightened by aerobic exercise training in AP patients, even though the exercise training volume was low.

  18. INFLUENCE OF STRENGTH TRAINING PROGRAM ON ISOMETRIC MUSCLE STRENGTH IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Dragan Radovanovic

    2007-10-01

    Full Text Available Strength training, or resistance training, is a form of physical conditioning used to increase the ability to resist force. Since muscular strength is required for success in many sports, it is logical to assume that stronger and more powerful young athletes will achieve better results. The aim of the study was to examine the effects of strength training on young athletes. An eight-week strength training program for developing muscle strength was performed in this study. Training protocol was designed specifically for young adolescent’s athletes. The program consisted of exercises for lower and upper body, abdominal and lower back muscles. The programs did not involve the maximal (1-3 repetitions maximum and other very hard intensity exercises that may had negative effect on young athletes. The results showed that strength training program had positive effects on maximal isometric muscle force (Fmax and motor skill. The increase presents the combined influence of strength training and growth.

  19. Low intensity exercise training improves skeletal muscle regeneration potential

    Directory of Open Access Journals (Sweden)

    Tiziana ePietrangelo

    2015-12-01

    Full Text Available Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l. improves skeletal muscle regeneration in sedentary adult women.Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (miRNA expression (miR-1, miR-133, miR-206.Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12% to 67%, although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells.

  20. Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy

    OpenAIRE

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Bellamy, Leeann; Parise, Gianni; Baker, Steven K.; Phillips, Stuart M.

    2013-01-01

    PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk....

  1. Mathematical models of human paralyzed muscle after long-term training

    OpenAIRE

    Frey Law, L.A.; Shields, R.K.

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of th...

  2. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: association with muscle activation during the first training session.

    Science.gov (United States)

    Wakahara, Taku; Ema, Ryoichi; Miyamoto, Naokazu; Kawakami, Yasuo

    2017-07-01

    The purpose of this study was to examine whether inter- and intramuscular differences in hypertrophy induced by resistance training correspond to differences in muscle activation during the first training session. Eleven young men completed 12 weeks of training intervention for knee extension. Before and after the intervention, T1-weighted magnetic resonance (MR) images were recorded to determine the volume and anatomical cross-sectional area (CSA) along the length of the individual muscles of the quadriceps femoris. The T2-weighted MR images were also acquired before and immediately after the first training session. The T2 was calculated for each pixel within the quadriceps femoris, from which the muscle activation was evaluated as %activated volume and area. The results showed that the %activated volume after the first training session was significantly higher in the vastus intermedius than the vastus medialis. However, the relative change in muscle volume after the training intervention was significantly greater in the rectus femoris than the vasti muscles (vastus lateralis, intermedius and medialis). Within the rectus femoris, both the %activated area and relative increase in CSA were significantly greater in the distal region than the proximal region. In contrast, the %activated area and relative increase in CSA of the vasti were nearly uniform along each muscle. These results suggest that the muscle activation during the first training session is associated with the intramuscular difference in hypertrophy induced by training intervention, but not with the intermuscular difference. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  4. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    International Nuclear Information System (INIS)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H.

    1990-01-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters

  5. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Importance of mind-muscle connection during progressive resistance training

    DEFF Research Database (Denmark)

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus Due

    2016-01-01

    PURPOSE: This study evaluates whether focusing on using specific muscles during bench press can selectively activate these muscles. METHODS: Altogether 18 resistance-trained men participated. Subjects were familiarized with the procedure and performed one-maximum repetition (1RM) test during...... electromyography (EMG) signals were recorded for the triceps brachii and pectoralis major muscles. Subsequently, peak EMG of the filtered signals were normalized to maximum maximorum EMG of each muscle. RESULTS: In both muscles, focusing on using the respective muscles increased muscle activity at relative loads...... between 20 and 60 %, but not at 80 % of 1RM. Overall, a threshold between 60 and 80 % rather than a linear decrease in selective activation with increasing intensity appeared to exist. The increased activity did not occur at the expense of decreased activity of the other muscle, e.g. when focusing...

  7. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  8. Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension

    DEFF Research Database (Denmark)

    Hansen, Ane Håkansson; Nielsen, Jens Jung; Saltin, Bengt

    2010-01-01

    METHODS: Vascular endothelial growth factor (VEGF) protein and capillarization were determined in muscle vastus lateralis biopsy samples in individuals with essential hypertension (n = 10) and normotensive controls (n = 10). The hypertensive individuals performed exercise training for 16 weeks....... Muscle samples as well as muscle microdialysis fluid samples were obtained at rest, during and after an acute exercise bout, performed prior to and after the training period, for the determination of muscle VEGF levels, VEGF release, endothelial cell proliferative effect and capillarization. RESULTS......: Prior to training, the hypertensive individuals had 36% lower levels of VEGF protein and 22% lower capillary density in the muscle compared to controls. Training in the hypertensive group reduced (P

  9. Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players

    DEFF Research Database (Denmark)

    Fransson, Dan; Nielsen, Tobias Schmidt; Olsson, Karl

    2018-01-01

    PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21...... pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players....

  10. Is Pelvic Floor Muscle Training Effective for Men With Poststroke Lower Urinary Tract Symptoms?

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Gard, Gunvor; Dehlendorff, Christian

    2017-01-01

    The aim of the current study was to evaluate the effect of pelvic floor muscle training in men with poststroke lower urinary tract symptoms. Thirty-one poststroke men, median age 68 years, were included in this single-blinded randomized controlled trial. Thirty participants, 15 in each group......, completed the study. The intervention consisted of 3 months (12 weekly sessions) of pelvic floor muscle training in groups and home exercises. The effect was evaluated by the DAN-PSS-1 (Danish Prostate Symptom Score) questionnaire, a voiding diary, and digital anal palpation of the pelvic floor muscle...... that pelvic floor muscle training has an effect for lower urinary tract symptoms, although statistical significance was only seen for pelvic floor muscle....

  11. Effects of plyometric training on passive stiffness of gastrocnemii muscles and Achilles tendon.

    Science.gov (United States)

    Fouré, Alexandre; Nordez, Antoine; Cornu, Christophe

    2012-08-01

    Plyometric training is commonly used to improve athletic performance; however, it is unclear how each component of the muscle-tendon complex (MTC) is affected by this intervention. The effects of 14 weeks of plyometric training on the passive stiffness of the gastrocnemii muscles and Achilles tendon was determined simultaneously to assess possible local adaptations of elastic properties. The passive force-length relationship of the gastrocnemii MTC and elongation of the gastrocnemii muscles were determined using ultrasonography during passive cyclic stretching in 19 subjects divided into trained (n = 9) and control (n = 10) groups. An upward trend in stiffness of the gastrocnemii MTC (P = 0.09) and a significant increase in the intrinsic gastrocnemii muscle stiffness were found (P  0.05). Considering the lack of change in gastrocnemii muscle geometry, the change in the gastrocnemii muscle stiffness may be mainly due to a change in the intrinsic mechanical properties of the muscular tissues.

  12. Training induced adaptation in horse skeletal muscle

    NARCIS (Netherlands)

    Dam, K.G. van

    2006-01-01

    It appears that the physiological and biochemical adaptation of skeletal muscle to training in equine species shows a lot of similarities with human and rodent physiological adaptation. On the other hand it is becoming increasingly clear that intra-cellular mechanisms of adaptation (substrate

  13. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    Science.gov (United States)

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  14. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training.

    Science.gov (United States)

    Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B

    2016-02-01

    Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Breathing training on lower esophageal sphincter as a complementary treatment of gastroesophageal reflux disease (GERD): a systematic review.

    Science.gov (United States)

    Casale, M; Sabatino, L; Moffa, A; Capuano, F; Luccarelli, V; Vitali, M; Ribolsi, M; Cicala, M; Salvinelli, F

    2016-11-01

    Gastroesophageal reflux disease (GERD) represents one of the most common gastrointestinal disorders, but is still a challenge to cure. Proton pump inhibitors (PPIs) are currently the GERD's standard treatment, although not successful in all patients; some concerns have been raised regarding their long term consumption. Recently, some studies showed the benefits of inspiratory muscle training in increasing the lower esophageal sphincter pressure in patients affected by GERD, thereby reducing their symptoms. Relevant published studies were searched in Pubmed, Google Scholar, Ovid or Medical Subject Headings using the following keywords: "GERD" and physiotherapy", "GERD" and "exercise", "GERD" and "breathing", "GERD and "training". At the end of our selection process, four publications have been included for systematic review. All of them were prospective controlled studies, mainly based on the training of the diaphragm muscle. GERD symptoms, pH-manometry values and PPIs usage were assessed. Among the non-surgical, non-pharmacological treatment modalities, the breathing training on diaphragm could play an important role in selected patients to manage the symptoms of GERD.

  16. Muscle connective tissue content of endurance-trained and inactive individuals

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, A E; Roper, H P

    2005-01-01

    Although it is known that exercise exerts a positive regulatory effect on collagen synthesis, the effects of endurance training on muscle endomysial connective tissue in man are not so well documented. To investigate this, a single muscle biopsy was collected from two groups of volunteers...

  17. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training...... session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold......The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers...

  18. Comparing the effects of rise time and inspiratory cycling criteria on 6 different mechanical ventilators.

    Science.gov (United States)

    Gonzales, Joshua F; Russian, Christopher J; Gregg Marshall, S; Collins, Kevin P

    2013-03-01

    Inspiratory rise time and cycling criteria are important settings in pressure support ventilation. The purpose of this study was to investigate the impact of minimum and maximum rise time and inspiratory cycling criteria settings on 6 new generation ventilators. Our hypothesis was there would be a difference in the exhaled tidal volume, inspiratory time, and peak flow among 6 different ventilators, based, on change in rise time and cycling criteria. The research utilized a breathing simulator and 4 different ventilator models. All mechanical ventilators were set to a spontaneous mode of ventilation with settings of pressure support 8 cm H2O and PEEP of 5 cm H2O. A minimum and maximum setting for rise time and cycling criteria were examined. Exhaled tidal volume, inspiratory time, and peak flow measurements were recorded for each simulation. Significant (P ventilator. Significant differences in exhaled tidal volume, inspiratory time, and peak flow were observed by adjusting rise time and cycling criteria. This research demonstrates that during pressure support ventilation strategy, adjustments in rise time and/or cycling criteria can produce changes in inspiratory parameters. Obviously, this finding has important implications for practitioners who utilize a similar pressure support strategy when conducting a ventilator wean. Additionally, this study outlines major differences among ventilator manufacturers when considering inspiratory rise time and cycling criteria.

  19. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  20. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    Science.gov (United States)

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  1. Resistance training improves muscle strength and functional capacity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, E; Jakobsen, J

    2009-01-01

    strength and functional capacity in patients with multiple sclerosis, the effects persisting after 12 weeks of self-guided physical activity. Level of evidence: The present study provides level III evidence supporting the hypothesis that lower extremity progressive resistance training can improve muscle......OBJECTIVE: To test the hypothesis that lower extremity progressive resistance training (PRT) can improve muscle strength and functional capacity in patients with multiple sclerosis (MS) and to evaluate whether the improvements are maintained after the trial. METHODS: The present study was a 2-arm...... and was afterward encouraged to continue training. After the trial, the control group completed the PRT intervention. Both groups were tested before and after 12 weeks of the trial and at 24 weeks (follow-up), where isometric muscle strength of the knee extensors (KE MVC) and functional capacity (FS; combined score...

  2. Effect of additional speed endurance training on performance and muscle adaptations

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas; Christensen, Peter Møller; Holse, Kris

    2012-01-01

    PURPOSE: The present study examined the effect of additional speed-endurance training during the season on muscle adaptations and performance of trained soccer players. METHODS: Eighteen sub-elite soccer players performed one session with 6-9 30-s intervals at an intensity of 90-95 % ofmaximal...... intensity (speed endurance training; SET) a week for 5 weeks (SET-intervention). Before and after the SET-intervention the players carried out the Yo-Yo intermittent recovery level 2 (Yo- Yo IR2) test, a sprint test (10- and 30-m) and an agility test. In addition, seven of the players had a resting muscle...

  3. Variability in muscle dysmorphia symptoms: the influence of weight training.

    Science.gov (United States)

    Thomas, Liam S; Tod, David A; Lavallee, David E

    2011-03-01

    The purpose of this study was to examine the influence of a weight training session on muscle dysmorphia symptoms in young men who regularly weight trained. Using a within-subjects crossover design, 30 men (mean ± SD; 20.93 ± 2.60 years, 86.87 ± 10.59 kg, and 1.76 ± 0.01 m) were randomly allocated to 1 of 2 groups, and completed the Muscle Dysmorphic Disorder Inventory twice, once each on 2 separate days. One day 1, group 1 completed the questionnaire after a weight training session and group 2 on a rest day. One day 2, group 1 completed the questionnaire on a rest day and group 2 after a weight training session. The mean score for drive for size was significantly higher on a rest day (18.00) than on a training day (15.87; p = 0.001, d = 1.03). The mean score for appearance intolerance was significantly higher on a rest day (10.10) compared with that on a training day (8.97; p = 0.001, d = 0.69). The mean score for functional impairment was significantly higher on a rest day (10.20) than on a training day (9.47; p = 0.037, d = 0.40). These results provide evidence that muscle dysmorphia symptoms have state-like properties and may be influenced by situational variables. The results may indicate that strength and conditioning specialists and mental health professionals need to observe clients over time and take into account environmental variables before making decisions about the presence or absence of the condition.

  4. Current issues in the respiratory care of patients with amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Marco Orsini

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis is a progressive neuromuscular disease, resulting in respiratory muscle weakness, reduced pulmonary volumes, ineffective cough, secretion retention, and respiratory failure. Measures as vital capacity, maximal inspiratory and expiratory pressures, sniff nasal inspiratory pressure, cough peak flow and pulse oximetry are recommended to monitor the respiratory function. The patients should be followed up by a multidisciplinary team, focused in improving the quality of life and deal with the respiratory symptoms. The respiratory care approach includes airway clearance techniques, mechanically assisted cough and noninvasive mechanical ventilation. Vaccination and respiratory pharmacological support are also recommended. To date, there is no enough evidence supporting the inspiratory muscle training and diaphragmatic pacing.

  5. Modeling and Simulation to Muscle Strength Training of Lower Limbs Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-01-01

    Full Text Available Considering the issues of lower limb rehabilitation robots with single control strategies and poor training types, a training method for improving muscle strength was put forward in this paper. Patients’ muscle strength could be achieved by targeted exercises at the end of rehabilitation. This approach could be realized through programming wires’ force. On the one hand, each wires force was measured by tension sensor and force closed loop control was established to control the value of wires’ force which was acted on trainees. On the other hand, the direction of output force was changed by detecting the trainees’ state of motion and the way of putting load to patient was achieved. Finally, the target of enhancing patients’ muscle strength was realized. Dynamic model was built by means of mechanism and training types of robots. Force closed loop control strategy was established based on training pattern. In view of the characteristics of the redundance and economy of wire control, the process for simple wire's load changes was discussed. In order to confirm the characteristics of robot control system, the controller was simulated in Matlab/Simulink. It was verified that command signal could be traced by control system availably and the load during muscle training would be provided effectively.

  6. Nutritional status is related to fat-free mass, exercise capacity and inspiratory strength in severe chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Pollyane Galinari Sabino

    2010-01-01

    Full Text Available INTRODUCTION: Being overweight or obese is associated with a higher rate of survival in patients with advanced chronic obstructive pulmonary disease (COPD. This paradoxical relationship indicates that the influence of nutritional status on functional parameters should be further investigated. OBJECTIVE: To investigate the impact of nutritional status on body composition, exercise capacity and respiratory muscle strength in severe chronic obstructive pulmonary disease patients. METHODS: Thirty-two patients (nine women were divided into three groups according to their body mass indices (BMI: overweight/obese (25 < BMI < 34.9 kg/m², n=8, normal weight (18.5 < BMI < 24.9 kg/m², n=17 and underweight (BMI <18.5 kg/m², n=7. Spirometry, bioelectrical impedance, a six-minute walking distance test and maximal inspiratory and expiratory pressures were assessed. RESULTS: Airway obstruction was similar among the groups (p=0.30; however, overweight/obese patients had a higher fat-free mass (FFM index [FFMI=FFM/body weight² (mean±SEM: 17±0.3 vs. 15±0.3 vs. 14±0.5 m/kg², p<0.01], exercise capacity (90±8 vs. 79±6 vs. 57±8 m, p=0.02 and maximal inspiratory pressure (63±7 vs. 57±5 vs. 35±8 % predicted, p=0.03 in comparison to normal weight and underweight patients, respectively. In addition, on backward multiple regression analysis, FFMI was the unique independent predictor of exercise capacity (partial r=0.52, p<0.01. CONCLUSIONS: Severe chronic obstructive pulmonary disease (COPD patients who were overweight or obese had a greater FFM, exercise capacity and inspiratory muscle strength than patients with the same degree of airflow obstruction who were of normal weight or underweight, and higher FFM was independently associated with higher exercise capacity. These characteristics of overweight or obese patients might counteract the drawbacks of excess weight and lead to an improved prognosis in COPD.

  7. Changes in muscle activation following balance and technique training and a season of Australian football.

    Science.gov (United States)

    Donnelly, C J; Elliott, B C; Doyle, T L A; Finch, C F; Dempsey, A R; Lloyd, D G

    2015-05-01

    Determine if balance and technique training implemented adjunct to 1001 male Australian football players' training influenced the activation/strength of the muscles crossing the knee during pre-planned and unplanned sidestepping. Randomized Control Trial. Each Australian football player participated in either 28 weeks of balance and technique training or 'sham' training. Twenty-eight Australian football players (balance and technique training, n=12; 'sham' training, n=16) completed biomechanical testing pre-to-post training. Peak knee moments and directed co-contraction ratios in three degrees of freedom, as well as total muscle activation were calculated during pre-planned and unplanned sidestepping. No significant differences in muscle activation/strength were observed between the 'sham' training and balance and technique training groups. Following a season of Australian football, knee extensor (p=0.023) and semimembranosus (p=0.006) muscle activation increased during both pre-planned sidestepping and unplanned sidestepping. Following a season of Australian football, total muscle activation was 30% lower and peak valgus knee moments 80% greater (p=0.022) during unplanned sidestepping when compared with pre-planned sidestepping. When implemented in a community level training environment, balance and technique training was not effective in changing the activation of the muscles crossing the knee during sidestepping. Following a season of Australian football, players are better able to support both frontal and sagittal plane knee moments. When compared to pre-planned sidestepping, Australian football players may be at increased risk of anterior cruciate ligament injury during unplanned sidestepping in the latter half of an Australian football season. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Increased inspiratory pressure for reduction of atelectasis in children anesthetized for CT scan

    International Nuclear Information System (INIS)

    Sargent, Michael A.; Jamieson, Douglas H.; McEachern, Anita M.; Blackstock, Derek

    2002-01-01

    Background: Atelectasis is more frequent and more severe in children anesthetized for CT scan than it is in children sedated for CT scan.Objective: To determine the effect of increased inspiratory pressure on atelectasis during chest CT in anesthetized children. Materials and methods: Atelectasis on chest CT was assessed by two observers in three groups of patients. Group A comprised 13 children (26 lungs) anesthetized at inspiratory pressures up to and including 25 cm H 2 O. Group B included 11 children anesthetized at inspiratory pressures ≥30 cm H 2 O. Group C included 8 children under deep sedation. Results: Atelectasis was significantly more severe in group A than in groups B and C. There was no significant difference between groups B and C. Conclusion: An inspiratory pressure of 30 cm H 2 O is recommended for children anesthetized for CT scan of the chest. (orig.)

  9. Effects of functional exercise training on performance and muscle strength after meniscectomy

    DEFF Research Database (Denmark)

    Ericsson, Y B; Dahlberg, L E; Roos, E M

    2008-01-01

    Muscular deficits and functional limitations have been found years after meniscectomy of the knee. The purpose of this randomized controlled trial was to examine the effect of functional exercise training on functional performance and isokinetic thigh muscle strength in middle-aged patients...... subsequent to meniscectomy for a degenerative tear. Four years after meniscectomy, 45 patients (29 men, 16 women) were randomized to functional exercise training, supervised by a physical therapist, three times weekly for 4 months or to no intervention. The exercise program comprised of postural stability...... training and functional strength and endurance exercises for leg and trunk muscles. Outcomes were three functional performance tests and isokinetic muscle strength. Thirty patients (16 exercisers/14 controls) completed the study. Compared with control patients, the exercise group showed significant...

  10. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.

    Science.gov (United States)

    Gliemann, Lasse; Olesen, Jesper; Biensø, Rasmus Sjørup; Schmidt, Jakob Friis; Akerstrom, Thorbjorn; Nyberg, Michael; Lindqvist, Anna; Bangsbo, Jens; Hellsten, Ylva

    2014-10-15

    In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis. Copyright © 2014 the American Physiological Society.

  11. PELVIC FLOOR MUSCLE TRAINING IN THE TREATMENT OF URINARY INCONTINENCE AFTER RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. L. Demidko

    2014-07-01

    Full Text Available The incidence of urinary incontinence after radical prostatectomy is 0.8 to 87%. This category of patients has pelvic floor muscle weakness and reduced perineal reflex. The treatment of these patients uses a pelvic floor exercise system that is to enhance muscle tone and to develop strong reflex contraction in response to a sudden rise in intraabdominal pressure. Pelvic floor muscle training belongs to first-line therapy for urinary incontinence occurring within 6 to 12 months after prostatectomy. The ability to control pelvic floor muscle knowingly and to train them allows one not only to increase the closing capability of sphincter mechanisms, but also to suppress involuntary detrusor contractions. We used this method in 9 patients who had undergone radical prostatectomy. The duration of pelvic floor muscle training under control was up to 25 weeks. During this period, the symptoms of incontinence were relieved. No contraindications or adverse reactions have put this method in first-line therapy for post-prostatectomy urinary incontinence.

  12. PELVIC FLOOR MUSCLE TRAINING IN THE TREATMENT OF URINARY INCONTINENCE AFTER RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. L. Demidko

    2010-01-01

    Full Text Available The incidence of urinary incontinence after radical prostatectomy is 0.8 to 87%. This category of patients has pelvic floor muscle weakness and reduced perineal reflex. The treatment of these patients uses a pelvic floor exercise system that is to enhance muscle tone and to develop strong reflex contraction in response to a sudden rise in intraabdominal pressure. Pelvic floor muscle training belongs to first-line therapy for urinary incontinence occurring within 6 to 12 months after prostatectomy. The ability to control pelvic floor muscle knowingly and to train them allows one not only to increase the closing capability of sphincter mechanisms, but also to suppress involuntary detrusor contractions. We used this method in 9 patients who had undergone radical prostatectomy. The duration of pelvic floor muscle training under control was up to 25 weeks. During this period, the symptoms of incontinence were relieved. No contraindications or adverse reactions have put this method in first-line therapy for post-prostatectomy urinary incontinence.

  13. Determination of muscle fatigue index for strength training in patients with Duchenne dystrophy

    Directory of Open Access Journals (Sweden)

    Adriano Rodrigues Oliveira

    Full Text Available INTRODUCTION: Muscle weakness is the most prominent impairment in Duchenne muscular dystrophy (DMD and often involves the loss of functional ability as well as other limitations related to daily living. Thus, there is a need to maintain muscle strength in large muscle groups, such as the femoral quadriceps, which is responsible for diverse functional abilities. However, the load and duration of training for such rehabilitation has proven to be a great unknown, mainly due to the undesired appearance of muscle fatigue, which is a severe factor for the injury of muscle fibers. OBJECTIVES: The aim of the present study was to determine a fatigue index by means of surface electromyography (EMG for the parameterization of muscle strengthening physiotherapy training. METHODS: A cross-sectional study (case series was carried out involving four patients with DMD. Three pairs of surface electrodes were placed on the motor point of the Rectus femoris, Vastus lateralis and Vastus medialis of the dominant limb, maintaining the knee at 60º of flexion. The participants were instructed to perform the extension movement of this joint at four strength levels (100%, 80%, 60% and 40% of maximal voluntary isometric contraction. RESULTS: The slope of the linear regression line was used for the determination of the fatigue index, performed by Pearson's test on the median frequency of each strength level. CONCLUSION: Electromyographic measurements of the strength index for muscle training proved to be a simple accessible assessment method, as well as an extremely valuable tool, allowing the design of a muscle strength training program with an individualized load threshold.

  14. Effects of specific muscle imbalance improvement training on the balance ability in elite fencers.

    Science.gov (United States)

    Kim, Taewhan; Kil, Sekee; Chung, Jinwook; Moon, Jeheon; Oh, Eunyoung

    2015-05-01

    [Purpose] The lunge Motion that occurs frequently in fencing training and matches results in imbalance of the upper and lower limbs muscles. This research focuses on the improvement of the imbalance that occurs in the national team fencers of the Republic of Korea through specific muscle imbalance improvement training. [Subjects] The subjects of this research were limited to right-handed male fencers. Nine male, right-handed national fencing athletes were selected for this study (4 epee, 5 sabre; age 28.2 ± 2.2 years; height 182.3 ± 4.0 cm; weight 76.5 ± 8.2 kg; experience 12.4 ± 3.0 years). [Methods] The specific muscle imbalance improvement training program was performed for 12 weeks and Pre-Post tests were to evaluate its effect on the experimental group. Measurements comprised anthropometry, test of balance, and movement analysis. [Results] After the training program, mediolateral sway of the nondominant lower limb and the balance scale showed statistically significant improvement. [Conclusion] The specific muscle imbalance improvement training program used in this research was proven to be effective for improving the muscle imbalance of elite fencers.

  15. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  16. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.

    Science.gov (United States)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael; Enevoldsen, Lotte Hahn; Kjær, Andreas; Clemmensen, Andreas E; Christensen, Anders Nymark; Suetta, Charlotte; Frikke-Schmidt, Ruth; Steenberg, Dorte Enggaard; Wojtaszewski, Jørgen F P; Hellsten, Ylva; Stallknecht, Bente M

    2018-02-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies. Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P high-intensity exercise training.

  17. Do stages of menopause affect the outcomes of pelvic floor muscle training?

    Science.gov (United States)

    Tosun, Özge Çeliker; Mutlu, Ebru Kaya; Tosun, Gökhan; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgur; Malkoç, Mehtap; Aşkar, Niyazi; İtil, İsmail Mete

    2015-02-01

    The purpose of our study is to determine whether there is a difference in pelvic floor muscle strength attributable to pelvic floor muscle training conducted during different stages of menopause. One hundred twenty-two women with stress urinary incontinence and mixed urinary incontinence were included in this prospective controlled study. The participants included in this study were separated into three groups according to the Stages of Reproductive Aging Workshop staging system as follows: group 1 (n = 41): stages -3 and -2; group 2 (n = 32): stages +1 and -1; and group 3 (n = 30): stage +2. All three groups were provided an individual home exercise program throughout the 12-week study. Pelvic floor muscle strength before and after the 12-week treatment was measured in all participants (using the PERFECT [power, endurance, number of repetitions, and number of fast (1-s) contractions; every contraction is timed] scheme, perineometry, transabdominal ultrasound, Brink scale, pad test, and stop test). Data were analyzed using analysis of variance. There were no statistically significant differences in pre-exercise training pelvic floor muscle strength parameters among the three groups. After 12 weeks, there were statistically significant increases in PERFECT scheme, Brink scale, perineometry, and ultrasound values. In contrast, there were significant decreases in stop test and 1-hour pad test values observed in the three groups (P = 0.001, dependent t test). In comparison with the other groups, group 1 demonstrated statistically significant improvements in the following postexercise training parameters: power, repetition, speed, Brink vertical displacement, and stop test. The lowest increase was observed in group 2 (P menopause with pelvic floor muscle training, but the rates of increase vary according to the menopausal stage of the participants. Women in the late menopausal transition and early menopause are least responsive to pelvic floor muscle strength training

  18. Transcranial direct current stimulation does not affect lower extremity muscle strength training in healthy individuals

    DEFF Research Database (Denmark)

    Maeda, Kazuhei; Yamaguchi, Tomofumi; Tatemoto, Tsuyoshi

    2017-01-01

    The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength...... training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions......). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm...

  19. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    Science.gov (United States)

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  20. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    Science.gov (United States)

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  1. Effects of multidimensional pelvic floor muscle training in healthy young women.

    Science.gov (United States)

    Talasz, Helena; Kalchschmid, Elisabeth; Kofler, Markus; Lechleitner, Monika

    2012-03-01

    Cross-sectional and interventional study to assess pelvic floor muscle (PFM) function in healthy young nulliparous women and to determine the effects of a 3-month PFM training program with emphasis on co-contraction of PFM and anterolateral abdominal muscles and on correctly performed coughing patterns. PFM function was assessed by digital vaginal palpation in 40 volunteers and graded according to the 6-point Oxford grading scale. The PFM training program was comprised theoretical instruction, as well as verbal feedback during hands-on instruction and repeated training sessions focussing on strengthening PFM and anterolateral abdominal muscle co-contraction during forced expiration and coughing. At baseline, 30 women (75%) were able to perform normal PFM contractions at rest (Oxford scale score ≥ 3); only 4 of them (10%) presented additional involuntary PFM contractions before and during coughing. The remaining 10 women (25%) were unable to perform voluntary or involuntary PFM contractions. Mean Oxford scale score in the whole group was 3.3 ± 1.7. After completing the PFM training program, 29 women (72.5%) performed cough-related PFM contractions and group mean Oxford scale score increased significantly to 4.2 ± 1.0. The study shows that PFM dysfunction may be detected even in healthy young women. Multidimensional training, however, may significantly improve PFM function.

  2. Exercise-induced inspiratory symptoms in school children

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Phillipsen, Lue Drasbaek; Hjuler, Thomas

    2016-01-01

    BACKGROUND AND AIMS: Exercise-induced inspiratory symptoms (EIIS) have multiple causes, one of which is exercise-induced laryngeal obstruction (EILO). There is limited knowledge regarding EIIS in children, both in primary care practices and in pediatric asthma clinics. The aim of this study was t...

  3. The effects of Pilates breathing trainings on trunk muscle activation in healthy female subjects: a prospective study.

    Science.gov (United States)

    Kim, Sung-Tae; Lee, Joon-Hee

    2017-02-01

    [Purpose] To investigate the effects of Pilates breathing on trunk muscle activation. [Subjects and Methods] Twenty-eight healthy female adults were selected for this study. Participants' trunk muscle activations were measured while they performed curl-ups, chest-head lifts, and lifting tasks. Pilates breathing trainings were performed for 60 minutes per each session, 3 times per week for 2 weeks. Post-training muscle activations were measured by the same methods used for the pre-training muscle activations. [Results] All trunk muscles measured in this study had increased activities after Pilates breathing trainings. All activities of the transversus abdominis/internal abdominal oblique, and multifidus significantly increased. [Conclusion] Pilates breathing increased activities of the trunk stabilizer muscles. Activation of the trunk muscle indicates that practicing Pilates breathing while performing lifting tasks will reduce the risk of trunk injuries.

  4. Skeletal muscle and hormonal adaptation to physical training in the rat

    DEFF Research Database (Denmark)

    Henriksson, J; Svedenhag, J; Richter, Erik

    1985-01-01

    The main purpose of the present study was to test the hypothesis that adrenergic stimulation of muscle fibres during exercise is a major stimulus for the training-induced enhancement of skeletal muscle respiratory capacity. Therefore, Sprague-Dawley rats either underwent bilateral surgical ablati...

  5. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  6. High-intensity strength training improves function of chronically painful muscles

    DEFF Research Database (Denmark)

    Andersen, Lars L; Andersen, Christoffer H; Skotte, Jørgen H

    2014-01-01

    AIM: This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. METHODS: Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were...... randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed...... MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. CONCLUSION: Women with trapezius myalgia have lower strength...

  7. Neural and morphological adaptations of vastus lateralis and vastus medialis muscles to isokinetic eccentric training

    Directory of Open Access Journals (Sweden)

    Rodrigo de Azevedo Franke

    2014-09-01

    Full Text Available Vastus lateralis (VL and vastus medialis (VM are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p .05 post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program

  8. Is hypoxia training good for muscles and exercise performance?

    Science.gov (United States)

    Vogt, Michael; Hoppeler, Hans

    2010-01-01

    Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

  9. Influence of inspiratory resistance on performance during graded exercise tests on a cycle ergometer

    NARCIS (Netherlands)

    Heus, R.; Hartog, E.A. den; Kistemaker, L.J.A.; Dijk, W.J. van; Swenker, G.

    2004-01-01

    Due to more stringent requirements to protect personnel against hazardous gasses, the inspiratory resistance of the present generation of respiratory protective devices tends to increase. Therefore an important question is to what extent inspiratory resistance may increase without giving problems

  10. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    Science.gov (United States)

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  11. Effect of intensified training on muscle ion kinetics, fatigue development and repeated short term performance in endurance trained cyclists

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Christensen, Peter Møller; Thomassen, Martin

    2013-01-01

    The effects of intensified training in combination with a reduced training volume on muscle ion kinetics, transporters and work capacity were examined. Eight well-trained cyclists replaced their regular training with speed-endurance training (12x30-s sprints) 2-3 times per wk and aerobic high...

  12. Time course for arm and chest muscle thickness changes following bench press training

    Science.gov (United States)

    Ogasawara, Riki; Thiebaud, Robert S.; Loenneke, Jeremy P.; Loftin, Mark

    2012-01-01

    The purpose of this study was to investigate the time course of hypertrophic adaptations in both the upper arm and trunk muscles following high-intensity bench press training. Seven previously untrained young men (aged 25 ± 3 years) performed free-weight bench press training 3 days (Monday, Wednesday and Friday) per week for 24 weeks. Training intensity and volume were set at 75% of one repetition maximum (1-RM) and 30 repetitions (3 sets of 10 repetitions, with 2−3 min of rest between sets), respectively. Muscle thickness (MTH) was measured using B-mode ultrasound at three sites: the biceps and triceps brachii and the pectoralis major. Measurements were taken a week prior to the start of training, before the training session on every Monday and 3 days after the final training session. Pairwise comparisons from baseline revealed that pectoralis major MTH significantly increased after week-1 (p = 0.002), triceps MTH increased after week-5 (p = 0.001) and 1-RM strength increased after week-3 (p = 0.001) while no changes were observed in the biceps MTH from baseline. Significant muscle hypertrophy was observed earlier in the chest compared to that of the triceps. Our results indicate that the time course of the muscle hypertrophic response differs between the upper arm and chest. PMID:24265879

  13. Respiratory muscle strength in children with mild bronchial asthma disease

    Directory of Open Access Journals (Sweden)

    Kateřina Neumannová

    2017-12-01

    Full Text Available Background: Respiratory muscle strength can be decreased in patients with asthma; however, it is not well-documented whether a mild bronchial asthma disease can affect respiratory muscle strength in children and can be associated with higher presence of breathing difficulties. Objective: The main aim of the present study was to compare respiratory muscle strength between children with asthma and age-matched healthy children. The next aim of this study was to assess the incidence of decreased respiratory muscle strength in children with asthma and healthy children and assess the effect of decreased respiratory muscle strength on the incidence of breathing difficulties. Methods: Children with mild bronchial asthma (n = 167 and age-matched, healthy children (n = 100 were recruited into this study. Pulmonary function tests, maximal inspiratory (PImax and expiratory (PEmax mouth pressures and the incidence of breathing difficulty were evaluated in children with asthma and healthy controls. Results: The inspiratory muscle strength was similar between children with asthma and healthy children. Conversely, the expiratory muscle strength was lower in asthmatic children. There was a statistically significant difference between girls with asthma and healthy girls (PEmax = 81.7 ± 29.8% vs. 100.1 ± 23.7% of predicted, p < .001. PEmax was significantly higher in boys with asthma than in girls with asthma (PEmax = 92.9 ± 26.4 % vs. 81.7 ± 29.8% of predicted, p = .03. A higher incidence of breathing difficulties during physical activity (uphill walking, running, swimming was confirmed in children with asthma with lower respiratory muscle strength. Conclusions: There was a higher prevalence of decreased expiratory muscle strength in children with asthma; therefore, respiratory muscle strength should be tested in these children, especially in those who are symptomatic.

  14. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  15. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume

    DEFF Research Database (Denmark)

    Iaia, F. Marcello; Hellsten, Ylva; Nielsen, Jens Jung

    2009-01-01

    We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance...... by lowered mitochondrial UCP3 expression. Furthermore, speed endurance training can maintain muscle oxidative capacity, capillarization, and endurance performance in already trained individuals despite significant reduction in the amount of training....

  16. Respiration-related discharge of hyoglossus muscle motor units in the rat.

    Science.gov (United States)

    Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F

    2014-01-01

    Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.

  17. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  18. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training

    DEFF Research Database (Denmark)

    Høier, Birgitte; Nordsborg, Nikolai; Andersen, Søren

    2012-01-01

    This study examined the effect of acute exercise and 4 weeks of aerobic training on skeletal muscle gene and protein expression of pro- and anti-angiogenic factors in 14 young male subjects. Training consisted of 60 min of cycling (~ 60% of VO2 max), 3 times/week. Biopsies were obtained from m. v....... lateralis before and after training. Muscle interstitial fluid was collected during cycling at week 0 and 4. Training increased (P ... to acute exercise increased similarly (>6-fold; P training. Resting protein levels of soluble VEGF receptor-1 in interstitial fluid, and of VEGF, Thrombospondin-1 (TSP-1) and Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in muscle, were unaffected by training, whereas e...

  19. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    Science.gov (United States)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  20. Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training

    Science.gov (United States)

    2010-07-01

    atrophy and weakness as a function of the intensity of the train- ing ( 15 ). Although the hind limb suspension resulted in loss of muscle mass in...Muscle Biology Laboratory, Department of Health and Kinesiology , Texas A&M University, College Station, TX, and Gordon L. Warren, Ph.D., Division of

  1. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO(2max) ), cycling economy (CE) and long....../short-term endurance capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P...

  2. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO2max), cycling economy (CE) and long/short-term endurance...... capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P...

  3. Effect of dehydroepiandrosterone administration on recovery from mix-type exercise training-induced muscle damage.

    Science.gov (United States)

    Liao, Yi-Hung; Liao, Kun-Fu; Kao, Chung-Lan; Chen, Chung-Yu; Huang, Chih-Yang; Chang, Wei-Hsiang; Ivy, John L; Bernard, Jeffrey R; Lee, Shin-Da; Kuo, Chia-Hua

    2013-01-01

    This study aimed to determine the role of DHEA-S in coping against the exercise training mixing aerobic and resistance components. During 5-day successive exercise training, 16 young male participants (19.2 ± 1.2 years) received either a placebo (flour capsule) or DHEA (100 mg/day) in a double-blinded and placebo-controlled design. Oral DHEA supplementation significantly increased circulating DHEA-S by 2.5-fold, but a protracted drop (~35 %) was observed from Day 3 during training. In the Placebo group, only a minimal DHEA-S reduction (~17 %) was observed. Changes in testosterone followed a similar pattern as DHEA-S. Muscle soreness was elevated significantly on Day 2 for both groups to a similar extent. Lower muscle soreness was observed in the DHEA-supplemented group on Day 3 and Day 6. In the Placebo group, training increased circulating creatine kinase (CK) levels by approximately ninefold, while only a threefold increase was observed in the DHEA-supplemented group. This mix-type exercise training improved glucose tolerance in both groups, while lowering the insulin response to the glucose challenge, but no difference between treatments was observed. Our results suggest that DHEA-S may play a role in protecting skeletal muscle from exercise training-induced muscle damage.

  4. Motor effort training with low exercise intensity improves muscle strength and descending command in aging.

    Science.gov (United States)

    Jiang, Changhao; Ranganathan, Vinoth K; Zhang, Junmei; Siemionow, Vlodek; Yue, Guang H

    2016-06-01

    This study explored the effect of high mental effort training (MET) and conventional strength training (CST) on increasing voluntary muscle strength and brain signal associated with producing maximal muscle force in healthy aging. Twenty-seven older adults (age: 75 ± 7.9 yr, 8 women) were assigned into 1 of 3 groups: MET group-trained with low-intensity (30% maximal voluntary contraction [MVC]) physical exercise combined with MET, CST group-trained with high-intensity muscle contractions, or control (CTRL) group-no training of any kind. MET and CST lasted for 12 weeks (5 sessions/week). The participants' elbow flexion strength of the right arm, electromyography (EMG), and motor activity-related cortical potential (MRCP) directly related to the strength production were measured before and after training. The CST group had the highest strength gain (17.6%, P boarder-line significance level (12.11%, P = 0.061) and that for CTRL group was only 4.9% (P = 0.539). These results suggest that high mental effort training combined with low-intensity physical exercise is an effective method for voluntary muscle strengthening and this approach is especially beneficial for those who are physically weak and have difficulty undergoing conventional strength training.

  5. Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects

    DEFF Research Database (Denmark)

    Duez, Lene; Qerama, Erisela; Fuglsang-Frederiksen, Anders

    2010-01-01

    We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized...... and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010....... that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs...

  6. Static muscle strength trained and untrained of female students

    Directory of Open Access Journals (Sweden)

    Kopanski R.

    2012-12-01

    Full Text Available Static muscle strength is one of the defining characteristics of human motor potential. Standard terms and exclude the impact of short-term measurement techniques for motion and strain measurements, hence the widespread use of Mm measurements in the assessment of fitness of both trained and untrained, healthy subjects and patients undergoing a variety of reasons the process of rehabilitation. The paper deals with static muscle strength (dynamometry back of the hand of female students trained (n = 38 and untrained (n = 213. Examined relationships between individual measurements and body weight in both groups, the degree of asymmetry of the palmar and the differences in the level of power (at the level of the absolute and relative terms between the groups. Disclosed according to form the basis of their conclusions.

  7. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy.

    Science.gov (United States)

    Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy

    2014-09-01

    Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. © 2013 Wiley Periodicals, Inc.

  8. Traditional versus functional strength training: Effects on muscle strength and power in the elderly

    OpenAIRE

    Seiler, Hilde Lohne; Torstveit, Monica Klungland; Anderssen, Sigmund A.

    2013-01-01

    Published versiom of an article in the journal:Journal of Aging and Physical Activity. Also available from Human Kinetics: http://http://journals.humankinetics.com/japa-back-issues/japa-volume-21-issue-1-january/traditional-versus-functional-strength-training-effects-on-muscle-strength-and-power-in-the-elderly The aim was to determine whether strength training with machines vs. functional strength training at 80% of one-repetition maximum improves muscle strength and power among the elderl...

  9. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training.

    LENUS (Irish Health Repository)

    McGivney, Beatrice A

    2010-01-01

    BACKGROUND: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T(1) - untrained, (9 +\\/- 0.5 months old) and T(2) - trained (20 +\\/- 0.7 months old). RESULTS: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease.Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. CONCLUSION: Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.

  10. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training.

    Science.gov (United States)

    Hussein, S; Schmidt, H; Volkmar, M; Werner, C; Helmich, I; Piorko, F; Krüger, J; Hesse, S

    2008-01-01

    The aim of gait rehabilitation is a restoration of an independent gait and improvement of daily life walking functions. Therefore the specific patterns, that are to be relearned, must be practiced to stimulate the learning process of the central nervous system (CNS). The Walking Simulator HapticWalker allows for the training of arbitrary gait trajectories of daily life. To evaluate the quality of the training a total of 9 subjects were investigated during free floor walking and stair climbing and during the same tasks in two different training modes on the HapticWalker: 1) with and 2) without vertical center of mass (CoM) motion. Electromyograms (EMG) of 8 gait relevant muscles were measured and muscle activation was compared for the various training modes. Besides the muscle activation as an indicator for the quality of rehabilitation training the study investigates if a cancellation of the vertical CoM movement by adaption of the footplate trajectory is feasible i.e. the muscle activation patterns for the two training modes on the HapticWalker agree. Results show no significant differences in activation timing between the training modes. This indicates the feasibility of using a passive patient suspension and emulate the vertical CoM motion by trajectory adaption of the footplates. The muscle activation timing during HapticWalker training shows important characteristics observed in physiological free walking though a few differences can still remain.

  11. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  12. Comparison of sensory modes of biofeedback in relaxation training of frontalis muscle.

    Science.gov (United States)

    Chen, W

    1981-12-01

    The purpose of this study was to compare the effectiveness of various sensory modes of EMG biofeedback to relaxation training of the frontalis muscle. 19 male and 29 female subjects were randomly selected from a pool of college volunteers. They were then randomly assigned 12 each to audiofeedback, visual feedback, audiovisual feedback, and no feedback groups. There were 11 20-min. sessions per subject. Subjects in the biofeedback groups were trained to reduce muscle tension voluntarily by utilizing Cyborg J33 EMG portable trainers. The subjects in the three feedback groups exhibited significantly lower muscle tension than did the subjects in the no-feedback control group. There were no significant differences in relaxation among the three feedback groups.

  13. A comparison between stabilization exercises and pelvic floor muscle training in women with pelvic organ prolapse

    Directory of Open Access Journals (Sweden)

    Nuriye Özengin

    2015-03-01

    Full Text Available Objective: This study aimed to compare the effectiveness of stabilization exercises and pelvic floor muscle training in women with stage 1 and 2 pelvic organ prolapse. Materials and Methods: In a total 38 women with pelvic organ prolapse whose average age was 45.60 years, pelvic floor muscles were evaluated with electromyography, and prolapse with pelvic organ prolapse quantification system, and the quality of life with prolapse quality of life questionnaire. Afterwards, the subjects were divided into two groups; stabilization exercise group (n=19 and pelvic floor muscle training group (n=19. Stabilization exercise group were given training for 8 weeks, 3 times a week. Pelvic floor muscle training group were given eight-week home exercises. Each group was assessed before training and after eight weeks. Results: An increase was found in the pelvic muscle activation response in the 2 groups (p≤0.05. There was no difference in EMG activity values between the groups (p>0.05. A difference was found in the values Aa, Ba and C in subjects of each group (p≤0.05, and the TVL, Ap, Bp and D values of subjects in pelvic floor muscle training group (p≤0.05 in the before and after pelvic organ prolapse quantification system assessment, however, no difference was found between the groups (p≤0.05. A positive difference was found in the effect of prolapse sub parameter in each of the two groups, and in general health perception sub parameter in subjects of stabilization exercise group (p<0.05 in the prolapse quality of life questionnaire. Conclusions: It was concluded that both training programs increased the pelvic floor muscle strength, provided a decline in prolapse stages. Stabilization exercise has increased general health perception unlike home training, thus, these exercises can be added to the treatment of women with prolapse.

  14. The pelvic floor muscles: muscle thickness in healthy and urinary-incontinent women measured by perineal ultrasonography with reference to the effect of pelvic floor training. Estrogen receptor studies

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen

    1997-01-01

    demonstrated that the striated periurethral muscles and the pelvic floor muscles are of paramount importance for the closure function. This emphasizes the importance of well-functioning pelvic floor muscles to obtain continence, and probably explains the rationale for the effect of pelvic floor training...... in treating urinary incontinence. This study presents a review of the literature on female urinary incontinence, continence mechanisms, pelvic floor muscles, and pelvic floor training. Furthermore, a review of the literature on estrogen receptors in the pelvic floor muscles is given. Perineal ultrasonography...... the effect of pelvic floor training. Additionally, a study of the Pelvic floor muscles was performed to assess the presence of estrogen receptors. Muscle thickness seems to decrease with age. In women over age 60 years, a significantly thinner pelvic floor muscle was found compared to younger women...

  15. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    This review will focus on current data where substrate metabolism in arm and leg muscle is investigated and discuss the presence of higher carbohydrate oxidation and lactate release observed during arm compared with leg exercise. Furthermore, a basis for a possible difference in substrate partiti...... at comparable workloads. Finally, the influence and capacity of low-intensity training to influence metabolic fitness in the face of a limited effect on aerobic fitness will be challenged....... partitioning between endogenous and exogenous substrate during arm and leg exercise will be debated. Moreover the review will probe if differences between arm and leg muscle are merely a result of different training status rather than a qualitative difference in limb substrate regulation. Along this line...... the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  16. Skeletal muscle morphology and regulatory signalling in endurance-trained and sedentary individuals

    DEFF Research Database (Denmark)

    Mikkelsen, U. R.; Agergaard, J.; Couppe, C.

    2017-01-01

    Muscle mass in humans is inversely associated with circulating levels of inflammatory cytokines, but the interaction between ageing and training on muscle composition and the intra-muscular signalling behind inflammation and contractile protein synthesis and degradation is unknown. We studied 15 ...

  17. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?

    Science.gov (United States)

    Ristow, Michael

    2016-01-01

    Abstract A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training‐induced and ROS/RNS‐mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high‐intensity training, suggesting that remodelling of skeletal muscle following resistance and high‐intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise‐training adaptions. Overall, ROS/RNS are likely to exhibit a non‐linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental. PMID:26638792

  18. The effect of regular strength training on telomere length in human skeletal muscle

    DEFF Research Database (Denmark)

    Kadi, F.; Ponsot, Elodie; Piehl-Aulin, Karin

    2008-01-01

    PURPOSE: The length of DNA telomeres is an important parameter of the proliferative potential of tissues. A recent study has reported abnormally short telomeres in skeletal muscle of athletes with exercise-associated fatigue. This important report raises the question of whether long-term practice...... of sports might have deleterious effects on muscle telomeres. Therefore, we aimed to compare telomere length of a group of power lifters (PL; N = 7) who trained for 8 +/- 3 yr against that of a group of healthy, active subjects (C; N = 7) with no history of strength training. METHODS: Muscle biopsies were...

  19. Learning to breathe? Feedforward regulation of the inspiratory motor drive.

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-09-15

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N=13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N=11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effects of 5 Weeks of Bench Press Training on Muscle Synergies: A Randomized Controlled Study.

    Science.gov (United States)

    Kristiansen, Mathias; Samani, Afshin; Madeleine, Pascal; Hansen, Ernst A

    2016-07-01

    Kristiansen, M, Samani, A, Madeleine, P, and Hansen, EA. Effects of 5 weeks of bench press training on muscle synergies: A randomized controlled study. J Strength Cond Res 30(7): 1948-1959, 2016-The ability to perform forceful muscle contractions has important implications in sports performance and in activities of daily living. However, there is a lack of knowledge on adaptations in intermuscular coordination after strength training. The purpose of this study was therefore to assess muscle synergies before and after 5 weeks of bench press training. Thirty untrained male subjects were randomly allocated to a training group (TRA) or a control group (CON). After the pretest, TRA completed 5 weeks of bench press training, before completing a posttest, whereas subjects in CON continued their normal life. During test sessions, surface electromyography (EMG) was recorded from 13 different muscles. Muscle synergies were extracted from EMG data using nonnegative matrix factorization. To evaluate differences between pretest and posttest, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the pretest session were recomputed, using the fixed synergy components from the posttest session. Two muscle synergies accounted for 90% of the total variance and reflected the concentric and eccentric phase, respectively. TRA significantly increased 3 repetition maximum in bench press with 19.0% (25th; 75th percentile, 10.3%; 21.7%) (p < 0.001), whereas no change occurred in CON. No significant differences were observed in synergy components between groups. However, decreases in correlation values for intragroup comparisons in TRA may suggest that the synergy components changed, whereas this was not the case in CON. Strength and conditioning professionals may consider monitoring changes in muscle synergies in training and rehabilitation programs as a way to benchmark changes in intermuscular coordination.

  1. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    Science.gov (United States)

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p training. Muscle power also increased with training (≈27 %; p functional performance after training period (≈13 %; p effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  2. Aerobic Exercise Training Increases Muscle Water Content in Obese Middle-Age Men

    DEFF Research Database (Denmark)

    Mora-Rodríguez, Ricardo; Sanchez-Roncero, Alicia; Fernández-Elías, Valentin Emilio

    2016-01-01

    . Body composition was assessed using dual-energy X-ray absorptiometry, and cardiometabolic fitness was measured during an incremental cycling test. RESULTS: Body weight and fat mass were reduced -1.9% and -5.4%, respectively (P mass increased with training (1.8%, P = 0.......011), whereas muscle protein concentration decreased 11% (145 ± 15 to 129 ± 13 g·kg⁻¹ ww, P = 0.007). Citrate synthase activity (proxy for mitochondrial density) increased by 31% (17 ± 5 to 22 ± 5 mmol·min⁻¹·kg⁻¹ ww, P = 0.024). Muscle glycogen concentration increased by 14% (22 ± 7 to 25 ± 7 g·kg⁻¹ ww......) although without reaching statistical significance when expressed as per kilogram of wet weight (P = 0.15). CONCLUSIONS: Our findings suggest that aerobic cycling training increases quadriceps muscle water although reduces muscle protein concentration in obese metabolic syndrome men. Reduced protein...

  3. Respiratory muscle training with enzyme replacement therapy improves muscle strength in late - onset Pompe disease.

    Science.gov (United States)

    Jevnikar, Mitja; Kodric, Metka; Cantarutti, Fabiana; Cifaldi, Rossella; Longo, Cinzia; Della Porta, Rossana; Bembi, Bruno; Confalonieri, Marco

    2015-12-01

    Pompe disease is an autosomal recessive metabolic disorder caused by the deficiency of the lysosomal enzyme acid α-glucosidase. This deficiency leads to glycogen accumulation in the lysosomes of muscle tissue causing progressive muscular weakness particularly of the respiratory system. Enzyme replacement therapy (ERT) has demonstrated efficacy in slowing down disease progression in infants. Despite the large number of studies describing the effects of physical training in juvenile and adult late onset Pompe disease (LOPD). There are very few reports that analyze the benefits of respiratory muscle rehabilitation or training. The effectiveness of respiratory muscle training was investigated using a specific appliance with adjustable resistance (Threshold). The primary endpoint was effect on respiratory muscular strength by measurements of MIP and MEP. Eight late-onset Pompe patients (aged 13 to 58 years; 4 female, 4 male) with respiratory muscle deficiency on functional respiratory tests were studied. All patients received ERT at the dosage of 20 mg/kg/every 2 weeks and underwent training with Threshold at specified pressures for 24 months. A significant increase in MIP was observed during the follow-up of 24 month: 39.6 cm H 2 O (+ 25.0%) at month 3; 39.5 cm H 2 O (+ 24.9%) at month 6; 39.1 cm H 2 O (+ 23.7%) at month 9; 37.3 cm H 2 O (+ 18.2%) at month 12; and 37.3 cm H 2 O (+ 17.8%) at month 24. Median MEP values also showed a significant increase during the first 9 months: 29.8 cm H 2 O, (+ 14.3%) at month 3; 31.0 cm H 2 O (+ 18.6) at month 6; and 29.5 cm H 2 O (+ 12.9) at month 9. MEP was then shown to be decreased at months 12 and 24; median MEP was 27.2 cm H 2 O (+ 4.3%) at 12 months and 26.6 cm H 2 O (+ 1.9%) at 24 months. The FVC remain stable throughout the study. An increase in respiratory muscular strength was demonstrated with Threshold training when used in combination with ERT.

  4. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    Science.gov (United States)

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  5. Chronic Effects of Different Rest Intervals Between Sets on Dynamic and Isometric Muscle Strength and Muscle Activity in Trained Older Women.

    Science.gov (United States)

    Jambassi Filho, José Claudio; Gurjão, André Luiz Demantova; Ceccato, Marilia; Prado, Alexandre Konig Garcia; Gallo, Luiza Herminia; Gobbi, Sebastião

    2017-09-01

    This study investigated the chronic effects of different rest intervals (RIs) between sets on dynamic and isometric muscle strength and muscle activity. We used a repeated-measures design (pretraining and posttraining) with independent groups (different RI). Twenty-one resistance-trained older women (66.4 ± 4.4 years) were randomly assigned to either a 1-minute RI group (G-1 min; n = 10) or 3-minute RI group (G-3 min; n = 11). Both groups completed 3 supervised sessions per week during 8 weeks. In each session, participants performed 3 sets of 15 repetitions of leg press exercise, with a load that elicited muscle failure in the third set. Fifteen maximum repetitions, maximal voluntary contraction, peak rate of force development, and integrated electromyography activity of the vastus lateralis and vastus medialis muscles were assessed pretraining and posttraining. There was a significant increase in load of 15 maximum repetitions posttraining for G-3 min only (3.6%; P 0.05). The findings suggest that different RIs between sets did not influence dynamic and isometric muscle strength and muscle activity in resistance-trained older women.

  6. The influence of inspiratory effort and emphysema on pulmonary nodule volumetry reproducibility.

    Science.gov (United States)

    Moser, J B; Mak, S M; McNulty, W H; Padley, S; Nair, A; Shah, P L; Devaraj, A

    2017-11-01

    To evaluate the impact of inspiratory effort and emphysema on reproducibility of pulmonary nodule volumetry. Eighty-eight nodules in 24 patients with emphysema were studied retrospectively. All patients had undergone volumetric inspiratory and end-expiratory thoracic computed tomography (CT) for consideration of bronchoscopic lung volume reduction. Inspiratory and expiratory nodule volumes were measured using commercially available software. Local emphysema extent was established by analysing a segmentation area extended circumferentially around each nodule (quantified as percent of lung with density of -950 HU or less). Lung volumes were established using the same software. Differences in inspiratory and expiratory nodule volumes were illustrated using the Bland-Altman test. The influences of percentage reduction in lung volume at expiration, local emphysema extent, and nodule size on nodule volume variability were tested with multiple linear regression. The majority of nodules (59/88 [67%]) showed an increased volume at expiration. Mean difference in nodule volume between expiration and inspiration was +7.5% (95% confidence interval: -24.1, 39.1%). No relationships were demonstrated between nodule volume variability and emphysema extent, degree of expiration, or nodule size. Expiration causes a modest increase in volumetry-derived nodule volumes; however, the effect is unpredictable. Local emphysema extent had no significant effect on volume variability in the present cohort. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Limb skeletal muscle adaptation in athletes after training at altitude

    DEFF Research Database (Denmark)

    Mizuno, M; Juel, C; Bro-Rasmussen, Thomas

    1990-01-01

    Morphological and biochemical characteristics of biopsies obtained from gastrocnemius (GAS) and triceps brachii muscle (TRI), as well as maximal O2 uptake (VO2 max) and O2 deficit, were determined in 10 well-trained cross-country skiers before and after a 2-wk stay (2,100 m above sea level......) and training (2,700 m above sea level) at altitude. On return to sea level, VO2 max was the same as the prealtitude value, whereas an increase in O2 deficit (29%) and in short-term running performance (17%) was observed (P less than 0.05). GAS showed maintained capillary supply but a 10% decrease...... increase in buffer capacity of GAS and short-term running time (P less than 0.05). Thus the present study indicates no effect of 2 wk of altitude training on VO2 max but provides evidence to suggest an improvement in short-term exercise performance, which may be the result of an increase in muscle buffer...

  8. [Progress in isokinetic technology in testing and training for assessment of muscle function].

    Science.gov (United States)

    Huang, Ting-Ting; Fan, Li-Hua; Gao, Dong; Xia, Qing; Zhang, Min

    2013-02-01

    Isokinetic technology in testing and training is the most advanced practical technique in the evaluation of muscle function. This method is a continuous dynamic test in the full range of the joint motion which has strong pertinence at the aspect of assessing muscle strength, and is an objective and quantitative method for reflecting each point's muscle strength in the range of the joint motion. This article reviews the key concepts, brief history of development and influencing factors of isokinetic technology in testing and training, introduces the progress in the field of rehabilitation medicine and sport science, etc., and discusses the future exploration in forensic science.

  9. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Tobias Schmidt; Weihe, Pál

    2017-01-01

    for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na(+)/K(+) pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P ... occurred exclusively in vastus lateralis muscle. The increased (P MCT4 and SOD2 in deltoid muscle after HIS and vastus lateralis muscle after SOC were similar. In conclusion, arm musculature displays lower basal ROS, La(-), K(+) handling capability but higher Na(+)-dependent H...

  10. A five-week-old girl with inspiratory stridor due to infantile hemangiopericytoma

    DEFF Research Database (Denmark)

    Hansen, Jonas K; Sørensen, Flemming Brandt; Christensen, Mogens Fjord

    2006-01-01

    UNLABELLED: A 5-week-old girl with inspiratory stridor is presented. No immediate cause of the stridor was found, but eventually a diagnosis of infantile hemangiopericytoma located in the rhinopharynx was made. After surgery all respiratory symptoms disappeared.CONCLUSION: Infantile hemangioperic......UNLABELLED: A 5-week-old girl with inspiratory stridor is presented. No immediate cause of the stridor was found, but eventually a diagnosis of infantile hemangiopericytoma located in the rhinopharynx was made. After surgery all respiratory symptoms disappeared.CONCLUSION: Infantile...

  11. Effects of Functional Training Program in Core Muscles in Women with Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Iván Darío Pinzón-Ríos

    2015-01-01

    Full Text Available Abstract: Objective: To evaluate the effects of a program of functional muscles core training targeting women with fibromyalgia. Materials and methods: A quasi-experimental type trial was conducted, before and after an intervention, for 20 days, often three days/week, 60 minutes each session. In a single-group of eight women, changes in muscle strength, pain, quality of life related to health and physical activity were evaluated. Results: An increase in repetitions of the test trunk flexion, time on the left and right bridge testing lateral and prone bridge the test were found. All features of pain decreased, and, according to the S-FIQ, a decrease in morning fatigue, stiffness and anxiety was reported. Also Met’s/minute-weeks increased after intervention. Conclusion: These data suggest that functional program core muscle training is effective in increasing muscle strength, pain modulation, functional performance optimization, and increased levels of physical activity in women with fibromyalgia.

  12. Effects of Plyometric and Resistance Training on Muscle Strength, Explosiveness and Neuromuscular Function in Young Adolescent Soccer Players.

    Science.gov (United States)

    McKinlay, Brandon John; Wallace, Phillip; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David; Falk, Bareket

    2018-01-04

    This study examined the effect of 8-weeks of free-weight-resistance (RT) and plyometric (PLYO) training on maximal strength, explosiveness and jump performance compared with no added training (CON), in young male soccer players. Forty-one 11[FIGURE DASH]13-year-old soccer players were divided into three groups (RT, PLYO, CON). All participants completed isometric and dynamic (240°/s) knee extensions pre- and post-training. Peak torque (pT), peak rate of torque development (pRTD), electromechanical-delay (EMD), rate of muscle activation (Q50), m. vastus-lateralis thickness (VLT), and jump performance were examined. pT, pRTD and jump performance significantly improved in both training groups. Training resulted in significant (pplyometric training resulted in significant improvements in muscle strength and jump performance. Training resulted in similar muscle hypertrophy in the two training modes, with no clear differences in muscle performance. Plyometric training was more effective in improving jump performance, while free-weight resistance training was more advantageous in improving peak torque, where the stretch reflex was not involved.

  13. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties.

    Science.gov (United States)

    Mahieu, Nele Nathalie; McNair, Peter; Cools, Ann; D'Haen, Caroline; Vandermeulen, Katrien; Witvrouw, Erik

    2008-01-01

    It has been shown that eccentric training can be effective in the rehabilitation of patients with Achilles tendonopathy. The mechanism behind these results is not clear. However, there is evidence that tendons are able to respond to repeated forces by altering their structure and composition, and, thus, their mechanical properties change. In this regard, the objective of the present study was to investigate whether eccentric training affects the mechanical properties of the plantar flexor's muscle-tendon tissue properties. Seventy-four healthy subjects were randomized into two groups: an eccentric training group and a control group. The eccentric training group performed a 6-wk eccentric training program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion range of motion using universal goniometry, passive resistive torque of the plantar flexors, and stiffness of the Achilles tendon. Passive resistive torque was measured during ankle dorsiflexion on an isokinetic dynamometer. Stiffness of the Achilles tendon was assessed using a dynamometer, in combination with ultrasonography. The results of the study reveal that the dorsiflexion range of motion was significantly increased only in the eccentric training group. The eccentric heel drop program also resulted in a significant decrease of the passive resistive torque of the plantar flexors (from 16.423 +/- 0.827 to 12.651 +/- 0.617 N.m). The stiffness of the Achilles tendon did not change significantly as a result of training. These findings provide evidence that an eccentric training program results in changes to some of the mechanical properties of the plantar flexor muscles. These changes were thought to be associated with modifications to structure rather than to stretch tolerance.

  14. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.

    Science.gov (United States)

    Schoenfeld, Brad J; Peterson, Mark D; Ogborn, Dan; Contreras, Bret; Sonmez, Gul T

    2015-10-01

    The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25-35 repetitions were performed per set per exercise (n = 9) or a high-load RT routine (HL) where 8-12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was performed 3 times per week on nonconsecutive days, for a total of 8 weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared with LL (19.6 vs. 8.8%, respectively), and there was a trend for greater increases in 1 repetition maximum (1RM) bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared with HL (16.6 vs. -1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.

  15. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle.

    Science.gov (United States)

    Cobley, J N; Sakellariou, G K; Owens, D J; Murray, S; Waldron, S; Gregson, W; Fraser, W D; Burniston, J G; Iwanejko, L A; McArdle, A; Morton, J P; Jackson, M J; Close, G L

    2014-05-01

    Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an

  16. Training-induced changes in muscle CSA,muscle strength, EMG and rate of force development in elderly subjects after long-term unilateral disuse

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Aagaard, Per; Rosted, Anne

    2004-01-01

    , maximal isometric strength, RFD, and muscle activation in elderly men and women recovering from long-term muscle disuse and subsequent hip surgery. The improvement in both muscle mass and neural function is likely to have important functional implications for elderly individuals........ Thirty subjects completed the trial. In the strength-training group, significant increases were observed in maximal isometric muscle strength (24%, P impulse (27-32%, P

  17. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    Directory of Open Access Journals (Sweden)

    Sheng-Cheng Huang

    2017-01-01

    Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  18. Chronic intrinsic transient tracheal occlusion elicits diaphragmatic muscle fiber remodeling in conscious rodents.

    Directory of Open Access Journals (Sweden)

    Barbara K Smith

    Full Text Available BACKGROUND: Although the prevalence of inspiratory muscle strength training has increased in clinical medicine, its effect on diaphragm fiber remodeling is not well-understood and no relevant animal respiratory muscle strength training-rehabilitation experimental models exist. We tested the postulate that intrinsic transient tracheal occlusion (ITTO conditioning in conscious animals would provide a novel experimental model of respiratory muscle strength training, and used significant increases in diaphragmatic fiber cross-sectional area (CSA as the primary outcome measure. We hypothesized that ITTO would increase costal diaphragm fiber CSA and further hypothesized a greater duration and magnitude of occlusions would amplify remodeling. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats underwent surgical placement of a tracheal cuff and were randomly assigned to receive daily either 10-minute sessions of ITTO, extended-duration, 20-minute ITTO (ITTO-20, partial obstruction with 50% of cuff inflation pressure (ITTO-PAR or observation (SHAM over two weeks. After the interventions, fiber morphology, myosin heavy chain composition and CSA were examined in the crural and ventral, medial, and dorsal costal regions. In the medial costal diaphragm, with ITTO, type IIx/b fibers were 26% larger in the medial costal diaphragm (p<0.01 and 24% larger in the crural diaphragm (p<0.05. No significant changes in fiber composition or morphology were detected. ITTO-20 sessions also yielded significant increases in medial costal fiber cross-sectional area, but the effects were not greater than those elicited by 10-minute sessions. On the other hand, ITTO-PAR resulted in partial airway obstruction and did not generate fiber hypertrophy. CONCLUSIONS/SIGNIFICANCE: The results suggest that the magnitude of the load was more influential in altering fiber cross-sectional area than extended-duration conditioning sessions. The results also indicated that ITTO was

  19. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    Science.gov (United States)

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  20. Improved skeletal muscle mass and strength after heavy strength training in very old individuals

    DEFF Research Database (Denmark)

    Bechshøft, Rasmus Leidesdorff; Malmgaard-Clausen, Nikolaj Mølkjær; Gliese, Bjørn

    2017-01-01

    , muscle fiber type distribution and size did not differ significantly between groups. We conclude that in protein supplemented very old individuals, heavy resistance training can increase muscle mass and strength, and that the relative improvement in mass is more pronounced when initial muscle mass is low.......Age-related loss of muscle mass and function represents personal and socioeconomic challenges. The purpose of this study was to determine the adaptation of skeletal musculature in very old individuals (83 + years) performing 12 weeks of heavy resistance training (3 ×/week) (HRT) compared to a non....... The increase in CSA is correlated inversely with the baseline level of CSA (R2 = 0.43, P muscle isometric strength, isokinetic peak torque and power increased significantly only in HRT by 10–15%, whereas knee extension one-repetition maximum (1 RM) improved by 91%. Physical functional tests...

  1. Cold-water immersion after training sessions: Effects on fiber type-specific adaptations in muscle K+ transport proteins to sprint-interval training in men.

    Science.gov (United States)

    Christiansen, Danny; Bishop, David John; Broatch, James R; Bangsbo, Jens; McKenna, Michael John; Murphy, Robyn M

    2018-05-10

    Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K + transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally-active men (24{plus minus}6 y, 79.5{plus minus}10.8 kg, 44.6{plus minus}5.8 mL∙kg -1 ∙min -1 ) completed six weeks of sprint-interval cycling either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10{degree sign}C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na + ,K + -ATPase isoforms (α 1-3 , β 1-3 ) and FXYD1, and after recovery treatments (+0h and +3h) on the first day of training to measure mRNA content. Training increased (ptraining (p>0.05). CWI after each session did not influence responses to training (p>0.05). However, α 2 mRNA increased after the first session in COLD (+0h, p0.05). In both conditions, α 1 and β 3 mRNA increased (+3h; p 0.05) after the first session. In summary, Na + ,K + -ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which for most isoforms do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K + regulation.

  2. Efficiency of deep core muscles training on patients with low back pain

    OpenAIRE

    Povilauskaitė, Ieva

    2017-01-01

    Efficiency of Deep Core Muscles Training on Patients with Low Back Pain Vilnius University Faculty of Medicine Department of Rehabilitation, Physical and Sports Medicine Bachelor Degree of Physiotherapy Efficiency of Deep Core Muscles Strengthening Exercises on Patients with Low Back Pain Physiotherapy Bachelor's Thesis The Author: Ieva Povilauskaitė Academic advisor: Lecturer dr. Ieva Eglė Jamontaitė The aim of research work: measure the efficiency of come muscles strengthening exercises in ...

  3. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  4. Lip muscle training improves obstructive sleep apnea and objective sleep: a case report

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    Full Text Available The present study assessed the potential of lip muscle training for improving sleep. A patient with heavy snoring, daytime sleepiness and dry mouth underwent lip muscle training. Lip closure force LCFmax increased by 67.3% and LCFmin by 152% post-training. AHI decreased from 12.2 to 3.9 events/h by reducing hypopneic episodes. TST, sleep stage N3 and REM sleep increased, and WASO, sleep stage N1, and AI decreased. The patient switched from mouth to nose breathing during sleep and stopped snoring. Improved LCF, by moving the tongue into the anterior-superior oral cavity, may increase upper airway space and reduce the hypopnea index.

  5. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network.

    Science.gov (United States)

    Segers, L S; Nuding, S C; Ott, M M; Dean, J B; Bolser, D C; O'Connor, R; Morris, K F; Lindsey, B G

    2015-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons. Copyright © 2015 the American Physiological Society.

  6. Effects of progressive strength training on muscle mass in type 2 diabetes mellitus patients determined by computed tomography

    International Nuclear Information System (INIS)

    Cauza, E.; Strehblow, C.; Hanusch-Enserer, U.; Fasching, P.; Metz-Schimmerl, S.; Strasser, B.; Kostner, K.; Dunstan, D.; Haber, P.

    2009-01-01

    To examine the effect of a 4-month progressive strength training program on muscle and fat mass assessed by computed tomography (CT) in type 2 diabetes mellitus (T2DM) patients, and to assess the relationships of changes in muscle cross-section area (CSA) with glycaemic control. Twenty adults (mean age ± SE: 56.4 ± 0.9 a) with T2DM participated in a supervised strength training program for 4 months 3 days/week. Muscle and fat areas of the quadriceps muscle were estimated by CT volumetry before and immediately after the training. Glycaemic (HbA1c) and anthropometric (BMI, skinfolds) measurements were assessed at 0 and 4 months, respectively. After strength training, muscle strength increased significantly in all measured muscle groups. Quadriceps size (CSA of the muscle) was increased by 2.4 % (from 7.99 ± 0.3 cm 3 to 8.18 ± 0.3 cm 3 , p = 0.003) for the right extremity, 3.9 % (from 8.1 ± 0.4 cm 3 to 8.41 ± 0.5 cm 3 , p = 0.04) for the left side. Fat tissue CSA reduced from 0.66 ± 0.1 cm 3 to 0.56 ± 0.12 cm 3 for the right leg (15.3 % reduction) and from 0.58 ± 0.12 cm 3 to 0.37 ± 0.13 cm 3 for the left leg (35.8 % reduction), resulting in a mean fat CSA reduction of 24.8 %. Fat mass assessed by skin folds was significantly reduced and lean body mass was significantly increased. The change in muscle CSA was not correlated with the changes in HbA1c or muscle strength. Strength training significantly improves both muscle mass and the muscle to fat ratio in T2DM. However, changes in muscle observed with computed tomography were not related to changes observed in HbA1c with training. (author) [de

  7. The effect of low extremity plyometric training on back muscle power of high school throwing event athletes.

    Science.gov (United States)

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the 'Power up plyometric training'. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st -4th weeks, three sets of 15 times in the 5th-8th weeks, and five sets of 15 times in the 9th-12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times.

  8. [Exercise-induced inspiratory stridor. An important differential diagnosis of exercise-induced asthma].

    Science.gov (United States)

    Christensen, Pernille; Thomsen, Simon Francis; Rasmussen, Niels; Backer, Vibeke

    2007-11-19

    Recent studies suggest that exercise-induced inspiratory stridor (EIIS) is an important and often overlooked differential diagnosis of exercise-induced asthma. EIIS is characterised by astma-like symptoms, but differs by inspiratory limitation, fast recovery, and a lack of effect of inhaled bronchodilators. The prevalence of EIIS is reported to be 5-27%, and affects both children and adults. The pathophysiology, the pathogenesis, and the treatment of the condition are not yet clarified. At present, a population-based study is being conducted in order to address these points.

  9. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus.

    Science.gov (United States)

    Lee, Myungsun; Han, Gunsoo

    2016-04-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.

  10. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity

    DEFF Research Database (Denmark)

    Mackey, Abigail; Holm, L; Reitelseder, S

    2011-01-01

    There is strong evidence for enhanced numbers of satellite cells with heavy resistance training. The satellite cell response to very light muscle loading is, however, unknown. We, therefore, designed a 12-week training protocol where volunteers trained one leg with a high load (H) and the other leg...... with a light load (L). Twelve young healthy men [mean age 25 ± 3 standard deviation (SD) years] volunteered for the study. Muscle biopsies were collected from the m. vastus lateralis of both legs before and after the training period and satellite cells were visualized by CD56 immunohistochemistry....... A significant main effect of time was observed (P12 ± 0.03 to 0.15 ± 0.05, mean ± SD). The finding that 12 weeks of training skeletal muscle even with very light loads can induce an increase in the number of satellite...

  11. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  12. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  13. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  14. Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining.

    Science.gov (United States)

    Serrano, A L; Rivero, J L

    2000-04-01

    Fourteen 4-year old Andalusian mares were used to examine the plasticity of myosin heavy chain (MHC) composition in horse skeletal muscle with heavy draught-exercise training and detraining. Seven horses underwent a training programme based on carriage exercises for 8 months. Afterwards, they were kept in paddocks for 3 months. The remaining seven animals were used as control horses. Three gluteus medius muscle biopsies were removed at depths of 20, 40 and 60 mm from each horse before (month 0), during the training (months 3 and 8) and after detraining (month 11). Myosin heavy chain composition was analysed by electrophoresis and immunohistochemically with anti-MHC monoclonal antibodies. Fibre areas, oxidative capacity and capillaries were studied histochemically. After 8 months of training, MHC-IIX and IIX fibres decreased whereas MHC-I and type I and I + IIA fibres increased. Neither MHC-IIA nor the percentage of IIA fibres changed when the data were considered as a whole, but the proportion of MHC-IIA increased in the superficial region of the muscle after 8 months of training. Mean areas of type II fibres were not affected by training and detraining, but the cross-sectional of type I fibres increased after 3 month of training and not further increases were recorded afterward. The percentage of high-oxidative capacity fibres and the number of capillaries per mm2 increased with training. Most of these muscular adaptations reverted after detraining. These results indicate that long term draught-exercise training induces a reversible transition of MHC composition in equine muscle in the order IIX --> IIA --> I. The physiological implication of these changes is an impact on the velocity of shortening and fatigue resistance of muscle fibres.

  15. Exercise training reverses skeletal muscle atrophy in an experimental model of VCP disease.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available The therapeutic effects of exercise resistance and endurance training in the alleviation of muscle hypertrophy/atrophy should be considered in the management of patients with advanced neuromuscular diseases. Patients with progressive neuromuscular diseases often experience muscle weakness, which negatively impact independence and quality of life levels. Mutations in the valosin containing protein (VCP gene lead to Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD and more recently affect 2% of amyotrophic lateral sclerosis (ALS-diagnosed cases.The present investigation was undertaken to examine the effects of uphill and downhill exercise training on muscle histopathology and the autophagy cascade in an experimental VCP mouse model carrying the R155H mutation. Progressive uphill exercise in VCP(R155H/+ mice revealed significant improvement in muscle strength and performance by grip strength and Rotarod analyses when compared to the sedentary mice. In contrast, mice exercised to run downhill did not show any significant improvement. Histologically, the uphill exercised VCP(R155H/+ mice displayed an improvement in muscle atrophy, and decreased expression levels of ubiquitin, P62/SQSTM1, LC3I/II, and TDP-43 autophagy markers, suggesting an alleviation of disease-induced myopathy phenotypes. There was also an improvement in the Paget-like phenotype.Collectively, our data highlights that uphill exercise training in VCP(R155H/+ mice did not have any detrimental value to the function of muscle, and may offer effective therapeutic options for patients with VCP-associated diseases.

  16. A Case Study: Effect of Progressive Resistance and Balance Training on Upper Trunk Muscle Strength of Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Mehrnoush Ismailiyan

    2016-04-01

    Conclusion The results of this study showed that 8 weeks of progressive resistance and balance training (in combination has increased muscle strength in children with cerebral palsy. The present research showed that resistance and balanced trainings have significant effects on muscle strength of children with CP. It seems that these practices have been effective, especially for the wrist flexor and elbow flexor muscles. It can be said that the increase in the muscles of children with CP was due to practice principle along with increase in neuronal compatibility. One of the important points in the effectiveness of resistance training is the intensity of training. The results showed that resistance and balanced trainings increase the muscle strength of children with CP. This power could be partly due to increase in muscle volume and partly due to anabolic hormones.

  17. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    Science.gov (United States)

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P 0.05) with training. Training reduced (P aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  18. A combination of resistance and endurance training increases leg muscle strength in COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Jørgensen, Karsten Juhl; Ringbæk, Thomas

    2015-01-01

    Resistance training (RT) is thought to be effective in preventing muscle depletion, whereas endurance training (ET) is known to improve exercise capacity and health-related quality of life (HRQoL) in chronic obstructive pulmonary disease (COPD). Our objectives were to assess the efficiency...... improvements in HRQoL, walking distance and exercise capacity. However, we found moderate quality evidence of a significant increase in leg muscle strength favouring a combination of RT and ET (standardized mean difference of 0.69 (95% confidence interval: 0.39-0.98). In conclusion, we found significantly...... increased leg muscle strength favouring a combination of RT with ET compared with ET alone. Therefore, we recommend that RT should be incorporated in rehabilitation of COPD together with ET....

  19. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  20. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway.

    Directory of Open Access Journals (Sweden)

    Samantha Torres Grams

    Full Text Available Maximal Inspiratory Pressure (MIP is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway.This study aimed to compare the MIP values assessed by standard method (MIPsta and by unidirectional expiratory valve method (MIPuni in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated.This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B at two moments (Tests 1 and 2 to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1] was used to determine intraobserver and interobserver reproducibility.The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O than the mean values for MIPsta (-102.5 ± 23.9 cmH2O (p<0.001. Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91, and high correlation for Test 2 (ICC[2,1] = 0.88. The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86 and evaluator B (ICC[2,1] = 0.77.MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway.

  1. Changes in power and force generation during coupled eccentric-concentric versus concentric muscle contraction with training and aging

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Puggaard, Lis

    2008-01-01

    Age-related decline in maximal concentric muscle power is associated with frailty and functional impairments in the elderly. Compared to concentric contraction, mechanical muscle output is generally enhanced when muscles are rapidly pre-stretched (eccentric contraction), albeit less pronounced...... with increasing age. Exercise has been recommended to prevent loss of muscle power and function and recent guidelines indicate training program for increasing muscle power highly relevant for elderly subjects. This study examined the differences in muscle power, force and movement pattern during concentric......) and JH increased in training group (P age-related decline in muscle power and functional performance observed in the control subjects, while substantial gains...

  2. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    Science.gov (United States)

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  3. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    Science.gov (United States)

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. THE EFFECTS OF BACK EXTENSION TRAINING ON BACK MUSCLE STRENGTH AND SPINAL RANGE OF MOTION IN YOUNG FEMALES

    Directory of Open Access Journals (Sweden)

    Yıldız Yaprak

    2013-04-01

    Full Text Available The objective of this study was to determine the effects of a 10-week dynamic back extension training programme and its effects on back muscle strength, back muscle endurance and spinal range of motion (ROM for healthy young females. Seventy-three young females (age: 19.32±1.80 years, height: 158.89±4.71 cm, body weight: 55.67±6.30 kg volunteered for the study. Prior to the training period, all participants completed anthropometric measurements, back muscle strength and endurance test, lateral bending and spinal ROM measurements. After measurements, the participants were divided into two groups. The exercise group (N:35 performed the dynamic back extension exercise 3 days per week for 10 weeks. The control group (N:38 did not participate in any type of exercise. The mixed design ANOVA (group x time was used to determine the difference in pre- and post-training values. The present findings show that there were significant differences between pre-training and post-training values for back muscle strength and spinal ROM in the exercise group. Following the dynamic strength training programme, back muscle strength and spine ROM values except flexion of the lumbar 5-sacrum 1 (L5-S1 segment of the exercise group showed a significant increase when compared with the pre test values. The control group did not show any significant changes when compared with the pre-training values. The results demonstrate that the 10-week dynamic strength training programme was effective for spinal extension ROM and back muscle strength, but there was no change in back muscle endurance. In this context, this programme could potentially be used to prevent the decrease of spinal ROM as well as provide an increase in the fitness parameters of healthy individuals.

  5. Role of the nervous system in sarcopenia and muscle atrophy with aging - strength training as a countermeasure

    DEFF Research Database (Denmark)

    Aagaard, Per; Suetta, Charlotte; Caserotti, Paolo

    2010-01-01

    and size (sarcopenia), resulting in impaired mechanical muscle performance that in turn leads to a reduced functional capacity during everyday tasks. Concurrently, maximum muscle strength, power, and rate of force development are decreased with aging, even in highly trained master athletes. The impairment...... to elicit effective countermeasures in elderly individuals even at a very old age (>80 years) by evoking muscle hypertrophy along with substantial changes in neuromuscular function, respectively. Notably, the training-induced changes in muscle mass and nervous system function leads to an improved functional...

  6. A pilot study on the influence of exercising on unstable training machine on balance control and trunk muscles activity.

    Science.gov (United States)

    Domeika, Aurelijus; Aleknaite-Dambrauskiene, Ieva; Poskaitis, Vytautas; Zaveckas, Vidmantas; Grigas, Vytautas; Zvironiene, Ausra

    2018-05-16

    The main position of the working population is becoming sitting. Immobile prolonged sedentary time may cause negative effects including reduced intervertebral discs nutrition. Main ways of mitigating them are regular position changes and exercising. To evaluate influence of the short term training on unstable training machine on balance control and trunk muscles activity in patients with lower back pain. Participants (n=16) experiencing lower back pain were trained on an unstable sculling machine "Rehabili". Their balance tested by (Biodex Balance System) and rectus abdominis, externus oblique, transverse abdominis, multifidus and erector spine muscles activity (measured by surface electromyography) while sitting and standing with usual and aligned body postures both before and after six weeks of training (three 15 minutes sessions per week) were compared in between. Balance control improved after the training program. Besides, more symmetrical activation of both sides rectus and transversus abdominis muscles, as well as increased transversus abdominis muscle activation of 19% (p< 0.05), were observed. Six weeks short sessions training on unstable training machine improved balance control and increased trunk muscles activity especially in aligned body posture when standing or sitting on unstable surface.

  7. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension

    DEFF Research Database (Denmark)

    Hansen, Ane Håkansson; Nyberg, Michael Permin; Bangsbo, Jens

    2011-01-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from...... subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (e...

  8. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  9. Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise

    DEFF Research Database (Denmark)

    Dela, Flemming; Mikines, K J; Larsen, J J

    1999-01-01

    Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle tra...

  10. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  11. Subxyphoid pleural drain confers lesser impairment in respiratory muscle strength, oxygenation and lower chest pain after off-pump coronary artery bypass grafting: a randomized controlled trial.

    Science.gov (United States)

    Cancio, Andreia S A; Guizilini, Solange; Bolzan, Douglas W; Dauar, Renato B; Succi, José E; de Paola, Angelo A V; Carvalho, Antonio C de Camargo; Gomes, Walter J

    2012-01-01

    To evaluate respiratory muscle strength, oxygenation and chest pain in patients undergoing off-pump coronary artery bypass (OPCAB) using internal thoracic artery grafts comparing pleural drain insertion site at the subxyphoid region versus the lateral region. Forty patients were randomized into two groups in accordance with the pleural drain site. Group II (n = 19) -pleural drain exteriorized in the intercostal space; group (SI) (n = 21) chest tube exteriorized at the subxyphoid region. All patients underwent assessment of respiratory muscle strength (inspiratory and expiratory) on the pre, 1, 3 and 5 postoperative days (POD). Arterial blood gas analysis was collected on the pre and POD1. The chest pain sensation was measured 1, 3 and 5 POD. A significant decrease in respiratory muscle strength (inspiratory and expiratory) was seen in both groups until POD5 (P pleural drainage showed less decrease in respiratory muscle strength, better preservation of blood oxygenation and reduced thoracic pain compared to patients with intercostal drain on early OPCAB postoperative.

  12. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  13. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Schjerling, P

    2007-01-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regul......In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types...... on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius......, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P

  14. Change of muscle architecture following body weight support treadmill training for persons after subacute stroke: evidence from ultrasonography.

    Science.gov (United States)

    Liu, Peng; Wang, Yanjun; Hu, Huijing; Mao, Yurong; Huang, Dongfeng; Li, Le

    2014-01-01

    Although the body weight support treadmill training (BWSTT) in rehabilitation therapy has been appreciated for a long time, the biomechanical effects of this training on muscular system remain unclear. Ultrasonography has been suggested to be a feasible method to measure muscle morphological changes after neurological diseases such as stroke, which may help to enhance the understanding of the mechanism underlying the impaired motor function. This study investigated the muscle architectural changes of tibialis anterior and medial gastrocnemius in patients after subacute stroke by ultrasound. As expected, we found the effect of BWSTT on the muscular system. Specifically, the results showed larger pennation angle and muscle thickness of tibialis anterior and longer fascicle length of medial gastrocnemius after the training. The findings of this study suggest that the early rehabilitation training of BWSTT in subacute stage of stroke provides positive changes of the muscle architecture, leading to the potential improvement of the force generation of the muscle. This may not only help us understand changes of subacute stroke in muscular system but also have clinical implications in the evaluation of rehabilitation training after neurological insults.

  15. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review

    Directory of Open Access Journals (Sweden)

    Papa EV

    2017-06-01

    Full Text Available Evan V Papa,1 Xiaoyang Dong,2 Mahdi Hassan1 1Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China; 2Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX, USA Abstract: Human aging results in a variety of changes to skeletal muscle. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Previous research has demonstrated that resistance training can attenuate skeletal muscle function deficits in older adults, however few articles have focused on the effects of resistance training on functional mobility. The purpose of this systematic review was to 1 present the current state of literature regarding the effects of resistance training on functional mobility outcomes for older adults with skeletal muscle function deficits and 2 provide clinicians with practical guidelines that can be used with seniors during resistance training, or to encourage exercise. We set forth evidence that resistance training can attenuate age-related changes in functional mobility, including improvements in gait speed, static and dynamic balance, and fall risk reduction. Older adults should be encouraged to participate in progressive resistance training activities, and should be admonished to move along a continuum of exercise from immobility, toward the recommended daily amounts of activity. Keywords: aging, strength training, sarcopenia, mobility, balance

  16. The Effect of Inspiratory Resistance on Exercise Performance and Perception in Moderate Normobaric Hypoxia.

    Science.gov (United States)

    Seo, Yongsuk; Vaughan, Jeremiah; Quinn, Tyler D; Followay, Brittany; Roberge, Raymond; Glickman, Ellen L; Kim, Jung-Hyun

    2017-12-01

    Seo, Yongsuk, Jeremiah Vaughan, Tyler D. Quinn, Brittany Followay, Raymond Roberge, Ellen L. Glickman, and Jung-Hyun Kim. The effect of inspiratory resistance on exercise performance and perception in moderate normobaric hypoxia. High Alt Med Biol. 18:417-424, 2017. Respirators are simple and efficient in protecting workers against toxic airborne substances; however, their use may limit the physical performance of workers. The purpose of this study was to determine the effect of inspiratory resistance on physical performance and breathing perception in normobaric hypoxia. Nine healthy men wore a tight-fitting respiratory mask outfitted with one of four different inspiratory resistors (R) (0, 1.5, 4.5, 7.5 cm H 2 O/L/Sec) while exercising at normobaric hypoxia (17% O 2 ) at submaximal exercise workloads of 50, 100, and 150 W on a cycle ergometer for 10 minutes each, followed by a maximal oxygen uptake (VO 2 max) test to exhaustion. Maximal power output at R7.5 was significantly lower than R0 (p = 0.016) and R1.5 (p = 0.035). Respiration rate was significantly reduced at R4.5 (p = 0.011) and R7.5 (p ≤ 0.001) compared with R0. Minute ventilation was significantly decreased in R7.5 compared with R0 (p = 0.003), R1.5 (p = 0.010), and R4.5 (p = 0.016), whereas VO 2 was not significantly changed. Breathing comfort (BC) and breathing effort (BE) were significantly impaired in R7.5 (BC: p = 0.025, BE: p = 0.001) and R4.5 (BC: p = 0.007, BE: p = 0.001) compared with R0, but rating of perceived exertion (RPE) remained unchanged. Added inspiratory resistance limited maximal power output and increased perceptions of BC and BE in normobaric hypoxia. However, low-to-moderate inspiratory resistance did not have a deleterious effect on VO 2 or RPE at submaximal or maximal exercise. Perceptual and physiological characteristics of respirators of varying inspiratory resistances should be considered by manufacturers and end users during

  17. Reprint of "Learning to breathe? Feedforward regulation of the inspiratory motor drive".

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-12-01

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N = 13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N = 11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects

    DEFF Research Database (Denmark)

    Sørensen, T J; Langberg, Henning; Hodges, P W

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function...... and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals....

  19. Developmental plasticity of phrenic motoneuron and diaphragm properties with the inception of inspiratory drive transmission in utero.

    Science.gov (United States)

    Greer, John J; Martin-Caraballo, Miguel

    2017-01-01

    The review outlines data consistent with the hypothesis that inspiratory drive transmission that generates fetal breathing movements (FBMs) is essential for the developmental plasticity of phrenic motoneurons (PMNs) and diaphragm musculature prior to birth. A systematic examination during the perinatal period demonstrated a very marked transformation of PMN and diaphragm properties coinciding with the onset and strengthening of inspiratory drive and FBMs in utero. This included studies of age-dependent changes of: i) morphology, neuronal coupling, passive and electrophysiological properties of PMNs; ii) rhythmic inspiratory activity in vitro; iii) FBMs generated in vivo detected by ultrasonography; iv) contractile and end-plate potential properties of diaphragm musculature. We also propose how the hypothesis can be further evaluated with studies of perinatal hypoglossal motoneuron-tongue musculature and the use of Dbx1 null mice that provide an experimental model lacking descending inspiratory drive transmission in utero. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.

    Science.gov (United States)

    Baker, Wesley B; Li, Zhe; Schenkel, Steven S; Chandra, Malavika; Busch, David R; Englund, Erin K; Schmitz, Kathryn H; Yodh, Arjun G; Floyd, Thomas F; Mohler, Emile R

    2017-12-01

    We employed near-infrared optical techniques, diffuse correlation spectroscopy (DCS), and frequency-domain near-infrared spectroscopy (FD-NIRS) to test the hypothesis that supervised exercise training increases skeletal muscle microvascular blood flow and oxygen extraction in patients with peripheral artery disease (PAD) who experience claudication. PAD patients ( n = 64) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 mo of supervised exercise training. Calf muscle blood flow and oxygen extraction were optically monitored before, during, and after performance of a graded treadmill protocol at baseline and at 3 mo in both groups. Additionally, measurements of the ankle-brachial index (ABI) and peak walking time (PWT) to maximal claudication were made during each patient visit. Supervised exercise training was found to increase the maximal calf muscle blood flow and oxygen extraction levels during treadmill exercise by 29% (13%, 50%) and 8% (1%, 12%), respectively [ P group population were significantly higher than corresponding changes in the control group ( P training also increased PWT by 49% (18%, 101%) ( P = 0.01). However, within statistical error, the ABI, resting calf muscle blood flow and oxygen extraction, and the recovery half-time for hemoglobin\\myoglobin desaturation following cessation of maximal exercise were not altered by exercise training. The concurrent monitoring of both blood flow and oxygen extraction with the hybrid DCS/FD-NIRS instrument revealed enhanced muscle oxidative metabolism during physical activity from exercise training, which could be an underlying mechanism for the observed improvement in PWT. NEW & NOTEWORTHY We report on noninvasive optical measurements of skeletal muscle blood flow and oxygen extraction dynamics before/during/after treadmill exercise in peripheral artery disease patients who experience claudication. The measurements tracked the effects of a 3-mo supervised

  1. Insulin signaling in skeletal muscle of HIV‐infected patients in response to endurance and strength training

    DEFF Research Database (Denmark)

    Broholm, Christa; Mathur, Neha; Hvid, Thine

    2013-01-01

    . Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well...... hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients......Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims...

  2. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training.

    Science.gov (United States)

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-12-15

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  3. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits.

    Science.gov (United States)

    Santalla, Alfredo; Munguía-Izquierdo, Diego; Brea-Alejo, Lidia; Pagola-Aldazábal, Itziar; Díez-Bermejo, Jorge; Fleck, Steven J; Ara, Ignacio; Lucia, Alejandro

    2014-01-01

    We analyzed the effects of a 4-month resistance (weight lifting) training program followed by a 2-month detraining period in 7 adult McArdle patients (5 female) on: muscle mass (assessed by DXA), strength, serum creatine kinase (CK) activity and clinical severity. Adherence to training was ≥84% in all patients and no major contraindication or side effect was noted during the training or strength assessment sessions. The training program had a significant impact on total and lower extremities' lean mass (P training by +855 g (95% confidence interval (CI): 30, 1679) and +547 g (95%CI: 116, 978), respectively, and significantly decreasing with detraining. Body fat showed no significant changes over the study period. Bench press and half-squat performance, expressed as the highest value of average muscle power (W) or force (N) in the concentric-repetition phase of both tests showed a consistent increase over the 4-month training period, and decreased with detraining. Yet muscle strength and power detraining values were significantly higher than pre-training values, indicating that a training effect was still present after detraining. Importantly, all the participants, with no exception, showed a clear gain in muscle strength after the 4-month training period, e.g., bench press: +52 W (95% CI: 13, 91); half-squat: +173 W (95% CI: 96, 251). No significant time effect (P > 0.05) was noted for baseline or post strength assessment values of serum CK activity, which remained essentially within the range reported in our laboratory for McArdle patients. All the patients changed to a lower severity class with training, such that none of them were in the highest disease severity class (3) after the intervention and, as such, they did not have fixed muscle weakness after training. Clinical improvements were retained, in all but one patient, after detraining, such that after detraining all patients were classed as class 1 for disease severity.

  4. Exercise Training in Group 2 Pulmonary Hypertension: Which Intensity and What Modality.

    Science.gov (United States)

    Arena, Ross; Lavie, Carl J; Borghi-Silva, Audrey; Daugherty, John; Bond, Samantha; Phillips, Shane A; Guazzi, Marco

    2016-01-01

    Pulmonary hypertension (PH) due to left-sided heart disease (LSHD) is a common and disconcerting occurrence. For example, both heart failure (HF) with preserved and reduced ejection fraction (HFpEF and HFrEF) often lead to PH as a consequence of a chronic elevation in left atrial filling pressure. A wealth of literature demonstrates the value of exercise training (ET) in patients with LSHD, which is particularly robust in patients with HFrEF and growing in patients with HFpEF. While the effects of ET have not been specifically explored in the LSHD-PH phenotype (i.e., composite pathophysiologic characteristics of patients in this advanced disease state), the overall body of evidence supports clinical application in this subgroup. Moderate intensity aerobic ET significantly improves peak oxygen consumption, quality of life and prognosis in patients with HF. Resistance ET significantly improves muscle strength and endurance in patients with HF, which further enhance functional capacity. When warranted, inspiratory muscle training and neuromuscular electrical stimulation are becoming recognized as important components of a comprehensive rehabilitation program. This review will provide a detailed account of ET programing considerations in patients with LSHD with a particular focus on those concomitantly diagnosed with PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Adaptation of signal transduction and muscle proteome in trained horses

    NARCIS (Netherlands)

    Ginneken, Mireille Maria Elisabeth van

    2006-01-01

    In the present thesis the localization and activation of signaling proteins, known from human studies, in equine muscle were investigated under conditions of rest, after an acute bout of exercise and before and after a period of (intensified) training. Proteins of interest (protein kinase C (PKC),

  6. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    Science.gov (United States)

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P

  7. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    Science.gov (United States)

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis.

    Science.gov (United States)

    Guizelini, Pedrode Camargo; de Aguiar, Rafael Alves; Denadai, Benedito Sérgio; Caputo, Fabrizio; Greco, Camila Coelho

    2018-02-01

    Rapid force capacity, identified by rate of rise in contractile force at the onset of contraction, i.e., the rate of force development (RFD), has been considered an important neuromuscular parameter of physical fitness in elderly individuals. Randomized control studies conducted in adults have found that resistance training may elicit different outcomes in terms of RFD and muscle strength. Thus, the main purpose of this study was to review systematically the literature for studies regarding the influence of resistance training on muscle strength and RFD in elderly persons. A literature search was performed in major electronic databases from inception to March 2017. Studies including health individuals with a mean age≥60years, describing the effect of resistance training on RFD and muscle strength were found eligible. The outcomes were calculated as the difference in percentage change between control and experimental groups (% change) and data were presented as mean±95% confidence limits. Meta-analyses were performed using a random-effects model and, in addition, simple and multiple meta-regression analyses were used to identify effects of age, training type, sessions per week and training duration on % change in RFD and muscle strength. Thirteen training effects were collected from 10 studies included in the meta-analysis. The resistance training program had a moderate beneficial effect on both muscle strength (% change=18.40%, 95% CL 13.69-23.30, pchange=26.68, 95% CL 14.41-35.52, pchanges in muscle strength and RFD. It can be concluded that explosive training and heavy strength training are effective resistance training methods aiming to improve both muscle strength and RFD after short-to-medium training period. However, muscle strength and RFD seem to adapt differently to resistance training programs, suggesting caution for their interchangeable use in clinical assessments of the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of carnitine supplementation on fatigue level in the gastrocnemius muscle of trained and sedentary rats

    Directory of Open Access Journals (Sweden)

    Rossana Anelice Gomez

    2012-04-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n3p324 L-carnitine, considered to be of great value in metabolic processes, plays an important role in the mitochondrial β-oxidation process. It may be used to improve athletic performance and to maintain a higher workload during exercise. This study aimed to investigate the effect of L-carnitine supplementation on muscle fatigue in sciatic nerve-gastrocnemius muscle preparations in sedentary and trained rats. The animals were divided into 4 groups: non-supplemented sedentary (NSS, supplemented sedentary (SS, non-supplemented trained (NST, and supplemented trained (ST rats. The animals were trained in daily 1-h sessions (5 days/week and received chronic oral L-carnitine supplementation (1 mg/mL for 4 weeks. Muscle fatigue was determined by supramaximal tetanic stimulation of the sciatic nerve (50 Hz. Time values for strength reduction were significantly different (p<0.05 between NSS vs. SS and NST vs. ST rats. No significant differences were observed between SS vs. ST and NST vs. NSS rats. These findings demonstrate that L-carnitine lengthen the time required for induction of muscle fatigue.

  10. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

    Science.gov (United States)

    Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene

    2018-05-11

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  11. Respiratory muscle function in infants with spinal muscular atrophy type I.

    Science.gov (United States)

    Finkel, Richard S; Weiner, Daniel J; Mayer, Oscar H; McDonough, Joseph M; Panitch, Howard B

    2014-12-01

    To determine the feasibility and safety of respiratory muscle function testing in weak infants with a progressive neuromuscular disorder. Respiratory insufficiency is the major cause of morbidity and mortality in infants with spinal muscular atrophy type I (SMA-I). Tests of respiratory muscle strength, endurance, and breathing patterns can be performed safely in SMA-I infants. Useful data can be collected which parallels the clinical course of pulmonary function in SMA-I. An exploratory study of respiratory muscle function testing and breathing patterns in seven infants with SMA-I seen in our neuromuscular clinic. Measurements were made at initial study visit and, where possible, longitudinally over time. We measured maximal inspiratory (MIP) and transdiaphragmatic pressures, mean transdiaphragmatic pressure, airway occlusion pressure at 100 msec of inspiration, inspiratory and total respiratory cycle time, and aspects of relative thoracoabdominal motion using respiratory inductive plethysmography (RIP). The tension time index of the diaphragm and of the respiratory muscles, phase angle (Φ), phase relation during the total breath, and labored breathing index were calculated. Age at baseline study was 54-237 (median 131) days. Reliable data were obtained safely for MIP, phase angle, labored breathing index, and the invasive and non-invasive tension time indices, even in very weak infants. Data obtained corresponded to the clinical estimate of severity and predicted the need for respiratory support. The testing employed was both safe and feasible. Measurements of MIP and RIP are easily performed tests that are well tolerated and provide clinically useful information for infants with SMA-I. © 2014 Wiley Periodicals, Inc.

  12. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    neurons located in the rostral ventrolateral part of the slice. 2. Bath-applied TRH (1 microM) decreased the time between inspiratory discharges recorded on the XII nerve from 12.3 +/- 3.3 s to 4.9 +/- 1.1 s (n = 28; means +/- SD), i.e., caused an approximate threefold increase in the respiratory...... frequency. The coefficient of variation of the time between the inspiratory discharges decreased by one-half. Thus the respiratory output became more stable in response to TRH. The duration of the inspiratory discharges increased from 474 +/- 108 ms to 679 +/- 114 ms, and the amplitude decreased by 24...... in a thick brain stem slice preparation from the newborn mouse. The action of TRH on the respiratory output from the slice was investigated by recordings from the XII nerve. Cellular responses to TRH were investigated using whole cell recordings from hypoglossal motoneurons and three types of inspiratory...

  13. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  14. Efficacy of pelvic floor muscle training and hypopressive exercises for treating pelvic organ prolapse in women: randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Bruno Teixeira Bernardes

    Full Text Available CONTEXT AND OBJECTIVE: Previous studies have shown that women with pelvic floor dysfunctions present decreased cross-sectional area (CSA of the levator ani muscle. One way to assess the effects of training programs is to measure the CSA of the muscle, using ultrasonography. The aim here was to evaluate the efficacy of pelvic floor muscle training and hypopressive exercises for increasing the CSA of the levator ani muscle in women with pelvic organ prolapse. DESIGN AND SETTING: Prospective randomized controlled trial at the Urogynecology outpatient clinic of Universidade Federal de São Paulo. METHODS: Fifty-eight women with stage II pelvic organ prolapse were divided into three groups for physiotherapy: a pelvic floor muscle training group (GI; a hypopressive exercise group (GII; and a control group (GIII. The patients underwent transperineal ultrasonographic evaluation using a transducer of frequency 4-9 MHz. The (CSA of the levator ani muscle was measured before physiotherapy and after 12 weeks of treatment. RESULTS: The groups were homogeneous regarding age, number of pregnancies, number of vaginal deliveries, body mass index and hormonal status. Statistically significant differences in CSA were found in GI and GII from before to after the treatment (P < 0.001, but not in relation to GIII (P = 0.816. CONCLUSIONS: The CSA of the levator ani muscle increased significantly with physiotherapy among the women with pelvic organ prolapse. Pelvic floor muscle training and hypopressive exercises produced similar improvements in the CSA of the levator ani muscle.

  15. The 12-month effects of structured lifestyle advice and pelvic floor muscle training for pelvic organ prolapse

    DEFF Research Database (Denmark)

    Due, Ulla; Brostrøm, Søren; Lose, Gunnar

    2016-01-01

    INTRODUCTION: We evaluated the 12-month effects of adding pelvic floor muscle training to a lifestyle advice program in women with symptomatic pelvic organ prolapse stage II-III and the number of women who had sought further treatment. MATERIAL AND METHODS: This study was a 12-month follow up...... of a randomized controlled trial comparing a structured lifestyle advice program alone (lifestyle group) or in combination with pelvic floor muscle training (training and lifestyle group). Both programs consisted of six separate group sessions within 12 weeks. RESULTS: Data were available from 83 (76%) of the 109...... surgery. More severe anterior prolapse and more bladder symptoms at the 3-month follow up were significantly associated with having sought further treatment in both groups. CONCLUSIONS: At 12-month follow up, the effects of adding pelvic floor muscle training to a structured lifestyle advice program were...

  16. Diagnosis of tracheal instability: inspiratory and expiratory spiral CT and cine CT

    International Nuclear Information System (INIS)

    Heussel, C.P.; Thelen, M.; Kauczor, H.U.; Hafner, B.; Lill, J.

    2000-01-01

    Purpose: In tracheo- and bronchomalacia, localization and determination of collapse is necessary for planning a surgical procedure. We compared inspiratory and spiral CT, cine CT, and bronchoscopy and evaluated the relevance of each method. Methods: Seventeen patients with suspected or verified tracheal stonosis or collapse underwent paired inspiratory and exspiratory spiral CT and cine CT during continuous respiration (temporal increment 100 ms). The tracheal cross-sectional area was calculated and compared. Results: In addition to bronchoscopy, further information concerning localization, extent, collapse, stability of the tracheal wall, distal portions of the stenosis, and extraluminal compressions was obtained. A significantly higher degree of tracheal collapse was seen using cine CT compared to paired spiral CT (p [de

  17. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  18. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes

    DEFF Research Database (Denmark)

    Madsen, K; Pedersen, P K; Rose, P

    1990-01-01

    regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P less than 0.05) from 581 mmol.kg-1 dry weight, SEM 50 to 722 mmol.kg-1 dry weight, SEM 34 after Carb. Running time...... (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion...

  19. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian

    2005-01-01

    adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg......Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  20. Supervised pelvic floor muscle training versus attention-control massage treatment in patients with faecal incontinence

    DEFF Research Database (Denmark)

    Ussing, Anja; Dahn, Inge; Due, Ulla

    2017-01-01

    supplements is recommended as first-line treatment for faecal incontinence. Despite this, the effect of pelvic floor muscle training for faecal incontinence is unclear. No previous trials have investigated the efficacy of supervised pelvic floor muscle training in combination with conservative treatment...... treatment and conservative treatment. The primary outcome is participants' rating of symptom changes after 16 weeks of treatment using the Patient Global Impression of Improvement Scale. Secondary outcomes are the Vaizey Incontinence Score, the Fecal Incontinence Severity Index, the Fecal Incontinence...

  1. Muscle Volume Increases Following 16 Weeks of Resistive Exercise Training with the Advanced Resistive Exercise Device (ARED) and Free Weights

    Science.gov (United States)

    Nash, R. E.; Loehr, J. A.; Lee, S. M. C.; English, K. L.; Evans, H.; Smith, S. A.; Hagan, R. D.

    2009-01-01

    Space flight-induced muscle atrophy, particularly in the postural and locomotorymuscles, may impair task performance during long-duration space missions and planetary exploration. High intensity free weight (FW) resistive exercise training has been shown to prevent atrophy during bed rest, a space flight analog. NASA developed the Advanced Resistive Exercise Device (ARED) to simulate the characteristics of FW exercise (i.e. constant mass, inertial force) and to be used as a countermeasure during International Space Station (ISS) missions. PURPOSE: To compare the efficacy of ARED and FW training to induce hypertrophy in specific muscle groups in ambulatory subjects prior to deploying ARED on the ISS. METHODS: Twenty untrained subjects were assigned to either the ARED (8 males, 3 females) or FW (6 males, 3 females) group and participated in a periodizedtraining protocol consisting of squat (SQ), heel raise (HR), and deadlift(DL) exercises 3 d wk-1 for 16 wks. SQ, HR, and DL muscle strength (1RM) was measured before, after 8 wks, and after 16 wks of training to prescribe exercise and measure strength changes. Muscle volume of the vastigroup (V), hamstring group (H), hip adductor group (ADD), medial gastrocnemius(MG), lateral gastrocnemius(LG), and deep posterior muscles including soleus(DP) was measured using MRI pre-and post-training. Consecutive cross-sectional images (8 mm slices with a 2 mm gap) were analyzed and summed. Anatomical references insured that the same muscle sections were analyzed pre-and post-training. Two-way repeated measures ANOVAs (ptraining devices. RESULTS: SQ, HR, and DL 1RM increased in both FW (SQ: 49+/-6%, HR: 12+/-2%, DL: 23+/-4%) and ARED (SQ: 31+/-4%, HR: 18+/-2%, DL: 23+/-3%) groups. Both groups increased muscle volume in the V (FW: 13+/-2%, ARED: 10+/-2%), H (FW: 3+/-1%, ARED: 3+/-1 %), ADD (FW: 15=/-2%, ARED: 10+/-1%), LG (FW: 7+/-2%, ARED: 4+/-1%), MG (FW: 7+/-2%, ARED: 5+/-2%), and DP (FW: 2+/-1%; ARED: 2+/-1%) after training. There

  2. Pelvic floor muscle training for female urinary incontinence: Does it work?

    Science.gov (United States)

    Singh, Nilanjana; Rashid, Mumtaz; Bayliss, Lorna; Graham, Penny

    2016-06-01

    Supervised pelvic floor muscle training in patients of stress and mixed urinary incontinence has been recommended. Our aim was to assess the utilisation and effectiveness of our supervised pelvic floor muscle training service and assess the impact of incontinence scores before physiotherapy on the subsequent results of physiotherapy. All 271 patients referred to physiotherapy for symptoms of incontinence filled out the International Consultation on Incontinence Modular Questionnaire-Female Lower Urinary Tract Symptoms before starting treatment. Depending on pelvic floor muscle assessment, plans for exercises and follow up were made. If the strength of pelvic floor muscles was poor, electrical stimulation was offered. If awareness of the pelvic floor muscle contraction was poor, bio feedback was offered. Group sessions and vaginal cones were also used. Depending on the response to the treatment; patients were either discharged, referred to Urogynaecology clinic or continued physiotherapy. All patients who were discharged or referred for surgery were given a post treatment questionnaire to fill out. 79 (56 %) of 132 women with stress, 49 (51 %) of 98 with mixed and 27 (66 %) of 41 with urge incontinence reported successful control of symptoms (overall success 54 %). However, 65 % of women with incontinence scores of 0-5 before physiotherapy, 64 % with 6-10, 42 % with 11-15 and mere 28 % with 16-20 achieved success with physiotherapy. 27 (10 %) were lost to follow up. 1 in 2 women referred to physiotherapy for incontinence, achieved successful control of symptoms without the need for invasive investigations or surgery. However, poor incontinence scores before the start of physiotherapy is a poor prognostic indicator for success. 90 % women utilised the service.

  3. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    Science.gov (United States)

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  4. Reduced phrenic motoneuron recruitment during sustained inspiratory threshold loading compared to single-breath loading: a twitch interpolation study

    Directory of Open Access Journals (Sweden)

    Mathieu Raux

    2016-11-01

    Full Text Available In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganisation and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganisation between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment, we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganisation should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21 – 40 years were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts (vol, upon unprepared inspiratory efforts against a single-breath inspiratory threshold load (single-breath, and upon sustained inspiratory efforts against the same type of load (continuous. The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was –1.1 ± 0.2 during vol, –1.5 ± 0.7 during single-breath, and -0.6 ± 0.4 during continuous (all slopes expressed in percent of baseline.percent of baseline-1 all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17 % during vol, 22 ± 16 % during single-breath (p=0.13, and 19 ± 9 % during continuous (p = 0.0015 vs. vol. This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted as

  5. The influence of training status on the drop in muscle strength after acute exercise

    DEFF Research Database (Denmark)

    Pingel, Jessica; Moerch, L; Kjaer, M

    2009-01-01

    to running exercise immediately after immobilization, the muscle strength of the triceps-surae muscles dropped even further, but just in the immobilized leg (41%; P importance of determining the muscle endurance when evaluating the effect of immobilization on muscle......Skeletal muscles fatigue after exercise, and reductions in maximal force appear. A difference in training status between the legs was introduced by unilateral immobilization of the calf muscles for 2 weeks in young men, who were randomly assigned to two groups, either a RUN group (n = 8......) that was exposed to prolonged exercise (1-h running: individual pace) or a REST group (n = 12) that did no exercise after immobilization. Cross-sectional area (CSA) of the triceps-surae muscles was calculated by magnetic resonance imaging (MRI), and maximal voluntary contraction (MVC) force of the plantar flexors...

  6. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W

    2011-01-01

    MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore...... determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ~20% of responders from 56 young men who undertook a 5 day/wk RT program...... for 12 wk. Training-induced muscle mass gain was determined by dual-energy X-ray absorptiometry, and fiber size was evaluated by histochemistry. The expression level of each miRNA was quantified using TaqMan-based quantitative PCR, with the analysis carried out in a blinded manner. Gene ontology...

  7. Effects of low-load resistance training with blood flow restriction on muscle size and strength of professional soccer players with muscle imbalance

    Directory of Open Access Journals (Sweden)

    Benedito Sergio Denadai

    2017-12-01

    Full Text Available The purposes of this study were to determine whether low intensity resistance training combined with blood flow restriction (LI-BFR could affect the concentric hamstrings/quadriceps muscle strength ratio (Hcon:Qcon of professional soccer players with Hcon:Qcon imbalance (Study 1, and whether hamstrings strength response observed after LI-BFR is associated with muscle hypertrophy (Study 2. In the Study 1, athletes were randomly divided into a training group (n = 6 and a control group (n = 5. In the Study 2, all athletes (n = 11 have performed the training programme. The athletes participated in a 6-week (twice a week supervised training programme (unilateral knee flexion at 30% 1RM consisting of 12 training sessions. Peak concentric torque of knee flexors (+8%; P < 0.001 and Hcon:Qcon (+9%; P < 0.01 were significantly increased after LI-BFR. Moreover, the cross sectional area (CSA of the hamstrings was significantly increased (+10%; P < 0.001 after LI-BFR. Thus, the addition of hamstrings strength training programme using LI-BFR during preseason is able to enhance both Hcon:Qcon and hamstrings CSA of professional soccer players with Hcon:Qcon imbalance.

  8. Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2008-05-01

    Full Text Available Exercise-induced vessel changes modulate arterial pressure (AP in male spontaneously hypertensive rats (SHR. Vascular endothelial growth factor (VEGF is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY rats, 8-9 weeks (200-250 g. Rats were allocated to daily training or remained sedentary for 3 days (N = 23 or 13 weeks (N = 23. After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis and non-locomotor skeletal muscles (temporalis were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days and (SHR = 141%, WKY = 122%, 13 weeks. SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36% simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%. In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%, without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.

  9. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity

    DEFF Research Database (Denmark)

    Mancini, A; Vitucci, D; Labruna, G

    2017-01-01

    PURPOSE: We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS: Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men...... the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity....... (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. RESULTS: The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher...

  10. Effect of Resistance Exercise Training Associated with Skeletal Muscle Hypertrophy on Serum Pro-Inflammatory Cytokines in STZ-induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mahdieh Molanouri Shamsi

    2016-06-01

    Full Text Available Skeletal muscle atrophy is associated with type 1 diabetes. Effects of resistance exercise training associated with skeletal muscle hypertrophy on serum inflammatory cytokines was exactly not clarified. Protein levels of inflammatory cytokines IL-6, TNF-α, and interleukin-1beta (IL-1β in serum of healthy and streptozotocin (STZ- induced diabetic rats subjected to resistance exercise training were assessed in this study. Rats were divided into the control, training, control diabetic and diabetic training groups. Training groups performed the resistance training consisted of climbing a 1 m ladder with increasing weight added to the tail. Proteins levels of IL-6, TNF-α and IL-1β in serum were measured by the ELIZA method. The results of this study indicated that resistance training induced skeletal muscle hypertrophy in diabetic samples (P<0.05. Also, Resistance training decrease IL-6 protein levels in serum. Inflammatory cytokines could act as stress factors in diabetes. It seems that this kind of exercise training individually could not change cytokines levels in serum.

  11. Some infant ventilators do not limit peak inspiratory pressure reliably during active expiration.

    Science.gov (United States)

    Kirpalani, H; Santos-Lyn, R; Roberts, R

    1988-09-01

    In order to minimize barotrauma in newborn infants with respiratory failure, peak inspiratory pressures should not exceed those required for adequate gas exchange. We examined whether four commonly used pressure-limited, constant flow ventilators limit pressure reliably during simulated active expiration against the inspiratory stroke of the ventilator. Three machines of each type were tested at 13 different expiratory flow rates (2 to 14 L/min). Flow-dependent pressure overshoot above a dialed pressure limit of 20 cm H2O was observed in all machines. However, the magnitude differed significantly between ventilators from different manufacturers (p = .0009). Pressure overshoot above 20 cm H2O was consistently lowest in the Healthdyne (0.8 cm H2O at 2 L/min, 3.6 cm H2O at 14 L/min) and highest in the Bourns BP200 (3.0 cm H2O at 2 L/min, 15.4 cm H2O at 14 L/min). We conclude that peak inspiratory pressure overshoots on pressure-limited ventilators occur during asynchronous expiration. This shortcoming may contribute to barotrauma in newborn infants who "fight" positive-pressure ventilation.

  12. Diaphragm adaptations in patients with COPD.

    NARCIS (Netherlands)

    Ottenheijm, C.A.C.; Heunks, L.M.A.; Dekhuijzen, P.N.R.

    2008-01-01

    Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm

  13. Resistance Exercise Training-Induced Muscle Hypertrophy Was Associated with Reduction of Inflammatory Markers in Elderly Women

    Directory of Open Access Journals (Sweden)

    Kishiko Ogawa

    2010-01-01

    Full Text Available Aging is associated with low-grade inflammation. The benefits of regular exercise for the elderly are well established, whereas less is known about the impact of low-intensity resistance exercise on low-grade inflammation in the elderly. Twenty-one elderly women (mean age ± SD, 85.0 ± 4.5 years participated in 12 weeks of resistance exercise training. Muscle thickness and circulating levels of C-reactive protein (CRP, serum amyloid A (SAA, heat shock protein (HSP70, tumor necrosis factor (TNF-α, interleukin (IL-1, IL-6, monocyte chemotactic protein (MCP-1, insulin, insulin-like growth factor (IGF-I, and vascular endothelial growth factor (VEGF were measured before and after the exercise training. Training reduced the circulating levels of CRP, SAA (P<.05, HSP70, IGF-I, and insulin (P<.01. The training-induced reductions in CRP and TNF-α were significantly (P<.01, P<.05 associated with increased muscle thickness (r=−0.61, r=−0.54, respectively. None of the results were significant after applying a Bonferroni correction. Resistance training may assist in maintaining or improving muscle volume and reducing low-grade inflammation.

  14. Inspiratory stridor and dysphagia because of prolonged oesophageal foreign body

    NARCIS (Netherlands)

    Vos, G. D.; Heymans, H. S.; Urbanus, N. A.

    1987-01-01

    A 2-year-old boy with severe inspiratory stridor and dysphagia is described. The delay in the diagnosis of an impacted foreign body resulted in severe deformation of the oesophagus. After surgical extraction of the foreign body the oesophagus was splinted for 4 months by a nasogastric tube because

  15. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P effect of eccentric training was greater than concentric and isometric training (P tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P effect than concentric (P tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  16. Diaphragmatic thickness ratio (inspiratory/expiratory) as a diagnostic method of diaphragmatic palsy associated with interescalene block.

    Science.gov (United States)

    López Escárraga, V M; Dubos España, K; Castillo Bustos, R H; Peidró, L; Sastre, S; Sala-Blanch, X

    2018-02-01

    Diaphragmatic paralysis is a side-effect associated with interscalene block. Thickness index of the diaphragm muscle (inspiratory thickness/expiratory thickness) obtained by ultrasound has recently been introduced in clinical practice for diagnosis of diaphragm muscle atrophy. Our objective was to evaluate this index for the diagnosis of acute phrenic paresis associated with interscalene block. We designed an observational study in 22 patients scheduled for shoulder arthroscopy. Spirometry was performed (criteria of phrenic paresis was a decrease in FVC and FEV1 ≥20%). Ultrasound apposition zone was assessed in anterior axillary line and diaphragmatic displacement was evaluated on inspiration and expiration (number of intercostal spaces; phrenic paresis considered a reduction ≥25%) and thickness of the diaphragm muscle (a phrenic paresis was considered an index block at C5-C6 with 20ml of 0.5% ropivacaine. Twenty-one patients (95%) presented phrenic nerve block according to one or more of the methods used. One patient did not show any symptoms or signs suggestive of phrenic paralysis and was excluded. All the patients presented phrenic paresis based on the diaphragmatic thickness index, with the pre-block index being 1.8±0.5 and post-block of 1.05±0.06 (Pblock (from 1.9±0.5 intercostal spaces to 0.5±0.3; Pblock. This index does not require a baseline pre-assessment. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Cystic lung disease: a comparison of cystic size, as seen on expiratory and inspiratory HRCT scans

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Yoon, Seong Kuk; Nam, Kyung Jin; Choi, Seok Jin; Goo, Jin Mo

    2000-01-01

    To determine the effects of respiration on the size of lung cysts by comparing inspiratory and expiratory high-resolution CT (HRCT) scans. The authors evaluated the size of cystic lesions, as seen on paired inspiratory and expiratory HRCT scans, in 54 patients with Langerhans cell histiocytosis (n = 3), pulmonary lymphangiomyomatosis (n = 4), confluent centrilobular emphysema (n = 9), paraseptal emphysema and bullae (n = 16), cystic bronchiectasis (n = 13), and honeycombing (n = 9). Using paired inspiratory and expiratory HRCT scans obtained at the corresponding anatomic level, a total of 270 cystic lesions were selected simultaneously on the basis of five lesions per lung disease. Changes in lung cyst size observed during respiration were assessed by two radiologists. In a limited number of cases (n = 11), pathologic specimens were obtained by open lung biopsy or lobectomy. All cystic lesions in patients with Langerhans cell histiocytosis, lymphangiomyomatosis, cystic bronchiectasis, honeycombing, and confluent centrilobular emphysema became smaller on expiration, but in two cases of paraseptal emphysema and bullae there was no change. In cases in which expiratory CT scans indicate that cysts have become smaller, cystic lesions may communicate with the airways. To determine whether, for cysts and cystic lesions, this connection does in fact exist, paired inspiratory and expiratory HRCT scans are necessary

  18. Cystic lung disease: a comparison of cystic size, as seen on expiratory and inspiratory HRCT scans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Nam; Yoon, Seong Kuk; Nam, Kyung Jin [Donga University College of Medicine, Pusan (Korea, Republic of); Choi, Seok Jin [Inje University College of Medicine, Gimhae (Korea, Republic of); Goo, Jin Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To determine the effects of respiration on the size of lung cysts by comparing inspiratory and expiratory high-resolution CT (HRCT) scans. The authors evaluated the size of cystic lesions, as seen on paired inspiratory and expiratory HRCT scans, in 54 patients with Langerhans cell histiocytosis (n = 3), pulmonary lymphangiomyomatosis (n = 4), confluent centrilobular emphysema (n = 9), paraseptal emphysema and bullae (n = 16), cystic bronchiectasis (n = 13), and honeycombing (n = 9). Using paired inspiratory and expiratory HRCT scans obtained at the corresponding anatomic level, a total of 270 cystic lesions were selected simultaneously on the basis of five lesions per lung disease. Changes in lung cyst size observed during respiration were assessed by two radiologists. In a limited number of cases (n = 11), pathologic specimens were obtained by open lung biopsy or lobectomy. All cystic lesions in patients with Langerhans cell histiocytosis, lymphangiomyomatosis, cystic bronchiectasis, honeycombing, and confluent centrilobular emphysema became smaller on expiration, but in two cases of paraseptal emphysema and bullae there was no change. In cases in which expiratory CT scans indicate that cysts have become smaller, cystic lesions may communicate with the airways. To determine whether, for cysts and cystic lesions, this connection does in fact exist, paired inspiratory and expiratory HRCT scans are necessary.

  19. Effects of Ibuprofen and Resistance Training on Bone and Muscle: A Randomized Controlled Trial in Older Women.

    Science.gov (United States)

    Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A

    2017-04-01

    Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.

  20. Muscle Activation during Push-Ups with Different Suspension Training Systems.

    Science.gov (United States)

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L

    2014-09-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.

  1. Effect of inspiratory muscle training with load compared with sham training on blood pressure in individuals with hypertension: study protocol of a double-blind randomized clinical trial

    OpenAIRE

    Posser, Simone Regina; Callegaro, Carine Cristina; Beltrami-Moreira, Marina; Moreira, Leila Beltrami

    2016-01-01

    Background Hypertension is a complex chronic condition characterized by elevated arterial blood pressure. Management of hypertension includes non-pharmacologic strategies, which may include techniques that effectively reduce autonomic sympathetic activity. Respiratory exercises improve autonomic control over cardiovascular system and attenuate muscle metaboreflex. Because of these effects, respiratory exercises may be useful to lower blood pressure in subjects with hypertension. Methods/desig...

  2. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Larsen, Steen; Danielsen, J H; Søndergård, Stine Dam

    2015-01-01

    High-intensity interval training (HIT) is known to increase mitochondrial content in a similar way as endurance training [60-90% of maximal oxygen uptake (VO2peak )]. Whether HIT increases the mitochondria's ability to oxidize lipids is currently debated. We investigated the effect of HIT...... of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. Km (app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal...... muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak . Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal...

  3. Oral quercetin supplementation hampers skeletal muscle adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Casuso, R A; Martínez-López, E J; Nordsborg, Nikolai Baastrup

    2014-01-01

    We aimed to test exercise-induced adaptations on skeletal muscle when quercetin is supplemented. Four groups of rats were tested: quercetin sedentary, quercetin exercised, placebo sedentary, and placebo exercised. Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups ...... status was also quantified by measuring muscle antioxidant enzymatic activity and oxidative damage product, such as protein carbonyl content (PCC). Quercetin supplementation increased oxidative damage in both exercised and sedentary rats by inducing higher amounts of PCC (P ...

  4. Evaluation of muscle activity during a standardized shoulder resistance training bout in novice individuals

    DEFF Research Database (Denmark)

    Jakobsen, Markus D; Sundstrup, Emil; Andersen, Christoffer H

    2012-01-01

    training bout. The purpose of this study was to evaluate muscle activity during a shoulder resistance training bout with 15 repetitions maximum (RM) loadings in novice individuals. Twelve healthy sedentary women (age = 27-58 years; weight = 54-85 kg; height = 160-178 cm) were recruited for this study...

  5. Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling

    DEFF Research Database (Denmark)

    Piil, Peter Bergmann; Smith Jørgensen, Tue; Egelund, Jon

    2018-01-01

    Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O2 delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training...... a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased (P... group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men....

  6. β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review.

    Science.gov (United States)

    Silva, Vagner R; Belozo, Felipe L; Micheletti, Thayana O; Conrado, Marcelo; Stout, Jeffrey R; Pimentel, Gustavo D; Gonzalez, Adam M

    2017-09-01

    β-Hydroxy-β-methylbutyrate free acid (HMB-FA) has been suggested to accelerate the regenerative capacity of skeletal muscle after high-intensity exercise and attenuate markers of skeletal muscle damage. Herein a systematic review on the use of HMB-FA supplementation as an ergogenic aid to improve measures of muscle recovery, performance, and hypertrophy after resistance training was conducted. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We included randomized, double-blinded, placebo-controlled trials investigating the effects of HMB-FA supplementation in conjunction with resistance exercise in humans. The search was conducted using Medline and Google Scholar databases for the terms beta-hydroxy-beta-methylbutyrate, HMB free acid, exercise, resistance exercise, strength training, and HMB supplementation. Only research articles published from 1996 to 2016 in English language were considered for the analysis. Nine studies met the criteria for inclusion in the analyses. Most studies included resistance-trained men, and the primary intervention strategy involved administration of 3g of HMB-FA per day. In conjunction with resistance training, HMB-FA supplementation may attenuate markers of muscle damage, augment acute immune and endocrine responses, and enhance training-induced muscle mass and strength. HMB-FA supplementation may also improve markers of aerobic fitness when combined with high-intensity interval training. Nevertheless, more studies are needed to determine the overall efficacy of HMB-FA supplementation as an ergogenic aid. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists

    DEFF Research Database (Denmark)

    Vogiatzis, Ioannis; Athanasopoulos, Dimitris; Boushel, Robert Christopher

    2008-01-01

    We investigated whether the greater degree of exercise-induced diaphragmatic fatigue previously reported in highly trained athletes in hypoxia (compared with normoxia) could have a contribution from limited respiratory muscle blood flow. Seven trained cyclists completed three constant load 5 min...... exercise tests at inspired O(2) fractions (FIO2) of 0.13, 0.21 and 1.00 in balanced order. Work rates were selected to produce the same tidal volume, breathing frequency and respiratory muscle load at each FIO2 (63 +/- 1, 78 +/- 1 and 87 +/- 1% of normoxic maximal work rate, respectively). Intercostals......(-1) and 95.1 +/- 7.8 ml (100 ml)(-1) min(-1), respectively). Neither IMBF was different across hypoxia, normoxia and hyperoxia (53.6 +/- 8.5, 49.9 +/- 5.9 and 52.9 +/- 5.9 ml (100 ml)(-1) min(-1), respectively). We conclude that when respiratory muscle energy requirement is not different between...

  8. Training the Antifragile Athlete: A Preliminary Analysis of Neuromuscular Training Effects on Muscle Activation Dynamics.

    Science.gov (United States)

    Kiefer, Adam W; Myer, Gregory D

    2015-10-01

    Athletic injuries typically occur when the stable, emergent coordination between behavioral processes breaks down due to external noise, or variability. A physiological system that operates at an optimal point on a spectrum of rigidity and flexibility may be better prepared to handle extreme external variability, and the purpose of the current experiment was to examine whether targeted neuromuscular training resulted in changes to the rigidity and flexibility of the gluteal muscle tonus signal as measured with electromyography prior to the landing phase of a drop vertical jump task. 10 adolescent female athletes who participated in a targeted 10-week neuromuscular training program and 6 controls participated, and their tonus dynamics were examined with recurrence quantification analysis prior to training and after the 10-week program. The dependent measures, percent laminarity (%LAM) and percent determinism (%DET) were hypothesized to decrease following training, and were submitted to a one tailed mixed-model ANOVA. The training group exhibited a decrease in %LAM and %DET after training compared to pre-training and controls. The present findings indicate increased metaflexibility (i.e., greater intermittency and an increase in internal randomness) in tonus dynamics following neuromuscular training, and have important implications for the prevention of musculoskeletal injury in sport, specifically within the context of external noise and antifragility.

  9. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    Science.gov (United States)

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  10. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus).

    Science.gov (United States)

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L

    2015-07-01

    Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.

  11. Strength Training Using Elastic Bands: Improvement of Muscle Power and Throwing Performance in Young Female Handball Players.

    Science.gov (United States)

    Mascarin, Naryana Cristina; de Lira, Claudio Andre Barbosa; Vancini, Rodrigo Luiz; de Castro Pochini, Alberto; da Silva, Antonio Carlos; Dos Santos Andrade, Marilia

    2017-05-01

    Imbalance in shoulder-rotator muscles has been considered a risk factor for injuries in handball. Strength training programs (STPs) may play an important preventive role. To verify the effects of an STP using elastic bands on shoulder muscles and ball-throwing speed. Randomized and prospective controlled trial. Exercise physiology laboratory. Thirty-nine female handball players were randomly assigned to an experimental (EG, n = 21, 15.3 ± 1.1 y) or a control (CG, n = 18, 15.0 ± 0.8 y) group. The EG performed the STP with elastic-band progressive exercises for 6 wk before regular handball training, and the CG underwent only their regular training. Before and after the STP, both groups underwent a ball-throwing-speed test and isokinetic test to assess shoulder internal- (IR) and external-rotator muscle performance. Average power values for IR muscles presented a significant group-vs-time interaction effect (F = 3.9, P = .05); EG presented significantly higher values after the STP (P = .03). Ball speed presented higher values in EG after the STP in standing (P = .04) and jumping (P = .03) throws. IR peak-torque values and balance in shoulder-rotator muscles presented no group-vs-time interaction effect. STP using elastic bands performed for 6 wk was effective to improve muscle power and ball speed for young female handball players.

  12. Thigh muscle activity, knee motion, and impact force during side-step pivoting in agility-trained female basketball players.

    Science.gov (United States)

    Wilderman, Danielle R; Ross, Scott E; Padua, Darin A

    2009-01-01

    Improving neuromuscular control of hamstrings muscles might have implications for decreasing anterior cruciate ligament injuries in females. To examine the effects of a 6-week agility training program on quadriceps and hamstrings muscle activation, knee flexion angles, and peak vertical ground reaction force. Prospective, randomized clinical research trial. Sports medicine research laboratory. Thirty female intramural basketball players with no history of knee injury (age = 21.07 +/- 2.82 years, height = 171.27 +/- 4.66 cm, mass = 66.36 +/- 7.41 kg). Participants were assigned to an agility training group or a control group that did not participate in agility training. Participants in the agility training group trained 4 times per week for 6 weeks. We used surface electromyography to assess muscle activation for the rectus femoris, vastus medialis oblique, medial hamstrings, and lateral hamstrings for 50 milliseconds before initial ground contact and while the foot was in contact with the ground during a side-step pivot maneuver. Knee flexion angles (at initial ground contact, maximum knee flexion, knee flexion displacement) and peak vertical ground reaction force also were assessed during this maneuver. Participants in the training group increased medial hamstrings activation during ground contact after the 6-week agility training program. Both groups decreased their vastus medialis oblique muscle activation during ground contact. Knee flexion angles and peak vertical ground reaction force did not change for either group. Agility training improved medial hamstrings activity in female intramural basketball players during a side-step pivot maneuver. Agility training that improves hamstrings activity might have implications for reducing anterior cruciate ligament sprain injury associated with side-step pivots.

  13. Muscle Activation during Push-Ups with Different Suspension Training Systems

    Directory of Open Access Journals (Sweden)

    Joaquin Calatayud, Sebastien Borreani, Juan C. Colado, Fernando F Martín, Michael E. Rogers

    2014-09-01

    Full Text Available The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29 performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC. Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001. Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation.

  14. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  15. Determining the optimal pelvic floor muscle training regimen for women with stress urinary incontinence.

    Science.gov (United States)

    Dumoulin, Chantale; Glazener, Cathryn; Jenkinson, David

    2011-06-01

    Pelvic floor muscle (PFM) training has received Level-A evidence rating in the treatment of stress urinary incontinence (SUI) in women, based on meta-analysis of numerous randomized control trials (RCTs) and is recommended in many published guidelines. However, the actual regimen of PFM training used varies widely in these RCTs. Hence, to date, the optimal PFM training regimen for achieving continence remains unknown and the following questions persist: how often should women attend PFM training sessions and how many contractions should they perform for maximal effect? Is a regimen of strengthening exercises better than a motor control strategy or functional retraining? Is it better to administer a PFM training regimen to an individual or are group sessions equally effective, or better? Which is better, PFM training by itself or in combination with biofeedback, neuromuscular electrical stimulation, and/or vaginal cones? Should we use improvement or cure as the ultimate outcome to determine which regimen is the best? The questions are endless. As a starting point in our endeavour to identify optimal PFM training regimens, the aim of this study is (a) to review the present evidence in terms of the effectiveness of different PFM training regimens in women with SUI and (b) to discuss the current literature on PFM dysfunction in SUI women, including the up-to-date evidence on skeletal muscle training theory and other factors known to impact on women's participation in and adherence to PFM training. Copyright © 2011 Wiley-Liss, Inc.

  16. Kinematic and muscle demand similarities between motor-assisted elliptical training and walking: Implications for pediatric gait rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Cesar, Guilherme M; Buster, Thad W; Irons, Sonya L; Nelson, Carl A

    2017-01-01

    Many children with physical disabilities and special health care needs experience barriers to accessing effective therapeutic technologies to improve walking and fitness in healthcare and community environments. The expense of many robotic and exoskeleton technologies hinders widespread use in most clinics, school settings, and fitness facilities. A motor-assisted elliptical trainer that is being used to address walking and fitness deficits in adults was modified to enable children as young as three years of age to access the technology (Pedi-ICARE). We compared children's kinematic and muscle activation patterns during walking and training on the Pedi-ICARE. Eighteen children walked (self-selected comfortable speed), Pedi-ICARE trained with motor-assistance at self-selected comfortable speed (AAC), and trained while over-riding motor-assistance (AAC+). Coefficient of multiple correlations (CMCs) compared lower extremity kinematic profiles during AAC and AAC+ to gait. Repeated measures ANOVAs identified muscle demand differences across conditions. CMCs revealed strong similarities at the hip and knee between each motor-assisted elliptical condition and gait. Ankle CMCs were only moderate. Muscle demands were generally lowest during AAC. Over-riding the motor increased hip and knee muscle demands. The similarity of motion patterns between Pedi-ICARE conditions and walking suggest the device could be used to promote task-specific training to improve walking. The capacity to manipulate muscle demands using different motor-assistance conditions highlights Pedi-ICARE's versatility in addressing a wide range of children's abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity.

    Science.gov (United States)

    Mancini, A; Vitucci, D; Labruna, G; Imperlini, E; Randers, M B; Schmidt, J F; Hagman, M; Andersen, T R; Russo, R; Orrù, S; Krustrup, P; Salvatore, F; Buono, P

    2017-04-01

    We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m -2 ; fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO 2 max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO 2 max was independently associated with TFAM mRNA and with Erk1/2 protein expression. Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.

  18. Effect of brief daily resistance training on rapid force development in painful neck and shoulder muscles

    DEFF Research Database (Denmark)

    Jay, Kenneth; Schraefel, Mc; Andersen, Christoffer H

    2013-01-01

    OBJECTIVE: To determine the effect of small daily amounts of progressive resistance training on rapid force development of painful neck/shoulder muscles. METHODS: 198 generally healthy adults with frequent neck/shoulder muscle pain (mean: age 43.1 years, computer use 93% of work time, 88% women......, duration of pain 186 day during the previous year) were randomly allocated to 2- or 12 min of daily progressive resistance training with elastic tubing or to a control group receiving weekly information on general health. A blinded assessor took measures at baseline and at 10-week follow-up; participants.......05) for both training groups. Maximal muscle strength increased only ~5-6% [mean and 95% confidence interval for 2- and 12-min groups to control, respectively: 2.5 Nm (0.05-0.73) and 2.2 Nm (0.01-0.70)]. No significant differences between the 2- and 12-min groups were evident. A weak but significant...

  19. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  20. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and chan......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity...

  1. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn

    2018-01-01

    Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β2 -agonists are frequently used to counteract exercise......-induced bronchoconstriction, but the effects β2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomized 21 trained men to four weeks of high intensity training with (HIT + β2 A) or without (HIT) daily inhalation of β2 -agonist (terbutaline, 4 mg...... (P ≤ 0.01) and exercise performance (11.6 vs. 6.1%, P ≤ 0.05) in HIT + β2 A compared to HIT. These findings indicate that daily β2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome...

  2. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  3. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women.

    Science.gov (United States)

    Figueroa, Arturo; Park, Song Y; Seo, Dae Y; Sanchez-Gonzalez, Marcos A; Baek, Yeong H

    2011-09-01

    Menopause is associated with increased arterial stiffness and reduced muscle strength. Combined resistance (RE) and endurance (EE) exercise training can decrease brachial-ankle pulse wave velocity (baPWV), an index of arterial stiffness, in young men. We tested the hypothesis that combined circuit RE and EE training would improve baPWV, blood pressure (BP), and muscle strength in postmenopausal women. Twenty-four postmenopausal women (age 47-68 y) were randomly assigned to a "no exercise" control (n = 12) or to combined exercise training (EX; n = 12) group. The EX group performed concurrent circuit RE training followed by EE training at 60% of the predicted maximal heart rate (HR) 3 days per week. Brachial systolic BP, diastolic BP, mean arterial pressure, baPWV, HR, and dynamic and isometric muscle strength were measured before and after the 12-week study. Mean ± SE baPWV (-0.8 ± 0.2 meters/s), systolic BP (-6.0 ± 1.9 mm Hg), diastolic BP (-4.8 ± 1.7 mm Hg), HR (-4.0 ± 1.0 beats/min), and mean arterial pressure (-5.1 ± 1.6 mm Hg) decreased (P hypertension and frailty in postmenopausal women.

  4. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.

    Science.gov (United States)

    Zoladz, Jerzy A; Grassi, Bruno; Majerczak, Joanna; Szkutnik, Zbigniew; Korostyński, Michał; Karasiński, Janusz; Kilarski, Wincenty; Korzeniewski, Bernard

    2013-04-01

    The effects of 5 weeks of moderate-intensity endurance training on pulmonary oxygen uptake kinetics (V(O(2)) on-kinetics) were studied in 15 healthy men (mean ± SD: age 22.7 ± 1.8 years, body weight 76.4 ± 8.9 kg and maximal V(O(2)) 46.0 ± 3.7 ml kg(-1) min(-1)). Training caused a significant acceleration (P = 0.003) of V(O(2)) on-kinetics during moderate-intensity cycling (time constant of the 'primary' component 30.0 ± 6.6 versus 22.8 ± 5.6 s before and after training, respectively) and a significant decrease (P = 0.04) in the amplitude of the primary component (837 ± 351 versus 801 ± 330 ml min(-1)). No changes in myosin heavy chain distribution, muscle fibre capillarization, level of peroxisome proliferator-activated receptor γ coactivator 1α and other markers of mitochondrial biogenesis (mitochondrial DNA copy number, cytochrome c and cytochrome oxidase subunit I contents) in the vastus lateralis were found after training. A significant downregulation in the content of the sarcoplasmic reticulum ATPase 2 (SERCA2; P = 0.03) and a tendency towards a decrease in SERCA1 (P = 0.055) was found after training. The decrease in SERCA1 was positively correlated (P = 0.05) with the training-induced decrease in the gain of the V(O(2)) on-kinetics (ΔV(O(2)) at steady state/Δpower output). In the early stage of training, the acceleration in V(O(2)) on-kinetics during moderate-intensity cycling can occur without enhanced mitochondrial biogenesis or changes in muscle myosin heavy chain distribution and in muscle fibre capillarization. The training-induced decrease of the O(2) cost of cycling could be caused by the downregulation of SERCA pumps.

  5. Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ali Gorzi

    2013-10-01

    Full Text Available Background: Endurance training improves the activity of G4 type acetylcholine esterase (AchE in muscle fibres. The purpose of this study was to investigate the effects of 8 weeks of endurance training (ET on activity of A12 type of AchE in Flexor Hallucis Longus (FHL and Soleus (SOL muscles of rats. Materials and Methods: 16 male wistar rats (age: 10 weeks and weight: 172.17±10.080 gr, were randomly divided in 2 groups (control; N=8 and ET; N=8. Training group carried out 8 weeks (5 session/week of endurance training on animal treadmill with speed of 10 m/min for 30 min at the first week which was gradually increased to 30 m/min for 60 min (70-80% of VO2max at the last week. Forty eight hours after last session of training, FHL and Sol muscles of animals were moved out under sterilized situation by cutting on posterio-lateral side of hind limb. For separating AchE subunits, homogenization and electrophoresis (0.06 non-denaturaing polyacrilamide methods were used. AchE activity was measured by Elisa kit.Results: The activity of this protein significantly (p=0.017 increased in SOL muscle of ET group by 119%, but did not changed in FHL. In both groups (ET and Con, FHL muscle had significantly (ET: p=0.028 and Con p=0.01 higher basic levels of AchE activity compared to SOL muscle. This significant increase in AchE of SOL might be indicative of responsiveness of AchE of this muscle following endurance training for improving acetylcholine (Ach cycle in neuromuscular junction.Conclusion: Endurance training might increase the A12 type AchE activity to improve the Ach cycle as part of the adaptation of neuromuscular junction to increased level of physical activity.

  6. Effect of simultaneous application of postural techniques and expiratory muscle strength training on the enhancement of the swallowing function of patients with dysphagia caused by parkinson's disease.

    Science.gov (United States)

    Byeon, Haewon

    2016-06-01

    [Purpose] This study aimed to investigate the effect of simultaneous application of postural techniques and expiratory muscle strength training on the enhancement of the swallowing function of patients with dysphagia caused by Parkinson's disease. [Subjects and Methods] The subjects of this study were 18 patients who received simultaneous application of postural techniques and expiratory muscle strength training and 15 patients who received expiratory muscle strength training only. Postural techniques were conducted in the order of chin tucking, head rotation, head tilting, bending head back, and lying down, while expiratory muscle strength training was conducted at a resistance level of about 70% of the maximal expiratory pressure. Swallowing recovery was assessed by using the Functional Dysphagia Scale based on videofluoroscopic studies. [Results] The mean value obtained in the videofluoroscopic studies for both groups decreased after the treatment. In the postural techniques plus expiratory muscle strength training group, the decrease was significantly greater than that in the expiratory muscle strength training-only group. [Conclusion] The results imply that simultaneous performance of postural techniques and expiratory muscle strength training is more effective than expiratory muscle strength training alone when applied in the swallowing rehabilitation for patients with dysphagia caused by Parkinson's disease.

  7. Endurance training-induced changes in the GH-IGF-I axis influence maximal muscle strength in previously untrained men.

    Science.gov (United States)

    Grandys, Marcin; Majerczak, Joanna; Kuczek, Piotr; Sztefko, Krystyna; Duda, Krzysztof; Zoladz, Jerzy A

    2017-02-01

    In this study we have determined the effects of 20weeks of endurance running training on the GH-IGF-I axis changes in the context of the skeletal muscle performance and physical capacity level. Before and after the endurance training program a maximal incremental exercise tests, a 1500m race and a muscle strength measurements were performed and the blood samples were taken to determine both resting as well as end-exercise serum growth hormone (GH), insulin-like growth hormone-I (IGF-I), insulin-like growth hormone binding protein-3 (IGFBP-3) and plasma interleukin-6 (IL-6) concentrations. 20weeks of endurance running training improved power output generated at the end of the maximal incremental test by 24% (P<0.012), 1500m running time by 13% (P<0.012) and maximal muscle strength by 9% (P<0.02). End-exercise IGF-I/IGFBP-3 ratio was decreased by 22% after the training (P<0.04) and the magnitude of IGF-I/IGFBP-3 ratio decrease (ΔIGF-I/IGFBP-3 ex ) was 2.3 times higher after the training (P<0.04). The magnitude of the exercise-induced changes in IGFBP-3 concentration was also significantly higher (P<0.04) and there was a trend toward lower end-exercise IGF-I concentration (P=0.08) after the training. These changes were accompanied by a significantly higher (30%) end-exercise IL-6 concentration (P<0.01) as well as by a 3.4 times higher magnitude of IL-6 increase (P<0.02) after the training. Moreover, there were strong positive correlations between changes in resting serum IGF-I concentration (ΔIGF-I res ) and IGF-I/IGFBP-3 ratio (ΔIGF-I/IGFBP-3 res ) and changes in muscle strength (ΔMVC) (r=0.95, P=0.0003 and r=0.90, P=0.002, respectively). The training-induced changes in the components of the GH-IGF-I axis may have additive effects on skeletal muscle performance and physical capacity improvement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    with the aim of extending the classification of inspiratory neurons to include analysis of active membrane properties. 2. The slice generated a regular rhythmic motor output recorded as burst of action potentials on a XII nerve root with a peak to peak time of 11.5 +/- 3.4 s and a duration of 483 +/- 54 ms......1. The electrophysiological properties of inspiratory neurons were studied in a rhythmically active thick-slice preparation of the newborn mouse brain stem maintained in vitro. Whole cell patch recordings were performed from 60 inspiratory neurons within the rostral ventrolateral part of the slice...

  9. Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kathryn S. [The Ohio State University College of Medicine, Columbus, OH (United States); Long, Frederick R. [Nationwide Children' s Hospital, The Children' s Radiological Institute, Columbus, OH (United States); Flucke, Robert L. [Nationwide Children' s Hospital, Department of Pulmonary Medicine, Columbus, OH (United States); Castile, Robert G. [The Research Institute at Nationwide Children' s Hospital, Center for Perinatal Research, Columbus, OH (United States)

    2010-10-15

    Lung inflation and respiratory motion during chest CT affect diagnostic accuracy and reproducibility. To describe a simple volume-monitored (VM) method for performing reproducible, motion-free full inspiratory and end expiratory chest CT examinations in children. Fifty-two children with cystic fibrosis (mean age 8.8 {+-} 2.2 years) underwent pulmonary function tests and inspiratory and expiratory VM-CT scans (1.25-mm slices, 80-120 kVp, 16-40 mAs) according to an IRB-approved protocol. The VM-CT technique utilizes instruction from a respiratory therapist, a portable spirometer and real-time documentation of lung volume on a computer. CT image quality was evaluated for achievement of targeted lung-volume levels and for respiratory motion. Children achieved 95% of vital capacity during full inspiratory imaging. For end expiratory scans, 92% were at or below the child's end expiratory level. Two expiratory exams were judged to be at suboptimal volumes. Two inspiratory (4%) and three expiratory (6%) exams showed respiratory motion. Overall, 94% of scans were performed at optimal volumes without respiratory motion. The VM-CT technique is a simple, feasible method in children as young as 4 years to achieve reproducible high-quality full inspiratory and end expiratory lung CT images. (orig.)

  10. Growth hormone enhances effects of endurance training on oxidative muscle metabolism in elderly women

    DEFF Research Database (Denmark)

    Lange, K H; Isaksson, F; Juul, A

    2000-01-01

    by approximately 18% in both groups, whereas the marked increase in muscle citrate synthase activity was 50% larger in the GH group compared with the placebo group. In addition, only the GH group revealed an increase in muscle L-3-hydroxyacyl-CoA dehydrogenase activity. Body weight remained unchanged in both...... groups, but the GH group showed significant changes in body composition with a decrease in fat mass and an increase in lean body mass. Twenty-four-hour indirect calorimetry performed in four subjects showed a marked increase in energy expenditure with increased relative and absolute fat combustion...... endurance training on a cycle ergometer over 12 wk. rhGH was given in a randomized, double-blinded, placebo-controlled design in addition to the training program. GH administration resulted in a doubling of serum insulin-like growth factor I levels. With endurance training, peak oxygen uptake increased...

  11. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus

    OpenAIRE

    Lee, Myungsun; Han, Gunsoo

    2016-01-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subje...

  12. Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.

    Science.gov (United States)

    Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L

    2013-07-12

    The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to

  13. Effect of strength training with blood flow restriction on muscle power and submaximal strength in eumenorrheic women.

    Science.gov (United States)

    Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S

    2017-03-01

    Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. Training in exercises for pelvic floor muscles of patients with an urinary incontinence after radical prostatectomy

    Directory of Open Access Journals (Sweden)

    P. V. Glybochko

    2014-11-01

    Full Text Available Training of muscles of a pelvic bottom under control of biofeedback is applied at 87 patients with an urinary incontinence after a radical prostatectomy. Biofeedback increases management and control of a pelvic floor. At good ability of management of muscles of a pelvic floor the median of restoration was 4 months. Without opportunity of management of muscles of pelvic floor restoration was 9.4 months.

  15. Training in exercises for pelvic floor muscles of patients with an urinary incontinence after radical prostatectomy

    Directory of Open Access Journals (Sweden)

    P. V. Glybochko

    2013-01-01

    Full Text Available Training of muscles of a pelvic bottom under control of biofeedback is applied at 87 patients with an urinary incontinence after a radical prostatectomy. Biofeedback increases management and control of a pelvic floor. At good ability of management of muscles of a pelvic floor the median of restoration was 4 months. Without opportunity of management of muscles of pelvic floor restoration was 9.4 months.

  16. Comparisons of low-intensity versus moderate-intensity combined aerobic and resistance training on body composition, muscle strength, and functional performance in older women.

    Science.gov (United States)

    Shiotsu, Yoko; Yanagita, Masahiko

    2018-06-01

    This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P Functional reach test significantly increased in the AR-M and RA-M groups (P training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.

  17. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  18. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties......Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  19. Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men.

    Science.gov (United States)

    Brinkmann, Christian; Przyklenk, Axel; Metten, Alexander; Schiffer, Thorsten; Bloch, Wilhelm; Brixius, Klara; Gehlert, Sebastian

    2017-11-01

    Mitophagy is a form of autophagy for the elimination of mitochondria. Mitochondrial content and function are reduced in the skeletal muscle of patients with type 2 diabetes mellitus (T2DM). Physical training has been shown to restore mitochondrial capacity in T2DM patients, but the role of mitophagy has not been examined in this context. This study analyzes the impact of a 3-month endurance training on important skeletal muscle mitophagy regulatory proteins and oxidative phosphorylation (OXPHOS) complexes in T2DM patients. Muscle biopsies were obtained from eight overweight/obese T2DM men (61±10 years) at T1 (6 weeks pre-training), T2 (1 week pre-training), and T3 (3 to 4 days post-training). Protein contents were determined by Western blotting. The training increased mitochondrial complex II significantly (T2-T3: +29%, p = 0.037). The protein contents of mitophagy regulatory proteins (phosphorylated form of forkhead box O3A (pFOXO3A), mitochondrial E3 ubiquitin protein ligase-1 (MUL1), Bcl-2/adenovirus E1B 19-kD interacting protein-3 (BNIP3), microtubule-associated protein 1 light chain-3B (the ratio LC3B-II/LC3B-I was determined)) did not differ significantly between T1, T2, and T3. The results imply that training-induced changes in OXPHOS subunits (significant increase in complex II) are not accompanied by changes in mitophagy regulatory proteins in T2DM men. Future studies should elucidate whether acute exercise might affect mitophagic processes in T2DM patients (and whether a transient regulation of mitophagy regulatory proteins is evident) to fully clarify the role of physical activity and mitophagy for mitochondrial health in this particular patient group.

  20. Basic Training of Student’s Outdoor Club Increases Muscle Mass after Five Weeks of Exercise in Males

    Directory of Open Access Journals (Sweden)

    Novie Salsabila

    2015-03-01

    Full Text Available Background: Aerobic and anaerobic exercises, may lead to increase muscle mass. The aim of this study was to determine the change in muscle mass during basic training of students’ outdoor club. Methods: This was an observational analytic study to college students who joined basic training of students’ outdoor club for 19 weeks. Subjects consisted of 17 male and 15 female students, measured five times consecutively by using Body Fat/Hydration monitor scale, with Bioelectrical Impedance Analysis principle. Data collection was performed five times, from February to July 2012 in Bandung. Statistical analysis was processed using Analysis of Variance (ANOVA. Results: The result in males showed the mean 43.35±3.15 on the initial measurement. The muscle mass further increased significantly after five, ten, fifteen, and nineteen weeks of exercise (43.73±3.18 (p0.05; 38.08±1.67 (p>0.05 ; 38.23±1.52 (p>0.05 ; 38.61±1.52 (p<0.05 vs 37.77±2.00 respectively. Conclusion: Basic training of student’s outdoor club increases muscle mass significantly after five weeks of exercise in males, but not in females

  1. Effects of Resistance Training on Muscle Strength, Endurance, and Motor Unit According to Ciliary Neurotrophic Factor Polymorphism in Male College Students

    Directory of Open Access Journals (Sweden)

    Ae-Rim Hong, Sang-Min Hong, Yun-A Shin

    2014-09-01

    Full Text Available Changes in muscle mass and strength across the adult age span are variable and related to the ciliary neurotrophic factor (CNTF genotype. In particular, a single CNTF haplotype (1357 G→A is important for neuronal and muscular developments and may be associated with muscle strength response to resistance training. We examined whether CNTF genotype differentially influences the effect of resistance training on neuromuscular improvement in male college students. Resistance training of the upper extremities comprised 3 sets at 75%–85% intensity per 1 repetition maximum, 3 times a week, for a total of 8 weeks. We measured isokinetic muscle function of the elbow joint with regard to strength (60°/s and endurance (180°/s by using an isokinetic dynamometer. The biceps brachii (BB and brachioradialis muscles were studied using surface electromyography with spike-triggered averaging to assess surface-detected motor unit potential (SMUP area. After resistance training, the SMUP of the BB increased significantly at 60°/s (p < 0.05, but no difference in the CNTF genotype was observed. The SMUP of the BB at 180°/s increased significantly in the GG/AA genotype group compared with that in the GA genotype group (p < 0.05. The average power of the elbow flexor at 180°/s increased significantly after resistance training (p < 0.05, but again, no difference in the CNTF genotype was observed. Thus, improvements in muscle strength and endurance may have resulted directly from resistance training rather than from genetic factors related to nerves in muscle tissue.

  2. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging

    Directory of Open Access Journals (Sweden)

    Ivo V. de Sousa Neto

    2018-03-01

    Full Text Available Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM. The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT on metalloproteinase 2 (MMP-2 activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group: young sedentary (YS; young trained (YT, old sedentary (OS, and old trained (OT. The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001. Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001. The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001. With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001 when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling.

  3. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men

    DEFF Research Database (Denmark)

    Olesen, Jesper; Gliemann Hybholt, Lasse; Biensøe, Rasmus S

    2014-01-01

    Aim: To investigate the metabolic and anti-inflammatory effects of resveratrol alone and when combined with exercise training in skeletal muscle of aged human subjects. Material and Methods: Healthy physically inactive men (60-72 year old) were randomized into either 8 weeks of daily intake of 250...... mg resveratrol or placebo or into 8 weeks of high intensity exercise training with 250 mg resveratrol or placebo. Before and after the interventions, resting blood samples and muscle biopsies were obtained and a one-leg knee-extensor endurance exercise test (KEE) was performed. Results: Exercise...... with no significant additive or adverse effects of resveratrol on these parameters. Despite an overall ~25% reduction in total acetylation level in skeletal muscle with resveratrol, no exclusive resveratrol-mediated metabolic effects were observed on the investigated parameters. Notably however, resveratrol blunted...

  4. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  5. Neopuff T-piece resuscitator mask ventilation: Does mask leak vary with different peak inspiratory pressures in a manikin model?

    Science.gov (United States)

    Maheshwari, Rajesh; Tracy, Mark; Hinder, Murray; Wright, Audrey

    2017-08-01

    The aim of this study was to compare mask leak with three different peak inspiratory pressure (PIP) settings during T-piece resuscitator (TPR; Neopuff) mask ventilation on a neonatal manikin model. Participants were neonatal unit staff members. They were instructed to provide mask ventilation with a TPR with three PIP settings (20, 30, 40 cm H 2 O) chosen in a random order. Each episode was for 2 min with 2-min rest period. Flow rate and positive end-expiratory pressure (PEEP) were kept constant. Airway pressure, inspiratory and expiratory tidal volumes, mask leak, respiratory rate and inspiratory time were recorded. Repeated measures analysis of variance was used for statistical analysis. A total of 12 749 inflations delivered by 40 participants were analysed. There were no statistically significant differences (P > 0.05) in the mask leak with the three PIP settings. No statistically significant differences were seen in respiratory rate and inspiratory time with the three PIP settings. There was a significant rise in PEEP as the PIP increased. Failure to achieve the desired PIP was observed especially at the higher settings. In a neonatal manikin model, the mask leak does not vary as a function of the PIP when the flow rate is constant. With a fixed rate and inspiratory time, there seems to be a rise in PEEP with increasing PIP. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  6. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men

    Directory of Open Access Journals (Sweden)

    Popadic Gacesa Jelena Z

    2012-11-01

    Full Text Available Abstract Background Bradykinin type 2 receptor (B2BRK genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. Methods In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m2 were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets. Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Results Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm3 pre-training to 977.6 ± 140.9 cm3 after training, p9 allele compared to individuals with one or two +9 alleles (−9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p B2BRK genotype (−9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05. Conclusions We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in

  7. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running

    DEFF Research Database (Denmark)

    Oliveira, Anderson S. C.; Caputo, Fabrizio; Aagaard, Per

    2013-01-01

    session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180° s(-1), or served as controls (n...... damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training.......The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective...

  8. Differences in Muscle Activity During Cable Resistance Training Are Influenced by Variations in Handle Types.

    Science.gov (United States)

    Rendos, Nicole K; Heredia Vargas, Héctor M; Alipio, Taislaine C; Regis, Rebeca C; Romero, Matthew A; Signorile, Joseph F

    2016-07-01

    Rendos, NK, Heredia Vargas, HM, Alipio, TC, Regis, RC, Romero, MA, and Signorile, JF. Differences in muscle activity during cable resistance training are influenced by variations in handle types. J Strength Cond Res 30(7): 2001-2009, 2016-There has been a recent resurgence in the use of cable machines for resistance training allowing movements that more effectively simulate daily activities and sports-specific movements. By necessity, these devices require a machine/human interface through some type of handle. Considerable data from material handling, industrial engineering, and exercise training studies indicate that handle qualities, especially size and shape, can significantly influence force production and muscular activity, particularly of the forearm muscles, which affect the critical link in activities that require object manipulation. The purpose for this study was to examine the influence of three different handle conditions: standard handle (StandH), ball handle with the cable between the index and middle fingers (BallIM), and ball handle with the cable between the middle and ring fingers (BallMR), on activity levels (rmsEMG) of the triceps brachii lateral and long heads (TriHLat, TriHLong), brachioradialis (BR), flexor carpi radialis (FCR), extensor carpi ulnaris, and extensor digitorum (ED) during eight repetitions of standing triceps pushdown performed from 90° to 0° elbow flexion at 1.5 s per contractile stage. Handle order was randomized. No significant differences were seen for triceps or BR rmsEMG across handle conditions; however, relative patterns of activation did vary for the forearm muscles by handle condition, with more coordinated activation levels for the FCR and ED during the ball handle conditions. In addition, the rmsEMG for the ED was significantly higher during the BallIM than any other condition and during the BallMR than the StandH. These results indicate that the use of ball handles with the cable passing between different fingers

  9. TARGETED RADIOFREQUENCY THERAPY FOR TRAINING INDUCED MUSCLE FATIGUE EFFECTIVE OR NOT

    Directory of Open Access Journals (Sweden)

    Ondrej Prouza

    2016-12-01

    Full Text Available Background: Training induced muscle fatigue (hereinafter also referred as TIMF is leading to unwanted consequences among sportsmen and actively sporting people such as decreased muscle strength and additional painful discomfort and mobility issues. The knowledge about the mechanisms of influencing the fatigue induced processes in muscle tissue is not comprehensive. The conventional manual techniques, cold patches and conventional physiotherapy have some effect in improving these conditions, however, finding effective methods to influence these consequences appears beneficial in sports medicine. Such method could be Radiofrequency therapy up to 0.5 MHz, known as Targeted Radiofrequency Therapy (hereinafter also referred as TR-Therapy. Aim of this self-controlled study is to evaluate the effect of the TR-Therapy for over-exertion management including the effect on decreased muscle strength, limited range of motion and possible painful discomfort. Materials: 7 healthy and actively sporting participants underwent through 2 stages (Active stage – including overexertion of the forearm flexors and subsequent TR-Therapy session; and Control stage - including overexertion of the forearm flexors and subsequent resting period. Data for muscle strength in kg, active Range of Motion (ROM in (º and Pain and discomfort perception by 10 point Visual Analog Scale (VAS were obtained and evaluated. Results: 31% increase in the muscle strength during the active stage was observed and respectively 12% during the control stage, with level of significance p0.05. Conclusions: The results of this study suggest TR-Therapy as effective solution for muscle strength restoration after TIMF.

  10. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise

    DEFF Research Database (Denmark)

    Graham, T E; Turcotte, L P; Kiens, Bente

    1995-01-01

    We studied the responses of NH3 and amino acids (AA) to prolonged exercise (3 h) in trained (Tr; n = 6) and untrained (Utr; n = 6) men. Each subject exercised the knee extensor muscles of one leg at 60% of maximum capacity. Thigh blood flow and femoral arteriovenous differences (0, 30, 60, 120, 150......, and 180 min) as well as muscle biopsies (0, 120, and 180 min) were taken for NH3 and AA measurements. In both groups, muscle Glu decreased (P ....4 +/- 6.8 mmol/kg wet wt in Tr and Utr, respectively. Tr had greater (P muscle Tau, Phe, Ala, and Glu. Both groups had a large Glu uptake and effluxes of NH3, Gln, and Ala as well as essential AA. The latter implies that there was a net protein catabolism. The efflux of NH3 and Gln was much...

  11. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism

    DEFF Research Database (Denmark)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael

    2018-01-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n...

  12. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Broniarek, Izabela; Woyda-Ploszczyca, Andrzej M; Ogrodna, Karolina; Majerczak, Joanna; Celichowski, Jan; Szkutnik, Zbigniew; Jarmuszkiewicz, Wieslawa

    2017-01-01

    We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  13. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure

    DEFF Research Database (Denmark)

    Aagaard, P; Suetta, C; Caserotti, P

    2010-01-01

    and size (sarcopenia), resulting in impaired mechanical muscle performance that in turn leads to a reduced functional capacity during everyday tasks. Concurrently, maximum muscle strength, power, and rate of force development are decreased with aging, even in highly trained master athletes. The impairment...

  14. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  15. A Comparative Study of Whole Body Vibration Training and Pelvic Floor Muscle Training on Women's Stress Urinary Incontinence: Three- Month Follow- Up

    Directory of Open Access Journals (Sweden)

    Azizeh Farzinmehr

    2016-04-01

    Full Text Available Objective: To determine whether Whole Body Vibration Training (WBVT is effective at improving pelvic floor muscles strength in women with Stress Urinary Incontinence (SUI.Materials and methods: The study was designed as a randomized clinical trial. 43 women with SUI were randomly assigned in two groups; WBVT and Pelvic Floor Muscle Training (PFMT and received interventions for four weeks. Pelvic floor muscle (PFM strength, quality of life and incontinence intensity were evaluated. All measurements were conducted pre and post intervention and also after 3 months in all participants. The ANOVA and the independent sample t test were applied respectively to determine the differences in each group and between the groups.Results: This study showed the WBVT protocol in this study was effective in pelvic floor muscles strength similar to PFMT, and also in reducing the severity of incontinence and increasing I-QOL questionnaire score. We found significant differences in each group pre and post intervention (p = 0.0001; but no significant difference in comparison of two groups' outcomes. Also after three-month follow up, there was no significant difference between groups.Conclusion: The findings of this study showed the beneficial effects of WBVT in improving pelvic floor muscles strength and quality of life in patients with urinary incontinence in four-week treatment period and after three months follow up.

  16. The reproducibility of 31-phosphorus MRS measures of muscle energetics at 3 Tesla in trained men.

    Directory of Open Access Journals (Sweden)

    Lindsay M Edwards

    Full Text Available OBJECTIVE: Magnetic resonance spectroscopy (MRS provides an exceptional opportunity for the study of in vivo metabolism. MRS is widely used to measure phosphorus metabolites in trained muscle, although there are no published data regarding its reproducibility in this specialized cohort. Thus, the aim of this study was to assess the reproducibility of (31P-MRS in trained skeletal muscle. METHODS: We recruited fifteen trained men (VO(2peak = 4.7±0.8 L min(-1/58±8 mL kg(-1 min(-1 and performed duplicate MR experiments during plantar flexion exercise, three weeks apart. RESULTS: Measures of resting phosphorus metabolites were reproducible, with 1.7 mM the smallest detectable difference in phosphocreatine (PCr. Measures of metabolites during exercise were less reliable: exercising PCr had a coefficient of variation (CV of 27% during exercise, compared with 8% at rest. Estimates of mitochondrial function were variable, but experimentally useful. The CV of PCr(1/2t was 40%, yet much of this variance was inter-subject such that differences of <20% were detectable with n = 15, given a significance threshold of p<0.05. CONCLUSIONS: 31-phosphorus MRS provides reproducible and experimentally useful measures of phosphorus metabolites and mitochondrial function in trained human skeletal muscle.

  17. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  18. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle.

    Science.gov (United States)

    Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P

    2017-03-01

    The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.

  19. Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Naoki Horii

    Full Text Available Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA, a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks, or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group. Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO rats (n = 8 were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4 translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training

  20. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Glauber S. F. da Silva

    2017-06-01

    Full Text Available Hydrogen Sulfide (H2S is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo and hypoxic conditions (in vivo. Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1–1.0 mM to rhythmic brainstem spinal cord (BSSC and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

  1. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  2. The effects of adding single-joint exercises to a multi-joint exercise resistance training program on upper body muscle strength and size in trained men.

    Science.gov (United States)

    de França, Henrique Silvestre; Branco, Paulo Alexandre Nordeste; Guedes Junior, Dilmar Pinto; Gentil, Paulo; Steele, James; Teixeira, Cauê Vazquez La Scala

    2015-08-01

    The aim of this study was compare changes in upper body muscle strength and size in trained men performing resistance training (RT) programs involving multi-joint plus single-joint (MJ+SJ) or only multi-joint (MJ) exercises. Twenty young men with at least 2 years of experience in RT were randomized in 2 groups: MJ+SJ (n = 10; age, 27.7 ± 6.6 years) and MJ (n = 10; age, 29.4 ± 4.6 years). Both groups trained for 8 weeks following a linear periodization model. Measures of elbow flexors and extensors 1-repetition maximum (1RM), flexed arm circumference (FAC), and arm muscle circumference (AMC) were taken pre- and post-training period. Both groups significantly increased 1RM for elbow flexion (4.99% and 6.42% for MJ and MJ+SJ, respectively), extension (10.60% vs 9.79%, for MJ and MJ+SJ, respectively), FAC (1.72% vs 1.45%, for MJ and MJ+SJ, respectively), and AMC (1.33% vs 3.17% for MJ and MJ+SJ, respectively). Comparison between groups revealed no significant difference in any variable. In conclusion, 8 weeks of RT involving MJ or MJ+SJ resulted in similar alterations in muscle strength and size in trained participants. Therefore, the addition of SJ exercises to a RT program involving MJ exercises does not seem to promote additional benefits to trained men, suggesting MJ-only RT to be a time-efficient approach.

  3. Effects of respiratory muscle endurance training on wheelchair racing performance in athletes with paraplegia: a pilot study.

    NARCIS (Netherlands)

    Muller, G.; Perret, C.; Hopman, M.T.E.

    2008-01-01

    OBJECTIVE: Respiratory muscle endurance training (RMET) has been shown to improve both respiratory muscle and cycling exercise endurance in able-bodied subjects. Since effects of RMET on upper extremity exercise performance have not yet been investigated, we evaluated the effects of RMET on 10-km

  4. Resveratrol modulates the angiogenic response to exercise training in skeletal muscle of aged men

    DEFF Research Database (Denmark)

    Gliemann Hybholt, Lasse; Olesen, Jesper; Biensø, Rasmus S

    2014-01-01

    Aim: The polyphenol resveratrol has in animal studies been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Methods: Forty-three healthy...... physically inactive aged men (65±1 years) were divided into A) a training group that conducted 8 weeks of intense exercise training where half of the subjects received a daily intake of either 250 mg trans resveratrol (n=14) and the other half received placebo (n=13); and B) a non-training group...... show that exercise training has a strong angiogenic effect whereas resveratrol supplementation may limit basal and training-induced angiogenesis....

  5. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction.

    Science.gov (United States)

    Ramos, S V; Turnbull, P C; MacPherson, R E K; LeBlanc, P J; Ward, W E; Peters, S J

    2015-04-01

    What is the central question of this study? The aim was to determine whether mitochondrial protein content of perilipin 3 (PLIN3) and perilipin 5 (PLIN5) is increased following endurance training and whether mitochondrial PLIN5 protein is increased to a greater extent in endurance-trained rats when compared with sedentary rats following acute contraction. What is the main finding and its importance? Mitochondrial PLIN3 but not PLIN5 protein was increased in endurance-trained compared with sedentary rats, suggesting a mitochondrial role for PLIN3 due to chronic exercise. Contrary to our hypothesis, acute mitochondrial PLIN5 protein was similar in both sedentary and endurance-trained rats. Endurance training results in an increased association between skeletal muscle lipid droplets and mitochondria. This association is likely to be important for the expected increase in intramuscular fatty acid oxidation that occurs with endurance training. The perilipin family of lipid droplet proteins, PLIN(2-5), are thought to play a role in skeletal muscle lipolysis. Recently, results from our laboratory demonstrated that skeletal muscle mitochondria contain PLIN3 and PLIN5 protein. Furthermore, 30 min of stimulated contraction induces an increased mitochondrial PLIN5 content. To determine whether mitochondrial content of PLIN3 and PLIN5 is altered with endurance training, Sprague-Dawley rats were randomized into sedentary or endurance-trained groups for 8 weeks of treadmill running followed by an acute (30 min) sciatic nerve stimulation to induce lipolysis. Mitochondrial PLIN3 protein was ∼1.5-fold higher in red gastrocnemius of endurance-trained rats compared with sedentary animals, with no change in mitochondrial PLIN5 protein. In addition, there was an increase in plantaris intramuscular lipid storage. Acute electrically stimulated contraction in red gastrocnemius from sedentary and endurance-trained rats resulted in a similar increase of mitochondrial PLIN5 between

  6. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Science.gov (United States)

    Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

    2004-01-01

    Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (Pski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  7. Intense Training as a Means to Improve Running Performance in Trained Runners and the Adaptation of Muscle Tissue

    DEFF Research Database (Denmark)

    Skovgaard, Casper

    compositions of intense training on performance, movement economy and muscular adaptations. The findings from the present PhD study suggest that performing intense training, in the form of speed endurance training (SET), for a relatively short period improves short and long-term performance. Both a prolonged...... period of SET as well as a period with increased frequency of SET improves short-term performance further, but a prolonged period does not extrapolate to further improved long-term performance not even if SET frequency is doubled. Short-term performance was better after 16 days of reduced training volume...... the period of increased frequency of SET, the value of combining an overload phase with tapering to improve 10-km performance is low. In line with the literature on "muscle memory", performing a second intervention of SET and a basic volume of aerobic training might have a greater impact on short-term...

  8. Differences in Muscle Activation and Kinematics Between Cable-Based and Selectorized Weight Training.

    Science.gov (United States)

    Signorile, Joseph F; Rendos, Nicole K; Heredia Vargas, Hector H; Alipio, Taislaine C; Regis, Rebecca C; Eltoukhy, Moataz M; Nargund, Renu S; Romero, Matthew A

    2017-02-01

    Signorile, JF, Rendos, NK, Heredia Vargas, HH, Alipio, TC, Regis, RC, Eltoukhy, MM, Nargund, RS, and Romero, MA. Differences in muscle activation and kinematics between cable-based and selectorized weight training. J Strength Cond Res 31(2): 313-322, 2017-Cable resistance training machines are showing resurgent popularity and allow greater number of degrees of freedom than typical selectorized equipment. Given that specific kinetic chains are used during distinct activities of daily living (ADL), cable machines may provide more effective interventions for some ADL, whereas others may be best addressed using selectorized equipment. This study examined differences in activity levels (root mean square of the EMG [rmsEMG]) of 6 major muscles (pectoralis major, PM; anterior deltoid, AD; biceps brachii, BB; rectus abdominis, RA; external obliques, EO; and triceps brachii, TB) and kinematics of multiple joints between a cable and standard selectorized machines during the biceps curl, the chest press, and the overhead press performed at 1.5 seconds per contractile stage. Fifteen individuals (9 men, 6 women; mean age ± SD, 24.33 ± 4.88 years) participated. Machine order was randomized. Significant differences favoring cable training were seen for PM and AD during biceps curl; BB, AD, and EO for chest press; and BB and EO during overhead press (p ≤ 0.05). Greater starting and ending angles were seen for the elbow and shoulder joints during selectorized biceps curl, whereas hip and knee starting and ending angles were greater for cable machine during chest and overhead presses (p < 0.0001). Greater range of motion (ROM) favoring the cable machine was also evident (p < 0.0001). These results indicate that utilization patterns of selected muscles, joint angles, and ROMs can be varied because of machine application even when similar exercises are used, and therefore, these machines can be used selectively in training programs requiring specific motor or biomechanical

  9. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P Pea, Whey and Placebo, respectively; P Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  10. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

    Science.gov (United States)

    Yeo, Wee Kian; Paton, Carl D; Garnham, Andrew P; Burke, Louise M; Carey, Andrew L; Hawley, John A

    2008-11-01

    We determined the effects of a cycle training program in which selected sessions were performed with low muscle glycogen content on training capacity and subsequent endurance performance, whole body substrate oxidation during submaximal exercise, and several mitochondrial enzymes and signaling proteins with putative roles in promoting training adaptation. Seven endurance-trained cyclists/triathletes trained daily (High) alternating between 100-min steady-state aerobic rides (AT) one day, followed by a high-intensity interval training session (HIT; 8 x 5 min at maximum self-selected effort) the next day. Another seven subjects trained twice every second day (Low), first undertaking AT, then 1-2 h later, the HIT. These training schedules were maintained for 3 wk. Forty-eight hours before and after the first and last training sessions, all subjects completed a 60-min steady-state ride (60SS) followed by a 60-min performance trial. Muscle biopsies were taken before and after 60SS, and rates of substrate oxidation were determined throughout this ride. Resting muscle glycogen concentration (412 +/- 51 vs. 577 +/- 34 micromol/g dry wt), rates of whole body fat oxidation during 60SS (1,261 +/- 247 vs. 1,698 +/- 174 micromol.kg(-1).60 min(-1)), the maximal activities of citrate synthase (45 +/- 2 vs. 54 +/- 1 mmol.kg dry wt(-1).min(-1)), and beta-hydroxyacyl-CoA-dehydrogenase (18 +/- 2 vs. 23 +/- 2 mmol.kg dry wt(-1).min(-1)) along with the total protein content of cytochrome c oxidase subunit IV were increased only in Low (all P every second day compromised high-intensity training capacity. While selected markers of training adaptation were enhanced with twice a day training, the performance of a 1-h time trial undertaken after a 60-min steady-state ride was similar after once daily or twice every second day training programs.

  11. Muscle function and body composition profile in adolescents with restrictive anorexia nervosa: does resistance training help?

    Science.gov (United States)

    Fernández-del-Valle, Maria; Larumbe-Zabala, Eneko; Morande-Lavin, Gonzalo; Perez Ruiz, Margarita

    2016-01-01

    The aim of this study was to analyze the effects of short-term resistance training on the body composition profile and muscle function in a group of Anorexia Nervosa restricting type (AN-R) patients. The sample consisted of AN-R female adolescents (12.8 ± 0.6 years) allocated into the control and intervention groups (n = 18 each). Body composition and relative strength were assessed at baseline, after 8 weeks and 4 weeks following the intervention. Body mass index (BMI) increased throughout the study (p = 0.011). Significant skeletal muscle mass (SMM) gains were found in the intervention group (p = 0.045, d = 0.6) that correlated to the change in BMI (r = 0.51, p  0.60) with change in BMI in both the groups. Significant relative strength increases (p Anorexia Nervosa Restricting Type (AN-R) AN-R is a psychiatric disorder that has a major impact on muscle mass content and function. However, little or no attention has been paid to muscle recovery. High intensity resistance training is safe for AN-R after hospitalization and enhances the force generating capacity as well as muscle mass gains. Skeletal muscle mass content and muscular function improvements are partially maintained for a short period of time when the exercise program ceases.

  12. Effect of 2-wk intensified training and inactivity on muscle Na+/K+ pump expression, phospholemman (FXYD1) phosphorylation and performance in soccer players

    DEFF Research Database (Denmark)

    Thomassen, Martin; Christensen, Peter Møller; Gunnarsson, Thomas Gunnar Petursson

    2010-01-01

    The present study examined muscle adaptations and alterations in performance of highly trained soccer players with intensified training or training cessation. Eighteen elite soccer players were for a 2-wk period assigned to either a group which performed high intensity training with a reduction....... The present data suggest that short-term intensified training even for trained soccer players can increase muscle Na(+)/K(+) pump alpha2 isoform expression and that cessation of training for two weeks does not affect the expression of Na(+)/K(+) pump isoforms. Resting phosphorylation status of the Na...

  13. Lifestyle advice with or without pelvic floor muscle training for pelvic organ prolapse

    DEFF Research Database (Denmark)

    Due, Ulla; Brostrøm, Søren; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: We evaluated the effect of adding pelvic floor muscle training (PFMT) to a structured lifestyle advice program. METHODS: This was a single-blinded randomized trial of women with symptomatic pelvic organ prolapse (POP) stage ≥ II. Participants were randomized...

  14. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults

    DEFF Research Database (Denmark)

    Hvid, Lars G; Strotmeyer, Elsa S; Skjødt, Mathias

    2016-01-01

    Incomplete voluntary muscle activation may contribute to impaired muscle mechanical function and physical function in older adults. Exercise interventions have been shown to increase voluntary muscle activation, although the evidence is sparse for mobility-limited older adults, particularly...... in association with physical function. This study examined the effects of 12weeks of power training on outcomes of voluntary muscle activation and gait speed in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 37 older men and women with a usual gait speed...... in TG (r=0.67, pactivation is improved in mobility-limited older adults following 12-weeks of progressive power training, and is associated with improved maximal gait speed. Incomplete voluntary muscle activation should be considered one of the key mechanisms...

  15. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    Directory of Open Access Journals (Sweden)

    Jerzy A Zoladz

    Full Text Available We studied the effects of various assay temperatures, representing hypothermia (25°C, normothermia (35°C, and hyperthermia (42°C, on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A, and acyl-CoA dehydrogenase (ACADS. We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  16. [Selective training of the vastus medialis muscle using electrical stimulator for chondromalacia patella].

    Science.gov (United States)

    Guo, K; Ye, Q; Lin, J; Shen, J; Yang, X

    1996-04-01

    Chondromalacia patella is closely related with subluxation and tilt of patella, as well as with muscular atrophy of quadriceps, especially in vastus medialis muscle. 364 cases of chondromalacia patella were treated with selective training of the vastus medialis muscle using electrical stimulator in our hospital. 211 cases were followed up after treatment from 6 months to 3 years. Among them excellent and good results were seen in 130 cases (62%), fair results were seen in 69 cases (33%) and no change was seen in 12 cases (5%). Significant reduction of CA (P chondromalacia patella.

  17. Attenuated Increase in Maximal Force of Rat Medial Gastrocnemius Muscle after Concurrent Peak Power and Endurance Training

    Directory of Open Access Journals (Sweden)

    Regula Furrer

    2013-01-01

    Full Text Available Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control, peak power training (PT, or both peak power and endurance training (PET, which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training.

  18. Power training using pneumatic machines vs. plate-loaded machines to improve muscle power in older adults.

    Science.gov (United States)

    Balachandran, Anoop T; Gandia, Kristine; Jacobs, Kevin A; Streiner, David L; Eltoukhy, Moataz; Signorile, Joseph F

    2017-11-01

    Power training has been shown to be more effective than conventional resistance training for improving physical function in older adults; however, most trials have used pneumatic machines during training. Considering that the general public typically has access to plate-loaded machines, the effectiveness and safety of power training using plate-loaded machines compared to pneumatic machines is an important consideration. The purpose of this investigation was to compare the effects of high-velocity training using pneumatic machines (Pn) versus standard plate-loaded machines (PL). Independently-living older adults, 60years or older were randomized into two groups: pneumatic machine (Pn, n=19) and plate-loaded machine (PL, n=17). After 12weeks of high-velocity training twice per week, groups were analyzed using an intention-to-treat approach. Primary outcomes were lower body power measured using a linear transducer and upper body power using medicine ball throw. Secondary outcomes included lower and upper body muscle muscle strength, the Physical Performance Battery (PPB), gallon jug test, the timed up-and-go test, and self-reported function using the Patient Reported Outcomes Measurement Information System (PROMIS) and an online video questionnaire. Outcome assessors were blinded to group membership. Lower body power significantly improved in both groups (Pn: 19%, PL: 31%), with no significant difference between the groups (Cohen's d=0.4, 95% CI (-1.1, 0.3)). Upper body power significantly improved only in the PL group, but showed no significant difference between the groups (Pn: 3%, PL: 6%). For balance, there was a significant difference between the groups favoring the Pn group (d=0.7, 95% CI (0.1, 1.4)); however, there were no statistically significant differences between groups for PPB, gallon jug transfer, muscle muscle strength, timed up-and-go or self-reported function. No serious adverse events were reported in either of the groups. Pneumatic and plate

  19. Comparison Between Pre-Exhaustion and Traditional Exercise Order on Muscle Activation and Performance in Trained Men

    Science.gov (United States)

    Soares, Enrico Gori; Brown, Lee E.; Gomes, Willy Andrade; Corrêa, Daniel Alves; Serpa, Érica Paes; da Silva, Josinaldo Jarbas; Junior, Guanis de Barros Vilela; Fioravanti, Gustavo zorzi; Aoki, Marcelo Saldanha; Lopes, Charles Ricardo; Marchetti, Paulo Henrique

    2016-01-01

    The purpose of this study was to measure the acute effects of pre-exhaustion vs. traditional exercise order on neuromuscular performance and sEMG in trained men. Fourteen young, healthy, resistance trained men (age: 25.5 ± 4.0 years, height: 174.9 ± 4.1 cm, and total body mass: 80.0 ± 11.1 kg) took part of this study. All tests were randomized and counterbalanced for all subjects and experimental conditions. Volunteers attended one session in the laboratory. First, they performed ten repetition maximum (10RM) tests for each exercise (bench press and triceps pushdown) separately. Secondly, they performed all three conditions at 10RM: pre-test (bench press and triceps pushdown, separately), pre-exhaustion (triceps pushdown+bench press, PE) and traditional (bench press+triceps pushdown, TR), and rested 30 minutes between conditions. Results showed that pre-test was significantly greater than PE (p = 0.031) but not different than TR, for total volume load lifted. There was a significant difference between the pre-test and the time-course of lactate measures (p = 0.07). For bench press muscle activity of the pectoralis major, the last repetition was significantly greater than the first repetition (pre-test: p = 0.006, PE: p = 0.016, and TR: p = 0.005). Also, for muscle activity of the triceps brachii, the last repetition was significantly greater than the first repetition (pre-test: p = 0.001, PE: p = 0.005, and TR: p = 0.006). For triceps pushdown, muscle activity of the triceps brachii, the last repetition was significantly greater than the first repetition (pre-test: p = 0.006, PE: p = 0.016, and TR: p = 0.005). For RPE, there were no significant differences between PE and TR (p = 0.15). Our results suggest that exercise order decreases repetitions performed, however, neuromuscular fatigue, lactate, and RPE are not impacted. The lack of difference in total volume load lifted between PE and TR might explain, at least in part, the similar metabolic and perceptual

  20. Feasibility of resistance training in adult McArdle patients: Clinical outcomes and muscle strength and mass benefits

    Directory of Open Access Journals (Sweden)

    Alfredo eSantalla

    2014-12-01

    Full Text Available We analyzed the effects of a 4-month resistance (weight lifting training program followed by a 2-month detraining period in 7 adult McArdle patients (5 female on: muscle mass (assessed by DXA, strength, serum creatine kinase (CK activity and clinical severity. Adherence to training was ≥ 84% in all patients and no major contraindication or side effect was noted during the training or strength assessment sessions. The training program had a significant impact on total and lower extremities’ lean mass (P0.05 was noted for baseline or post strength assessment values of serum CK activity, which remained essentially within the range reported in our laboratory for McArdle patients. All the patients changed to a lower severity class with training, such that none of them were in the highest disease severity class (3 after the intervention and, as such, they did not have fixed muscle weakness after training. Clinical improvements were retained, in all but one patient, after detraining, such that after detraining all patients were classed as class 1 for

  1. Heavy Resistance Training and Supplementation With the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated With the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2014-03-01

    Full Text Available The effects of 28 days of heavy resistance training while ingesting the alleged testosterone-boosting supplement, NMDA, were determined on body composition, muscle strength, serum cortisol, prolactin, and hormones associated with the hypothalamo-pituitary- gonadal (HPG axis. Twenty resistance-trained males engaged in 28 days of resistance training 4 times/wk while orally ingesting daily either 1.78 g of placebo (PLAC or NMDA. Data were analyzed with separate 2 x 2 ANOVA (p 0.05 or supplementation (p > 0.05. In regard to total body mass and fat-free mass, however, each was significantly increased in both groups in response to resistance training (p 0.05. In both groups, lower-body muscle strength was significantly increased in response to resistance training (p 0.05. All serum hormones (total and free testosterone, LH, GnRH, estradiol, cortisol, prolactin were unaffected by resistance training (p > 0.05 or supplementation (p > 0.05. The gonadal hormones and cortisol and prolactin were unaffected by 28 days of NMDA supplementation and not associated with the observed increases in muscle strength and mass. At the dose provided, NMDA had no effect on HPG axis activity or ergogenic effects in skeletal muscle.

  2. Effect of strength training and short-term detraining on muscle mass in women aged over 50 years old

    Directory of Open Access Journals (Sweden)

    Maryam Delshad

    2013-01-01

    Full Text Available Background: The loss of muscle mass is associated with aging. The aim of this study was to determine the effects of resistance training and detraining on muscle mass in elderly women. Methods: Twenty post-menopausal women aged ≥50 years old were enrolled. Matching for age, they were randomly assigned into control and resistance training group (RT. The intervention consisted of three sets of 10 repetitions for 10 movements with Thera-Band tubing (based on 80-100% 10-RM, three times a week, for 12 weeks and thereafter, four weeks detraining. Skinfold thickness was determined by caliper. Percentage of body fat was estimated from skinfold thickness (triceps and subscapular by McArdle method. Fat mass (FM and fat-free mass (FFM were calculated. Range of motion for trunk flexion and extension was determined. Results: During 12 weeks of intervention, significant increases were observed in 1-RM of biceps curl, FFM, trunk flexion and extension and significant decreases during four weeks detraining in RT group. The RT group demonstrated significant decreases during resistance training and increases during detraining in skinfold thickness. FFM, trunk flexion, and extension decreased and skinfold thickness, %FM, and weight of body fat increased in the control group (P < 0.05. Conclusions: Resistance training with Thera-Band enhanced strength and muscle endurance in elderly women and a 4-week detraining period had an adverse effect on muscle power. This suggests that a strength training program is an effective intervention to prevent functional reductions, and can contribute to improve neuromuscular function in older adults.

  3. The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats.

    Science.gov (United States)

    Chen, Yu-Ching; Lee, Shin-Da; Kuo, Cha-Hua; Ho, Low-Tone

    2011-01-01

    The skeletal muscle AMP-activated protein kinase (AMPK)-related glucose transport pathway is involved in glucose homeostasis. In this study, we examined whether obese control Zucker rats had abnormal expression of proteins in the LKB1-AMPK-AS160-GLUT4 pathway in red gastrocnemius muscle compared to that in lean (normal) control Zucker rats. We also compared the chronic training effects of exercise, hypoxia, and altitude training on this pathway in lean and obese rats. At sea level, lean and obese rats were divided into 4 groups for 6 weeks training as follows: 1) control; 2) exercise (progressive daily swimming-exercise training with comparable exercise signals between the two groups); 3) hypoxia (8 hours of daily 14% O2 exposure); and 4) exercise plus hypoxia (also called altitude training). Seven animals were used for each group. The obese rats in the control group had higher body weights, elevated fasting insulin and glucose levels, and higher baseline levels of muscle AMPK and AS160 phosphorylation compared with those of lean control rats. For obese Zucker rats in the exercise or hypoxia groups, the muscle AMPK phosphorylation level was significantly decreased compared with that of the control group. For obese Zucker rats in the altitude training group, the levels of AMPK, AS160 phosphorylation, fasting insulin, and fasting glucose were decreased concomitant with an approximate 50% increase in the muscle GLUT4 protein level compared with those of the control group. In lean rats, the altitude training efficiently lowered fasting glucose and insulin levels and increased muscle AMPK and AS160 phosphorylation as well as GLUT4 protein levels. Our results provide evidence that long-term altitude training may be a potentially effective nonpharmacological strategy for treating and preventing insulin resistance based on its effects on the skeletal muscle AMPK-AS160-GLUT4 pathway.

  4. Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Olesen, Jesper; Gliemann, Lasse

    2015-01-01

    glucose tolerance test (OGTT) and a muscle biopsy was obtained from the vastus lateralis before and 45 minutes into the OGTT. Blood samples were collected before and up to 120 minutes after glucose intake. RESULTS: Exercise training increased Hexokinase II, GLUT4, Akt2, glycogen synthase (GS), pyruvate......) phosphorylation was increased after exercise training. In the trained state, the PDHa activity was reduced following glucose intake and without changes in phosphorylation level of PDH-E1α. CONCLUSIONS: The present results suggest that exercise training improves glucose regulation in elderly subjects by enhancing......BACKGROUND: The aim was to investigate the molecular mechanisms behind exercise training-induced improvements in glucose regulation in aged subjects. METHODS: Twelve elderly male subjects completed 8 weeks of exercise training. Before and after the training period, the subjects completed an oral...

  5. The effect of basketball training on the muscle strength of adults with mental retardation.

    Science.gov (United States)

    Tsimaras, Vasilios K; Samara, Christina A; Kotzamanidou, Marianna C; Bassa, Eleni I; Fotiadou, Eleni G; Kotzamanidis, Christos M

    2009-12-01

    The purpose of this study was to evaluate the effect of basketball training on the muscle strength of adults with mental retardation (MR). Twenty-four adults with and without MR were separated into 3 groups. Eight adults (mean age 25.4 years) with normal IQ constituted the control group (NIQ). Eight adults (mean age 26.5 years) with MR and all participating in a 4-year systematic basketball exercise program constituted the trained group (MR-T), and 8 adults (mean age 25.3 years) with MR exercised occasionally for recreational reasons formed the MR-R group. Parameters measured were isometric and isokinetic concentric and eccentric muscle strength. All subjects performed a leg strength test on a Cybex Norm isokinetic dynamometer. Analysis of variance was used to examine mean differences between the values of the 3 groups. A significance level of 0.05 was used for all tests. The NIQ group showed a statistically significant difference in all measured values compared to the MR groups. The MR-T group presented higher absolute and relative torque scores for both knee extensors and flexors than the MR-R group, whereas the MR-R group presented statistically higher antagonistic activity for both knee extensors and flexors than the MR-T group. In addition, both MR groups presented statistically higher antagonistic activity for both knee extensors and flexors compared to the NIQ group. Data support participation on a systematic and well-designed basketball training program to improve muscle strength levels of adults with MR. Participation in basketball without necessarily focusing on developing specific fitness components may be an effective training strategy for the promotion of strength of adults with MR.

  6. The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks

    Directory of Open Access Journals (Sweden)

    Kim Clarke

    2017-11-01

    Full Text Available Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis.

  7. Effect of an external resistance to airflow on the inspiratory flow curve

    NARCIS (Netherlands)

    de Koning, J P; van der Mark, Th W; Coenegracht, P M J; Tromp, Th F J; Frijlink, H W

    2002-01-01

    Inhalation is a convenient way to deliver drugs to the respiratory tract in the treatment of respiratory diseases. For dry powder inhalers (DPI's), the principle of operation is to use the patient-generated inspiratory flow as energy source for emptying of the dose system and the delivery of fine

  8. The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: A systematic review.

    Science.gov (United States)

    Grgic, Jozo; Lazinica, Bruno; Mikulic, Pavle; Krieger, James W; Schoenfeld, Brad Jon

    2017-09-01

    Although the effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy have been investigated in several studies, the findings are equivocal and the practical implications remain unclear. In an attempt to provide clarity on the topic, we performed a systematic literature search of PubMed/MEDLINE, Scopus, Web of Science, Cochrane Library, and Physiotherapy Evidence Database (PEDro) electronic databases. Six studies were found to have met the inclusion criteria: (a) an experimental trial published in an English-language peer-reviewed journal; (b) the study compared the use of short (≤60 s) to long (>60 s) inter-set rest intervals in a traditional dynamic resistance exercise using both concentric and eccentric muscle actions, with the only difference in resistance training among groups being the inter-set rest interval duration; (c) at least one method of measuring changes in muscle mass was used in the study; (d) the study lasted for a minimum of four weeks, employed a training frequency of ≥2 resistance training days per week, and (e) used human participants without known chronic disease or injury. Current evidence indicates that both short and long inter-set rest intervals may be useful when training for achieving gains in muscle hypertrophy. Novel findings involving trained participants using measures sensitive to detect changes in muscle hypertrophy suggest a possible advantage for the use of long rest intervals to elicit hypertrophic effects. However, due to the paucity of studies with similar designs, further research is needed to provide a clear differentiation between these two approaches.

  9. Muscle adaptations and performance enhancements of soccer training for untrained men

    DEFF Research Database (Denmark)

    Krustrup, Peter; Christensen, Jesper F.; Randers, Morten Bredsgaard

    2010-01-01

    We examined the physical demands of small-sided soccer games in untrained middle-age males and muscle adaptations and performance effects over 12 weeks of recreational soccer training in comparison with continuous running. Thirty-eight healthy subjects (20-43 years) were randomized into a soccer....... Blood lactate during running at 11 km/h was lowered (p soccer organized as small-sided games stimulates both aerobic and anaerobic...

  10. Experiences of incontinence and pelvic floor muscle training after gynaecologic cancer treatment.

    Science.gov (United States)

    Lindgren, Anna; Dunberger, G; Enblom, A

    2017-01-01

    The purpose of the present study is to describe how gynaecological cancer survivors (GCS) experience incontinence in relation to quality of life, their possibilities for physical activity and exercise and their perceptions and experiences of pelvic floor muscle training. This qualitative interview content analysis study included 13 women (48-82 age) with urinary (n = 10) or faecal (n = 3) incontinence after radiation therapy (n = 2), surgery (n = 5) and surgery and radiation therapy (n = 6) for gynaecological cancer, 0.5-21 years ago. Symptoms related to incontinence and restrictions in daily activities reduced physical quality of life. Emotions related to incontinence reduced psychological quality of life and social and existential quality of life, due to restrictions in activity and feelings of exclusion. Practical and mental strategies for maintaining quality of life were described, such as always bringing a change of clothes and accepting the situation. Possibilities for sexual and physical activity as well as exercise were also restricted by incontinence. The women had little or no experience of pelvic floor muscle training but have a positive attitude towards trying it. They also described a lack of information about the risk of incontinence. The women were willing to spend both money and time on an effective treatment for their incontinence. Nine out of 10 were willing to spend at least 7 h a week. GCS experienced that incontinence reduced quality of life and limited possibilities for sexual and physical activity as well as exercise. Coping strategies, both practical and emotional, facilitated living with incontinence. The women had a positive attitude towards pelvic floor muscle training. Lack of information had a negative impact on their way of dealing with the situation.

  11. Contribution of Respiratory Muscle Oxygen Consumption to Breathing Limitation and Cyspnea

    Directory of Open Access Journals (Sweden)

    Pere Casan

    1997-01-01

    Full Text Available During exercise, the sustainable activity of large muscle groups is limited by oxygen delivery. The purpose of this study was to see whether the oxygen consumption of the respiratory muscles reaches a similar critical value under maximal resistive loading and hyperventilation. A secondary objective was to see whether dyspnea (estimated discomfort experienced with breathing using the Borg 0-10 scale and the oxygen consumption of the respiratory muscles are closely related across conditions. This would be expected if intramuscular sensory nerve fibres stimulated as a consequence of metabolic events contributed to this sensation. In six normal subjects the respiratory muscles were progressively activated by the addition of incremental inspiratory resistive loads to a maximum of 300 cm H20×s/L (SD=66.4, and incremental dead space to a maximum of 2638 mL (SD=452, associated with an increase in ventilation to 75.1 L/min (SD=29.79. Each increment was maintained for 5 mins to allow the measurement of oxygen uptake in a steady state. During resistive loading total oxygen consumption increased from 239 mL/min (SD=38.2 to 299 mL/min (SD=52.3 and dyspnea increased to "very severe" (Borg scale 7.5, SD=1.55. During dead space loading total oxygen consumption increased from 270 mL/min (SD=20.2 to 426 mL/min (SD=81.9 and dyspnea increased to "very severe" (7.1, SD=0.66. Oxygen cost of inspiratory muscle power was 25 mL/watt (95% confidence limits 16.7 to 34.3 with dead space loading and 91 mL/watt (95% confidence limits 54 to 128 with resistive loading. Oxygen consumption did not reach a critical common value in the two types of loading, 60 mL/min (SD 22.3 during maximal resistive loading and 156 mL/min (SD 82.4 during maximal dead space loading (P<0.05. Physiological factors limiting the respiratory muscles are not uniquely related to oxygen consumption and appear to be expressed through the activation of sensory structures, perceptually manifested as

  12. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P balance was lower (P military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.

  13. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  14. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training.

    Science.gov (United States)

    Bradley, Scott J; Kingwell, Bronwyn A; Canny, Benedict J; McConell, Glenn K

    2007-10-01

    Skeletal muscle inducible nitric oxide synthase (NOS) protein is greatly elevated in people with type 2 diabetes mellitus, whereas endothelial NOS is at normal levels. Diabetic rat studies suggest that skeletal muscle neuronal NOS (nNOS) micro protein expression may be reduced in human insulin resistance. The aim of this study was to determine whether skeletal muscle nNOSmicro protein expression is reduced in people with impaired glucose homeostasis and whether exercise training increases nNOSmicro protein expression in these individuals because exercise training increases skeletal muscle nNOSmicro protein in rats. Seven people with type 2 diabetes mellitus or prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and 7 matched (sex, age, fitness, body mass index, blood pressure, lipid profile) healthy controls aged 36 to 60 years participated in this study. Vastus lateralis muscle biopsies for nNOSmicro protein determination were obtained, aerobic fitness was measured (peak pulmonary oxygen uptake [Vo(2) peak]), and glucose tolerance and insulin homeostasis were assessed before and after 1 and 4 weeks of cycling exercise training (60% Vo(2) peak, 50 minutes x 5 d wk(-1)). Skeletal muscle nNOSmicro protein was significantly lower (by 32%) in subjects with type 2 diabetes mellitus or prediabetes compared with that in controls before training (17.7 +/- 1.2 vs 26.2 +/- 3.4 arbitrary units, P glucose homeostasis have reduced skeletal muscle nNOSmicro protein content. However, because exercise training improves insulin sensitivity without influencing skeletal muscle nNOSmicro protein expression, it seems that changes in skeletal muscle nNOSmicro protein are not central to the control of insulin sensitivity in humans and therefore may be a consequence rather than a cause of diabetes.

  15. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    International Nuclear Information System (INIS)

    Mizuno, Masaki; Kimura, Yuichi; Tokizawa, Ken; Ishii, Kenji; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishiwata, Kiichi

    2005-01-01

    We examined the densities of adenosine A 2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX), a newly developed radioligand for mapping adenosine A 2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A 2A receptors was evaluated as the distribution volume of [ 11 C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [ 11 C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [ 11 C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g -1 ; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g -1 , respectively). These results indicate that the densities of adenosine A 2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  16. Blood-flow restricted training leads to myocelullar macrophage infiltration and upregulation of heat-shock proteins, but no apparent muscle damage

    DEFF Research Database (Denmark)

    Nielsen, Jakob L; Aagaard, Per; Prokhorova, Tatyana A

    2017-01-01

    Previous studies indicate that low-load muscle contractions performed under local blood-flow restriction (BFR) may initially induce muscle damage and stress. However, whether these factors are evoked with longitudinal BFR training remains unexplored at the myocellular level. Two distinct study...... into the intervention (Mid8) and 3 and 10 days after training cessation (Post3,Post10) to examine macrophage (M1/M2) content as well as heat-shock protein (HSP27/70) and tenascin-C expression. Blood samples (1 wk) were collected before and after (0.1-24 h) the first and last training session to examine markers...... of muscle damage (CK), oxidative stress (TAC,GSH) and inflammation (MCP1,IL-6,TNFa). M1-macrophage content increased 108-165% with BFRE and LLE at Post3 (P

  17. Slow movement resistance training using body weight improves muscle mass in the elderly: A randomized controlled trial.

    Science.gov (United States)

    Tsuzuku, S; Kajioka, T; Sakakibara, H; Shimaoka, K

    2018-04-01

    To examine the effect of a 12-week slow movement resistance training using body weight as a load (SRT-BW) on muscle mass, strength, and fat distribution in healthy elderly people. Fifty-three men and 35 women aged 70 years old or older without experience in resistance training participated, and they were randomly assigned to a SRT-BW group or control group. The control group did not receive any intervention, but participants in this group underwent a repeat measurement 12 weeks later. The SRT-BW program consisted of 3 different exercises (squat, tabletop push-up, and sit-up), which were designed to stimulate anterior major muscles. Initially, these exercises were performed by 2 sets of 10 repetitions, and subsequently, the number of repetitions was increased progressively by 2 repetitions every 4 weeks. Participants were instructed to perform each eccentric and concentric phase of movement slowly (spending 4 seconds on each movement), covering the full range of motion. We evaluated muscle mass, strength, and fat distribution at baseline and after 12 weeks of training. Changes over 12 weeks were significantly greater in the SRT-BW group than in the control group, with a decrease in waist circumference, hip circumference, and abdominal preperitoneal and subcutaneous fat thickness, and an increase in thigh muscle thickness, knee extension strength, and hip flexion strength. In conclusion, relatively short-term SRT-BW was effective in improving muscle mass, strength, and fat distribution in healthy elderly people. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Fiber type specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper Løvind; Harrison, Adrian Paul

    2015-01-01

    Introduction. The aim was to investigate the effect of high-intensity resistance training on satellite cell (SC) and myonuclear number in the muscle of patients undergoing dialysis. Methods. Patients (n=21) underwent a 16-week control period, followed by 16 weeks of resistance training thrice...

  19. Pelvic Floor Muscle Training: Underutilization in the USA.

    Science.gov (United States)

    Lamin, Eliza; Parrillo, Lisa M; Newman, Diane K; Smith, Ariana L

    2016-02-01

    Pelvic floor disorders are highly prevalent in women of all ages and can greatly impair quality of life. Pelvic floor muscle training (PFMT) is a viable treatment option for several pelvic floor conditions including urinary incontinence and pelvic organ prolapse. PFMT is a program of therapy initiated by an experienced clinician (e.g., women's health or urology nurse practitioner (NP), physical therapist (PT)) that involves exercises for women with stress urinary incontinence (UI) and exercises combined with behavioral or conservative treatments (lifestyle changes, bladder training with urge suppression) for women with urgency or mixed UI. These exercise programs are more comprehensive than simple Kegel exercises. Despite evidence-based research indicating the efficacy and cost-effectiveness for treatment of urinary incontinence, PFMT is not commonly used as a first-line treatment in clinical practice in the USA (Abrams et al., 2012). This article will review PFMT for the treatment of UI and pelvic organ prolapse (POP) and theorize how this conservative therapy can be utilized more effectively in the USA.

  20. Influence of Isometric Exercise Training on Quadriceps Muscle Architecture and Strength in Obese Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Waleed S Mahmoud

    2017-03-01

    Full Text Available Obese individuals have reduced quadriceps muscle strength relative to body mass that may increase the rate of progression of knee osteoarthritis (OA. The purpose of this study was to evaluate the effects of isometric exercise training on quadriceps muscle architecture and strength in obese subjects with knee osteoarthritis. Methods: Fortyfour obese male subjects aged 40–65 years diagnosed with knee osteoarthritis were randomly assigned into group A (n=32 and group B (n=12. Group A subjects performed a 12-week isometric exercise program. Group B subjects did not participate in any exercise program and maintained their ordinary activities for the same period. Both groups received the same conventional physical therapy program including hot packs and therapeutic ultrasonic. Muscle thickness, pennation angles and fascicle length of the vastus lateralis (VL muscle of the affected knee were measured at rest by B-mode ultrasonography. Maximal voluntary isometric knee extension torque (MVIC of the affected knee was measured using an isokinetic dynamometer. Knee pain and function were evaluated using visual analogue pain scale (VAS and Western Ontario and McMaster Universities Arthritis Index (WOMAC. All variables were evaluated before and the end of the intervention period for both groups. Results: at the end of the program, group A subjects showed significant improvements compared with group B subjects regarding MVIC and muscle architecture parameters (p<0.05. Also, there was significant improvement in post-test VAS and WOMAC scores in group A subjects compared to group B subjects (p<0.05. Conclusion: A 12-week quadriceps isometric training program improves knee pain and quadriceps muscle strength and architecture in obese subjects with knee OA. These results indicate that isometric training should be regarded as a proper exercise intervention for obese patients with knee OA.

  1. Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models.

    Science.gov (United States)

    Aucouturier, Jean-Julien; Nonaka, Yulri; Katahira, Kentaro; Okanoya, Kazuo

    2011-11-01

    The paper describes an application of machine learning techniques to identify expiratory and inspiration phases from the audio recording of human baby cries. Crying episodes were recorded from 14 infants, spanning four vocalization contexts in their first 12 months of age; recordings from three individuals were annotated manually to identify expiratory and inspiratory sounds and used as training examples to segment automatically the recordings of the other 11 individuals. The proposed algorithm uses a hidden Markov model architecture, in which state likelihoods are estimated either with Gaussian mixture models or by converting the classification decisions of a support vector machine. The algorithm yields up to 95% classification precision (86% average), and its ability generalizes over different babies, different ages, and vocalization contexts. The technique offers an opportunity to quantify expiration duration, count the crying rate, and other time-related characteristics of baby crying for screening, diagnosis, and research purposes over large populations of infants.

  2. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity

    Science.gov (United States)

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle. PMID:24408995

  3. A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    International Nuclear Information System (INIS)

    Thorsen, Lene; Nilsen, Tormod S; Raastad, Truls; Courneya, Kerry S; Skovlund, Eva; Fosså, Sophie D

    2012-01-01

    Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and

  4. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  5. Pelvic floor muscle training decreases hip adductors isometric peak torque in incontinent women: an exploratory study

    Directory of Open Access Journals (Sweden)

    Grasiéla Nascimento Correia

    Full Text Available INTRODUCTION: The pelvic floor muscle (PFM training is the most common treatment for urinary incontinence (UI, however many women performed the contraction of PFM with associated contraction of abdominal, gluteus and hip adductors muscles. OBJECTIVE: To assess the effects of pelvic floor muscle (PFM training on isometric and isokinetic hip adductors peak torque (PT among women suffering from urinary incontinence (UI. MATERIALS AND METHODS: It is a longitudinal and prospective exploratory study. This study included 15 physically active women aged 45 years old and over, who presented complaints of UI. The PFM function (digital evaluation and perineometry, isometric and isokinetic hip adductors PT and one hour pad test were performed before and after treatment. The PFM training was performed in group, one hour once a week for 12 sessions. RESULTS: Significant improvement of PFM function and pressure level (p = 0.003, and significant decrease of hip adductors isometric PT and one-hour pad test, were found post-treatment. Moderate negative correlations between PFM contraction pressure and hip adductors isokinetic PT for dominant side (DS (r = -0.62; p = 0.03 and non-dominant side (NDS (r = -0.64; p = 0.02; and between PFM fast fibers contraction and hip adductors isometric PT for DS (r = -0.60; p = 0.03 and NDS (r = -0.59; p = 0.04 were also found. CONCLUSIONS: The PFM training decreased hip adductors PT and improved PFM functions and UI.

  6. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training

    DEFF Research Database (Denmark)

    Jakobsen, Jens R.; Mackey, A L; Knudsen, A B

    2017-01-01

    The myotendinous junction (MTJ) is a common site of strain injury and yet understanding of its composition and ability to adapt to loading is poor. The main aims of this study were to determine the profile of selected collagens and macrophage density in human MTJ and adjoining muscle fibers...... 4 weeks of training may reflect a training-induced protection against strain injuries in this region....

  7. Functional adaptation of tendon and skeletal muscle to resistance training in three patients with genetically verified classic Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Møller, Mathias Bech; Kjær, Michael; Svensson, René Brüggebusch

    2014-01-01

    undergoing muscle strength training. We investigated patients with classical Ehlers Danlos Syndrome (EDS) (collagen type V defect) who display articular hypermobility, skin extensibility and tissue fragility. METHODS: subjects underwent strength training 3 times a week for 4 months and were tested before...... and after intervention in regards to muscle strength, tendon mechanical properties, and muscle function. RESULTS: three subjects completed the scheduled 48 sessions and had no major adverse events. Mean isometric leg extension force and leg extensor power both increased by 8 and 11% respectively (358 to 397...... sway-area of the participants decreased by 26% (0.144 to 0.108 m(2)). On the subscale of CIS20 the participants lowered their average subjective fatigue score from 33 to 25. CONCLUSION: in this small pilot study, heavy resistance training was both feasible and effective in classic Ehlers Danlos...

  8. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training.

    Science.gov (United States)

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-09-15

    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Eight Weeks of Phosphatidic Acid Supplementation in Conjunction with Resistance Training Does Not Differentially Affect Body Composition and Muscle Strength in Resistance-Trained Men

    Directory of Open Access Journals (Sweden)

    Thomas L. Andre, Joshua J. Gann, Sarah K. McKinley-Barnard, Joon J. Song, Darryn S. Willoughby

    2016-09-01

    Full Text Available This study attempted to determine the effects of eight weeks of resistance training (RT combined with phosphatidic acid (PA supplementation at a dose of either 250 mg or 375 mg on body composition and muscle size and strength. Twenty-eight resistance-trained men were randomly assigned to ingest 375 mg [PA375 (n = 9] or 250 mg [PA250 (n = 9] of PA or 375 mg of placebo [PLC (n = 10] daily for eight weeks with RT. Supplements were ingested 60 minutes prior to RT and in the morning on non-RT days. Participants’ body composition, muscle size, and lower-body muscle strength were determined before and after training/supplementation. Separate group x time ANOVAs for each criterion variable were used employing an alpha level of ≤ 0.05. Magnitude- based inferences were utilized to determine the likely or unlikely impact of PA on each criterion variable. A significant main effect for time was observed for improvements in total body mass (p = 0.003, lean mass (p = 0.008, rectus femoris cross-sectional area [RF CSA (p = 0.011], and lower-body strength (p 0.05. Collectively, magnitude-based inferences determined both doses of PA to have a likely impact of increasing body mass (74.2%, lean mass (71.3%, RF CSA (92.2%, and very likely impact on increasing lower-body strength (98.1% beneficial. When combined with RT, it appears that PA has a more than likely impact on improving lower-body strength, whereas a likely impact exists for increasing muscle size and lean mass.

  10. Multimodal high-intensity interval training increases muscle function and metabolic performance in females.

    Science.gov (United States)

    Buckley, Stephanie; Knapp, Kelly; Lackie, Amy; Lewry, Colin; Horvey, Karla; Benko, Chad; Trinh, Jason; Butcher, Scotty

    2015-11-01

    High-intensity interval training (HIIT) is a time-efficient method of improving aerobic and anaerobic power and capacity. In most individuals, however, HIIT using modalities such as cycling, running, and rowing does not typically result in increased muscle strength, power, or endurance. The purpose of this study is to compare the physiological outcomes of traditional HIIT using rowing (Row-HIIT) with a novel multimodal HIIT (MM-HIIT) circuit incorporating multiple modalities, including strength exercises, within an interval. Twenty-eight recreationally active women (age 24.7 ± 5.4 years) completed 6 weeks of either Row-HIIT or MM-HIIT and were tested on multiple fitness parameters. MM-HIIT and Row-HIIT resulted in similar improvements (p HIIT group had significant (p HIIT group had no increase in any muscle performance variable (p values 0.33-0.90). Post-training, 1-repetition maximum (1RM) squat (64.2 ± 13.6 vs. 45.8 ± 16.2 kg, p = 0.02), 1RM press (33.2 ± 3.8 vs. 26.0 ± 9.6 kg, p = 0.01), and squat endurance (23.9 ± 12.3 vs. 10.2 ± 5.6 reps, p HIIT group than in the Row-HIIT group. MM-HIIT resulted in similar aerobic and anaerobic adaptations but greater muscle performance increases than Row-HIIT in recreationally active women.

  11. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes.

    Science.gov (United States)

    White, S H; Warren, L K

    2017-02-01

    Exercise is associated with increased production of reactive oxygen species (ROS) as metabolism is upregulated to fuel muscle activity. If antioxidant systems become overwhelmed, ROS can negatively affect health and performance. Adaptation to exercise through regular training has been shown to improve defense against oxidative insult. Given selenium's role as an antioxidant, we hypothesized that increased Se intake would further enhance skeletal muscle adaptations to training. Quarter Horse yearlings (18 ± 0.2 mo; 402 ± 10 kg) were randomly assigned to receive either 0.1 or 0.3 mg Se/kg DM and placed in either an untrained or a trained (30 min walk-trot-canter, 4 d/wk) group for 14 wk. Phase 1 (wk 1 to 8) consisted of 4 treatments: trained and fed 0.1 mg Se/kg DM through wk 14 (CON-TR; n = 10), trained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-TR; n = 10), untrained and fed 0.1 mg Se/kg DM through wk 14 (CON-UN; n = 5), or untrained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-UN; n = 5). During Phase 2 (wk 9 to 14), dietary Se level in half of the trained horses was reversed, resulting in 6 treatments: CON-TR (n = 5), trained and fed 0.1 mg/kg Se in Phase 1 and then switched to 0.3 mg/kg Se for Phase 2 (ADD-TR; n = 5), trained and fed 0.3 mg/kg Se in Phase 1 and then switched to 0.1 mg/kg Se for Phase 2 (DROP-TR; n = 5), HIGH-TR (n = 5), CON-UN (n = 5), or HIGH-UN (n = 5). All horses underwent a 120-min submaximal exercise test (SET) at the end of Phase 1 (SET 1) and 2 (SET 2). Blood samples and biopsies from the middle gluteal muscle were collected before and after each phase of the study and in response to each SET and analyzed for markers of oxidative damage and antioxidant enzyme activity. In both phases, serum Se was higher (P creatine kinase (CK) activity was lower in trained horses than in untrained horses (P < 0.0001), indicating less muscle damage, but plasma lipid hydroperoxides (LPO) and muscle GPx and SOD activities were unaffected by training or Se

  13. The Metabolic Response of Skeletal Muscle to Endurance Exercise Is Modified by the ACE-I/D Gene Polymorphism and Training State

    Directory of Open Access Journals (Sweden)

    Paola Valdivieso

    2017-12-01

    Full Text Available The insertion/deletion polymorphism in the gene for the regulator of vascular tone, angiotensin-converting enzyme (ACE, is the prototype of a genetic influence on physical fitness and this involves an influence on capillary supply lines and dependent aerobic metabolism in skeletal muscle. The respective interaction of ACE-I/D genotype and training status on local metabolic and angiogenic reactions in exercised muscle is not known. Toward this end we characterized the metabolomic and angiogenic response in knee extensor muscle, m. vastus lateralis, in 18 untrained and 34 endurance-trained (physically active, V˙O2max > 50 mL min−1 kg−1 white British men to an exhaustive bout of one-legged cycling exercise. We hypothesized that training status and ACE-I/D genotype affect supply-related muscle characteristics of exercise performance in correspondence to ACE expression and angiotensin 2 levels. ACE-I/D genotype and training status developed an interaction effect on the cross-sectional area (CSA of m. vastus lateralis and mean CSA of slow type fibers, which correlated with peak power output (r ≥ 0.44. Genotype × training interactions in muscle also resolved for exercise-induced alterations of 22 metabolites, 8 lipids, glycogen concentration (p = 0.016, ACE transcript levels (p = 0.037, and by trend for the pro-angiogenic factor tenascin-C post exercise (p = 0.064. Capillary density (p = 0.001, capillary-to-fiber ratio (p = 0.010, systolic blood pressure (p = 0.014, and exercise-induced alterations in the pro-angiogenic protein VEGF (p = 0.043 depended on the ACE-I/D genotype alone. Our observations indicate that variability in aerobic performance in the studied subjects was in part reflected by an ACE-I/D-genotype-modulated metabolic phenotype of a major locomotor muscle. Repeated endurance exercise appeared to override this genetic influence in skeletal muscle by altering the ACE-related metabolic response and molecular aspects of the

  14. The Metabolic Response of Skeletal Muscle to Endurance Exercise Is Modified by the ACE-I/D Gene Polymorphism and Training State.

    Science.gov (United States)

    Valdivieso, Paola; Vaughan, David; Laczko, Endre; Brogioli, Michael; Waldron, Sarah; Rittweger, Jörn; Flück, Martin

    2017-01-01

    The insertion/deletion polymorphism in the gene for the regulator of vascular tone, angiotensin-converting enzyme (ACE), is the prototype of a genetic influence on physical fitness and this involves an influence on capillary supply lines and dependent aerobic metabolism in skeletal muscle. The respective interaction of ACE-I/D genotype and training status on local metabolic and angiogenic reactions in exercised muscle is not known. Toward this end we characterized the metabolomic and angiogenic response in knee extensor muscle, m. vastus lateralis , in 18 untrained and 34 endurance-trained (physically active, [Formula: see text]O2max > 50 mL min -1 kg -1 ) white British men to an exhaustive bout of one-legged cycling exercise. We hypothesized that training status and ACE-I/D genotype affect supply-related muscle characteristics of exercise performance in correspondence to ACE expression and angiotensin 2 levels. ACE-I/D genotype and training status developed an interaction effect on the cross-sectional area (CSA) of m. vastus lateralis and mean CSA of slow type fibers, which correlated with peak power output ( r ≥ 0.44). Genotype × training interactions in muscle also resolved for exercise-induced alterations of 22 metabolites, 8 lipids, glycogen concentration ( p = 0.016), ACE transcript levels ( p = 0.037), and by trend for the pro-angiogenic factor tenascin-C post exercise ( p = 0.064). Capillary density ( p = 0.001), capillary-to-fiber ratio ( p = 0.010), systolic blood pressure ( p = 0.014), and exercise-induced alterations in the pro-angiogenic protein VEGF ( p = 0.043) depended on the ACE-I/D genotype alone. Our observations indicate that variability in aerobic performance in the studied subjects was in part reflected by an ACE-I/D-genotype-modulated metabolic phenotype of a major locomotor muscle. Repeated endurance exercise appeared to override this genetic influence in skeletal muscle by altering the ACE-related metabolic response and molecular aspects

  15. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    OpenAIRE

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2006-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potent...

  16. Effect of Brief Daily Resistance Training on Occupational Neck/Shoulder Muscle Activity in Office Workers with Chronic Pain: Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Mark Lidegaard

    2013-01-01

    Full Text Available Purpose. This study investigates the acute and longitudinal effects of resistance training on occupational muscle activity in office workers with chronic pain. Methods. 30 female office workers with chronic neck and shoulder pain participated for 10 weeks in high-intensity elastic resistance training for 2 minutes per day (n=15 or in control receiving weekly email-based information on general health (n=15. Electromyography (EMG from the splenius and upper trapezius was recorded during a normal workday. Results. Adherence to training and control interventions were 86% and 89%, respectively. Compared with control, training increased isometric muscle strength 6% (P<0.05 and decreased neck/shoulder pain intensity by 40% (P<0.01. The frequency of periods with complete motor unit relaxation (EMG gaps decreased acutely in the hours after training. By contrast, at 10-week follow-up, training increased average duration of EMG gaps by 71%, EMG gap frequency by 296% and percentage time below 0.5%, and 1.0% EMGmax by 578% and 242%, respectively, during the workday in m. splenius. Conclusion. While resistance training acutely generates a more tense muscle activity pattern, the longitudinal changes are beneficial in terms of longer and more frequent periods of complete muscular relaxation and reduced pain.

  17. Rapid increases in training load affects markers of skeletal muscle damage and mechanical performance

    DEFF Research Database (Denmark)

    Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas

    2012-01-01

    The aim of the present study was to monitor the changes in indirect markers of muscle damage during 3 weeks (nine training sessions) of stretch-shortening (drop jump) exercise with constant load alternated with steep increases in load. Physically active men (n = 9, mean age 19.1 years) performed....... Maximal jump height increased by 7.8% ± 6.3% (P training session, respectively. Gains in isometric knee extension MVC (7.9% ± 8.2%) and 100-Hz-evoked torque (9.9% ± 9.6%) (both P ... within 17 days after the end of training. The magnitude of improvement was greater after this protocol than that induced by a continuous constant progression loading pattern with small gradual load increments in each training session. These findings suggest that plyometric training using infrequent...

  18. The effect of entrainment site and inspiratory pressure on the delivery of oxygen therapy during non-invasive mechanical ventilation (NIMV in acute COPD patients

    Directory of Open Access Journals (Sweden)

    Sundeep Kaul

    2006-12-01

    Full Text Available Supplemental O2 is frequently added to bi-level non-invasive ventilation circuits to maintain Sa,O2 >90%. Oxygen can be added at several points & in the presence of different inspiratory pressures. The effect of varying entrainment sites and inspiratory pressures (IPAP on PO2, PCO2, Fio2, inspiratory triggering and expiratory triggering in COPD patients is unknown. 18 patients with stable COPD (mean FEV1 47% participated in the study. Oxygen was added at 4 sites in the ventilatory circuit (site 1: between mask and exhalation port; site 2: just distal to exhalation port; site 3: at ventilator outlet; site 4: directly into the mask via an inlet. The effect of varying entrainment sites and inspiratory pressures on arterial PO2, PCO2, FIO2, was recorded at 3 mins. The same full face mask (Respironics, Image 3 & ventilator (Respironics, BIPAP ST 30 was used.

  19. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training.

    Science.gov (United States)

    Gepner, Yftach; Hoffman, Jay R; Shemesh, Elad; Stout, Jeffrey R; Church, David D; Varanoske, Alyssa N; Zelicha, Hila; Shelef, Ilan; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay

    2017-07-01

    The purpose of this study was to compare the coadministration of the probiotic Bacillus coagulans GBI-30, 6086 (BC30) with β-hydroxy-β-methylbutyrate (HMB) calcium (CaHMB) to CaHMB alone on inflammatory response and muscle integrity during 40 days of intense military training. Soldiers were randomly assigned to one of two groups: CaHMB with BC30 (CaHMBBC30; n = 9) or CaHMB with placebo (CaHMBPL, n = 9). A third group of participants served as a control (CTL; n = 8). During the first 28 days soldiers were garrisoned on base and participated in the same training tasks. During the final 2 wk soldiers navigated 25-30 km per night in difficult terrain carrying ~35 kg of equipment. All assessments (blood draws and diffusion tensor imaging to assess muscle integrity) were conducted before and ~12 h after final supplement consumption. Analysis of covariance was used to analyze all blood and muscle measures. Significant attenuations were noted in IL-1β, IL-2, IL-6, CX3CL1, and TNF-α for both CaHMBBC30 and CaHMBPL compared with CTL. Plasma IL-10 concentrations were significantly attenuated for CaHMBBC30 compared with CTL only. A significant decrease in apparent diffusion coefficients was also observed for CaHMBBC30 compared with CaHMBPL. Results provide further evidence that HMB supplementation may attenuate the inflammatory response to intense training and that the combination of the probiotic BC30 with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training. NEW & NOTEWORTHY β-Hydroxy-β-methylbutyrate (HMB) in its free acid form was reported to attenuate inflammation and maintain muscle integrity during military training. However, this formulation was difficult to maintain in the field. In this investigation, soldiers ingested HMB calcium (CaHMB) with Bacillus coagulans (BC30) or CaHMB alone during 40 days of training. Results indicated that CaHMB attenuated the inflammatory response and that BC30 combined with

  20. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly.

    Science.gov (United States)

    Dirks, Marlou L; Tieland, Michael; Verdijk, Lex B; Losen, Mario; Nilwik, Rachel; Mensink, Marco; de Groot, Lisette C P G M; van Loon, Luc J C

    2017-07-01

    Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content. A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel. Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo. Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics. In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P  .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy. Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  1. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols

    OpenAIRE

    Cipryan, Lukas

    2017-01-01

    Abstract The aim of this study was to investigate changes of interleukin-6 (IL-6), total antioxidant capacity (TAC) and muscle damage markers (creatine kinase (CK), myoglobin and lactate dehydrogenase (LDH)) in response to three different high-intensity interval training (HIIT) protocols of identical external work. Twelve moderately-trained males participated in the three HIIT trials which consisted of a warm-up, followed by 12 min of 15 s, 30 s or 60 s HIIT sequences with the work/rest ratio...

  2. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    DEFF Research Database (Denmark)

    Hong, Zhang; Kumar, Abhishek; Kothari, Mohit

    2016-01-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten...... trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold......-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation...

  3. Feedback or biofeedback to augment pelvic floor muscle training for urinary incontinence in women

    NARCIS (Netherlands)

    Herderschee, Roselien; Hay-Smith, E. Jean C.; Herbison, G. Peter; Roovers, Jan Paul; Heineman, Maas Jan

    2011-01-01

    Pelvic floor muscle training (PFMT) is an effective treatment for stress urinary incontinence in women. Whilst most of the PFMT trials have been done in women with stress urinary incontinence, there is also some trial evidence that PFMT is effective for urgency urinary incontinence and mixed urinary

  4. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    Science.gov (United States)

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  5. Can quality of life be improved by pelvic floor muscle training in women with urinary incontinence after ischemic stroke?

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Jensen, Rigmor; Lindskov, Grethe

    2004-01-01

    The purpose of this study was to evaluate the effect of pelvic floor muscle training in women with urinary incontinence after ischemic stroke measured by quality of life (QoL) parameters. Three hundred thirty-nine medical records of stroke patients were searched. Twenty-six subjects were randomised...... to a Treatment Group or a Control Group in a single blinded, randomised study design. The intervention included 12 weeks of standardised pelvic floor muscle training. The outcome was measured by the Short Form 36 (SF-36) Health Survey Questionnaire and The Incontinence Impact Questionnaire (IIQ). Twenty...

  6. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training

    DEFF Research Database (Denmark)

    Olsen, Steen; Aagaard, Per; Kadi, Fawzi

    2006-01-01

    The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned to stren......The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned...

  7. The Effect of 8 Weeks High-intensity Interval Training on Myostatin and Follistatin Gene Expression in Gastrocnemius Muscle of the Rats

    Directory of Open Access Journals (Sweden)

    Soheil Biglari

    2018-04-01

    Full Text Available Abstract Background: The purpose of the present study is to investigate the effect of 8 weeks High-intensity Interval Training (HIIT on the expression of two muscle growth regulating genes (myostatin and follistatin in gastrocnemius muscle of healthy male rats. Materials and Methods: 16 male Wistar rats were randomly divided into two groups in the same number: control and HIIT. HIIT program was underwent 40 min each session, three sessions in a week for eight weeks. Each exercise training session consisted of 5 min warm-up and cool-down at 40-50 % VO2max, 30 min interval running including 4 min high-intensity (85-90% VO2max and 2 min active recovery (at 50-60% VO2max. Rats in control group did not do any exercise training program. 48 h after the last training session, rats` gastrocnemius muscle was extracted and the expression of myostatin and follistatin genes was determined by Real Time-PCR. For statistical data analysis, independent t-test was used. Results: The expression of myostatin was significantly reduced 68% in HIIT group in comparison with the control group (p0.05. Gastrocnemius muscle weight was significantly increased 23% in the HIIT group compared to the control group (p<0.05. Conclusion: Results indicated that HIIT lead to significant reduction in the expression of myostatin gene and increase in the weight of gastrocnemius muscle in rats.

  8. Skeletal muscle myosin heavy chain isoform content in relation to gonadal hormones and anabolic-catabolic balance in trained and untrained men.

    Science.gov (United States)

    Grandys, Marcin; Majerczak, Joanna; Karasinski, Janusz; Kulpa, Jan; Zoladz, Jerzy A

    2012-12-01

    Gonadal hormones and anabolic-catabolic hormone balance have potent influence on skeletal muscle tissue, but little is known about their action with regard to myosin heavy chain (MHC) transformation in humans. We investigated the relationship between skeletal muscle MHC isoform content in the vastus lateralis muscle and basal testosterone (T) concentration in 3 groups of subjects: endurance trained (E), sprint/strength trained (S), and untrained (U) young men. We have also determined basal sex hormone-binding globulin and cortisol (C) concentrations in untrained subjects to examine the relationship between MHC composition and the anabolic-catabolic hormone balance. Moreover, basal free testosterone (fT) and bioavailable testosterone (bio-T) concentrations were calculated for this subgroup. Despite significant differences in MHC isoform content (69.4 ± 2.39%, 61.4 ± 8.04%, and 37.5 ± 13.80% of MHC-2 for groups S, U, and E, respectively, Kruskal-Wallis: H = 18.58, p 0.5). We have also found that in the U group, type 2 MHC in the vastus lateralis muscle is positively correlated with basal fT:C ratio (r = 0.63, p = 0.01). It is concluded that the differences in the training history and training specificity can be distinguished with regard to the MHC composition but not with regard to the basal T concentration. Simultaneously, it has been shown that MHC isoform content in human vastus lateralis muscle may be related to basal anabolic-catabolic hormone balance, and this hypothesis needs further investigation.

  9. Making muscles "stronger": exercise, nutrition, drugs.

    Science.gov (United States)

    Aagaard, P

    2004-06-01

    As described in this review, maximal muscle strength is strongly influenced by resistive-types of exercise, which induce adaptive changes in both neuromuscular function and muscle morphology. Further, timed intake of protein in conjunction with resistance training elicit greater strength and muscle size gains than resistance training alone. Creatine supplementation amplifies the hypertrophic response to resistance training, although some individuals may not respond positively. Locally produced muscle growth factors are upregulated during creatine supplementation, which contributes to increase the responsiveness of muscle cells to intensive training stimuli. Usage of anabolic steroids boosts muscle hypertrophy beyond inherent genetical limits, not only by increasing the DNA transcription rate for myofibrillar proteins but also by increasing the nucleus-to-cytoplasm ratio due to accelerated activation of myogenic satellite cells. However, severe tissue damaging effects exist with anabolic steroids, some of which are irreversible.

  10. Dual task multimodal physical training in Alzheimer’s disease: effect on cognitive functions and muscle strength

    Directory of Open Access Journals (Sweden)

    Bruno Naves Ferreira

    2017-12-01

    Full Text Available The aim of this study was to evaluate the effects of dual task multimodal physical training (MPT on the cognitive functions and muscle strength in older adults with Alzheimer’s disease. Participants were 19 subjects with AD in the mild and moderate stages, divided into training group (TG and control group (CG. The TG performed dual task MPT for 12 weeks. Subjects were evaluated at the pre- and post-intervention moments. The Mini Mental State Examination (MMSE, Clock Drawing Test (CDT and Frontal Assessment Battery (FAB were used to assess cognition. For muscle strength, the Chair Lift and Sit Test (CLST and Manual Grasp Force (MGF were used. The Wilcoxon test was used to analyze pre and post intragroup moments. The TG showed a significant improvement in FAB and CLST (p≤0.05 and a tendency to improve the MMSE score (p≤0.08. The CG showed significant improvement in CLST (p≤0.05. Dual task MPT improves the frontal cognitive functions and lower limb muscle strength of older adults with AD.

  11. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    Science.gov (United States)

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  12. Effects of the lower extremities muscle activation during muscular strength training on an unstable platform with magneto-rheological dampers

    Science.gov (United States)

    Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun

    2009-03-01

    Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.

  13. Addition of non-invasive ventilatory support to combined aerobic and resistance training improves dyspnea and quality of life in heart failure patients: a randomized controlled trial.

    Science.gov (United States)

    Bittencourt, Hugo Souza; Cruz, Cristiano Gonçalves; David, Bruno Costa; Rodrigues, Erenaldo; Abade, Camille Magalhães; Junior, Roque Aras; Carvalho, Vitor Oliveira; Dos Reis, Francisco Borges Faria; Gomes Neto, Mansueto

    2017-11-01

    To test the hypothesis that combined aerobic and resistance training and non-invasive ventilatory support result in additional benefits compared with combined aerobic and resistance training alone in heart failure patients. A randomized, single-blind, controlled study. Cardiac rehabilitation center. A total of 46 patients with New York Heart Association class II/III heart failure were randomly assigned to a 10-week program of combined aerobic and resistance training, plus non-invasive ventilatory support ( n = 23) or combined aerobic and resistance training alone ( n = 23). Before and after intervention, results for the following were obtained: 6-minute walk test, forced vital capacity, forced expiratory volume at one second, maximal inspiratory muscle pressure, and maximal expiratory muscle pressure, with evaluation of dyspnea by the London Chest Activity of Daily Living scale, and quality of life with the Minnesota Living With Heart Failure questionnaire. Of the 46 included patients, 40 completed the protocol. The combined aerobic and resistance training plus non-invasive ventilatory support, as compared with combined aerobic and resistance training alone, resulted in significantly greater benefit for dyspnea (mean change: 4.8 vs. 1.3, p = 0.004), and quality of life (mean change: 19.3 vs. 6.8, p = 0.017 ). In both groups, the 6-minute walk test improved significantly (mean change: 45.7 vs. 44.1, p = 0.924), but without a statistically significant difference. Non-invasive ventilatory support combined with combined aerobic and resistance training provides additional benefits for dyspnea and quality of life in moderate heart failure patients. ClinicalTrials.gov identifier: NCT02384798. Registered 03 April 2015.

  14. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage.

    Science.gov (United States)

    Damas, Felipe; Phillips, Stuart M; Libardi, Cleiton A; Vechin, Felipe C; Lixandrão, Manoel E; Jannig, Paulo R; Costa, Luiz A R; Bacurau, Aline V; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos

    2016-09-15

    Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P muscle hypertrophy. Initial Myo

  15. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    Science.gov (United States)

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  16. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia.

    Directory of Open Access Journals (Sweden)

    Martina Mosing

    Full Text Available This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT. Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding, the fraction of total tidal ventilation within each of four stacked regions of interest (ROI (distribution of ventilation and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia.

  17. Atividade mioelétrica dos músculos respiratórios em crianças asmáticas durante manobra inspiratória máxima Myoelectrical activity of the respiratory muscles in asthmatic children during the maximum inspiratory maneuver

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Brasileiro-Santos

    2012-09-01

    Full Text Available OBJETIVOS: avaliar a atividade dos músculos escalenos e esternocleidomastóideo (ETMD no período basal e durante manobra de pressão inspiratória máxima (PImax em crianças asmáticas. MÉTODOS: foram estudadas 15 crianças, divididas em grupo asma (n=8 e grupo controle (n=7. Foi realizada a análise da função pulmonar e da PImax através da espirometria e da manovacuometria, respectivamente. A atividade mioelétrica dos músculos escaleno e ETMD foram realizadas pela eletromiografia de superfície durante período basal e manobra de PImax. RESULTADOS: a eletromiografia de superfície (EMGs basal do músculo escaleno é maior no grupo asma quando comparado ao grupo controle. Diferentemente, a EMGs basal do músculo ETMD não apresentou diferença significativa nos grupos estudados. O percentual da EMGs dos músculos escaleno e ETMD durante manobra de PImax foi maior no grupo asma quando comparado ao grupo controle. CONCLUSÕES: EMGs do escaleno durante o período basal está aumentada em crianças asmáticas. A atividade eletromiográfica do músculo ETMD no período basal é similar em ambos os grupos estudados. A EMGs dos músculos ETMD e escaleno na geração de pressão intratorácica, durante a manobra de PImax, está aumentada em crianças asmáticas.OBJECTIVES: to evaluate the activity of the scalene and sternocleidomastoid muscles at the baseline and during the maximum inspiratory pressure maneuver (PImax in children with asthma. METHODS: fifteen children were divided into an asthma (n=8 and a control group (n=7. Lung functioning was investigated and the PImax using spirometry and manovacometry respectively. The myoelectrical activity of the scalene and sternocleidomastoid muscles was measured using surface electromyography at the baseline and during the PImax maneuver. RESULTS: the baseline surface electromyography for the scalene muscle was greater in the asthma group than in the control. However, the base surface

  18. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    Science.gov (United States)

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  19. Effect of simultaneous application of postural techniques and expiratory muscle strength training on the enhancement of the swallowing function of patients with dysphagia caused by parkinson?s disease

    OpenAIRE

    Byeon, Haewon

    2016-01-01

    [Purpose] This study aimed to investigate the effect of simultaneous application of postural techniques and expiratory muscle strength training on the enhancement of the swallowing function of patients with dysphagia caused by Parkinson?s disease. [Subjects and Methods] The subjects of this study were 18 patients who received simultaneous application of postural techniques and expiratory muscle strength training and 15 patients who received expiratory muscle strength training only. Postural t...

  20. Changes in muscle strength in elderly women after proprioceptive neuromuscular facilitation based training

    Directory of Open Access Journals (Sweden)

    Edivã Bernardo da Silva

    Full Text Available Introduction Proprioceptive neuromuscular facilitation (PNF can be used to improve the quality of life of both healthy and diseased subjects, including the elderly, who suffer muscular weakness due to aging, leading to an impairment in functional capacity. Objective Verify the effectiveness of PNF as a tool for functional conditioning. Materials and methods We evaluated a total of ten elderly women aged 60–70 years, clinically healthy and physically active. They had the force of motion of hip flexion with knee extension analyzed by an analog dynamometer. They were then randomly and equally divided into experimental (EG and control group (CG. The GC was instructed to continue with their normal activities while the GE held 15 training sessions in the lower limb (LL based on the diagonal D1 and D2. Finally, a new collection wrench the two groups was performed and the data compared. Results There was a significant increase in the average strength of GE, on the order of 31% (p 0.05. Discussion : The results confirm that the FNP through initial work of readjustment and proprioceptive neuromuscular activation, and after that, conditioning of the muscle fibers (mainly resistive is capable of amplifying the force developed by the muscle. Conclusion The PNF was effective as training to gain muscle strength, should be better analyzed as a tool fitness, not to cause health risks, have low cost and easy application.

  1. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Directory of Open Access Journals (Sweden)

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  2. Muscle oxygen changes following Sprint Interval Cycling training in elite field hockey players.

    Directory of Open Access Journals (Sweden)

    Ben Jones

    Full Text Available This study examined the effects of Sprint Interval Cycling (SIT on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT. Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP and a control group (CON. The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2, tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb, total tissue haemoglobin (tHb and tissue oxygenation (TSI % were taken. In the EXP group (5.34 ± 0.14 to 5.50 ± 0.14 m.s(-1 but not the CON group (pre = 5.37 ± 0.27 to 5.39 ± 0.30 m.s(-1 significant changes were seen in the 30-15 IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59 ± 0.91 to -12.16 ± 2.70%; ΔHHb+HMb (35.68 ± 6.67 to 69.44 ± 26.48 μM.cm; and ΔHbO2+ MbO2 (-74.29 ± 13.82 to -109.36 ± 22.61 μM.cm. No significant differences were seen in ΔtHb (-45.81 ± 15.23 to -42.93 ± 16.24. NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes.

  3. TIME COURSE ALTERATIONS OF SATELLITE CELL EVENTS IN RESPONSE TO LIGHT MODERATE ENDURANCE TRAINING IN WHITE GASTROCNEMIUS MUSCLE OF THE RAT

    Directory of Open Access Journals (Sweden)

    Zong-Yan Cai

    2012-01-01

    Full Text Available This study investigated satellite cells and their related molecular events adapted to light moderate endurance training in the white gastrocnemius muscle of the rat. The white gastrocnemius muscle of male Sprague-Dawley rats that had been trained for 4 weeks and 8 weeks, with control rats being analysed alongside them, was selected for analysis (n=3 per group. The training protocol consisted of treadmill running at 20 m · min-1 for 30 min on a 0% grade, for 3 days · week-1. Immunohistochemical staining coupled with image analysis was used for quantification. To provide deeper insight into the cell layer, 40 sections per rat, corresponding to 120 values per group, were obtained as a mean value for statistical comparison. The results indicated that at week 4, training effects increased the vascular endothelial growth factor (VEGF content and c-met positive satellite cell numbers. At week 8, the training effect was attenuated for VEGF and c-met satellite cell numbers, but it increased in the muscle fibre area. Additionally, c-met positive satellite cell numbers correlated with VEGF content (r = 0.79, p<0.05. In conclusion, this study suggests that light moderate endurance training could stimulate satellite cell activation that might be related to VEGF signalling. Additionally, the satellite cells activated by moderate endurance training might contribute to slight growth in myocytes.

  4. Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries.

    Science.gov (United States)

    Laughlin, M Harold; Welshons, Wade V; Sturek, Michael; Rush, James W E; Turk, James R; Taylor, Julia A; Judy, Barbara M; Henderson, Kyle K; Ganjam, V K

    2003-07-01

    Our purpose was to determine the effects of gender and exercise training on endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) protein content of porcine skeletal muscle arteries and to evaluate the role of 17beta-estradiol (E2) in these effects. We measured eNOS and SOD content with immunoblots and immunohistochemistry in femoral and brachial arteries of trained and sedentary male and female pigs and measured estrogen receptor (ER) mRNA and alpha-ER and beta-ER protein in aortas of male and female pigs. Results indicate that female arteries contain more eNOS than male arteries and that exercise training increases eNOS content independent of gender. Male and female pigs expressed similar levels of alpha-ER mRNA and protein and similar amounts beta-ER protein in their arteries. E2 concentrations as measured by RIA were 180 +/- 34 pg/ml in male sera and approximately 5 pg/ml in female sera, and neither was changed by training. However, bioassay indicated that biologically active estrogen equivalent to only 35 +/- 5 pg/ml was present in male sera. E2 in female pigs, whether measured by RIA or bioassay, was approximately 24 pg/ml at peak estrous and 2 pg/ml on day 5 diestrus. The free fraction of E2 in sera did not explain the low measurements, relative to RIA, of E2. We conclude that 1). gender has significant influence on eNOS and SOD content of porcine skeletal muscle arteries; 2). the effects of gender and exercise training vary among arteries of different anatomic origin; 3). male sera contains compounds that cause RIA to overestimate circulating estrogenic activity; and 4). relative to human men, the male pig is not biologically estrogenized by high levels of E2 reported by RIA, whereas in female pigs E2 levels are lower than in the blood of human women.

  5. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Bonner, H.W.; Leslie, S.W.; Combs, A.B.; Tate, C.A.

    1976-01-01

    Mitochondrial and sarcoplasmic reticular 45 Ca 2+ uptake and Ca 2+ -ATPase activity were determined in skeletal muscle from exercise trained and non-trained rats at rest or following short-term exhaustive exercise. In trained rats exercised to exhaustion, mitochondrial 45 Ca 2+ uptake was significantly depressed when compared to non-trained rats at rest. Ca 2+ -ATPase activity of sarcoplasmic reticulum from trained rats exercised to exhaustion was significantly increased as compared to trained rats at rest. These data suggest that the disruptive influence of Ca 2+ accumulation in mitochondria isolated following exhaustive exercise may be diminished as a result of training

  6. Laryngeal schwannoma in an 8-year-old boy with inspiratory dyspnea.

    Science.gov (United States)

    Rognone, Elisa; Rossi, Andrea; Conte, Massimo; Nozza, Paolo; Tarantino, Vincenzo; Fibbi, Antonio; Saetti, Roberto; Cutrone, Cesare; Tortori-Donati, Paolo

    2007-10-01

    Schwannomas of the larynx are rare lesions in the pediatric age group. In this article, we report on the neuroimaging features of a schwannoma arising from the left aryepiglottic fold in an 8-year-old boy with a 6-month history of inspiratory dyspnea. Neuroimaging showed a well-defined, avoid mass originating from the left aryepiglottic fold. The lesion was removed endoscopically. Complete removal of laryngeal schwannomas is curative, and adjuvant treatment is not required.

  7. Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy.

    Science.gov (United States)

    Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi

    2017-07-01

    We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.

  8. Evaluation of image quality and patient safety: paired inspiratory and expiratory MDCT assessment of tracheobronchomalacia in paediatric patients under general anaesthesia with breath-hold technique

    International Nuclear Information System (INIS)

    Lee, Edward Y.; Bastos, Maria d' Almeida; Stark, Cynthia; Carrier, Maureen; Zurakowski, David; Mason, Keira P.

    2012-01-01

    The purpose of our investigation was to evaluate image quality and patient safety in infants and young children who required general anaesthesia with breath-hold technique for paired inspiratory and expiratory multidetector CT (MDCT) assessment of tracheobronchomalacia (TBM). Our hospital's institutional review board approved the review of radiological and clinical data of a consecutive series of 20 paediatric patients who underwent MDCT under general anaesthesia with breath-hold technique for evaluation of TBM from May 2006 to December 2008. For each MDCT study, two fellowship-trained paediatric radiologists reviewed the inspiratory and expiratory MDCT images in an independent, randomised and blinded fashion for the presence of motion artefact at three anatomic levels (upper, middle and lower central airways). The clinical history and anaesthesia outcome, including the occurrence of any adverse events during or following the MDCT examinations until discharge, were also reviewed and recorded. The study population consisted of 20 infants and young children (13 boys/seven girls, mean age 1.7 ± 1.4 years, age range 11 days to 4 years). The imaging quality of all 20 MDCT studies was diagnostic with no motion artefact in 16 studies (80%) and minimal motion artefact in the remaining four studies (20%). Minor adverse events occurred in three patients (15%) that included one patient (5%) with a brief (<60 s) oxygen desaturation during MDCT study, which resolved with oxygen, and two patients (5%) with either a brief (<60 s) oxygen desaturation (n = 1, 5%) or cough (n = 1, 5%) during recovery period, which were completely resolved with oxygen and dexamethasone, respectively. Diagnostic quality paired inspiratory and expiratory MDCT imaging with breath-hold technique can be safely performed in infants and young children under general anaesthesia for evaluation of TBM.

  9. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return.

    Science.gov (United States)

    Berger, David; Moller, Per W; Weber, Alberto; Bloch, Andreas; Bloechlinger, Stefan; Haenggi, Matthias; Sondergaard, Soren; Jakob, Stephan M; Magder, Sheldon; Takala, Jukka

    2016-09-01

    According to Guyton's model of circulation, mean systemic filling pressure (MSFP), right atrial pressure (RAP), and resistance to venous return (RVR) determine venous return. MSFP has been estimated from inspiratory hold-induced changes in RAP and blood flow. We studied the effect of positive end-expiratory pressure (PEEP) and blood volume on venous return and MSFP in pigs. MSFP was measured by balloon occlusion of the right atrium (MSFPRAO), and the MSFP obtained via extrapolation of pressure-flow relationships with airway occlusion (MSFPinsp_hold) was extrapolated from RAP/pulmonary artery flow (QPA) relationships during inspiratory holds at PEEP 5 and 10 cmH2O, after bleeding, and in hypervolemia. MSFPRAO increased with PEEP [PEEP 5, 12.9 (SD 2.5) mmHg; PEEP 10, 14.0 (SD 2.6) mmHg, P = 0.002] without change in QPA [2.75 (SD 0.43) vs. 2.56 (SD 0.45) l/min, P = 0.094]. MSFPRAO decreased after bleeding and increased in hypervolemia [10.8 (SD 2.2) and 16.4 (SD 3.0) mmHg, respectively, P waterfall. Copyright © 2016 the American Physiological Society.

  10. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone

    Directory of Open Access Journals (Sweden)

    Richard J. Wood

    2012-01-01

    Full Text Available The prevalence of Type II Diabetes mellitus (T2DM is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone.

  11. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Directory of Open Access Journals (Sweden)

    J A Zoladz

    2004-10-01

    Full Text Available Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A, national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC composition. Significant differences (P<0.05 regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX. Unexpectedly, endurance athletes (group B such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A. We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  12. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery

    DEFF Research Database (Denmark)

    Meyhoff, Christian Sylvest; Jorgensen, Lars N; Wetterslev, Jørn

    2012-01-01

    A high perioperative inspiratory oxygen fraction (80%) has been recommended to prevent postoperative wound infections. However, the most recent and one of the largest trials, the PROXI trial, found no reduction in surgical site infection, and 30-day mortality was higher in patients given 80% oxygen...

  14. Training Strategies to Improve Muscle Power: Is Olympic-style Weightlifting Relevant?

    Science.gov (United States)

    Helland, Christian; Hole, Eirik; Iversen, Erik; Olsson, Monica Charlotte; Seynnes, Olivier; Solberg, Paul Andre; Paulsen, Gøran

    2017-04-01

    This efficacy study investigated the effects of 1) Olympic-style weightlifting (OWL), 2) motorized strength and power training (MSPT), and 3) free weight strength and power training (FSPT) on muscle power. Thirty-nine young athletes (20 ± 3 yr; ice hockey, volleyball, and badminton) were randomized into the three training groups. All groups participated in two to three sessions per week for 8 wk. The MSPT and FSPT groups trained using squats (two legs and single leg) with high force and high power, whereas the OWL group trained using clean and snatch exercises. MSPT was conducted as slow-speed isokinetic strength training and isotonic power training with augmented eccentric load, controlled by a computerized robotic engine system. FSPT used free weights. The training volume (sum of repetitions × kg) was similar between all three groups. Vertical jumping capabilities were assessed by countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), and loaded CMJ (10-80 kg). Sprinting capacity was assessed in a 30-m sprint. Secondary variables were squat one-repetition maximum (1RM), body composition, quadriceps thickness, and architecture. OWL resulted in trivial improvements and inferior gains compared with FSPT and MSPT for CMJ, SJ, DJ, and 1RM. MSPT demonstrated small but robust effects on SJ, DJ, loaded CMJ, and 1RM (3%-13%). MSPT was superior to FSPT in improving 30-m sprint performance. FSPT and MSPT, but not OWL, demonstrated increased thickness in the vastus lateralis and rectus femoris (4%-7%). MSPT was time-efficient and equally or more effective than FSPT training in improving vertical jumping and sprinting performance. OWL was generally ineffective and inferior to the two other interventions.

  15. The long-term clinical and MRI results following eccentric calf muscle training in chronic Achilles tendinosis

    International Nuclear Information System (INIS)

    Gaerdin, Anna; Shalabi, Adel; Movin, Tomas; Svensson, Leif

    2010-01-01

    To evaluate the long-term results following eccentric calf-muscle training in patients with chronic Achilles tendinopathy. A total of 24 patients with chronic Achilles tendinopathy were included in a study evaluating MRI findings and clinical symptoms before and after 3 months of daily eccentric calf-muscle strength training. Median duration of symptoms was 18 months (range 6-120). Four of the patients did not perform the prescribed treatment for different reasons and were followed for 14 months. The resulting 20 treated patients completed 4.2-year (range 29-58 months) follow up. Tendon volume was evaluated by using 3D seed growing technique and signal abnormalities were visually semi-quantitatively graded. Level of pain and performance was categorized using a questionnaire completed by the patient. In the symptomatic treated patients, median intensity level of pain decreased from moderate/severe at time of inclusion to mild at follow up (p 3 (SD 2.0) at time of inclusion and 6.4 cm 3 (SD 2.0) at follow up (p = 0.18). The four symptomatic non-treated tendons did not improve regarding pain, performance, intratendinous signal or tendon volume. We found decreased pain, improved performance and decreased intratendinous signal both compared to index examination and immediately after the 3 months training regimen in a 4.2-year clinical and MRI follow up, in a group of patients treated with heavy loaded eccentric calf-muscle training for chronic Achilles tendinopathy. The improvements were greater at 4.2-year follow up, despite no further active treatment, than immediately after the treatment. This may indicate a good long-term prognosis for Achilles tendinosis patients. (orig.)

  16. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Science.gov (United States)

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  17. Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence?

    Science.gov (United States)

    Georges, Marjolaine; Morawiec, Elise; Raux, Mathieu; Gonzalez-Bermejo, Jésus; Pradat, Pierre-François; Similowski, Thomas; Morélot-Panzini, Capucine

    2016-06-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated. Copyright ©ERS 2016.

  18. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Højlund, K; Vind, B F

    2010-01-01

    of obese participants with and without type 2 diabetes. METHODS: Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic...... in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes...

  19. Adaptation of motor unit contractile properties in rat medial gastrocnemius to treadmill endurance training: Relationship to muscle mitochondrial biogenesis.

    Science.gov (United States)

    Kryściak, Katarzyna; Majerczak, Joanna; Kryściak, Jakub; Łochyński, Dawid; Kaczmarek, Dominik; Drzymała-Celichowska, Hanna; Krutki, Piotr; Gawedzka, Anna; Guzik, Magdalena; Korostynski, Michał; Szkutnik, Zbigniew; Pyza, Elżbieta; Jarmuszkiewicz, Wiesława; Zoladz, Jerzy A; Celichowski, Jan

    2018-01-01

    This study aimed at investigating the effects of 2, 4 and 8 weeks of endurance training on the contractile properties of slow (S), fast fatigue resistant (FR) and fast fatigable (FF) motor units (MUs) in rat medial gastrocnemius (MG) in relation to the changes in muscle mitochondrial biogenesis. The properties of functionally isolated MUs were examined in vivo. Mitochondrial biogenesis was judged based on the changes in mitochondrial DNA copy number (mtDNA), the content of the electron transport chain (ETC) proteins and PGC-1α in the MG. Moreover, the markers of mitochondria remodeling mitofusins (Mfn1, Mfn2) and dynamin-like protein (Opa1) were studied using qPCR. A proportion of FR MUs increased from 37.9% to 50.8% and a proportion of FF units decreased from 44.7% to 26.6% after 8 weeks of training. The increased fatigue resistance, shortened twitch duration, and increased ability to potentiate force were found as early as after 2 weeks of endurance training, predominantly in FR MUs. Moreover, just after 2 weeks of the training an enhancement of the mitochondrial network remodeling was present as judged by an increase in expression of Mfn1, Opa1 and an increase in PGC-1α in the slow part of MG. Interestingly, no signs of intensification of mitochondrial biogenesis assessed by ETC proteins content and mtDNA in slow and fast parts of gastrocnemius were found at this stage of the training. Nevertheless, after 8 weeks of training an increase in the ETC protein content was observed, but mainly in the slow part of gastrocnemius. Concluding, the functional changes in MUs' contractile properties leading to the enhancement of muscle performance accompanied by an activation of signalling that controls the muscle mitochondrial network reorganisation and mitochondrial biogenesis belong to an early muscle adaptive responses that precede an increase in mitochondrial ETC protein content.

  20. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø, Andreas; Andersen, Nynne B; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and chan......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity...... and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate...... and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P