WorldWideScience

Sample records for insertional mutant protein

  1. Construction and characterization of Pseudomonas aeruginosa protein F-deficient mutants after in vitro and in vivo insertion mutagenesis of the cloned gene.

    Science.gov (United States)

    Woodruff, W A; Hancock, R E

    1988-06-01

    Mutants with insertion mutations in the Pseudomonas aeruginosa protein F (oprF) gene were created in vivo by Tn1 mutagenesis of the cloned gene in Escherichia coli and in vitro by insertion of the streptomycin resistance-encoding omega fragment into the cloned gene, followed by transfer of the mutated protein F gene back to P. aeruginosa. Homologous recombination into the P. aeruginosa chromosome was driven by a bacteriophage F116L transduction method in the oprF::Tn1 mutants or Tn5-instability in the oprF::omega mutants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting demonstrated that the resultant oprF insertion mutants had lost protein F, whereas restriction digestion and Southern blotting experiments proved that the mutants contained a single chromosomal oprF gene with either Tn1 or omega inserted into it. It has been proposed that protein F has a role in antibiotic uptake in P. aeruginosa. Measurement of antibiotic resistance levels showed small to marginal increases in resistance, compared with that of the parent P. aeruginosa strain, to a variety of beta-lactam antibiotics. Protein F-deficient mutants had altered barrier properties as revealed by a three- to fivefold increase in the uptake of the hydrophobic fluorescent probe 1-N-phenylnaphthylamine.

  2. Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yangbin Gao; Yunde Zhao

    2013-01-01

    T-DNA insertion mutants have been widely used to define gene functions in Arabidopsis and in other plants.Here,we report an unexpected phenomenon of epigenetic suppression of T-DNA insertion mutants in Arabidopsis.When the two T-DNA insertion mutants,yucl-1 and ag-TD,were crossed together,the defects in all of the ag-TD plants in the F2 population were partially suppressed regardless of the presence of yucl-1.Conversion of ag-TD to the suppressed ag-TD (named as ag-TD*) did not follow the laws of Mendelian genetics.The ag-TD* could be stably transmitted for many generations without reverting to ag-TD,and ag-TD* had the capacity to convert ag-TD to ag-TD*.We show that epigenetic suppression of T-DNA mutants is not a rare event,but certain structural features in the T-DNA mutants are needed in order for the suppression to take place.The suppressed T-DNA mutants we observed were all intronic T-DNA mutants and the T-DNA fragments in both the trigger T-DNA as well as in the suppressed T-DNA shared stretches of identical sequences.We demonstrate that the suppression of intronic T-DNA mutants is mediated by trans-interactions between two ToDNA insertions.This work shows that caution is needed when intronic T-DNA mutants are used.

  3. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next......-generation sequencing approaches. The LORE1 mutant lines are freely available and can be ordered online. Endogenous retrotransposons are also active in many other plant species. Based on the methods developed for LORE1 mutagenesis, it should be simple to establish similar systems in other species, once an appropriate...

  4. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    OpenAIRE

    de Montaigu Amaury; Magneschi Leonardo; Catalanotti Claudia; Yang Wenqiang; Mus Florence; Pootakham Wirulda; Gonzalez-Ballester David; Higuera Jose J; Prior Matthew; Galván Aurora; Fernandez Emilio; Grossman Arthur R

    2011-01-01

    Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment...

  5. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    Directory of Open Access Journals (Sweden)

    de Montaigu Amaury

    2011-07-01

    Full Text Available Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker and in the strategies used to maintain and store transformants.

  6. Inverse polymerase chain reaction for rapid gene isolation in Arabidopsis thaliana insertion mutants

    NARCIS (Netherlands)

    Vanderhaeghen, R.; Scheres, B.J.G.; Montagu, M. van; Lijsebetten, M. van

    1992-01-01

    Recently, many mutants have been isolated in the model plant Arabidopsis thaliana by the insertion of the Agrobacterium tumefaciens T-DNA into the plant genome. Instead of applying Southern analysis on these insertion mutants and to avoid the construction of mutant- derived genomic libraries, we pro

  7. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization.

    Science.gov (United States)

    Bellemann, P; Geider, K

    1992-05-01

    Transposon Tn5, on a mobilizable ColE1 plasmid, on a Ti plasmid derepressed for bacterial transfer, and on the bacteriophage fd genome, was used to construct pathogenicity mutants of the fire blight pathogen Erwinia amylovora. Eleven nonpathogenic mutants were isolated from 1600 independent mutants screened. These mutants were divided into three types: auxotrophs, exopolysaccharide (EPS)-deficient mutants and a mutant of the dsp phenotype. According to their insertion sites the Tn5 mutants were mapped into several classes. Some of the mutants could be complemented with cosmid clones from a genomic library of the parent strain for EPS production on minimal agar. EPS-deficient mutants and the dsp mutant could complement each other to produce virulence symptoms on pear slices.

  8. Insertional protein engineering for analytical molecular sensing

    Directory of Open Access Journals (Sweden)

    Arís Anna

    2006-04-01

    Full Text Available Abstract The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.

  9. Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions

    Directory of Open Access Journals (Sweden)

    Blouin Christian

    2007-11-01

    Full Text Available Abstract Background In protein evolution, the mechanism of the emergence of novel protein domain is still an open question. The incremental growth of protein variable regions, which was produced by stochastic insertions, has the potential to generate large and complex sub-structures. In this study, a deterministic methodology is proposed to reconstruct phylogenies from protein structures, and to infer insertion events in protein evolution. The analysis was performed on a broad range of SCOP domain families. Results Phylogenies were reconstructed from protein 3D structural data. The phylogenetic trees were used to infer ancestral structures with a consensus method. From these ancestral reconstructions, 42.7% of the observed insertions are nested insertions, which locate in previous insert regions. The average size of inserts tends to increase with the insert rank or total number of insertions in the variable regions. We found that the structures of some nested inserts show complex or even domain-like fold patterns with helices, strands and loops. Furthermore, a basal level of structural innovation was found in inserts which displayed a significant structural similarity exclusively to themselves. The β-Lactamase/D-ala carboxypeptidase domain family is provided as an example to illustrate the inference of insertion events, and how the incremental growth of a variable region is capable to generate novel structural patterns. Conclusion Using 3D data, we proposed a method to reconstruct phylogenies. We applied the method to reconstruct the sequences of insertion events leading to the emergence of potentially novel structural elements within existing protein domains. The results suggest that structural innovation is possible via the stochastic process of insertions and rapid evolution within variable regions where inserts tend to be nested. We also demonstrate that the structure-based phylogeny enables the study of new questions relating to the

  10. Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Tomonobu M Watanabe

    Full Text Available Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure.

  11. A user's guide to the Arabidopsis T-DNA insertion mutant collections.

    Science.gov (United States)

    O'Malley, Ronan C; Barragan, Cesar C; Ecker, Joseph R

    2015-01-01

    The T-DNA sequence-indexed mutant collections contain insertional mutants for most Arabidopsis thaliana genes and have played an important role in plant biology research for almost two decades. By providing a large source of mutant alleles for in vivo characterization of gene function, this resource has been leveraged thousands of times to study a wide range of problems in plant biology. Our primary goal in this chapter is to provide a general guide to strategies for the effective use of the data and materials in these collections. To do this, we provide a general introduction to the T-DNA insertional sequence-indexed mutant collections with a focus on how best to use the available data sources for good line selection. As isolation of a homozygous line is a common next step once a potential disruption line has been identified, the second half of the chapter provides a step-by-step guide for the design and implementation of a T-DNA genotyping pipeline. Finally, we describe interpretation of genotyping results and include a troubleshooting section for common types of segregation distortions that we have observed. In this chapter we introduce both basic concepts and specific applications to both new and more experienced users of the collections for the design and implementation of small- to large-scale genotyping pipelines.

  12. SNP discovery and genetic mapping of T-DNA insertional mutants in Fragaria vesca L.

    Science.gov (United States)

    Ruiz-Rojas, J J; Sargent, D J; Shulaev, V; Dickerman, A W; Pattison, J; Holt, S H; Ciordia, A; Veilleux, Richard E

    2010-08-01

    As part of a program to develop forward and reverse genetics platforms in the diploid strawberry [Fragaria vesca L.; (2n = 2x = 14)] we have generated insertional mutant lines by T-DNA mutagenesis using pCAMBIA vectors. To characterize the T-DNA insertion sites of a population of 108 unique single copy mutants, we utilized thermal asymmetric interlaced PCR (hiTAIL-PCR) to amplify the flanking region surrounding either the left or right border of the T-DNA. Bioinformatics analysis of flanking sequences revealed little preference for insertion site with regard to G/C content; left borders tended to retain more of the plasmid backbone than right borders. Primers were developed from F. vesca flanking sequences to attempt to amplify products from both parents of the reference F. vesca 815 x F. bucharica 601 mapping population. Polymorphism occurred as: presence/absence of an amplification product for 16 primer pairs and different size products for 12 primer pairs, For 46 mutants, where polymorphism was not found by PCR, the amplification products were sequenced to reveal SNP polymorphism. A cleaved amplified polymorphic sequence/derived cleaved amplified polymorphism sequence (CAPS/dCAPS) strategy was then applied to find restriction endonuclease recognition sites in one of the parental lines to map the SNP position of 74 of the T-DNA insertion lines. BLAST search of flanking regions against GenBank revealed that 46 of 108 flanking sequences were close to presumed strawberry genes related to annotated genes from other plants.

  13. Mutant chaperonin proteins: new tools for nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Paavola, C D [NASA Ames Research Center, Bioengineering Branch, Mail Stop 239-15, Moffett Field, CA 94035 (United States); Kagawa, H [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Chan, S L [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Trent, J D [NASA Ames Research Center, Bioengineering Branch, Mail Stop 239-15, Moffett Field, CA 94035 (United States)

    2007-11-14

    Much effort has gone into finding peptides that bind potentially useful nanoparticles, but relatively little effort has focused on the scaffolds that organize these peptides into useful nanostructures. Chaperonins are protein complexes with 14-18 protein subunits that self-assemble into double-ring complexes and function as scaffolds for peptides or amino acids that bind metallic and semiconductor quantum dots. The utility of chaperonins as scaffolds depends on their structure and their ability to self-assemble into double-rings and higher-order structures, such as filaments and two-dimensional arrays. To better understand the structure of chaperonins, we constructed a model of a group II chaperonin and, based on this model, genetically constructed five mutant subunits with significant deletions. We expressed these mutants as recombinant proteins and observed by native polyacrylamide gel electrophoresis (PAGE) and transmission electron microscopy (TEM) that they all self-assembled into double rings. Our model predicted and TEM confirmed that these deletions did not significantly change the 17 nm diameter of the wild-type double rings, but decreased their height and opened their central cavities. Four of the five mutants formed higher-order structures: chains of rings, bundles of chains or filaments, and two-dimensional arrays, which we suggest can be useful nanostructures.

  14. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts.

    Science.gov (United States)

    Schleiff, Enrico; Soll, Jürgen

    2005-11-01

    Proteins are translocated across or inserted into membranes by machines that are composed of soluble and membrane-anchored subunits. The molecular action of these machines and their evolutionary origin are at present the focus of intense research. For instance, our understanding of the mode of insertion of beta-barrel membrane proteins into the outer membrane of endosymbiotically derived organelles has increased rapidly during the past few years. In particular, the identification of the Omp85/YaeT-involving pathways in Neisseria meningitidis, Escherichia coli and cyanobacteria, and homologues of Omp85/YaeT in chloroplasts and mitochondria, has provided new clues about the ancestral beta-barrel protein insertion pathway. This review focuses on recent advances in the elucidation of the evolutionarily conserved concepts that underlie the translocation and insertion of beta-barrel membrane proteins.

  15. Characterization of T-DNA insertion mutants with decreased virulence in the entomopathogenic fungus Beauveria bassiana JEF-007.

    Science.gov (United States)

    Kim, Sihyeon; Lee, Se Jin; Nai, Yu-Shin; Yu, Jeong Seon; Lee, Mi Rong; Yang, Yi-Ting; Kim, Jae Su

    2016-10-01

    The bean bug, Riptortus pedestris, is a major agricultural pest that reduces crop quality and value. Chemical pesticides have contributed to pest management, but resistance to these chemicals has significantly limited their use. Alternative strategies with different modes of action, such as entomopathogenic fungi, are therefore of great interest. Herein, we explored how entomopathogenic fungi can potentially be used to control the bean bug and focused on identifying virulence-related genes. Beauveria bassiana (JEF isolates) were assayed against bean bugs under laboratory conditions. One isolate, JEF-007, showed >80 % virulence by both spray and contact exposure methods. Agrobacterium tumefaciens-mediated transformation (AtMT) of JEF-007 generated 249 random transformants, two of which (B1-06 and C1-49) showed significantly reduced virulence against Tenebrio molitor and R. pedestris immatures. Both species were used for rapid screening of virulence-reduced mutants. The two transformants had different morphologies, conidial production, and thermotolerance than the wild type. To determine the localization of the randomly inserted T-DNA, thermal asymmetric interlaced (TAIL) PCR was conducted and analysis of the two clones found multiple T-DNA insertions (two in B1-06 and three in C1-49). Genes encoding complex I intermediate-associated protein 30 (CIA30) and the autophagy protein (Atg22) were possibly disrupted by the T-DNA insertion and might be involved in the virulence. This work provides a strong platform for future functional genetic studies of bean bug-pathogenic B. bassiana. The genes putatively involved in fungal virulence should be experimentally validated by knockdown in future studies.

  16. [Isolation of a high hydrogen-producing mutant TB34 generated by transposon insertion and analysis of hydrogen production].

    Science.gov (United States)

    Liu, Hong-Yan; Wang, Guang-Ce; Shi, Liu-Yang; Zhu, Da-Ling

    2012-07-01

    To increase the hydrogen-producing capacity of Pantoea agglomerans BH18, isolated from mangrove sludge, we constructed a stable transposon mutagenesis library of this strain. A Tn7-based transposon was randomly inserted into the genomic DNA. Mutants were screened by kanamycin resistance and identified by amplification of the inserted transposon sequences. A mutant strain TB34 was isolated, whose hydrogen production capacity was significantly improved compared to the wild type strain. In seawater-containing medium supplemented with 10 g x L(-1) glucose and had an initial pH of 7.0, the hydrogen yield (H2/glucose) of the mutant strain was (2.04 +/- 0.04) mol x mol(-1), which was 43% higher than that of the wild type strain. The mutant TB34 showed steady hydrogen production capacity for five consecutive passages. Different carbon sources were tested in the hydrogen production by the mutant TB34 and the results showed that both the mutant strain TB34 and the wild type strain BH18 were able to produce hydrogen on sucrose, glucose and fructose. However, different from the wild type strain, the mutant strain TB34 was also able to produce hydrogen using xylose as substrate, with a hydrogen yield (H2/xylose) of (1.34 +/- 0.09) mol x mol(-1), indicating a broader substrate spectrum in the mutant.

  17. Construction and genetic analysis of mutator insertion mutant population in maize

    Institute of Scientific and Technical Information of China (English)

    LIU Wenting; GAO Youjun; TENG Feng; SHI Qing; ZHENG Yonglian

    2006-01-01

    A total of 26718 M1 plants were obtained by crossing the active mutator transposon donor parents (Q105, WW51, 115F, V26-2 and 919J)with the recipient parents (Hz85,W328 with Bz gene and S-Mo17Rf3Rf3). The phenotypes of M1 plants were observed in the field. M1 plants were self-pollinated to develop the mutator insertion-mutagenized M2 seeds. The transposition frequency of the mutator in the genome was calculated based on the spotted aleurone phenotype of the M2 seeds. The results showed that: (1) the mutation frequency of M1 phenotypes in the field was 0.07 in the population of W328×Mu; (2) the mutation frequency of spotted aleurone seeds on the M2 ears was 0.122 in the population of W328×Mu; (3) five S-cytoplasm male-sterile plants were found among 22500 M1 plants of S-Mo17Rf3Rf3×Mu, with the transposition frequency about 2.2×10-4 per locus. 99 flanking sequences of mutator transposition were amplified by the modified MuTAIL-PCR, and 59 non-redundant sequences with length around 400 bp were obtained.After bioinformatic analysis, 27 sequences of them could be annotated, using non-redundant nucleotide database of maize, rice, and Arabidopsis. 36 sequences of them were located on the genetic map of maize by comparative genomics, and several flanking sequences of mutator insertion were mapped on the single marker locus. Hotspot sequences of mutator transposition were revealed by comparing the homologies between the 9-bp target site duplication of the mutator insertion. The putative functions of 8 flanking sequences of rnutator transposition had identity with the functions of their corresponding marker. The constructed mutator insertion mutant population in maize will facilitate the new gene discovery and functional genomics study in maize.

  18. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    Science.gov (United States)

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  19. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  20. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.

    Science.gov (United States)

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi

    2005-06-01

    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  1. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Johnna L Roose

    Full Text Available Plants contain an extensive family of PsbP-related proteins termed PsbP-like (PPL and PsbP domain (PPD proteins, which are localized to the thylakoid lumen. The founding member of this family, PsbP, is an established component of the Photosystem II (PS II enzyme, and the PPL proteins have also been functionally linked to other photosynthetic processes. However, the functions of the remaining seven PPD proteins are unknown. To elucidate the function of the PPD5 protein (At5g11450 in Arabidopsis, we have characterized a mutant T-DNA insertion line (SALK_061118 as well as several RNAi lines designed to suppress the expression of this gene. The functions of the photosynthetic electron transfer reactions are largely unaltered in the ppd5 mutants, except for a modest though significant decrease in NADPH dehydrogenase (NDH activity. Interestingly, these mutants show striking plant developmental and morphological defects. Relative to the wild-type Col-0 plants, the ppd5 mutants exhibit both increased lateral root branching and defects associated with axillary bud formation. These defects include the formation of additional rosettes originating from axils at the base of the plant as well as aerial rosettes formed at the axils of the first few nodes of the shoot. The root-branching phenotype is chemically complemented by treatment with the synthetic strigolactone, GR24. We propose that the developmental defects observed in the ppd5 mutants are related to a deficiency in strigolactone biosynthesis.

  2. High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization.

    Science.gov (United States)

    Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J

    2014-06-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.

  3. A relaxed mutant with an altered ribosomal protein L11.

    Science.gov (United States)

    Parker, J; Watson, R J; Friesen, J D

    1976-02-27

    Relaxed mutants of Escherichia coli have been isolated which have an altered electrophoretic mobility of ribosomal protein L11. It can be shown that reversion to stringency in one of these mutants occurs simultaneously with a reversion of L11 protein to tis normal mobility. The L11 structural gene, rplK, maping near rif, is carried by the bacteriophage lambdacI857S7drifd18, and is most likely identical with relC.

  4. Multiple defects in Escherichia coli mutants lacking HU protein.

    OpenAIRE

    Huisman, O; Faelen, M; Girard, D; Jaffé, A; Toussaint, A; Rouvière-Yaniv, J

    1989-01-01

    The HU protein isolated from Escherichia coli, composed of two partially homologous subunits, alpha and beta, shares some of the properties of eucaryotic histones and is a major constituent of the bacterial nucleoid. We report here the construction of double mutants totally lacking both subunits of HU protein. These mutants exhibited poor growth and a perturbation of cell division, resulting in the formation of anucleate cells. In the absence of HU, phage Mu was unable to grow, to lysogenize,...

  5. Genetic and Phenotypic Analyses of a Papaver somniferum T-DNA Insertional Mutant with Altered Alkaloid Composition

    Directory of Open Access Journals (Sweden)

    Kayo Yoshimatsu

    2012-02-01

    Full Text Available The in vitro shoot culture of a T-DNA insertional mutant of Papaver somniferum L. established by the infection of Agrobacterium rhizogenes MAFF03-01724 accumulated thebaine instead of morphine as a major opium alkaloid. To develop a non-narcotic opium poppy and to gain insight into its genetic background, we have transplanted this mutant to soil, and analyzed its alkaloid content along with the manner of inheritance of T-DNA insertion loci among its selfed progenies. In the transplanted T0 primary mutant, the opium (latex was found to be rich in thebaine (16.3% of dried opium by HPLC analysis. The analyses on T-DNA insertion loci by inverse PCR, adaptor-ligation PCR, and quantitative real-time PCR revealed that as many as 18 copies of T-DNAs were integrated into a poppy genome in a highly complicated manner. The number of copies of T-DNAs was decreased to seven in the selected T3 progenies, in which the average thebaine content was 2.4-fold that of the wild type plant. This may indicate that the high thebaine phenotype was increasingly stabilized as the number of T-DNA copies was decreased. In addition, by reverse transcription PCR analysis on selected morphine biosynthetic genes, the expression of codeine 6-O-demethylase was clearly shown to be diminished in the T0 in vitro shoot culture, which can be considered as one of the key factors of altered alkaloid composition.

  6. Functional analysis of Burkitt's lymphoma mutant c-Myc proteins

    OpenAIRE

    1996-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein that activates transcription of cellular genes. Transcription activation by Myc proteins is regulated by phosphorylation of serine and threonine residues within the transactivation domain and by complex formation with the retinoblastoma-related protein p107. In Burkitt’s lymphoma, missense mutations within the c-Myc transactivation domain have been found with high frequency. It has been reported that mutant c-Myc proteins derived ...

  7. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence

    Directory of Open Access Journals (Sweden)

    Lee Travis A

    2013-01-01

    Full Text Available Abstract Background Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. Results In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase and one thylakoid protein (the major light harvesting complex protein of photosystem II were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7. Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. Conclusions These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.

  8. A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects Microsclerotial Formation and Pathogenicity

    Science.gov (United States)

    Li, Guo-Ying; Jia, Pei-Song; Li, Hui; Zhao, Yun-Long; Zhao, Pan; Xia, Gui-Xian; Guo, Hui-Shan

    2010-01-01

    Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen. PMID:21151869

  9. Characterization of a Mutant Listeria monocytogenes Strain Expressing Green Fluorescent Protein

    Institute of Scientific and Technical Information of China (English)

    Ling-Li JIANG; Hou-Hui SONG; Xue-Yan CHEN; Chun-Lin KE; Jing-Jing XU; Ning CHEN; Wei-Huan FANG

    2005-01-01

    To construct a recombinant strain of Listeria monocytogenes for the expression of heterologous genes, homologous recombination was utilized for insertional mutation, targeting its listeriolysin O gene(hly). The gene encoding green fluorescent protein (GFP) was used as the indicator of heterologous gene expression. The gene gfp was inserted into hly downstream from its promoter and signal sequence by an overlapping extension polymerase chain reaction, and was then cloned into the shuttle plasmid pKSV7 for allelic exchange with the L. monocytogenes chromosome. Homologous recombination was achieved by growing the electro-transformed L. monocytogenes cells on chloramphenicol plates at a non-permissive temperature.Sequencing analysis indicated correct insertion of the target gene in-frame with the signal sequence. The recombinant strain expressed GFP constitutively as revealed by fluorescence microscopy. The mutant strain L. monocytogenes hly-gfp lost its hemolytic activity as visualized on the blood agar or when analyzed with the culture supernatant samples. Such insertional mutation resulted in a reduced virulence of about 2 logs less than its parent strain L. monocytogenes 10403s as shown by the 50%-lethal-dose assays in the mouse and embryonated chicken egg models. These results thus demonstrate that mutated L. monocytogenes could be a potential carrier for the expression of heterologous passenger genes or could act as an indicator organism in the food industry.

  10. FRET-Based Localization of Fluorescent Protein Insertions Within the Ryanodine Receptor Type 1

    OpenAIRE

    Raina, Shweta A.; Jeffrey Tsai; Montserrat Samsó; Fessenden, James D.

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) inse...

  11. Over 10,000 new maize mutants added to the uniformMu public resource: now 67,000 total Mu insertions with 42% genome coverage

    Science.gov (United States)

    Over 10,000 new mutants have been added to the UniformMu reverse genetics resource in release 7, bringing the total to over 67,000 germinal transposon insertions. These are available in 11,140 independent seed stocks. Close to half of the maize filtered gene set (42%) is represented by at least one ...

  12. Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Directory of Open Access Journals (Sweden)

    Roberto Favilla

    2011-04-01

    Full Text Available The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.

  13. Generation and Screening of T-DNA Insertion Mutants Mediated by Agrobacterium tumefaciens in the Garden Asparagus Stem Blight Pathogen Phomopsis asparagi.

    Science.gov (United States)

    Zhang, Yueping; Qu, Huaxiang; Zhao, Ping; Tang, Yongping; Zhou, Jingsong; Luo, Shaochun; Yin, Yuling; Chen, Guangyu

    2017-07-20

    The garden asparagus stem blight caused by filamentous fungus Phomopsis asparagi exposes a serious threat on asparagus production globally. However, to present, we understand poorly about the molecular mechanisms of fungal pathogenicity. To facilitate functional genomics research of P. asparagi, here we developed a highly efficient and stable Agrobacterium tumefaciens-mediated transformation approach which yielded 150-200 transformants per 1 × 10(6) conidia. Our results indicated that 25 °C, acetosyringone concentration of 150 μmol/L, and 72 h were recommended as optimal co-cultivation conditions for the transformation. Using this transformation approach, we constructed a T-DNA insertion mutant library containing 1253 strains. Twenty randomly selected T-DNA insertion mutants were able to grow on 0.2 × PDA selective media after five successive subcultures without selective pressure, indicating that the exogenous T-DNA was stably integrated into the P. asparagi genome. We confirmed several randomly selected mutants using PCR with primers specific to the hph gene. Southern blots suggested that three out of the five selected mutants have a single T-DNA insertion. Interestingly, multiple mutant candidates with growth defects were obtained from the growth assay. Moreover, several mutants were selected for further analysis on the T-DNA flanking sequences through TAIL-PCR analysis. A sequence comparison of total junction fragments implied that the insertion of T-DNA within P. asparagi genome appeared to be a random event. The transformation technology and genetic resources developed here will facilitate studies of pathogenic mechanisms in this devastating filamentous fungal pathogen of garden asparagus.

  14. Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis.

    Directory of Open Access Journals (Sweden)

    Hyun-Ja Han

    Full Text Available BACKGROUND: Bordetella pertussis is the primary etiologic agent of the disease pertussis. Universal immunization programs have contributed to a significant reduction in morbidity and mortality of pertussis; however, incidence of the disease, especially in adolescents and adults, has increased in several countries despite high vaccination coverage. During the last three decades, strains of Bordetella pertussis in circulation have shifted from the vaccine-type to the nonvaccine-type in many countries. A comparative proteomic analysis of the strains was performed to identify protein(s involved in the type shift. METHODOLOGY/PRINCIPAL FINDING: Proteomic analysis identified one differentially expressed protein in the B. pertussis strains: the type III cytotoxic effector protein BteA, which is responsible for host cell death in Bordetella bronchiseptica infections. Immunoblot analysis confirmed the prominent expression of BteA protein in the nonvaccine-type strains but not in the vaccine-type strains. Sequence analysis of the vaccine-type strains revealed an IS481 insertion in the 5' untranslated region of bteA, -136 bp upstream of the bteA start codon. A high level of bteA transcripts from the IS481 promoter was detected in the vaccine-type strains, indicating that the transcript might be an untranslatable form. Furthermore, BteA mutant studies demonstrated that BteA expression in the vaccine-type strains is down-regulated by the IS481 insertion. CONCLUSION/SIGNIFICANCE: The cytotoxic effector BteA protein is expressed at higher levels in B. pertussis nonvaccine-type strains than in vaccine-type strains. This type-dependent expression is due to an insertion of IS481 in B. pertussis clinical strains, suggesting that augmented expression of BteA protein might play a key role in the type shift of B. pertussis.

  15. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    Science.gov (United States)

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  16. Changes in Thermostability of Photosystem Ⅱ and Leaf Lipid Composition of Rice Mutant with Deficiency of Light-harvesting Chlorophyll Protein Complexes

    Institute of Scientific and Technical Information of China (English)

    Yunlai Tang; Mei Chen; Yinong Xu; Tingyun Kuang

    2007-01-01

    We studied the difference in thermostability of photosystem Ⅱ (PSⅡ) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghua11. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSⅡ photochemistry (Fv/Fm) and oxygen-evolving activity of PSⅡ in leaves significantly decreased with increasing temperature. However, the PSⅡ activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of unsaturation of membrane lipids on the thermostability of PSll are discussed.

  17. New non detrimental DNA binding mutants of the Escherichia coli initiator protein DnaA

    DEFF Research Database (Denmark)

    Asklund, Marlene; Atlung, Tove

    2004-01-01

    an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection...

  18. Induced Levels of Heat Shock Proteins in dnaK mutants of Lactococcus lactis

    DEFF Research Database (Denmark)

    Koch, Birgit; Hammer, Karin; Vogensen, Finn K.

    1998-01-01

    of the inferred substrate binding site of the DnaK protein, exhibits a pronounced temperature sensitive phenotype and shows altered regulation of the heat shock response. The expression of the heat shock proteins are increased at the normal growth temperature measured both as protein synthesis rates and m......, HrcA , is dependent of the chaperone function of the GroELS complex and that an insertion mutant in dnaK did not have any effect on the expression of the heat shock proteins. The present data from Lactococcus lactis suggest that the DnaK protein could be involved in maturation of the homologous Hrc......The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for the growth and the heat shock...

  19. MD-simulations of Beta-Amyloid Protein Insertion Efficiency and Kinetics into Neuronal Membrane Mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2011-03-01

    Early interaction events of beta-amyloid (A β) peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used all-atom MD simulations to study the protein insertion efficiency and kinetics of monomeric A β40 and A β42 into phosphatidylcholine lipid bilayers (PC) with and without 40 mole% cholesterol (CHOL) that mimic the cholesterol-enriched and depleted lipid nanodomains of the neuronal plasma membranes. Independent replicates of 200-ns simulations of each protein pre-inserted in the upper lipid layer were generated. In PC bilayers, only 25% of A β40 and 50% of A β42 in the replicates showed complete insertion into the lower lipid layer, whereas the percentages increased to 50% and 100%, respectively, in PC/CHOL bilayers, providing evidence that cholesterol improves the protein insertion efficiency into the bilayers. The rate of protein insertion was proportional to the hydrophobic, transmembrane helix length of the inserted peptide and depended on the cholesterol content. We propose that the lysine snorkeling and C-terminus anchoring of A β to the PC headgroups at the upper and lower lipid/water interfaces represent the dual-transmembrane stabilization mechanisms of A β in the neuronal membrane domains.

  20. High-throughput identification of protein mutant stability computed from a double mutant fitness landscape.

    Science.gov (United States)

    Wu, Nicholas C; Olson, C Anders; Sun, Ren

    2016-02-01

    The effect of a mutation on protein stability is traditionally measured by genetic construction, expression, purification, and physical analysis using low-throughput methods. This process is tedious and limits the number of mutants able to be examined in a single study. In contrast, functional fitness effects can be measured in a high-throughput manner by various deep mutational scanning tools. Using protein GB 1, we have recently demonstrated the feasibility of estimating the mutational stability effect ( ΔΔG) of single-substitution based on the functional fitness profile of all double-substitutions. The principle is to identify genetic backgrounds that have an exhausted stability margin. The functional effect of an additional substitution on these genetic backgrounds can then be used to compute the mutational ΔΔG based on the biophysical relationship between functional fitness and thermodynamic stability. However, to identify such genetic backgrounds, the approach described in our previous study required a benchmark dataset, which is a set of known mutational ΔΔG. In this study, a benchmark-independent approach is developed. The genetic backgrounds of interest are identified using k-means clustering with the integration of structural information. We further demonstrated that a reasonable approximation of ΔΔG can also be obtained without taking structural information into account. In summary, this study describes a novel method for computing ΔΔG from double-substitution functional fitness profiles alone, without relying on any known mutational ΔΔG as a benchmark.

  1. scyllo-Inositol promotes robust mutant Huntingtin protein degradation.

    Science.gov (United States)

    Lai, Aaron Y; Lan, Cynthia P; Hasan, Salwa; Brown, Mary E; McLaurin, Joanne

    2014-02-07

    Huntington disease is characterized by neuronal aggregates and inclusions containing polyglutamine-expanded huntingtin protein and peptide fragments (polyQ-Htt). We have used an established cell-based assay employing a PC12 cell line overexpressing truncated exon 1 of Htt with a 103-residue polyQ expansion that yields polyQ-Htt aggregates to investigate the fate of polyQ-Htt-drug complexes. scyllo-Inositol is an endogenous inositol stereoisomer known to inhibit accumulation and toxicity of the amyloid-β peptide and α-synuclein. In light of these properties, we investigated the effect of scyllo-inositol on polyQ-Htt accumulation. We show that scyllo-inositol lowered the number of visible polyQ-Htt aggregates and robustly decreased polyQ-Htt protein abundance without concomitant cellular toxicity. We found that scyllo-inositol-induced polyQ-Htt reduction was by rescue of degradation pathways mediated by the lysosome and by the proteasome but not autophagosomes. The rescue of degradation pathways was not a direct result of scyllo-inositol on the lysosome or proteasome but due to scyllo-inositol-induced reduction in mutant polyQ-Htt protein levels.

  2. Membrane Targeting and Insertion of the C-Tail Protein SciP.

    Science.gov (United States)

    Pross, Eva; Soussoula, Lavinia; Seitl, Ines; Lupo, Domenico; Kuhn, Andreas

    2016-10-09

    C-tailed membrane proteins insert into the bilayer post-translationally because the hydrophobic anchor segment leaves the ribosome at the end of translation. Nevertheless, we find here evidence that the targeting of SciP to the membrane of Escherichia coli occurs co-translationally since signal elements in the N-terminal part of the SciP protein sequence are present. Two short hydrophobic sequences were identified that targeted a green fluorescent protein-SciP fusion protein to the membrane involving the signal recognition particle. After targeting, the membrane insertion of SciP is catalyzed by YidC independent of the SecYEG translocase. However, when the C-terminal tail of SciP was extended to 21 aa residues, we found that SecYEG becomes involved and makes its membrane insertion more efficient.

  3. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion.

    Science.gov (United States)

    Kleinschmidt, Jörg H

    2015-09-01

    In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.

  4. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Directory of Open Access Journals (Sweden)

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  5. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Science.gov (United States)

    Raina, Shweta A; Tsai, Jeffrey; Samsó, Montserrat; Fessenden, James D

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  6. Prevalence of 5' insertion mutants and analysis of single nucleotide polymorphism in the erythrocyte binding-like 1 (ebl-1) gene in Kenyan Plasmodium falciparum field isolates.

    Science.gov (United States)

    Githui, Elijah K; Peterson, David S; Aman, Rashid A; Abdi, Abdirahman I

    2010-08-01

    Plasmodium merozoites attach to and invade red blood cells (RBCs) during the erythrocytic cycle. The invasion process requires recognition of RBC surface receptors by proteins of the Plasmodium Duffy binding like erythrocyte binding like (DBL-EBP) family. Clones and isolates of Plasmodium falciparum have varying abilities to utilize different RBC receptors, and multiple distinct pathways so far identified depend on glycophorins A, B, C, and as yet unidentified receptors. At present, five members of the DBL-EBP family have been identified in the P. falciparum genome, based on gene structure and amino acid sequence homology. The cardinal features of this family consist of conserved 5' and 3' cysteine-rich regions (regions II and VI, respectively) whose cysteine residues are highly conserved along with the majority of aromatic amino acids. In contrast to the single DBL-EBP family member in Plasmodium vivax, in P. falciparum all DBL-EBP family members have a duplication of the conserved 5' cysteine-rich region denoted as the F1 and F2 domains. These cysteine-rich regions are considered crucial in recognition of erythrocyte receptors and it has been shown that several bind to glycophorins on the erythrocyte surface. Several studies, on both field isolates and laboratory strains have uncovered a relatively high degree of sequence polymorphism in the DBP-EBL genes. This study is now extended to include field isolates collected from sites within Kenya. DNA isolated from blood samples of infected patients was utilized to amplify the region I sequence of ebl-1 gene in order to investigate polymorphism in the region immediately adjacent to the 5' cysteine-rich domains, and to determine the prevalence of an insertion mutant that effectively knocks out the gene. Copyright 2009 Elsevier B.V. All rights reserved.

  7. T-DNA插入产生的水稻小粒突变体的遗传分析%Genetic Analysis of a Small Grain Mutant Induced by T-DNA Insertion in Rice

    Institute of Scientific and Technical Information of China (English)

    张向前; 朱海涛; 邹金松; 曾瑞珍

    2008-01-01

    [Objective] The aim of this study is to understand the genetic characteristics of a grain shape mutant and its possible role in genetic improvement of grain yield in rice. [Method] On the basis of the collection of T-DNA tag lines, the progeny of homozygous plants carrying T-DNA insertion were screened for mutants with mutated phenotypes. The genetic analysis of the mutant and test for the linkage between the mutated phenotype and the T-DNA insertion were carried out to determine its genetic characteristics. [Result] In the present study, a grain shape mutant induced by T-DNA insertion in rice was identified, which showed small grain. Genetic analysis of the mutant showed that the two types of phenotype, normal and small grain in the segregating populations derived resistance showed that all the mutants were resistant while the normal results indicated that the mutant phenotype cosegregated with Bar gene. The small grain mutant caused by T-DNA insertion was confirmed by PCR amplification aiming at T-DNA. [Conclusion] The grain shape mutant is useful for isolation of the tagged gene and genetic improvement in rice.

  8. Different proteolipid protein mutants exhibit unique metabolic defects

    Directory of Open Access Journals (Sweden)

    Maik Hüttemann

    2009-08-01

    Full Text Available PMD (Pelizaeus–Merzbacher disease, a CNS (central nervous system disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.

  9. Isolation of T—DNA flanking plant DNA from T—DNA insertional embryo—lethal mutants of Arabidopsis thaliana by plasmid rescue technique

    Institute of Scientific and Technical Information of China (English)

    YAOXIAOLI; JIANGESUN; 等

    1996-01-01

    Three T-DNA insertional embryonic lethal mutants from NASC(The Nottingham Arabidopsis Stock Center) were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion.The N4081 mutant has a segregation ratio of 1:3.04 in average and one T-DNA insertion site according to our assay.It was therefore chosen for further analysis.To isolate the joint fragment of T-DNA and plant DNA,the plasmid rescue technique was used.pEL-7,one of plasmids from left border of T-DNA,which contained pBR322 was selected from ampicillin plate.The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot.Restriction analysis confirmed the presence of known sites of EcoRI,PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid,pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA.The Southern Blot indicated the hybridization band in both of them.Furthermore,the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A sequencer.The results showed the 822 bp fragment contained a 274 bp sequence,which is 99.6%homolog(273bp/274bp) to Ti plasmid pTi 15955,DNA.The bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA. Taken together,pEL-7 should coutain a joint fragment of T-DNA and flanking plant DNA.This plasmid DNA could be used for the isolation of plant gene,which will be helpful to elucidate the relationship between gene function and plant embryo development.

  10. The V4 and V5 Variable Loops of HIV-1 Envelope Glycoprotein Are Tolerant to Insertion of Green Fluorescent Protein and Are Useful Targets for Labeling.

    Science.gov (United States)

    Nakane, Shuhei; Iwamoto, Aikichi; Matsuda, Zene

    2015-06-12

    The mature human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) comprises the non-covalently associated gp120 and gp41 subunits generated from the gp160 precursor. Recent structural analyses have provided quaternary structural models for gp120/gp41 trimers, including the variable loops (V1-V5) of gp120. In these models, the V3 loop is located under V1/V2 at the apical center of the Env trimer, and the V4 and V5 loops project outward from the trimeric protomers. In addition, the V4 and V5 loops are predicted to have less movement upon receptor binding during membrane fusion events. We performed insertional mutagenesis using a GFP variant, GFPOPT, placed into the variable loops of HXB2 gp120. This allowed us to evaluate the current structural models and to simultaneously generate a GFP-tagged HIV-1 Env, which was useful for image analyses. All GFP-inserted mutants showed similar levels of whole-cell expression, although certain mutants, particularly V3 mutants, showed lower levels of cell surface expression. Functional evaluation of their fusogenicities in cell-cell and virus-like particle-cell fusion assays revealed that V3 was the most sensitive to the insertion and that the V1/V2 loops were less sensitive than V3. The V4 and V5 loops were the most tolerant to insertion, and certain tag proteins other than GFPOPT could also be inserted without functional consequences. Our results support the current structural models and provide a GFPOPT-tagged Env construct for imaging studies.

  11. Microarray Analysis of Transposon Insertion Mutants in Bacillus Anthracis: Global Identification of Genes Required for Sporulation and Germination

    Science.gov (United States)

    2007-02-01

    Gilois, M. Rose, and D. Lereclus. 2001. Oligopep- tide permease is required for expression of the Bacillus thuringiensis plcR regulon and for...non- toxin gene expression in Bacillus anthracis. Infect. Immun. 65:3091–3099. 10. Ikeda, R. A., C. M. Ligman, and S. Warshamana. 1992. T7 promoter con...nontoxi- genic Bacillus anthracis spore vaccines based on strains expressing mutant vari- ants of lethal toxin components. Vaccine 23:5688–5697. 17. Read

  12. The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12.

    Science.gov (United States)

    Kogoma, T; von Meyenburg, K

    1983-01-01

    The sdrA224 mutants of Escherichia coli K-12, capable of continued DNA replication in the absence of protein synthesis (stable DNA replication), tolerate inactivation of the dnaA gene by insertion of transposon Tn10. Furthermore, oriC, the origin of E. coli chromosome replication, can be deleted from the chromosome of sdrA mutants without loss of viability. The results suggest the presence of a second, normally repressed, initiation system for chromosome replication alternative to the 'normal' dnaA+ oriC+-dependent initiation mechanism.

  13. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Science.gov (United States)

    Bokori-Brown, Monika; Martin, Thomas G.; Naylor, Claire E.; Basak, Ajit K.; Titball, Richard W.; Savva, Christos G.

    2016-04-01

    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.

  14. CAML mediates survival of Myc-induced lymphoma cells independent of tail-anchored protein insertion.

    Science.gov (United States)

    Shing, Jennifer C; Lindquist, Lonn D; Borgese, Nica; Bram, Richard J

    2017-01-01

    Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.

  15. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    Science.gov (United States)

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  16. Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein.

    Science.gov (United States)

    Arnold, M F F; Haag, A F; Capewell, S; Boshoff, H I; James, E K; McDonald, R; Mair, I; Mitchell, A M; Kerscher, B; Mitchell, T J; Mergaert, P; Barry, C E; Scocchi, M; Zanda, M; Campopiano, D J; Ferguson, G P

    2013-01-01

    The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.

  17. ISOLATION AND CHARACTERIZATION OF PEROXISOMAL PROTEIN IMPORT (PIM-) MUTANTS OF HANSENULA-POLYMORPHA

    NARCIS (Netherlands)

    WATERHAM, HR; TITORENKO, [No Value; VANDERKLEI, IJ; HARDER, W; VEENHUIS, M

    1992-01-01

    In the course of our studies on the molecular mechanisms involved in peroxisome biogenesis, we have isolated several mutants of the methylotrophic yeast Hansenula polymorpha impaired in the import of peroxisomal matrix proteins. These mutants are characterized by the presence of few small intact per

  18. A Nearly Non-Functional Mutant Allele of the Storage Protein Locus Hor2 in Barley

    DEFF Research Database (Denmark)

    Doll, Hans

    1980-01-01

    The low content of the storage protein fraction hordein-2 in the high-lysine mutant Risø 56 is due to a mutation at or near the locus Hor2 coding for hordein-2 polypeptides. The mutant gene is recessive in its qualitative effect on the electrophoretic banding pattern of hordein-2, but co...

  19. Assessing the Outer Membrane Insertion and Folding of Multimeric Transmembrane β-Barrel Proteins.

    Science.gov (United States)

    Leo, Jack C; Oberhettinger, Philipp; Linke, Dirk

    2015-01-01

    In addition to the cytoplasmic membrane, Gram-negative bacteria have a second lipid bilayer, the outer membrane, which is the de facto barrier between the cell and the extracellular milieu. Virtually all integral proteins of the outer membrane form β-barrels, which are inserted into the outer membrane by the BAM complex. Some outer membrane proteins, like the porins and trimeric autotransporter adhesins, are multimeric. In the former case, the porin trimer consists of three individual β-barrels, whereas in the latter, the single autotransporter β-barrel domain is formed by three separate polypeptides. This chapter reviews methods to investigate the folding and membrane insertion of multimeric OMPs and further explains the use of a BamA depletion strain to study the effects of the BAM complex on multimeric OMPs in E. coli.

  20. Accelerated Disease Onset with Stabilized Familial Amyotrophic Lateral Sclerosis (ALS)-linked Mutant TDP-43 Proteins*

    Science.gov (United States)

    Watanabe, Shoji; Kaneko, Kumi; Yamanaka, Koji

    2013-01-01

    Abnormal protein accumulation is a pathological hallmark of neurodegenerative diseases, including accumulation of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS). Dominant mutations in the TDP-43 gene are causative for familial ALS; however, the relationship between mutant protein biochemical phenotypes and disease course and their significance to disease pathomechanism are not known. Here, we found that longer half-lives of mutant proteins correlated with accelerated disease onset. Based on our findings, we established a cell model in which chronic stabilization of wild-type TDP-43 protein provoked cytotoxicity and recapitulated pathogenic protein cleavage and insolubility to the detergent Sarkosyl, TDP-43 properties that have been observed in sporadic ALS lesions. Furthermore, these cells showed proteasomal impairment and dysregulation of their own mRNA levels. These results suggest that chronically increased stability of mutant or wild-type TDP-43 proteins results in a gain of toxicity through abnormal proteostasis. PMID:23235148

  1. VP22 fusion protein-based dominant negative mutant can inhibit hepatitis B virus replication

    Institute of Scientific and Technical Information of China (English)

    Jun Yi; Wei-Dong Gong; Ling Wang; Rui Ling; Jiang-Hao Chen; Jun Yun

    2005-01-01

    AIM: To investigate the inhibitory effect of VP22 fusion protein-based dominant negative (DN) mutant on Hepatitis Bvrus (HBV) replication.METHODS: Full-length or truncated fragment of VP22 was fused to C terminal of HBV core protein (HBc), and subcloned into pcDNA3.1 (-) vector, yielding eukaryotic expression plasmids of DN mutant. After transfection into HepG2.2.15 cells, the expression of DN mutant was identified by immunofluorescence staining. The inhibitory effect of DN mutant on HBV replication was indexed as the supernatant HBsAg concentration determined by RIA and HBV-DNA content by fluorescent quantification-PCR (FQ-PCR). Meanwhile, metabolism of HepG2.2.15 cells was evaluated by MTT colorimetry.RESULTS: VP22-based DN mutants and its truncated fragment were expressed in HepG2.2.15 cells, and had no toxic effect on host cells. DN mutants could inhibit HBV replication and the transduction ability of mutantbearing protein had a stronger inhibitory effect on HBV replication. DN mutants with full length of VP22 had the strongest inhibitory effect on HBV replication, reducing the HBsAg concentration by 81.94%, and the HBV-DNA content by 72.30%. MTT assay suggested that there were no significant differences in cell metabolic activity between the groups.CONCLUSION: VP22-based DN mutant can inhibit HBV replication effectively.

  2. Prediction of Factors Determining Changes in Stability in Protein Mutants

    OpenAIRE

    Parthiban, Vijayarangakannan

    2006-01-01

    Analysing the factors behind protein stability is a key research topic in molecular biology and has direct implications on protein structure prediction and protein-protein docking solutions. Protein stability upon point mutations were analysed using a distance dependant pair potential representing mainly through-space interactions and torsion angle potential representing neighbouring effects as a basic statistical mechanical setup for the analysis. The synergetic effect of accessible surface ...

  3. Differentiation of the shutoff of protein synthesis by virion host shutoff and mutant gamma (1)34.5 genes of herpes simplex virus 1.

    Science.gov (United States)

    Poon, A P; Roizman, B

    1997-03-01

    vhs protein is the product of the UL41 open reading frame of herpes simplex virus 1. The protein, made late in infection, is packaged into virions and, in newly infected cells, shuts off host protein synthesis by degrading mRNA. gamma (1)34.5 gene encodes a protein which precludes total shutoff of protein synthesis after the onset of viral DNA synthesis in infected cells of human derivation. The experiments reported here were designed to test the hypothesis that in cells infected with gamma (1)34.5- mutant the total shutoff of protein synthesis reflects the failure to alter the function of vhs made late in infection. Hence, double mutants, vhs- and gamma (1)34.5 should not cause total shutoff of protein synthesis. The mutants constructed to test the hypothesis were (i) viruses lacking 1 kbp from the coding domain of gamma (1)34.5 and carrying lacZ inserted into the coding domain of UI41, (ii) viruses with deletions in gamma (1)34.5 genes, (iii) viruses with lacZ inserted into UL41, and (iv) viruses in which the sequences of the deleted or interrupted genes were restored. We report that viruses with wild-type UL41 gene shut off the synthesis of actin, whereas viruses with interrupted genes made amounts of actin comparable to those of mock-infected cells. However, late in infection, protein synthesis in human neuroblastoma cells infected with the gamma (1)34.5- mutants was shut off irrespective of the status of the UL41 gene. Conversely, the phenotype of UI41 viruses with wild-type gamma (1)34.5 gene could not be differentiated from those of wild-type virus in the same assays. These studies indicate that the functions of the UL41 and gamma (1)34.5 genes and their products are independent of each other.

  4. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  5. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  6. Reduced Infectivity in Cattle for an Outer Membrane Protein Mutant of Anaplasma marginale

    Science.gov (United States)

    Brayton, Kelly A.; Magunda, Forgivemore; Munderloh, Ulrike G.; Kelley, Karen L.; Barbet, Anthony F.

    2015-01-01

    Anaplasma marginale is the causative agent of anaplasmosis in cattle. Transposon mutagenesis of this pathogen using the Himar1 system resulted in the isolation of an omp10 operon insertional mutant referred to as the omp10::himar1 mutant. The work presented here evaluated if this mutant had morphological and/or growth rate defects compared to wild-type A. marginale. Results showed that the morphology, developmental cycle, and growth in tick and mammalian cell cultures are similar for the mutant and the wild type. Tick transmission experiments established that tick infection levels with the mutant were similar to those with wild-type A. marginale and that infected ticks successfully infected cattle. However, this mutant exhibited reduced infectivity and growth in cattle. The possibility of transforming A. marginale by transposon mutagenesis coupled with in vitro and in vivo assessment of altered phenotypes can aid in the identification of genes associated with virulence. The isolation of deliberately attenuated organisms that can be evaluated in their natural biological system is an important advance for the rational design of vaccines against this species. PMID:25595772

  7. Functional fluorescent protein insertions in herpes simplex virus gB report on gB conformation before and after execution of membrane fusion.

    Directory of Open Access Journals (Sweden)

    John R Gallagher

    2014-09-01

    Full Text Available Entry of herpes simplex virus (HSV into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.

  8. A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction

    Directory of Open Access Journals (Sweden)

    Jakobsdottir Klara B

    2002-06-01

    Full Text Available Abstract Background The jellyfish green fluorescent protein (GFP can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins. Results We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, αs. All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works. Conclusion This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs.

  9. A fasciclin-like arabinogalactan-protein (FLA mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration.

    Directory of Open Access Journals (Sweden)

    Kim L Johnson

    Full Text Available BACKGROUND: The fasciclin-like arabinogalactan-proteins (FLAs are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12 and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered. METHOD/PRINCIPAL FINDINGS: Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730. Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root. CONCLUSION: The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.

  10. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  11. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Science.gov (United States)

    Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  12. Functional analysis of Burkitt's lymphoma mutant c-Myc proteins

    NARCIS (Netherlands)

    Smith-Sørensen, B.; Hijmans, E.M.; Bernards, R.A.

    1996-01-01

    The c-myc gene encodes a sequence-specific DNA binding protein that activates transcription of cellular genes. Transcription activation by Myc proteins is regulated by phosphorylation of serine and threonine residues within the transactivation domain and by complex formation with the retinoblastoma-

  13. Unassisted membrane insertion as the initial step in DeltapH/Tat-dependent protein transport.

    Science.gov (United States)

    Hou, Bo; Frielingsdorf, Stefan; Klösgen, Ralf Bernd

    2006-02-01

    In the thylakoid membrane of chloroplasts as well as in the cytoplasmic membrane of bacteria, the DeltapH/Tat-dependent protein transport pathway is responsible for the translocation of folded proteins. Using the chimeric 16/23 protein as model substrate in thylakoid transport experiments, we dissected the transport process into several distinct steps that are characterized by specific integral translocation intermediates. Formation of the early translocation intermediate Ti-1, which still exposes the N and the C terminus to the stroma, is observed with thylakoids pretreated with (i) solutions of chaotropic salts or alkaline pH, (ii) protease, or (iii) antibodies raised against TatA, TatB, or TatC. Membrane insertion takes place even into liposomes, demonstrating that proteinaceous components are not required. This suggests that Tat-dependent transport may be initiated by the unassisted insertion of the substrate into the lipid bilayer, and that interaction with the Tat translocase takes place only in later stages of the process.

  14. Dual-topology insertion of a dual-topology membrane protein.

    Science.gov (United States)

    Woodall, Nicholas B; Yin, Ying; Bowie, James U

    2015-01-01

    Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances.

  15. Fusion of a Sendai mutant deficient in HN protein (ts271) with cardiolipin liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S.; Bundo-Morita, K.; Portner, A.; Lenard, J.

    1988-03-01

    Sendai mutant ts271 contains less than 5% of the amount of HN glycoprotein found in wild-type Sendai. Fusion of this mutant with cardiolipin liposomes revealed no differences from the wild-type virus with regard to specific activity, pH dependence, or radiation inactivation. Target sizes of both mutant and wild-type viral proteins were determined by the radiation-induced disappearance of each band from an SDS-polyacrylamide gel and no differences were found. Of the viral proteins, only F had a target size corresponding to the monomer molecular weight, ca. 60 kDa, identical to the minimum unit previously determined by functional assay for Sendai virus-erythrocyte membrane fusion. This provides additional evidence that F alone is the active protein mediating Sendai-erythrocyte fusion. It is concluded that the HN protein is unlikely to mediate any fusion reactions of the intact virions, either with biological membranes or with cardiolipin liposomes.

  16. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators.

    Science.gov (United States)

    Loo, T W; Clarke, D M

    1997-01-10

    There is growing evidence that abnormal protein folding or trafficking (protein kinesis) leads to diseases. We have used P-glycoprotein as a model protein to develop strategies to overcome defects in protein kinesis. Misprocessed mutants of the human P-glycoprotein are retained in the endoplasmic reticulum as core-glycosylated biosynthetic intermediates and rapidly degraded. Synthesis of the mutant proteins in the presence of drug substrates or modulators such as capsaicin, cyclosporin, vinblastine, or verapamil, however, resulted in the appearance of a fully glycosylated and functional protein at the cell surface. These effects were dose-dependent and occurred within a few hours after the addition of substrate. The ability to facilitate processing of the misfolded mutants appeared to be independent of the cell lines used and location of the mutation. P-glycoproteins with mutations in transmembrane segments, extracellular or cytoplasmic loops, the nucleotide-binding domains, or the linker region were processed to the fully mature form in the presence of these substrates. These drug substrates or modulators acted as specific chemical chaperones for P-glycoprotein because they were ineffective on the deltaF508 mutant of cystic fibrosis transmembrane conductance regulator. Therefore, one possible strategy to prevent protein misfolding is to carry out synthesis in the presence of specific substrates or modulators of the protein.

  17. Viable transmembrane region mutants of bacteriophage M13 coat protein prepared by site-directed mutagenesis.

    Science.gov (United States)

    Li, Z; Deber, C M

    1991-10-31

    Bacteriophage M13 coat protein - a 50-residue protein located at the E. coli host membrane during phage reproduction - is subjected to cytoplasmic, membrane-bound, and DNA-interactive environments during the phage life cycle. In research to examine the specific features of primary/secondary structure in the effective transmembrane (TM) region of the protein (residues 21-39: YIGYAWAMVVVIVGATIGI) which modulate its capacity to respond conformationally to the progressive influences of these varying environments, we have prepared over two dozen viable mutant phages with alterations in their coat protein TM regions. Mutants were obtained through use of site-directed mutagenesis techniques in combination with three "randomized" oligonucleotides which spanned the TM region. No subcloning was required. Among mutations observed were those in which each of the four TM Val residues was changed to Ala, and several with increased Ser or Thr content, including one double Ser mutant (G23S-A25S). Polar substitutions arising at Gly23 and Tyr24-including G23D, Y24H, Y24D and Y24N-suggested that this local segment resides external to the host membrane. Milligram quantities of mutant coat proteins are obtained by growing M13 mutant phages in liter preparations, with isotopic (e.g., 13C) labelling at desired sites, for subsequent characterization and conformational analysis in membrane-mimetic media.

  18. NMR assignments for the insertion domain of bacteriophage Sf6 coat protein.

    Science.gov (United States)

    Tripler, Therese N; Teschke, Carolyn M; Alexandrescu, Andrei T

    2017-04-01

    The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the (1)H, (15)N, and (13)C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded β-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.

  19. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor.

  20. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Mehlo, Luke, E-mail: LMehlo@csir.co.za [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Mbambo, Zodwa [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Bado, Souleymane [Plant Breeding and Genetics Laboratory – Joint FAO/IAEA Agriculture and Biotechnology Laboratory, International Atomic Energy Agency Laboratories, A-2444 Seibersdorf (Austria); Lin, Johnson [Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Moagi, Sydwell M.; Buthelezi, Sindisiwe; Stoychev, Stoyan; Chikwamba, Rachel [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa)

    2013-09-15

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals.

  1. Multipurpose Transposon-Insertion Libraries in Yeast.

    Science.gov (United States)

    Kumar, Anuj

    2016-06-01

    Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds.

  2. Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.

    Science.gov (United States)

    Sun, J; Sampson, N S

    1999-08-31

    In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.

  3. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  4. Computer construction and analysis of protein models of the mutant γD-crystallin gene

    Institute of Scientific and Technical Information of China (English)

    YAO Ke; SUN Zhao-hui; SHENTU Xing-chao; WANG Kai-jun; TAN Jian

    2005-01-01

    Background γD-crystallin plays an important role in human cataract formation. Being highly stable, γD-crystallin proteins are composed of two domains. In this study we constructed and analyzed protein models of the mutant γD-crystallin gene, which caused a special fasciculiform congenital cataract affecting a large Chinese family. Methods γD-crystallin protein structure was predicted by Swiss-Model software using bovine γD-crystallin as a template and Prospect software using human βb2-crystallin as a template. The models were observed with a Swiss-Pdb viewer.Results The mutant γD-crystallin structure predicted by the Swiss-Model software showed that proline23 was an exposed surface residue and P23T change made a decreased hydrogen bond distance between threonine23 and asparagine49. The mutant γD-crystallin structure predicted by the Prospect software showed that the P23T change exerted a significant effect on the protein's tertiary structure and yielded hydrogen bonds with aspartic acid21, asparagine24, asparagine49 and serine74.Conclusion The mutant γD-crystallin gene has a significant effect on the protein's tertiary structure, supporting that alteration of γ-crystallin plays an important role in human cataract formation.

  5. SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins.

    Science.gov (United States)

    Hu, Jing; Ng, Pauline C

    2013-01-01

    Indels in the coding regions of a gene can either cause frameshifts or amino acid insertions/deletions. Frameshifting indels are indels that have a length that is not divisible by 3 and subsequently cause frameshifts. Indels that have a length divisible by 3 cause amino acid insertions/deletions or block substitutions; we call these 3n indels. The new amino acid changes resulting from 3n indels could potentially affect protein function. Therefore, we construct a SIFT Indel prediction algorithm for 3n indels which achieves 82% accuracy, 81% sensitivity, 82% specificity, 82% precision, 0.63 MCC, and 0.87 AUC by 10-fold cross-validation. We have previously published a prediction algorithm for frameshifting indels. The rules for the prediction of 3n indels are different from the rules for the prediction of frameshifting indels and reflect the biological differences of these two different types of variations. SIFT Indel was applied to human 3n indels from the 1000 Genomes Project and the Exome Sequencing Project. We found that common variants are less likely to be deleterious than rare variants. The SIFT indel prediction algorithm for 3n indels is available at http://sift-dna.org/

  6. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A Causes Growth Insufficiency and Male Infertility in Mice.

    Directory of Open Access Journals (Sweden)

    Krista A Geister

    2015-10-01

    Full Text Available Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.

  7. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  8. An improved quantitative mass spectrometry analysis of tumor specific mutant proteins at high sensitivity.

    Science.gov (United States)

    Ruppen-Cañás, Isabel; López-Casas, Pedro P; García, Fernando; Ximénez-Embún, Pilar; Muñoz, Manuel; Morelli, M Pia; Real, Francisco X; Serna, Antonio; Hidalgo, Manuel; Ashman, Keith

    2012-05-01

    New disease specific biomarkers, especially for cancer, are urgently needed to improve individual diagnosis, prognosis, and treatment selection, that is, for personalized medicine. Genetic mutations that affect protein function drive cancer. Therefore, the detection of such mutations represents a source of cancer specific biomarkers. Here we confirm the implementation of the mutant protein specific immuno-SRM (where SRM is selective reaction monitoring) mass spectrometry method of RAS proteins reported by Wang et al. [Proc. Natl. Acad. Sci. USA 2011, 108, 2444-2449], which exploits an antibody to simultaneously capture the different forms of the target protein and the resolving power and sensitivity of LC-MS/MS and improve the technique by using a more sensitive mass spectrometer. The mutant form G12D was quantified by SRM on a QTRAP 5500 mass spectrometer and the MIDAS workflow was used to confirm the sequence of the targeted peptides. This assay has been applied to quantify wild type and mutant RAS proteins in patient tumors, xenografted human tissue, and benign human epidermal tumors at high sensitivity. The limit of detection for the target proteins was as low as 12 amol (0.25 pg). It requires low starting amounts of tissue (ca.15 mg) that could be obtained from a needle aspiration biopsy. The described strategy could find application in the clinical arena and be applied to the study of expression of protein variants in disease.

  9. Protein overexport in a Saccharomyces cerevisiae mutant is not due to facilitated release of cell-surface proteins.

    Science.gov (United States)

    Alexieva, K I; Venkov, P V

    2000-01-01

    Saccharomyces cerevisiae strain MW11 is a temperature-sensitive mutant which exports twenty times more proteins at 37 degrees C than parental or wild-type strains do. To understand the mechanism underlying the protein overexport in the mutant the possibility of an altered cell-wall structure leading to facilitated release of cell-surface proteins was studied. Data on calcofluor white and zymolyase sensitivities, resistance to killer 1 toxin and determination of exported acid phosphatase and invertase did not provide evidence for alterations in the cell-wall structure that could explain the protein overexport phenotype. The results were obtained in experiments when transcription of mutated gene was discontinued which permits the full expression of the protein overexport phenotype.

  10. Spontaneous asj-2J mutant mouse as a model for generalized arterial calcification of infancy: a large deletion/insertion mutation in the Enpp1 gene.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Generalized arterial calcification of infancy (GACI, an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. The affected individuals in most cases die within the first year of life, and there is currently no effective treatment for this disorder. In this study, we characterized a spontaneous mutant mouse, asj-2J, as a model for GACI. These mice were identified as part of a phenotypic deviant search in a large-scale production colony of BALB/cJ mice at The Jackson Laboratory. They demonstrated a characteristic gait due to stiffening of the joints, with phenotypic similarity to a previously characterized asj ("ages with stiffened joints" mouse, caused by a missense mutation in the Enpp1 gene. Complementation testing indicated that asj-2J and asj were allelic. PCR-based mutation detection strategy revealed in asj-2J mice a large, 40,035 bp, deletion spanning from intron 1 to the 3'-untranslated region of the Enpp1 gene, coupled with a 74 bp insertion. This was accompanied with a significant reduction in the plasma PPi concentration and reduced PPi/Pi ratio. As a consequence, extensive aberrant mineralization affecting the arterial vasculature, a number of internal organs, and the dermal sheath of vibrissae, a progressive biomarker of the ectopic mineralization process, was demonstrated by a combination of micro computed tomography, histopathology with calcium-specific stains, and direct chemical assay of calcium. Comparison of the asj and asj-2J mice demonstrated that the latter ones, particularly when placed on an acceleration diet high in phosphate and low in magnesium, had more extensive mineralization. Thus, the asj-2J mouse serves as a novel model for GACI, a currently intractable disorder.

  11. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression.

    OpenAIRE

    1993-01-01

    The wild-type (wt) p53 protein has transcriptional activation functions which may be linked to its tumor suppressor activity. Many mutant p53 proteins expressed in cancers have lost the ability to function as transcriptional activators and furthermore may inhibit wt p53 function. To study the mechanisms by which mutant forms of p53 have lost their transactivation function and can act in a dominant negative manner, a structure-function analysis of both mutant and engineered truncated forms of ...

  12. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL.

    Science.gov (United States)

    Nichols, Lorenzo L; Alur, Ramakrishna P; Boobalan, Elangovan; Sergeev, Yuri V; Caruso, Rafael C; Stone, Edwin M; Swaroop, Anand; Johnson, Mary A; Brooks, Brian P

    2010-06-01

    Leber congenital amaurosis (LCA) is a congenital retinal dystrophy characterized by severe visual loss in infancy and nystagmus. Although most often inherited in an autosomal recessive fashion, rare individuals with mutations in the cone-rod homeobox gene, CRX, have dominant disease. CRX is critical for photoreceptor development and acts synergistically with the leucine-zipper transcription factor, NRL. We report on the phenotype of two individuals with LCA due to novel, de novo CRX mutations, c.G264T(p.K74N) and c.413delT(p.I138fs48), that reduce transactivation in vitro to 10% and 30% of control values, respectively. Whereas the c.413delT(p.I138fs48) mutant allows co-expressed NRL to transactivate independently at its normal, baseline level, the c.G264T(p.K74N) mutant reduces co-expressed NRL transactivation and reduces steady state levels of both proteins. Although both mutant proteins predominantly localize normally to the nucleus, they also both show variable cytoplasmic localization. These observations suggest that some CRX-mediated LCA may result from effects beyond haploinsufficiency, such as the mutant protein interefering with other transcription factors' function. Such patients would therefore not likely benefit from a simple, gene-replacement strategy for their disease.

  13. Immunohistochemical detection of mutant p53 protein in small-cell lung cancer: relationship to treatment outcome.

    Science.gov (United States)

    Gemba, K; Ueoka, H; Kiura, K; Tabata, M; Harada, M

    2000-07-01

    We investigated the expression of mutant p53 proteins in small-cell lung cancer (SCLC) immunohistochemically, by identification of stabilized mutant p53 proteins with a much longer half-life than the wild-type protein. Of 103 tumor specimens obtained by transbronchial tumor biopsy for histologic diagnosis, 52 (50%) showed positive staining for p53 protein with a p53 monoclonal antibody, DO-1. Positive staining for p53 protein was not correlated with age, sex, performance status, lifetime cigarette consumption, serum concentration of neuron-specific enolase and extent of disease. Complete response rates in patients with a mutant p53 protein-positive tumor were significantly lower than those in p53-negative patients (25% versus 59%; P=0.0005, by chi-square test). Similarly, survival periods in patients with a mutant p53 protein-positive tumor were significantly shorter than those in mutant p53-protein-negative patients (10.8 months versus 20.6 months; P=0.0001, by generalized Wilcoxon test). Multivariate analysis using Cox's proportional hazards model revealed that the presence of mutant p53 protein is an independent factor associated with differences in overall survival (hazards ratio=2.72; 95% confidence interval, 1.71-4.34; P=0.0001). These observations suggest that the expression of mutant p53 proteins in SCLC may be an important factor predicting poor prognosis.

  14. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa.

  15. Genomic polymorphism and protein changes of soybean mutant induced by space environment

    Science.gov (United States)

    He, J.; Gao, Y.; Sun, Y.

    Soybean 194 4126 of excellent agricultural qualities such as high yield and rounder and wider leaf was selected in six generation after abroad recoverable satellite 15 days in 1996 from Soybean 72163 featured with long-leaf white-blossom grey-hair and infinitude-poding To explore the mechanisms of plant mutation induced by space environment we have experimented at genome and proteome level on Soybean 194 4126 and its control Soybean 72163 Amplified Fragment Length Polymorphism AFLP was used to identify mutated sits and the result shows that 36 polymorphic bands varying between 100 and 900 bp in 2022 DNA bands varying between 100 and 1500 bp have been amplified out of 64 pairs of primer combinations between mutant Soybean 194 4126 and the control plant So the mutation degree of DNA is 3 56 The protein two-dimensional electrophoresis 2-DE and peptide mass fingerprint PMF assays were used to investigate the difference of proteins in fruits and leaves between Soybean 194 4126 and its control Results indicate that 62 protein dots specially appear in Soybean 72163 and 39 dots specially in the mutant Soybean 194 4126 by image analysis software PDQuest in the 2-DE maps of soybean seeds Using PMF assay and protein data-base searching to investigate two distinct protein dots we found that the protein specially expressed in the seed of mutant Soybean 194 4126 may be Dehydrin and the other protein specially expressed in the seed of the control Soybean 72163 may be maturation-associated protein MAT1 Because Dehydrin and MAT1 are

  16. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  17. Analysis of SSLP and Soluble Protein Contents in Leaves of Mutants Induced by High Pressure in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    HE Xiu-ying; XU Shi-ping; LIAO Yao-ping; MAO Xing-xue; WENG Ke-nan; CHEN Zhao-ming; CHEN Yue-han; XIAO Wan-sheng

    2004-01-01

    Rice variety Yuexiangzhan and its mutants induced by high pressure were studied using microsatellite markers and soluble protein content analyses. Eleven of the 88 microsatellite primer pairs showed evident polymorphisms repeatedly, and the polymorphic frequencies were 3.4-11.3% between the mutants and Yuexiangzhan. The polymorphic markers were randomly located on chromosomes. The more similar the plant types of the mutants like their original variety, the less polymorphic loci were detected. In addition, there was variation in the soluble protein contents among the leaves of mutants,and the contents were significantly lower than those of the original variety.

  18. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    DEFF Research Database (Denmark)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived...... from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains......, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3...

  19. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation.

    Science.gov (United States)

    O'Rourke, Jacqueline Gire; Gareau, Jaclyn R; Ochaba, Joseph; Song, Wan; Raskó, Tamás; Reverter, David; Lee, John; Monteys, Alex Mas; Pallos, Judit; Mee, Lisa; Vashishtha, Malini; Apostol, Barbara L; Nicholson, Thomas Peter; Illes, Katalin; Zhu, Ya-Zhen; Dasso, Mary; Bates, Gillian P; Difiglia, Marian; Davidson, Beverly; Wanker, Erich E; Marsh, J Lawrence; Lima, Christopher D; Steffan, Joan S; Thompson, Leslie M

    2013-07-25

    A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.

  20. SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation

    Directory of Open Access Journals (Sweden)

    Jacqueline Gire O’Rourke

    2013-07-01

    Full Text Available A key feature in Huntington disease (HD is the accumulation of mutant Huntingtin (HTT protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.

  1. The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes.

    Science.gov (United States)

    Andreu-Fernández, Vicente; García-Murria, María J; Bañó-Polo, Manuel; Martin, Juliette; Monticelli, Luca; Orzáez, Mar; Mingarro, Ismael

    2016-11-25

    Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the insertion capacity of hydrophobic C-terminal regions of the BH3-only proteins Bik, Bim, Noxa, Bmf, and Puma into microsomal membranes. An Escherichia coli complementation assay was used to validate the results in a cellular context, and peptide insertions were modeled using molecular dynamics simulations. We also found that some of the C-terminal domains were sufficient to direct green fluorescent protein fusion proteins to specific membranes in human cells, but the domains did not activate apoptosis. Thus, the hydrophobic regions in the C termini of BH3-only members associated in distinct ways with various biological membranes, suggesting that a detailed investigation of the entire process of apoptosis should include studying the membranes as a setting for protein-protein and protein-membrane interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Chlorophyll-Protein Complexes from Euglena gracilis and Mutants Deficient in Chlorophyll b: II. Polypeptide Composition.

    Science.gov (United States)

    Cunningham, F X; Schiff, J A

    1986-01-01

    Chlorophyll-protein complexes (CPs) obtained from thylakoids of Euglena gracilis Klebs var bacillaris Cori contain the following polypeptides (listed in parentheses in order of prominence after Coomassie R-250 staining of polyacrylamide gels): CP Ia (66, 18, 22, 22.5, 27.5, 21, 28, 24, 25.5, and 26 kilodaltons [kD]); CP I (66 kD); CPx (41 kD); LHCP(2) (an oligomer of LHCP) (26.5, 28, and 26 kD); CPy (27 and 19 kD); CPa (54 kD); and LHCP (26.5, 28, and 26 kD). Mutants of bacillaris low in chlorophyll b (Gr(1)BSL, G(1)BU, and O(4)BSL; Chl a/b [mol/mol] = 50-100) which lack CP Ia, LHCP(2), and LHCP also lack or are deficient in polypeptides associated with these complexes in wild-type cells. Mutants G(1) and O(4), which also lack CPy, lack the CPy-associated polypeptides found in wild-type and Gr(1). Using an antiserum which was elicited by and reacts strongly and selectively with the SDS-treated major polypeptide (26.5 kD) of the LHCP complexes of wild-type, this polypeptide is undetectable in the mutants (saturation, consistent with the selective loss of major antenna components but not CP I or CPa from the mutants.

  3. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Daniele Vergara

    2017-01-01

    Full Text Available In this study, we investigated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson’s disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson’s disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.

  4. Preparation of multiple site-specific mutant proteins for NMR studies by PCR-directed cell-free protein synthesis.

    Science.gov (United States)

    Ozawa, Kiyoshi; Qi, Ruhu

    2014-01-01

    Cell-free protein synthesis (CFPS) offers a fast and inexpensive approach to selectively label proteins with isotopes that can then be detected by nuclear magnetic resonance (NMR) spectroscopy directly in the translation mixture. We describe a PCR-based approach for production of protein-coding circularized DNA templates that can be expressed in Escherichia coli extract in CFPS dialysis system. This approach typically yields target protein concentrations close to 1 mg/mL, which is sufficient for subsequent analysis by 2D (1)H,(15)N-NMR. Furthermore, this PCR-based technique also enables parallel preparation of mutant proteins in a high-throughput mode, enabling rapid assignments of NMR signals. This chapter describes the general CFPS protocol that we used to rapidly assign residue-specific cross peaks from 2D (1)H,(15 N-NMR) spectra obtained from 12 Ile/Ala substituted mutants of the 40 kDa protein complex, αCTS:τc16.

  5. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.

    Science.gov (United States)

    Oosumi, Teruko; Ruiz-Rojas, Juan Jairo; Veilleux, Richard E; Dickerman, Allan; Shulaev, Vladimir

    2010-09-01

    Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 from the left border (LB) by thermal asymmetric interlaced PCR. Analysis of the T-DNA nick positions revealed that T-DNA was most frequently nicked at the cleavage sites. Analysis of 11 T-DNA integration sites indicated that T-DNA was integrated into the F. vesca genome by illegitimate recombination, as reported in other model plants: Arabidopsis, rice and tobacco. First, deletion of DNA was found at T-DNA integration target sites in all transgenic plants tested. Second, microsimilarities of a few base pairs between the left and/or right ends of the T-DNA and genomic sites were found in all transgenic plants tested. Finally, filler DNA was identified in four break-points. Out of 191 transgenic plants, T-DNA flanking sequences of 79 plants (41%) showed significant similarity to genes, elements or proteins of other plant species and 67 (35%) of the sequences are still unknown strawberry gene fragments. T-DNA flanking sequences of 126 plants (66%) showed homology to plant ESTs. This is the first report of T-DNA integration in a sizeable population of a rosaceous species. We have shown in this paper that T-DNA integration in strawberry is not random but directed by sequence microsimilarities in the host genome.

  6. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  7. Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53

    Science.gov (United States)

    Joerger, Andreas C.; Bauer, Matthias R.; Wilcken, Rainer; Baud, Matthias G.J.; Harbrecht, Hannes; Exner, Thomas E.; Boeckler, Frank M.; Spencer, John; Fersht, Alan R.

    2015-01-01

    Summary The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process. PMID:26636255

  8. A mutant chaperone converts a wild-type protein into a tumor-specific antigen.

    Science.gov (United States)

    Schietinger, Andrea; Philip, Mary; Yoshida, Barbara A; Azadi, Parastoo; Liu, Hui; Meredith, Stephen C; Schreiber, Hans

    2006-10-13

    Monoclonal antibodies have become important therapeutic agents against certain cancers. Many tumor-specific antigens are mutant proteins that are predominantly intracellular and thus not readily accessible to monoclonal antibodies. We found that a wild-type transmembrane protein could be transformed into a tumor-specific antigen. A somatic mutation in the chaperone gene Cosmc abolished function of a glycosyltransferase, disrupting O-glycan Core 1 synthesis and creating a tumor-specific glycopeptidic neo-epitope consisting of a monosaccharide and a specific wild-type protein sequence. This epitope induced a high-affinity, highly specific, syngeneic monoclonal antibody with antitumor activity. Such tumor-specific glycopeptidic neo-epitopes represent potential targets for monoclonal antibody therapy.

  9. Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth.

    Science.gov (United States)

    Lee, Kwang-Hee; Park, Jiyoung; Williams, Donna S; Xiong, Yuqing; Hwang, Inhwan; Kang, Byung-Ho

    2013-03-01

    The plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3. The promoter activity of RH3 is strongest in the greening tissues of 3-day and 1-week-old seedlings but reduced afterwards. Cotyledons were pale and seedling growth was retarded in the mutant. The most obvious abnormality in the mutant chloroplasts was their lack of normal ribosomes. Electron tomography analysis indicated that ribosome density in the 3-day-old mutant chloroplasts is only 20% that of wild-type chloroplasts, and the ribosomes in the mutant are smaller. These chloroplast defects in rh3-4 were alleviated in 2-week-old cotyledons and true leaves. Interestingly, rh3-4 seedlings have lower amounts of abscisic acid prior to recovery of their chloroplasts, and were more sensitive to abiotic stresses. Transcriptomic analysis indicated that nuclear genes for chloroplast proteins are down-regulated, and proteins mediating chloroplast-localized steps of abscisic acid biosynthesis are expressed to a lower extent in 1-week-old rh3-4 seedlings. Taken together, these results suggest that conversion of eoplasts into chloroplasts in young seedlings is critical for the seedlings to start carbon fixation as well as for maintenance of abscisic acid levels for responding to environmental challenges.

  10. Comparison of electrostatic potential around proteins calculated from Amber and AM1 charges: application to mutants of prion protein

    Science.gov (United States)

    Zuegg, Johannes; Bliznyuk, Andrey A.; Gready, Jill E.

    On the basis of arguments of complementary fit of shape and charge polarity or hydrophobicity, molecular electrostatic potentials (MEPs) around proteins are commonly used to deduce likely sites for interaction with ligands or other proteins, including for variations such as mutations. But protein MEPs calculated classically from fixed force field descriptions, including those with implicit solvent models such as in Delphi, do not allow for repolarization of protein residues within the protein system; hence, their representations are likely to be variably inaccurate. Linear-scaling methods now allow calculation of MEPs quantum mechanically for systems as large as proteins, and can account for polarization explicitly. Here we compare MEPs derived from AM1 charge distributions calculated by Mopac2000 with those from the classical Amber force field. Our models are mutants of prion protein (PrP), a protein with an unusually high number of charged residues. The results demonstrate that static point charges, as used in most current force fields, cannot reproduce the MEP of macromolecules. Also, it is not sufficient to account for the influence of nearby atoms connected by chemical bonds; the influence of nearby atoms in space is at least as important. Thus, further progress in the accuracy and wider applicability of force fields requires proper accounting for polarization. Mopac2000 calculations can provide the necessary data for checking new force fields and/or parameter fitting.

  11. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear

    Directory of Open Access Journals (Sweden)

    Paudyal Anju

    2010-08-01

    Full Text Available Abstract Background The planar cell polarity (PCP signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. Results We report the identification of a new N-ethyl-N-nitrosourea (ENU-induced mutant with craniorachischisis, which we have named chuzhoi (chz. We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. Conclusions The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation

  12. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis

    Science.gov (United States)

    Baer, John; Taylor, Isaiah; Walker, John C.

    2016-01-01

    In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9–yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling. PMID:27566817

  13. Virus-Specific Proteins Synthesized in Cells Infected with RNA+ Temperature-Sensitive Mutants of Sindbis Virus

    Science.gov (United States)

    Scheele, Christina M.; Pfefferkorn, E. R.

    1970-01-01

    All Sindbis virus temperature-sensitive mutants defective in “late” functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that 3H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive. PMID:5461887

  14. Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein.

    Science.gov (United States)

    Liu, Gang; Wang, Yongwei; Anderson, Gregory J; Camaschella, Clara; Chang, Yanzhong; Nie, Guangjun

    2016-01-01

    Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis.

  15. Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA.

    Science.gov (United States)

    Tullman, Jennifer; Guntas, Gurkan; Dumont, Matthew; Ostermeier, Marc

    2011-11-01

    We demonstrate that S1 nuclease converts supercoiled plasmid DNA to unit-length, linear dsDNA through the creation of a single, double-stranded break in a plasmid molecule. These double-stranded breaks occur not only in the origin of replication near inverted repeats but also at a wide variety of locations throughout the plasmid. S1 nuclease exhibits this activity under conditions typically employed for the nuclease's single-stranded nuclease activity. Thus, S1 nuclease digestion of plasmid DNA, unlike analogous digestion with DNaseI, effectively halts after the first double-stranded break. This property makes easier the construction of large domain insertion libraries in which the goal is to insert linear DNA at a variety of locations throughout a plasmid. We used this property to create a library in which a circularly permuted TEM1 β-lactamase gene was inserted throughout a plasmid containing the gene encoding Escherichia coli ribose binding protein. Gene fusions that encode allosteric switch proteins in which ribose modulates β-lactamase catalytic activity were isolated from this library using a combination of a genetic selection and a screen.

  16. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  17. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    Science.gov (United States)

    Melone, Mariarosa A B; Calarco, Anna; Petillo, Orsolina; Margarucci, Sabrina; Colucci-D'Amato, Luca; Galderisi, Umberto; Koverech, Guido; Peluso, Gianfranco

    2013-01-01

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  18. Expression in Escherichia coli, purification, and spectroscopic characterization of two mutant Bet v 1 proteins.

    Science.gov (United States)

    Boehm, M; Rösch, P

    1997-07-01

    Bet v 1 is the major birch pollen allergen. A highly efficient expression and purification scheme for mutant forms of this protein was developed on the basis of the pET expression system in order to provide the high quantities of protein needed for spectroscopic and structural work. Bet v 1 (M139L) protein could be purified at high yield (approx. 30 mg from 1 liter of LB medium) in a two-step procedure by the use of metal-affinity chromatography. Matrix assisted laser desorption ionisation mass spectroscopy, and size exclusion chromatography demonstrate the homogeneity and purity of the prepared protein. Spectroscopic methods were used to show that Bet v 1 (M139L) is structurally similar to wild type Bet v 1. Furthermore, we investigated the influence of the nature of amino acid 139 on the thermodynamic behaviour of the protein by replacing the leucine residue by alanine. While there appears to be no global structural effect of this mutation, the thermostability of Bet v 1 is greatly decreased.

  19. Classification of conformational stability of protein mutants from 3D pseudo-folding graph representation of protein sequences using support vector machines.

    Science.gov (United States)

    Fernández, Michael; Caballero, Julio; Fernández, Leyden; Abreu, Jose Ignacio; Acosta, Gianco

    2008-01-01

    This work reports a novel 3D pseudo-folding graph representation of protein sequences for modeling purposes. Amino acids euclidean distances matrices (EDMs) encode primary structural information. Amino Acid Pseudo-Folding 3D Distances Count (AAp3DC) descriptors, calculated from the EDMs of a large data set of 1363 single protein mutants of 64 proteins, were tested for building a classifier for the signs of the change of thermal unfolding Gibbs free energy change (DeltaDeltaG) upon single mutations. An optimum support vector machine (SVM) with a radial basis function (RBF) kernel well recognized stable and unstable mutants with accuracies over 70% in crossvalidation test. To the best of our knowledge, this result for stable mutant recognition is the highest ever reported for a sequence-based predictor with more than 1000 mutants. Furthermore, the model adequately classified mutations associated to diseases of human prion protein and human transthyretin.

  20. Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Liangyu Zou; Haiyan Qin; Yitao He; Heming Huang; Yi Lu; Xiaofan Chu

    2012-01-01

    Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.

  1. Novel Mutant AAV2 Rep Proteins Support AAV2 Replication without Blocking HSV-1 Helpervirus Replication

    Science.gov (United States)

    Seyffert, Michael; Glauser, Daniel L.; Schraner, Elisabeth M.; de Oliveira, Anna-Paula; Mansilla-Soto, Jorge; Vogt, Bernd; Büning, Hildegard; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel

    2017-01-01

    As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replication on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papilloma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous study we have shown that expression of the AAV2 rep gene is not compatible with efficient replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here, we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype. Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at least when a double-stranded AAV2 genome template was used. We also found that the capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-helicase subdomains exert diverging activities, which contribute to distinct steps of the AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis, genomic integration or packaging, which all involve the Rep-helicase activity. PMID:28125695

  2. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.

  3. Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants.

    Science.gov (United States)

    Kroupa, Tomáš; Langerová, Hana; Doležal, Michal; Prchal, Jan; Spiwok, Vojtěch; Hunter, Eric; Rumlová, Michaela; Hrabal, Richard; Ruml, Tomáš

    2016-11-20

    Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the (1)H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.

  4. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2016-05-01

    Full Text Available Abstract Background Somatic calreticulin (CALR, Janus kinase 2 (JAK2, and thrombopoietin receptor (MPL mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN, suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated. Methods The murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment. Results The present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation. Conclusions These

  5. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance.

    Science.gov (United States)

    Jablonski, Angela M; Lamitina, Todd; Liachko, Nicole F; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian; Kalb, Robert G

    2015-10-21

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as "anti-chaperones" uncovers new and general targets for therapeutic intervention. Copyright © 2015 the authors 0270-6474/15/3514286-21$15.00/0.

  6. Nonsense mediated decay resistant mutations are a source of expressed mutant proteins in colon cancer cell lines with microsatellite instability.

    Directory of Open Access Journals (Sweden)

    David S Williams

    Full Text Available BACKGROUND: Frameshift mutations in microsatellite instability high (MSI-High colorectal cancers are a potential source of targetable neo-antigens. Many nonsense transcripts are subject to rapid degradation due to nonsense-mediated decay (NMD, but nonsense transcripts with a cMS in the last exon or near the last exon-exon junction have intrinsic resistance to nonsense-mediated decay (NMD. NMD-resistant transcripts are therefore a likely source of expressed mutant proteins in MSI-High tumours. METHODS: Using antibodies to the conserved N-termini of predicted mutant proteins, we analysed MSI-High colorectal cancer cell lines for examples of naturally expressed mutant proteins arising from frameshift mutations in coding microsatellites (cMS by immunoprecipitation and Western Blot experiments. Detected mutant protein bands from NMD-resistant transcripts were further validated by gene-specific short-interfering RNA (siRNA knockdown. A genome-wide search was performed to identify cMS-containing genes likely to generate NMD-resistant transcripts that could encode for antigenic expressed mutant proteins in MSI-High colon cancers. These genes were screened for cMS mutations in the MSI-High colon cancer cell lines. RESULTS: Mutant protein bands of expected molecular weight were detected in mutated MSI-High cell lines for NMD-resistant transcripts (CREBBP, EP300, TTK, but not NMD-sensitive transcripts (BAX, CASP5, MSH3. Expression of the mutant CREBBP and EP300 proteins was confirmed by siRNA knockdown. Five cMS-bearing genes identified from the genome-wide search and without existing mutation data (SFRS12IP1, MED8, ASXL1, FBXL3 and RGS12 were found to be mutated in at least 5 of 11 (45% of the MSI-High cell lines tested. CONCLUSION: NMD-resistant transcripts can give rise to expressed mutant proteins in MSI-High colon cancer cells. If commonly expressed in primary MSI-High colon cancers, MSI-derived mutant proteins could be useful as cancer specific

  7. Solution structure and dynamics of the I214V mutant of the rabbit prion protein.

    Directory of Open Access Journals (Sweden)

    Yi Wen

    Full Text Available BACKGROUND: The conformational conversion of the host-derived cellular prion protein (PrP(C into the disease-associated scrapie isoform (PrP(Sc is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs. Various single-point mutations in PrP(Cs could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP(C (RaPrP(C and various mutants would be of great help to understand the ability of RaPrP(C to be resistant to TSE agents. METHODOLOGY/PRINCIPAL FINDINGS: We determined the solution structure of the I214V mutant of RaPrP(C(91-228 and detected the backbone dynamics of its structured C-terminal domain (121-228. The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints for understanding the inability of the conformational conversion for RaPrP(C.

  8. Folding and unfolding of a non-fluorescent mutant of green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus-Kutrowska, Beata [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Narczyk, Marta [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Buszko, Anna [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Bzowska, Agnieszka [Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki and Wigury 93, 02-089 (Poland); Clark, Patricia L [Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States)

    2007-07-18

    Green fluorescent protein (GFP), from the Pacific jellyfish A. victoria, has numerous uses in biotechnology and cell and molecular biology as a protein marker because of its specific chromophore, which is spontaneously created after proper protein folding. After formation, the chromophore is very stable and it remains intact during protein unfolding, meaning that the GFP unfolding process is not the reverse of the original folding reaction; i.e., the principles of microscopic reversibility do not apply. We have generated the mutant S65T/G67A-GFP, which is unable to efficiently form the cyclic chromophore, with the goal of investigating the folding, unfolding and competing aggregation of GFP under fully reversible conditions. Our studies have been performed in the presence of guanidinium hydrochloride (GdnHCl). The GFP conformation was monitored using intrinsic tryptophan fluorescence, and fluorescence of 1,1'-bis(4-anilino-5-naphthalenesulphonic acid) (bis-ANS). Light scattering was used to follow GFP aggregation. We conclude from these fluorescence measurements that S65T/G67A-GFP folding is largely reversible. During equilibrium folding, the first step is the formation of a molten globule, prone to aggregation.

  9. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    Science.gov (United States)

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online.

  10. Systematic generation of in vivo G protein-coupled receptor mutants in the rat.

    Science.gov (United States)

    van Boxtel, R; Vroling, B; Toonen, P; Nijman, I J; van Roekel, H; Verheul, M; Baakman, C; Guryev, V; Vriend, G; Cuppen, E

    2011-10-01

    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies.

  11. Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein.

    Science.gov (United States)

    Burrows, Patricia C; Schumacher, Jörg; Amartey, Samuel; Ghosh, Tamaswati; Burgis, Timothy A; Zhang, Xiaodong; Nixon, B Tracy; Buck, Martin

    2009-08-01

    Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial sigma(54)-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein-DNA proximity assay to measure the contribution of the pre-SIi loop in sigma(54)-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Esigma(54). We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.

  12. An equine herpesvirus 1 mutant with a lacZ insertion between open reading frames 62 and 63 is replication competent and causes disease in the murine respiratory model.

    Science.gov (United States)

    Csellner, H; Walker, C; Love, D N; Whalley, J M

    1998-01-01

    An equine herpesvirus 1 (EHV-1) mutant was constructed by inserting a lacZ expression cassette into the intergenic region upstream of gene 62 (glycoprotein L; gL) and downstream of gene 63 (a homologue of the herpes simplex virus transcriptional activator ICP0). The recombinant lacZ62/63-EHV-1 had similar growth kinetics in cell culture to those of the parental wild type (wt) virus, with indistinguishable cytopathic effects and plaque morphology. Reverse transcriptase PCR confirmed that the lacZ insertion did not interfere with transcription of gL and immunoblot analysis indicated there was no modification to late gene expression as monitored by synthesis of EHV-1 glycoproteins C and D. The parental EHV-1 isolate HVS25A used here had almost identical nucleotide sequence to that published for isolate Ab4, in a 1200 bp region surrounding the insert, but lacked a HindIII site corresponding to Ab4 position 109,048. The lacZ62/63-EHV-1 caused respiratory disease in BALB/c mice with clinical signs, histopathology and virus titres in lungs throughout days 1-5 post infection similar to those induced by wt EHV-1. X-gal staining for beta-galactosidase expression in murine lungs clearly demonstrated EHV-1 infection in cells of the bronchiolar epithelium and pulmonary parenchyma, with a peak of infection evident at day 2 post infection, when up to 50% of bronchioles demonstrated blue-staining and thus virus-infected epithelial cells. The construction of this replication competent virus carrying a reporter gene identifies a site for insertion of foreign genes and will facilitate studies on the pathogenesis of EHV-1.

  13. Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Daisy W.; Borek, Dominika; Farahbakhsh, Mina; Ramanan, Parameshwaran; Nix, Jay C.; Wang, Tianjiao; Prins, Kathleen C.; Otwinowski, Zbyszek; Honzatko, Richard B.; Helgeson, Luke A.; Basler, Christopher F.; Amarasinghe, Gaya K. (Texas-HSC); (Sinai); (Iowa State); (LBNL)

    2010-06-21

    VP35 is one of seven structural proteins encoded by the Ebola viral genome and mediates viral replication, nucleocapsid formation and host immune suppression. The C-terminal interferon inhibitory domain (IID) of VP35 is critical for dsRNA binding and interferon inhibition. The wild-type VP35 IID structure revealed several conserved residues that are important for dsRNA binding and interferon antagonism. Here, the expression, purification and crystallization of recombinant Zaire Ebola VP35 IID mutants R312A, K319A/R322A and K339A in space groups P6{sub 1}22, P2{sub 1}2{sub 1}2{sub 1} and P2{sub 1}, respectively, are described. Diffraction data were collected using synchrotron sources at the Advanced Light Source and the Advanced Photon Source.

  14. Kinetics of the E46Q mutant of photoactive yellow protein investigated by transient grating spectroscopy

    Science.gov (United States)

    Yang, Cheolhee; Kim, Tae Wu; Kim, Youngmin; Choi, Jungkweon; Lee, Sang Jin; Ihee, Hyotcherl

    2017-09-01

    To elucidate the role of internal proton transfer in the photodynamics of photoactive yellow protein (PYP), the photocycle of the Glu46Gln mutant of PYP (E46Q-PYP) is investigated by transient grating (TG) spectroscopy. Compared with wild-type PYP (wt-PYP), the first spectrally blue-shifted intermediate of E46Q-PYP is formed more slowly, which is consistent with the absence of direct protonation from Glu46 residue, if the parallel kinetic model for wt-PYP is invoked. The smaller conformational change in E46Q-PYP, as manifested by the smaller change in the diffusion coefficient, mainly arises from the relatively larger volume of the ground state E46Q-PYP than wt-PYP rather than from the smaller volume of the pB state.

  15. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  16. Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein

    Science.gov (United States)

    Lawson, Victoria A.; Lumicisi, Brooke; Welton, Jeremy; Machalek, Dorothy; Gouramanis, Katrina; Klemm, Helen M.; Stewart, James D.; Masters, Colin L.; Hoke, David E.; Collins, Steven J.; Hill, Andrew F.

    2010-01-01

    Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains. PMID:20808809

  17. Paradoxical gain-of-function mutant of the G-protein-coupled receptor PROKR2 promotes early puberty.

    Science.gov (United States)

    Fukami, Maki; Suzuki, Erina; Izumi, Yoko; Torii, Tomohiro; Narumi, Satoshi; Igarashi, Maki; Miyado, Mami; Katsumi, Momori; Fujisawa, Yasuko; Nakabayashi, Kazuhiko; Hata, Kenichiro; Umezawa, Akihiro; Matsubara, Yoichi; Yamauchi, Junji; Ogata, Tsutomu

    2017-10-01

    The human genome encodes ~750 G-protein-coupled receptors (GPCRs), including prokineticin receptor 2 (PROKR2) involved in the regulation of sexual maturation. Previously reported pathogenic gain-of-function mutations of GPCR genes invariably encoded aberrant receptors with excessive signal transduction activity. Although in vitro assays demonstrated that an artificially created inactive mutant of PROKR2 exerted paradoxical gain-of-function effects when co-transfected with wild-type proteins, such a phenomenon has not been observed in vivo. Here, we report a heterozygous frameshift mutation of PROKR2 identified in a 3.5-year-old girl with central precocious puberty. The mutant mRNA escaped nonsense-mediated decay and generated a GPCR lacking two transmembrane domains and the carboxyl-terminal tail. The mutant protein had no in vitro signal transduction activity; however, cells co-expressing the mutant and wild-type PROKR2 exhibited markedly exaggerated ligand-induced Ca(2+) responses. The results indicate that certain inactive PROKR2 mutants can cause early puberty by enhancing the functional property of coexisting wild-type proteins. Considering the structural similarity among GPCRs, this paradoxical gain-of-function mechanism may underlie various human disorders. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    Directory of Open Access Journals (Sweden)

    Serena Leone

    Full Text Available MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  19. Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability.

    Science.gov (United States)

    Petrik, Kathrin; Sebestyén, Endre; Gell, Gyöngyvér; Balázs, Ervin

    2010-02-01

    A 13 amino acid residue insertion was found in the N-terminal region of the coat protein of several Maize dwarf mosaic virus isolates (MDMV). These insertions seem to be the result of a direct duplication event, but differ in some positions. In order to evaluate the influence of the insertion on the RNA secondary structure and stability, the RNA secondary structures and minimum free energies (MFE) of all existing MDMV coat protein sequences were estimated using three different softwares, the Vienna RNA Package, NUPACK, and UNAFold, and compared to the secondary structure and MFE of various random sequence collections preserving the nucleotide distribution of MDMV. The bioinformatic analysis showed that the insertion stabilizes the RNA structure of the coat protein gene.

  20. Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins.

    Science.gov (United States)

    Harrop, Stephen J; Wilk, Krystyna E; Dinshaw, Rayomond; Collini, Elisabetta; Mirkovic, Tihana; Teng, Chang Ying; Oblinsky, Daniel G; Green, Beverley R; Hoef-Emden, Kerstin; Hiller, Roger G; Scholes, Gregory D; Curmi, Paul M G

    2014-07-01

    Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species. Each PBP is a dimer of αβ subunits in which the structure of the αβ monomer is conserved. However, we discovered two dramatically distinct quaternary conformations, one of which is specific to the genus Hemiselmis. Because of steric effects emerging from the insertion of a single amino acid, the two αβ monomers are rotated by ∼73° to an "open" configuration in contrast to the "closed" configuration of other cryptophyte PBPs. This structural change is significant for the light-harvesting function because it disrupts the strong excitonic coupling between two central chromophores in the closed form. The 2D ES show marked cross-peak oscillations assigned to electronic and vibrational coherences in the closed-form PC645. However, such features appear to be reduced, or perhaps absent, in the open structures. Thus cryptophytes have evolved a structural switch controlled by an amino acid insertion to modulate excitonic interactions and therefore the mechanisms used for light harvesting.

  1. Membrane topology and insertion of membrane proteins : Search for topogenic signals

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain s

  2. Prion protein insertional mutations increase aggregation propensity but not fiber stability

    Directory of Open Access Journals (Sweden)

    True Heather L

    2008-03-01

    Full Text Available Abstract Background Mutations in the PRNP gene account for ~15% of all prion disease cases. Little is understood about the mechanism of how some of these mutations in PRNP cause the protein to aggregate into amyloid fibers or cause disease. We have taken advantage of a chimeric protein system to study the oligopeptide repeat domain (ORD expansions of the prion protein, PrP, and their effect on protein aggregation and amyloid fiber formation. We replaced the ORD of the yeast prion protein Sup35p with that from wild type and expanded ORDs of PrP and compared their biochemical properties in vitro. We previously determined that these chimeric proteins maintain the [PSI+] yeast prion phenotype in vivo. Interestingly, we noted that the repeat expanded chimeric prions seemed to be able to maintain a stronger strain of [PSI+] and convert from [psi-] to [PSI+] with a much higher frequency. In this study we have attempted to understand the biochemical properties of these chimeric proteins and to establish a system to study the properties of the ORD of PrP both in vivo and in vitro. Results Investigation of the chimeric proteins in vitro reveals that repeat-expansions increase aggregation propensity and that the kinetics of fiber formation depends on the number of repeats. The fiber formation reactions are promiscuous in that the chimeric protein containing 14 repeats can readily cross-seed fiber formation of proteins that have the wild type number of repeats. Morphologically, the amyloid fibers formed by repeat-expanded proteins associate with each other to form large clumps that were not as prevalent in fibers formed by proteins containing the wild type number of repeats. Despite the increased aggregation propensity and lateral association of the repeat expanded proteins, there was no corresponding increase in the stability of the fibers formed. Therefore, we predict that the differences in fibers formed with different repeat lengths may not be due to

  3. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts.

    Science.gov (United States)

    Dickmeis, Christina; Fischer, Rainer; Commandeur, Ulrich

    2014-11-01

    Plus-strand RNA viruses such as Potato virus X (PVX) are often used as high-yielding expression vectors in plants, because they tolerate extra transgene insertion and expression without disrupting normal virus functions. However, sequence redundancy due to promoter duplication often leads to genetic instability. Although heterologous subgenomic promoter-like sequences (SGPs) have been successfully used in Tobacco mosaic virus vectors, only homologous SGP duplications have been used in PVX vectors. We stabilized PVX-based vectors by combining heterologous SGPs from related potexviruses with an N-terminal coat protein (CP) deletion. We selected two SGPs with core sequences homologous to PVX, from Bamboo mosaic virus (BaMV) and Cassava common mosaic virus, as well as a SGP with a heterologous core sequence from Foxtail mosaic virus (FoMV). We found that only the BaMV and CsCMV SGPs were utilized by the PVX replicase. However, the transgene remained unstable, due to the presence of an additional region with strong sequence similarity at the 5' end of the cp gene. The BaMV SGP combined with an N-terminal CP deletion achieved high PVX vector stability. This new expression vector is particularly useful for long-term production of proteins and for larger inserts. The improved PVX-based vectors are suitable for the systemic expression of any gene of interest in PVX host plants. The PVX-based vector can be advantageous for the overexpression of proteins, to analyze protein functions in planta or as a system for virus-induced gene silencing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues.

    Science.gov (United States)

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-10-26

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.

  5. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  6. Structure and dynamics of the conserved protein GPI anchor core inserted into detergent micelles.

    Science.gov (United States)

    Chevalier, Franck; Lopez-Prados, Javier; Groves, Patrick; Perez, Serge; Martín-Lomas, Manuel; Nieto, Pedro M

    2006-10-01

    A suitable approach which combines nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have been used to study the structure and the dynamics of the glycosylphosphatidylinositol (GPI) anchor Manalphal-2Manalpha1-6Manalphal -4GlcNalpha1-6myo-inositol-1-OPO(3)-sn-1,2-dimyristoylglycerol (1) incorporated into dodecylphosphatidylcholine (DPC) micelles. The results have been compared to those previously obtained for the products obtainable from (1) after phospholipase cleavage, in aqueous solution. Relaxation and diffusion NMR experiments were used to establish the formation of stable aggregates and the insertion of (1) into the micelles. MD calculations were performed including explicit water, sodium and chloride ions and using the Particle Mesh Ewald approach for the evaluation of the electrostatic energy term. The MD predicted three dimensional structure and dynamics were substantiated by nuclear overhauser effect (NOE) measurements and relaxation data. The pseudopentasaccharide structure, which was not affected by incorporation of (1) into the micelle, showed a complex dynamic behaviour with a faster relative motion at the terminal mannopyranose unit and decreased mobility close to the micelle. This motion may be better described as an oscillation relative to the membrane rather than a folding event.

  7. Flat cells come full sphere: Are mutant cytoskeletal-related proteins oncoprotein-monsters or useful immunogens?

    Science.gov (United States)

    Parry, Michele L; Blanck, George

    2016-01-01

    Osteogenesis imperfecta is inherited as a dominant disease because if one allele is mutated, it contributes a mutant, destructive subunit polypeptide to collagen, which requires many subunits to form normal, polymeric, collagenous structures. Recent cancer genome atlas (TCGA) data indicate that cytoskeletal-related proteins are among the most commonly mutated proteins in human cancers, in distinct mutation frequency groups, i.e., including low mutation frequency groups. Part of the explanation for this observation is likely to be the fact that many of the coding regions for these proteins are very large, and indeed, it is likely these coding regions are mutated in many cells that never become cancerous. However, it would not be surprising if mutations in cytoskeletal proteins, when combined with oncoprotein or tumor suppressor protein mutations, had significant impacts on cancer development, for a number of reasons, including results obtained almost 5 decades ago indicating that well-spread cells in tissue culture, with well-formed cytoskeletons, were less tumorigenic than spherical cells with disrupted cytoskeletons. This raises the question, are mutant cytoskeletal proteins, which would likely interfere with polymer formation, a new class of oncoproteins, in particular, dominant negative oncoproteins? If these proteins are so commonly mutant, could they be the bases for common cancer vaccines?

  8. Preparation and characterization of Neisseria meningitidis mutants deficient in production of the human lactoferrin-binding proteins LbpA and LbpB.

    Science.gov (United States)

    Bonnah, R A; Schryvers, A B

    1998-06-01

    Pathogenic members of the family Neisseriaceae produce specific receptors facilitating iron acquisition from transferrin (Tf) and lactoferrin (Lf) of their mammalian host. Tf receptors are composed of two outer membrane proteins, Tf-binding proteins A and B (TbpA and TbpB; formerly designated Tbp1 and Tbp2, respectively). Although only a single Lf-binding protein, LbpA (formerly designated Lbp1), had previously been recognized, we recently identified additional bacterial Lf-binding proteins in the human pathogens Neisseria meningitidis and Moraxella catarrhalis and the bovine pathogen Moraxella bovis by a modified affinity isolation technique (R. A. Bonnah, R.-H. Yu, and A. B. Schryvers, Microb. Pathog. 19:285-297, 1995). In this report, we characterize an open reading frame (ORF) located immediately upstream of the N. meningitidis B16B6 lbpA gene. Amino acid sequence comparisons of various TbpBs with the product of the translated DNA sequence from the upstream ORF suggests that the region encodes the Lf-binding protein B homolog (LbpB). The LbpB from strain B16B6 has two large stretches of negatively charged amino acids that are not present in the various transferrin receptor homologs (TbpBs). Expression of the recombinant LbpB protein as a fusion with maltose binding protein demonstrated functional Lf-binding activity. Studies with N. meningitidis isogenic mutants in which the lbpA gene and the ORF immediately upstream of lbpA (putative lbpB gene) were insertionally inactivated demonstrated that LbpA, but not LbpB, is essential for iron acquisition from Lf in vitro.

  9. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae.

    Science.gov (United States)

    Fedarovich, Alena; Cook, Edward; Tomberg, Joshua; Nicholas, Robert A; Davies, Christopher

    2014-12-09

    A hallmark of penicillin-binding protein 2 (PBP2) from penicillin-resistant strains of Neisseria gonorrhoeae is insertion of an aspartate after position 345. The insertion resides on a loop near the active site and is immediately adjacent to an existing aspartate (Asp346) that forms a functionally important hydrogen bond with Ser363 of the SxN conserved motif. Insertion of other amino acids, including Glu and Asn, can also lower the rate of acylation by penicillin, but these insertions abolish transpeptidase function. Although the kinetic consequences of the Asp insertion are well-established, how it impacts the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution crystal structure of a truncated construct of PBP2 containing all five mutations present in PBP2 from the penicillin-resistant strain 6140, including the Asp insertion. Commensurate with the strict specificity for the Asp insertion over similar amino acids, the insertion does not cause disordering of the structure, but rather induces localized flexibility in the β2c-β2d loop. The crystal structure resolves the ambiguity of whether the insertion is Asp345a or Asp346a (due to the adjacent Asp) because the hydrogen bond between Asp346 and Ser362 is preserved and the insertion is therefore Asp346a. The side chain of Asp346a projects directly toward the β-lactam-binding site near Asn364 of the SxN motif. The Asp insertion may lower the rate of acylation by sterically impeding binding of the antibiotic or by hindering breakage of the β-lactam ring during acylation because of the negative charge of its side chain.

  10. 灰葡萄孢T-DNA插入细胞壁缺陷突变体的筛选%Isolation of the cell wall defect mutants by T-DNA insertion in Botrytis cinerea

    Institute of Scientific and Technical Information of China (English)

    雷娜; 张为宏; 朱廷恒; 汪琨; 崔志峰

    2011-01-01

    用荧光增白剂Calcofluor White(CFW)对234株T-DNA插入灰葡萄孢突变株进行筛选,获得了3株对CFW敏感性(B-117,B-169,D-9)和1株对CFW抗性(B-62)的突变株.1.2 mol· L- Sorbito对D-9的生长缓慢有挽救作用.在SDS培养基上D-9和野生型的差异不大,但在NaCl培养基上野生型的生长受到抑制,D-9则不受NaCl影响.在孢子萌发试验中,D-9突变株也与野生型明显不同,表现为D-9的孢子膨大、菌丝较粗、长度增加而且不弯曲.在番茄感染试验中,D-9突变株侵染番茄的毒力大幅度减弱.由此推测D-9突变株与细胞壁缺损以及致病性有关.%234 T-DNA insertion mutants of Botrytis cinerea were screened by using Calcofluor White, and three sensitive mutants(B-117, B-169, D-9)and one resistant mutant ( B-62) were obtained. In the test with isotonic PDA plates containing 1. 2 mol·L-1 sorbitol, the growth of D-9 was not affected or rescued, while the growth of wild type was suppressed. Also, the growth of wild type was suppressed by 0. 6 mol·L-1 NaCl but D-9 was not affected. No obvious difference was found between wild type and D-9 in the SDS medium. The spores of D-9 appeared swollen, its hyphae were thicker, and the length increased without bending, which was obviously different from that of wild type in the spore germination assay. In the experiment of tomato infection, the virulence of D-9 mutant was significantly reduced , almost no infection phenomenon can be observed in the period of six days. These results indicated that D-9 mutant was probably related to cell wall defect and pathogenicity.

  11. Elucidating the Mechanism of Gain of Toxic Function from Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2016-10-01

    the C1INH allowed detection of the labeled protein. The first 97 amino acids of C1INH define the N-terminal glycosylation domain and have been shown...successfully made novel C1INH mutants that mirrored the equivalent A1AT mutations that cause A1AT deficiency based on the homology between these two

  12. Detection of in vivo protein tyrosine nitration in petite mutant of Saccharomyces cerevisiae: consequence of its formation and significance.

    Science.gov (United States)

    Panja, Chiranjit; Ghosh, Sanjay

    2014-09-05

    Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with physiological and pathophysiological conditions. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group. In our previous study we first time showed that PTN occurs in vivo in Saccharomyces cerevisiae. In the present study we observed occurrence of PTN in petite mutant of S. cerevisiae which indicated that PTN is not absolutely dependent on functional mitochondria. Nitration of proteins in S. cerevisiae was also first time confirmed in immunohistochemical study using spheroplasts. Using proteosomal mutants Rpn10Δ, Pre9Δ, we first time showed that the fate of protein nitration in S. cerevisiae was not dependent on proteosomal clearing and probably played vital role in modulating signaling cascades. From our study it is evident that protein tyrosine nitration is a normal physiological event of S. cerevisiae. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowska, Marta; Szymańska, Aneta [University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland); Borek, Dominika; Otwinowski, Zbyszek [University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816 (United States); Skowron, Piotr; Jankowska, Elżbieta, E-mail: elaj@chem.univ.gda.pl [University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland)

    2013-04-01

    Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold was preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.

  14. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    Science.gov (United States)

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  15. Metabolic and Phenotypic Differences between Mice Producing a Werner Syndrome Helicase Mutant Protein and Wrn Null Mice.

    Science.gov (United States)

    Aumailley, Lucie; Garand, Chantal; Dubois, Marie Julie; Johnson, F Brad; Marette, André; Lebel, Michel

    2015-01-01

    Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.e. Wrn null mice) do not exhibit a premature aging phenotype. In this study, we used a targeted mass spectrometry-based metabolomic approach to identify serum metabolites that are differentially altered in young Wrn helicase mutant and Wrn null mice. An antibody-based quantification of 43 serum cytokines and markers of cardiovascular disease risk complemented this study. We found that Wrn helicase mutants exhibited elevated and decreased levels, respectively, of the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine IL-18. Wrn helicase mutants also exhibited an increase in serum hydroxyproline and plasminogen activator inhibitor-1, markers of extracellular matrix remodeling of the vascular system and inflammation in aging. We also observed an abnormal increase in the ratio of very long chain to short chain lysophosphatidylcholines in the Wrn helicase mutants underlying a peroxisome perturbation in these mice. Remarkably, the Wrn mutant helicase protein was mislocalized to the endoplasmic reticulum and the peroxisomal fractions in liver tissues. Additional analyses with mouse embryonic fibroblasts indicated a severe defect of the autophagy flux in cells derived from Wrn helicase mutants compared to wild type and Wrn null animals. These results indicate that the deleterious effects of the helicase-deficient Wrn protein are mediated by the dysfunction of several cellular organelles.

  16. Metabolic and Phenotypic Differences between Mice Producing a Werner Syndrome Helicase Mutant Protein and Wrn Null Mice.

    Directory of Open Access Journals (Sweden)

    Lucie Aumailley

    Full Text Available Werner syndrome (WS is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter mean life span. In contrast, mice lacking the entire Wrn protein (i.e. Wrn null mice do not exhibit a premature aging phenotype. In this study, we used a targeted mass spectrometry-based metabolomic approach to identify serum metabolites that are differentially altered in young Wrn helicase mutant and Wrn null mice. An antibody-based quantification of 43 serum cytokines and markers of cardiovascular disease risk complemented this study. We found that Wrn helicase mutants exhibited elevated and decreased levels, respectively, of the anti-inflammatory cytokine IL-10 and the pro-inflammatory cytokine IL-18. Wrn helicase mutants also exhibited an increase in serum hydroxyproline and plasminogen activator inhibitor-1, markers of extracellular matrix remodeling of the vascular system and inflammation in aging. We also observed an abnormal increase in the ratio of very long chain to short chain lysophosphatidylcholines in the Wrn helicase mutants underlying a peroxisome perturbation in these mice. Remarkably, the Wrn mutant helicase protein was mislocalized to the endoplasmic reticulum and the peroxisomal fractions in liver tissues. Additional analyses with mouse embryonic fibroblasts indicated a severe defect of the autophagy flux in cells derived from Wrn helicase mutants compared to wild type and Wrn null animals. These results indicate that the deleterious effects of the helicase-deficient Wrn protein are mediated by the dysfunction of several cellular organelles.

  17. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  18. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants

    Directory of Open Access Journals (Sweden)

    Fraser Paul E

    2008-01-01

    Full Text Available Abstract Background Amyloid precursor protein (APP is enzymatically cleaved by γ-secretase to form two peptide products, either Aβ40 or the more neurotoxic Aβ42. The Aβ42/40 ratio is increased in many cases of familial Alzheimer's disease (FAD. The transmembrane domain (TM of APP contains the known dimerization motif GXXXA. We have investigated the dimerization of both wild type and FAD mutant APP transmembrane domains. Results Using synthetic peptides derived from the APP-TM domain, we show that this segment is capable of forming stable transmembrane dimers. A model of a dimeric APP-TM domain reveals a putative dimerization interface, and interestingly, majority of FAD mutations in APP are localized to this interface region. We find that FAD-APP mutations destabilize the APP-TM dimer and increase the population of APP peptide monomers. Conclusion The dissociation constants are correlated to both the Aβ42/Aβ40 ratio and the mean age of disease onset in AD patients. We also show that these TM-peptides reduce Aβ production and Aβ42/Aβ40 ratios when added to HEK293 cells overexpressing the Swedish FAD mutation and γ-secretase components, potentially revealing a new class of γ-secretase inhibitors.

  19. Probing peptide and protein insertion in a biomimetic S-layer supported lipid membrane platform.

    Science.gov (United States)

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B; Schuster, Bernhard

    2015-01-27

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided.

  20. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients.

    Science.gov (United States)

    Wild, Edward J; Boggio, Roberto; Langbehn, Douglas; Robertson, Nicola; Haider, Salman; Miller, James R C; Zetterberg, Henrik; Leavitt, Blair R; Kuhn, Rainer; Tabrizi, Sarah J; Macdonald, Douglas; Weiss, Andreas

    2015-05-01

    Quantification of disease-associated proteins in the cerebrospinal fluid (CSF) has been critical for the study and treatment of several neurodegenerative disorders; however, mutant huntingtin protein (mHTT), the cause of Huntington's disease (HD), is at very low levels in CSF and, to our knowledge, has never been measured previously. We developed an ultrasensitive single-molecule counting (SMC) mHTT immunoassay that was used to quantify mHTT levels in CSF samples from individuals bearing the HD mutation and from control individuals in 2 independent cohorts. This SMC mHTT immunoassay demonstrated high specificity for mHTT, high sensitivity with a femtomolar detection threshold, and a broad dynamic range. Analysis of the CSF samples showed that mHTT was undetectable in CSF from all controls but quantifiable in nearly all mutation carriers. The mHTT concentration in CSF was approximately 3-fold higher in patients with manifest HD than in premanifest mutation carriers. Moreover, mHTT levels increased as the disease progressed and were associated with 5-year onset probability. The mHTT concentration independently predicted cognitive and motor dysfunction. Furthermore, the level of mHTT was associated with the concentrations of tau and neurofilament light chain in the CSF, suggesting a neuronal origin for the detected mHTT. We have demonstrated that mHTT can be quantified in CSF from HD patients using the described SMC mHTT immunoassay. Moreover, the level of mHTT detected is associated with proximity to disease onset and diminished cognitive and motor function. The ability to quantify CSF mHTT will facilitate the study of HD, and mHTT quantification could potentially serve as a biomarker for the development and testing of experimental mHTT-lowering therapies for HD. Not applicable. CHDI Foundation Inc.; Medical Research Council (MRC) UK; National Institutes for Health Research (NIHR); Rosetrees Trust; Swedish Research Council; and Knut and Alice Wallenberg Foundation.

  1. Conformational Rearrangements in the Pro-apoptotic Protein, Bax, as It Inserts into Mitochondria

    Science.gov (United States)

    Gahl, Robert F.; He, Yi; Yu, Shiqin; Tjandra, Nico

    2014-01-01

    The B-cell lymphoma 2 (Bcl-2) family of proteins regulates the activation of apoptosis through the mitochondria pathway. Pro- and anti-apoptotic members of this family keep each other in check until the correct time to commit to apoptosis. The point of no return for this commitment is the permeabilization of the outer mitochondrial membrane. Translocation of the pro-apoptotic member, Bax, from the cytosol to the mitochondria is the molecular signature of this event. We employed a novel method to reliably detect Förster resonance energy transfer (FRET) between pairs of fluorophores to identify intra-molecular conformational changes and inter-molecular contacts in Bax as this translocation occurs in live cells. In the cytosol, our FRET measurement indicated that the C-terminal helix is exposed instead of tucked away in the core of the protein. In addition fluorescence correlation spectroscopy (FCS) showed that cytosolic Bax diffuses much slower than expected, suggesting possible complex formation or transient membrane interaction. Cross-linking the C-terminal helix (α9) to helix α4 reduced the potential of those interactions to occur. After translocation, our FRET measurements showed that Bax molecules form homo-oligomers in the mitochondria through two distinct interfaces involving the BH3 domain (helix α2) and the C-terminal helix. These findings have implications for possible contacts with other Bcl-2 proteins necessary for the regulation of apoptosis. PMID:25315775

  2. Comparison of the activities of wild type and mutant enhancing factor/mouse secretory phospholipase A2 proteins

    Indian Academy of Sciences (India)

    Bhakti M Kirtane; Rita Mulherkar

    2002-09-01

    Enhancing factor (EF) protein, an isoform of secretory phospholipase A2 (PLA2), was purified as a modulator of epidermal growth factor from the small intestine of the Balb/c mouse. It was for the first time that a growth modulatory property of sPLA2 was demonstrated. Deletion mutation analysis of EF cDNA carried out in our laboratory showed that enhancing activity and phospholipase activity are two separate activities that reside in the same molecule. In order to study the specific amino acids involved in each of these activities, two site-directed mutants of EF were made and expressed in vitro. Comparison of enhancing activity as well as phospholipase A2 activity of these mutant proteins with that of wild type protein helped in identification of some of the residues important for both the activities.

  3. Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre-Chotzen syndrome.

    Science.gov (United States)

    Corsi, Ann K; Brodigan, Thomas M; Jorgensen, Erik M; Krause, Michael

    2002-06-01

    Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, has defects that occur earlier in the mesodermal lineage than a previously studied null allele of the gene. The semidominant allele has a charge change (E29K) in the basic DNA-binding domain of CeTwist. Surprisingly, the mutant protein retains DNA-binding activity as both a homodimer and a heterodimer with its partner E/Daughterless (CeE/DA). However, the mutant protein blocks the activation of the promoter of a target gene. Therefore, the mutant CeTwist may cause cellular defects as a dominant negative protein by binding to target promoters as a homo- or heterodimer and then blocking transcription. Similar phenotypes as those caused by the E29K mutation were observed when amino acid substitutions in the DNA-binding domain that are associated with the human Saethre-Chotzen syndrome were engineered into the C. elegans protein. These data suggest that Saethre-Chotzen syndrome may be caused, in some cases, by dominant negative proteins, rather than by haploinsufficiency of the locus.

  4. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits.

    Science.gov (United States)

    Fredrick, K; Dunny, G M; Noller, H F

    2000-05-01

    Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.

  5. Structural and biophysical analysis of sequence insertions in the Venezuelan Equine Encephalitis Virus macro domain.

    Science.gov (United States)

    Guillén, Jaime; Lichière, Julie; Rabah, Nadia; Beitzel, Brett F; Canard, Bruno; Coutard, Bruno

    2015-04-01

    Random transposon insertions in viral genomes can be used to reveal genomic regions important for virus replication. We used these genomic data to evaluate at the protein level the effect of such insertions on the Venezuelan Equine Encephalitis Virus nsP3 macro domain. The structural analysis showed that transposon insertions occur mainly in loops connecting the secondary structure elements. Some of the insertions leading to a temperature sensitive viral phenotype (ts) are close to the cleavage site between nsP2 and nsP3 or the ADP-ribose binding site, two important functions of the macro domain. Using four mutants mimicking the transposon insertions, we confirmed that these insertions can affect the macro domain properties without disrupting the overall structure of the protein.

  6. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice

    Directory of Open Access Journals (Sweden)

    Qiong Liu

    2016-03-01

    Full Text Available Lipopolysaccharide (LPS is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium. Outer membrane proteins (OMPs from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46 induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4–30 kDa.

  7. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice.

    Science.gov (United States)

    Liu, Qiong; Liu, Qing; Zhao, Xinxin; Liu, Tian; Yi, Jie; Liang, Kang; Kong, Qingke

    2016-03-22

    Lipopolysaccharide (LPS) is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium). Outer membrane proteins (OMPs) from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46) induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4-30 kDa.

  8. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Science.gov (United States)

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  9. Design of meningococcal factor H binding protein mutant vaccines that do not bind human complement factor H.

    Science.gov (United States)

    Pajon, Rolando; Beernink, Peter T; Granoff, Dan M

    2012-08-01

    Meningococcal factor H binding protein (fHbp) is a human species-specific ligand for the complement regulator, factor H (fH). In recent studies, fHbp vaccines in which arginine at position 41 was replaced by serine (R41S) had impaired fH binding. The mutant vaccines elicited bactericidal responses in human fH transgenic mice superior to those elicited by control fHbp vaccines that bound human fH. Based on sequence similarity, fHbp has been classified into three variant groups. Here we report that although R41 is present in fHbp from variant groups 1 and 2, the R41S substitution eliminated fH binding only in variant group 1 proteins. To identify mutants in variant group 2 with impaired fH binding, we generated fHbp structural models and predicted 63 residues influencing fH binding. From these, we created 11 mutants with one or two amino acid substitutions in a variant group 2 protein and identified six that decreased fH binding. Three of these six mutants retained conformational epitopes recognized by all six anti-fHbp monoclonal antibodies (MAbs) tested and elicited serum complement-mediated bactericidal antibody titers in wild-type mice that were not significantly different from those obtained with the control vaccine. Thus, fHbp amino acid residues that affect human fH binding differ across variant groups. This result suggests that fHbp sequence variation induced by immune selection also affects fH binding motifs via coevolution. The three new fHbp mutants from variant group 2, which do not bind human fH, retained important epitopes for eliciting bactericidal antibodies and may be promising vaccine candidates.

  10. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host.

    Science.gov (United States)

    Santander, Javier; Mitra, Arindam; Curtiss, Roy

    2011-12-01

    Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.

  11. Adapting protein solubility by glycosylation. N-glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions.

    Science.gov (United States)

    Tams, J W; Vind, J; Welinder, K G

    1999-07-13

    Protein solubility is a fundamental parameter in biology and biotechnology. In the present study we have constructed and analyzed five mutants of Coprinus cinereus peroxidase (CIP) with 0, 1, 2, 4 and 6 N-glycosylation sites. All mutants contain Man(x)(GlcNAc)(2) glycans. The peroxidase activity was the same for wild-type CIP and all the glycosylation mutants when measured with the large substrate 2,2'-azino-bis(-3-ethylbenzthiazoline-6-sulfonic acid). The solubility of the five CIP mutants showed a linear dependence on the number of carbohydrate residues attached to the protein in buffered solution of both ammonium sulfate (AMS) and acetone, increasing in AMS and decreasing in acetone. Moreover, the change in free energy of solvation appears to be a constant, though with opposite signs in these solvents, giving DeltaDeltaG degrees (sol)=-0.32+/-0.05 kJ/mol per carbohydrate residue in 2.0 M AMS, a value previously obtained comparing ordinary and deglycosylated horseradish peroxidase, and 0. 37+/-0.10 kJ/mol in 60 v/v% acetone.

  12. Allelic differences in Medicago truncatula NIP/LATD mutants correlate with their encoded proteins' transport activities in planta.

    Science.gov (United States)

    Salehin, Mohammad; Huang, Ying-Sheng; Bagchi, Rammyani; Sherrier, D Janine; Dickstein, Rebecca

    2013-02-01

    Medicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity nitrate transport in oocytes, while the other two are nitrate-transport defective. To further examine the mutant proteins' transport properties, the missense Mtnip/latd alleles were expressed in Arabidopsis thaliana chl1-5, resistant to the herbicide chlorate because of a deletion spanning the nitrate transporter AtNRT1.1(CHL1) gene. Mtnip-3 expression restored chlorate sensitivity in the Atchl1-5 mutant, similar to wild type MtNIP/LATD, while Mtnip-1 expression did not. The high-affinity nitrate transporter AtNRT2.1 gene was expressed in Mtnip-1 mutant roots; it did not complement, which could be caused by several factors. Together, these findings support the hypothesis that MtNIP/LATD may have another biochemical activity.

  13. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1.

    Science.gov (United States)

    Lee, Tzong-Hsien; Hall, Kristopher N; Swann, Marcus J; Popplewell, Jonathan F; Unabia, Sharon; Park, Yoonkyung; Hahm, Kyung-Soo; Aguilar, Marie-Isabel

    2010-03-01

    The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide

  14. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    Science.gov (United States)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  15. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

    Science.gov (United States)

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C

    1999-05-14

    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  16. Analysis of SSLP and Soluble Protein Contents in Leaves of Mutants Induced by High Pressure in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    HEXiu-ying; XuShi-ping; LIAoYao-ping; MAOXing-xue; WENGKe-nan; CHENZhao-ming; CHENYue-han; XIAOWan-sheng

    2004-01-01

    Rice variety Yuexiangzhan and its mutants induced by high pressure were studied using microsatellite markers and soluble protein content analyses. Eleven of the 88 microsatellite primer pairs showed evident polymorphisms repeatedly, and the polymorphic frequencies wcrc 3.4-11.3% between the mutants and Yuexiangzhan. The polymorphic markers were randomly located on chromosomes. The more similar the plant types of the mutants like their original variety., the less polymorphic loci were detected. In addition, there was variation in the soluble protein contents among the leaves of mutants, and the contents were significantly lower than those of the original variety.

  17. Expression and properties of wild-type and mutant forms of the Drosophila sex comb on midleg (SCM) repressor protein.

    Science.gov (United States)

    Bornemann, D; Miller, E; Simon, J

    1998-10-01

    The Sex comb on midleg (Scm) gene encodes a transcriptional repressor of the Polycomb group (PcG). Here we show that SCM protein is nuclear and that its expression is widespread during fly development. SCM protein contains a C-terminal domain, termed the SPM domain, which mediates protein-protein interactions. The biochemical function of another domain consisting of two 100-amino-acid-long repeats, termed "mbt" repeats, is unknown. We have determined the molecular lesions of nine Scm mutant alleles, which identify functional requirements for specific domains. The Scm alleles were tested for genetic interactions with mutations in other PcG genes. Intriguingly, three hypomorphic Scm mutations, which map within an mbt repeat, interact with PcG mutations more strongly than do Scm null alleles. The strongest interactions produce partial synthetic lethality that affects doubly heterozygous females more severely than males. We show that mbt repeat alleles produce stable SCM proteins that associate with normal sites in polytene chromosomes. We also analyzed progeny from Scm mutant germline clones to compare the effects of an mbt repeat mutation during embryonic vs. pupal development. We suggest that the mbt repeat alleles produce altered SCM proteins that incorporate into and impair function of PcG protein complexes.

  18. Tetrahydrobiopterin non-responsiveness in dihydropteridine reductase deficiency is associated with the presence of mutant protein.

    Science.gov (United States)

    Cotton, R G; Jennings, I; Bracco, G; Ponzone, A; Guardamagna, O

    1986-01-01

    Correlation of the response to a load of tetrahydrobiopterin (BH4) in dihydropterin reductase (DHPR) deficient patients to the type of mutation in these patients has led to the conclusion that 4 patients without mutant DHPR molecules in their cells respond to the BH4 load, whereas 3 patients with mutant DHPR in their cells do not respond. Intravenous injection of BH4 in 1 of the cases not responding to BH4 again showed no response.

  19. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei.

    Science.gov (United States)

    Terao, Tomio; Hirose, Tatsuro

    2015-06-01

    A new possibility for genetic control of the protein content of rice grains was suggested by the allele differences of the SEMIDWARF1 (SD1) mutation. Two quantitative trait loci-qPROT1 and qPROT12-were found on chromosomes 1 and 12, respectively, using backcrossed inbred lines of Sasanishiki/Habataki//Sasanishiki///Sasanishiki. One of them, qPROT1, increased almost all grain proteins instead of only certain proteins in the recessive Habataki allele. Fine mapping of qPROT1 revealed that two gene candidates-Os01g0883800 and Os01g0883900-were included in this region. Os01g0883800 encoded Gibberellin 20 oxidase 2 as well as SD1, the dwarf gene used in the so-called 'Green Revolution'. Mutant analyses as well as sequencing analysis using the semi-dwarf mutant cultivars Dee-geo-woo-gen and Calrose 76 revealed that the sd1 mutant showed significantly higher grain protein contents than their corresponding wild-type cultivars, strongly suggesting that the high protein contents were caused by sd1 mutation. However, the sd1 mutant Reimei did not have high grain protein contents. It is possible to control the grain protein content and column length separately by selecting for sd1 alleles. From this finding, the genetic control of grain protein content, as well as the column length of rice cultivars, might be possible. This ability might be useful to improve rice nutrition, particularly in areas where the introduction of semi-dwarf cultivars is not advanced.

  20. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.

    Science.gov (United States)

    Culver, Brady P; Savas, Jeffrey N; Park, Sung K; Choi, Jeong H; Zheng, Shuqiu; Zeitlin, Scott O; Yates, John R; Tanese, Naoko

    2012-06-22

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.

  1. Production and crystallization of a panel of structure-based mutants of the human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Lehtimäki, Mari; Laulumaa, Saara; Ruskamo, Salla; Kursula, Petri

    2012-11-01

    The myelin sheath is a multilayered membrane that surrounds and insulates axons in the nervous system. One of the proteins specific to the peripheral nerve myelin is P2, a protein that is able to stack lipid bilayers. With the goal of obtaining detailed information on the structure-function relationship of P2, 14 structure-based mutated variants of human P2 were generated and produced. The mutants were designed to potentially affect the binding of lipid bilayers by P2. All mutated variants were also crystallized and preliminary crystallographic data are presented. The structural data from the mutants will be combined with diverse functional assays in order to elucidate the fine details of P2 function at the molecular level.

  2. Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Norton, J.C.; Allen, A.C.; Burns, J.L.; Travis, G.H. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)] [and others

    1995-07-20

    Retinal degeneration slow (rds) is a semidominant mutation of mice that causes dysplasia and degeneration of rod and cone photoreceptors. Mutations in RDS, the human ortholog of the rds gene, are responsible for several inherited retinal dystrophies including a subset of retinitis pigmentosa. The normal rds locus encodes rds/peripherin, an integral membrane glycoprotein present in outer segment discs. Genomic libraries form wildtype and rds/rds mice were screened with an rds cDNA, and phage {lambda} clones that span the normal and mutant loci were mapped. We show that in mice, rds is caused by the insertion into exon II of a 9.2-kb repetitive genomic element that is very similar to the t haplotype-specific element in the H-2 complex. The entire element is included in the RNA products of the mutant locus. We present evidence that rds in mice represents a null allele. 40 refs., 4 figs.

  3. PTH1R Mutants Found in Patients with Primary Failure of Tooth Eruption Disrupt G-Protein Signaling

    Science.gov (United States)

    Kollert, Sina; Rukoyatkina, Natalia; Sturm, Julia; Gambaryan, Stepan; Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp; Eigenthaler, Martin; Wischmeyer, Erhard

    2016-01-01

    Aim Primary failure of tooth eruption (PFE) is causally linked to heterozygous mutations of the parathyroid hormone receptor (PTH1R) gene. The mutants described so far lead to exchange of amino acids or truncation of the protein that may result in structural changes of the expressed PTH1R. However, functional effects of these mutations have not been investigated yet. Materials and Methods In HEK293 cells, PTH1R wild type was co-transfected with selected PTH1R mutants identified in patients with PFE. The effects on activation of PTH-regulated intracellular signaling pathways were analyzed by ELISA and Western immunoblotting. Differential effects of wild type and mutated PTH1R on TRESK ion channel regulation were analyzed by electrophysiological recordings in Xenopus laevis oocytes. Results In HEK293 cells, activation of PTH1R wild type increases cAMP and in response activates cAMP-stimulated protein kinase as detected by phosphorylation of the vasodilator stimulated phosphoprotein (VASP). In contrast, the PTH1R mutants are functionally inactive and mutant PTH1R/Gly452Glu has a dominant negative effect on the signaling of PTH1R wild type. Confocal imaging revealed that wild type PTH1R is expressed on the cell surface, whereas PTH1R/Gly452Glu mutant is mostly retained inside the cell. Furthermore, in contrast to wild type PTH1R which substantially augmented K+ currents of TRESK channels, coupling of mutated PTH1R to TRESK channels was completely abolished. Conclusions PTH1R mutations affect intracellular PTH-regulated signaling in vitro. In patients with primary failure of tooth eruption defective signaling of PTH1R mutations is suggested to occur in dento-alveolar cells and thus may lead to impaired tooth movement. PMID:27898723

  4. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin.

    Science.gov (United States)

    Peck, Melicent C; Fisher, Robert F; Bliss, Robert; Long, Sharon R

    2013-08-01

    NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.

  5. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Directory of Open Access Journals (Sweden)

    Jessica Lenzi

    2015-07-01

    Full Text Available Patient-derived induced pluripotent stem cells (iPSCs provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis.

  6. Crystal Structures of the uL3 Mutant Ribosome: Illustration of the Importance of Ribosomal Proteins for Translation Efficiency.

    Science.gov (United States)

    Mailliot, Justine; Garreau de Loubresse, Nicolas; Yusupova, Gulnara; Meskauskas, Arturas; Dinman, Jonathan D; Yusupov, Marat

    2016-05-22

    The ribosome has been described as a ribozyme in which ribosomal RNA is responsible for peptidyl-transferase reaction catalysis. The W255C mutation of the universally conserved ribosomal protein uL3 has diverse effects on ribosome function (e.g., increased affinities for transfer RNAs, decreased rates of peptidyl-transfer), and cells harboring this mutation are resistant to peptidyl-transferase inhibitors (e.g., anisomycin). These observations beg the question of how a single amino acid mutation may have such wide ranging consequences. Here, we report the structure of the vacant yeast uL3 W255C mutant ribosome by X-ray crystallography, showing a disruption of the A-site side of the peptidyl-transferase center (PTC). An additional X-ray crystallographic structure of the anisomycin-containing mutant ribosome shows that high concentrations of this inhibitor restore a "WT-like" configuration to this region of the PTC, providing insight into the resistance mechanism of the mutant. Globally, our data demonstrate that ribosomal protein uL3 is structurally essential to ensure an optimal and catalytically efficient organization of the PTC, highlighting the importance of proteins in the RNA-centered ribosome.

  7. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Science.gov (United States)

    Lenzi, Jessica; De Santis, Riccardo; de Turris, Valeria; Morlando, Mariangela; Laneve, Pietro; Calvo, Andrea; Caliendo, Virginia; Chiò, Adriano; Rosa, Alessandro; Bozzoni, Irene

    2015-01-01

    ABSTRACT Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis. PMID:26035390

  8. Screening proteins that interact with mutant superoxide dismutase 1 from familial amyotrophic lateral sclerosis using a yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Guisheng Chen; Xu Peng; Shugui Shi; Lusi Li; Kangning Chen; Ju Hu; Zhenhua Zhou; Jun Wu; Gaoxing Luo; Shunzong Yuan

    2011-01-01

    The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which interacted with mutant SOD1 were obtained, including 8 known proteins (protein tyrosine-phosphatase non-receptor type 2, TBC1D4, protein kinase family, splicing factor, arginine/serine-rich 2, SRC protein tyrosine kinase Fyn, β-sarcoglycan; glycine receptor α2, microtubule associated protein/microtubule affinity-regulating kinase 1, ferritin H chain), and 7 unknown proteins. Results demonstrated interaction of mutant SOD1 with microtubule associated protein/microtubule affinity-regulating kinase 1 and β-sarcoglycan.

  9. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    Science.gov (United States)

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  10. Construction and Virulence of Filamentous Hemagglutinin Protein B1 Mutant of Pasteurella multocida in Chickens

    Institute of Scientific and Technical Information of China (English)

    GUO Dong-chun; QU Lian-dong; SUN Yan; ZHANG Ai-qin; LIU Jia-sen; LU Yan; LIU Pei-xin; YUAN Dong-wei; JIANG Qian; SI Chang-de

    2014-01-01

    Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two iflamentous hemagglutinin genes, fhaB1 and fhaB2, are the potential virulence factors. In this study, an inactivation fhaB1 mutant of P. multocida in avian strain C48-102 was constructed by a kanamycin-resistance cassette. The virulence of the fhaB1 mutant and the wild type strain was assessed in chickens by intranasal and intramuscular challenge. The inactivation of fhaB1 resulted in a high degree of attenuation when the chickens were challenged intranasally and a lesser degree when challenged intramuscularly. The fhaB1 mutant and the wild type strain were investigated their sensitivity to the antibody-dependent classical complement-mediated killing pathway in 90%convalescent chicken serum. The fhaB1 mutant was serum sensitive as the viability has reduced between untreated serum and heat inactivated chicken serum (P<0.007). These results conifrmed that FhaB1 played the critical roles in the bacterial pathogenesis and further studies were needed to investigate the mechanism which caused reduced virulence of the fhaB1 mutant.

  11. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  12. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2008-01-01

    @@ CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type cotton Gossypium arboreum L.(DPL971) and its natural fuzzless mutant (DPL972).The gene consisted of an open reading frame of 1,416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa.

  13. Highly ordered crystals of channel-forming membrane proteins, of nucleoside-monophosphate kinases, of FAD-containing oxidoreductases and of sugar-processing enzymes and their mutants

    Science.gov (United States)

    Schulz, G. E.; Dreyer, M.; Klein, C.; Kreusch, A.; Mittl, P.; Mu¨ller, C. W.; Mu¨ller-Dieckmann, J.; Muller, Y. A.; Proba, K.; Schlauderer, G.; Spu¨rgin, P.; Stehle, T.; Weiss, M. S.

    1992-08-01

    Preparation and crystallization procedures as well as crystal properties are reported for 12 proteins plus numerous site-directed mutants. The proteins are: the integral membrane protein porin from Rhodobacter capsulatus which diffracts to at least 1.8A˚resolution, porin from Rhodopseudomonas blastica which diffracts to at least 2.0A˚resolution, adenylate kinase from yeast and mutants, adenylate kinase from Escherichia coli and mutants, bovine liver mitochondrial adenylate kinase, guanylate kinase from yeast, uridylate kinase from yeast, glutathione reductase from E. coli and mutants, NADH peroxidase from Streptococcus faecalis containing a sulfenic acid as redox-center, pyruvate oxidase from Lactobacillus plantarum containing FAD and TPP, cyclodextrin glycosyltransferase from Bacillus circulans and mutants, and a fuculose aldolase from E. coli.

  14. EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency.

    Science.gov (United States)

    Lee, E F; Chen, L; Yang, H; Colman, P M; Huang, D C S; Fairlie, W D

    2008-10-01

    Studies of the cell death pathway in the nematode Caenorhabditis elegans provided the first evidence of the evolutionary conservation of apoptosis signalling. Here we show that the worm Bcl-2 homology domain-3 (BH3)-only protein EGL-1 binds mammalian pro-survival proteins very poorly, but can be converted into a high-affinity ligand for Bcl-2 and Bcl-x(L) by subtle mutation of the cysteine residue at position 62 within the BH3 domain. A 100-fold increase in affinity was observed following a single atom change (cysteine to serine substitution), and a further 10-fold increase by replacement with glycine. The low affinity of wild-type EGL-1 for mammalian pro-survival proteins and its poor expression correlates with its weak killing activity in mammalian cells whereas the high-affinity C62G mutant is a very potent killer of cells lacking Mcl-1. Cell killing by the C62S mutant with intermediate affinity only occurs when this EGL-1 BH3 domain is placed in a more stable context, namely that of Bim(S), which allows higher expression, though the kinetics of cell death now vary depending on whether Mcl-1 is neutralized by Noxa or genetically deleted. These results demonstrate how levels of BH3-only proteins, target affinity and the spectrum of neutralization of pro-survival proteins all contribute to killing activity.

  15. Interaction of Herbicides and Quinone with the QB-Protein of the Diuron-Resistant Chlamydomonas reinhardtii Mutant Dr2

    Science.gov (United States)

    Haworth, Philip; Steinback, Katherine E.

    1987-01-01

    We have used the diuron-resistant Dr2 mutant of Chlamydomonas reinhardtii which is altered in the 32 kilodalton QB-protein at amino acid 219 (valine to isoleucine), to investigate the interactions of herbicides and plastoquinone with the 32 kilodalton QB-protein. The data contained in this report demonstrate that the effects of this mutation are different from those of the more completely characterized mutant which confers extreme resistance to triazines in higher plants. The mutation in C. reinhardtii Dr2 confers only slight resistance to a number of inhibitors of photosynthetic electron transport. Extreme triazine resistance results from an increase in the binding constant of the herbicide with the 32 kilodalton QB-protein, in contrast the diuron binding constant for chloroplasts isolated from wild-type (sensitive) Chlamydomonas and the resistant Dr2 are indistinguishable. We conclude that the altered structure in the 32 kilodalton QB-protein of Dr2 does not directly affect the diuron binding site. This mutation appears to alter the steric properties of the binding protein in such a way that diuron and plastoquinone do not directly compete for binding. This steric perturbation confers mild resistance to other herbicidal inhibitors of photosynthesis and alters the kinetics of QA to QB electron transfer. PMID:16665318

  16. Expression of mutant protein p53 and Hsp70 and Hsp90 chaperones in cockles Cerastoderma edule affected by neoplasia.

    Science.gov (United States)

    Díaz, S; Cao, A; Villalba, A; Carballal, M J

    2010-07-01

    High prevalence of disseminated neoplasia has been found in cockles Cerastoderma edule of Galicia (NW Spain). Disseminated neoplasia has been associated with high mortalities of various bivalve species. In vertebrates, proteins such as p53 and heat shock proteins (HSPs) play important roles in carcinogenesis. The protein p53 has been detected in neoplastic cells of bivalve molluscs such as Mytilus edulis, Mytilus trossulus, Mya arenaria, Spisula solidissima, Crassostrea rhizophorae and Crassostrea gigas. In this study, western blotting analyses were used to test the expression of Hsp70, Hsp90 and mutant p53 proteins in the cells and plasma of the haemolymph of cockles showing various intensities of neoplasia. Disseminated neoplasia was previously diagnosed by examination of stained haemolymph monolayers with light microscopy. In the present study, mutant p53 was detected in haemolymph cells of cockles diagnosed as affected by moderate and heavy neoplasia intensity, whereas it was not detected in cockles with either no or light neoplasia. The higher the neoplasia intensity, the higher the levels of Hsp70 and Hsp90. These proteins were not found in plasma. The results reveal the possible association between p53 and HSPs in neoplastic cells of cockles, which could prevent p53 from carrying out its functions, as occurs in human cancers.

  17. A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts.

    Science.gov (United States)

    Mayer, T; Meyer, M; Janning, A; Schiedel, A C; Barnekow, A

    1999-03-25

    The organization of polymerized actin in the mammalian cell is regulated by several members of the rho family. Three rho proteins, cdc42, rac and rho act in a cascade to organize the intracellular actin cytoskeleton. Rho proteins are involved in the formation of actin stress fibers and adhesion plaques in fibroblasts. During transformation of mammalian cells by oncogenes the cytoskeleton is rearranged and stress fibers and adhesion plaques are disintegrated. In this paper we investigate the function of the rho protein in RR1022 rat fibroblasts transformed by the Rous sarcoma virus. Two activated mutants of the rho protein, rho G14V and rho Q63L, and a dominant negative mutant, rho N1171, were stably transfected into RR1022 cells. The resulting cell lines were analysed for the organization of polymerized actin and adhesion plaques. Cells expressing rho Q63L, but not rho wt, rho G14V or rho N1171, showed an altered morphology. These cells displayed a flat, fibroblast like shape when compared with the RR1022 ancestor cells. Immunofluorescence analyses revealed that actin stress fibers and adhesion plaques were rearranged in these cells. We conclude from these data that an active rho protein can restore elements of the actin cytoskeleton in transformed cells by overriding the tyrosine kinase phosphorylation induced by the pp60(v-src).

  18. Inactive enzymatic mutant proteins (phosphoglycerate mutase and enolase as sugar binders for ribulose-1,5-bisphosphate regeneration reactors

    Directory of Open Access Journals (Sweden)

    Giri Ashok

    2005-02-01

    Full Text Available Abstract Background Carbon dioxide fixation bioprocess in reactors necessitates recycling of D-ribulose1,5-bisphosphate (RuBP for continuous operation. A radically new close loop of RuBP regenerating reactor design has been proposed that will harbor enzyme-complexes instead of purified enzymes. These reactors will need binders enabling selective capture and release of sugar and intermediate metabolites enabling specific conversions during regeneration. In the current manuscript we describe properties of proteins that will act as potential binders in RuBP regeneration reactors. Results We demonstrate specific binding of 3-phosphoglycerate (3PGA and 3-phosphoglyceraldehyde (3PGAL from sugar mixtures by inactive mutant of yeast enzymes phosphoglycerate mutase and enolase. The reversibility in binding with respect to pH and EDTA has also been shown. No chemical conversion of incubated sugars or sugar intermediate metabolites were found by the inactive enzymatic proteins. The dissociation constants for sugar metabolites are in the micromolar range, both proteins showed lower dissociation constant (Kd for 3-phosphoglycerate (655–796 μM compared to 3-phosphoglyceraldehyde (822–966 μM indicating higher affinity for 3PGA. The proteins did not show binding to glucose, sucrose or fructose within the sensitivity limits of detection. Phosphoglycerate mutase showed slightly lower stability on repeated use than enolase mutants. Conclusions The sugar and their intermediate metabolite binders may have a useful role in RuBP regeneration reactors. The reversibility of binding with respect to changes in physicochemical factors and stability when subjected to repeated changes in these conditions are expected to make the mutant proteins candidates for in-situ removal of sugar intermediate metabolites for forward driving of specific reactions in enzyme-complex reactors.

  19. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants.

    Science.gov (United States)

    Shima, J; Penyige, A; Ochi, K

    1996-07-01

    Mutants resistant to 3-aminobenzamide, a known inhibitor of ADP-ribosyltransferase, were obtained from Streptomyces coelicolor A3(2). One (strain 27) was analyzed in detail. Mutant 27 had a reduced ADP-ribosyl-transferase activity, exhibited substantial changes from the wild type in ADP-ribosylated protein profile during cell aging, and was defective in producing aerial mycelium and antibiotics. A 92-kDa ADP-ribosylated protein disappeared at the onset of differentiation in the parent strain but was present in mutant 27. Four ADP-ribosylated proteins (39, 41, 43, and 46 kDa) appeared at the onset of differentiation in the parent strain but were missing in mutant 27. Failure to ADP-ribosylate these four proteins was detected when the parent strain was grown in the presence of subinhibitory amounts of 3-aminobenzamide. Genetic analysis showed that the mutation, named brgA, conferring resistance to 3-aminobenzamide, cosegregated with the altered phenotypes (i.e., defects in ADP-ribosylation and aerial mycelium formation) and was mapped to a new locus near uraA. The brgA mutants were nonconditionally deficient in producing aerial mycelium and antibiotics, as determined by using various media, and had a morphological and physiological phenotype quite different from that of a bldG mutant carrying a mutation which was previously mapped near uraA. Among the known bld mutants, bldA, bldD, and bldG mutants exhibited a ADP-ribosylated protein profile similar to that of the wild type, while like mutant 27, bldB, bldC, and bldH mutants failed to ADP-ribosylate certain proteins.

  20. Isolation of Escherichia coli rpoB mutants resistant to killing by lambda cII protein and altered in pyrE gene attenuation

    DEFF Research Database (Denmark)

    Hammer, Karin; Jensen, Kaj Frank; Poulsen, Peter;

    1987-01-01

    Escherichia coli mutants simultaneously resistant to rifampin and to the lethal effects of bacteriophage lambda cII protein were isolated. The sck mutant strains carry alterations in rpoB that allow them to survive cII killing (thus the name sck), but that do not impair either the expression of c...

  1. A novel intergenic ETnII-β insertion mutation causes multiple malformations in polypodia mice.

    Directory of Open Access Journals (Sweden)

    Jessica A Lehoczky

    Full Text Available Mouse early transposon insertions are responsible for ~10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd, a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5' LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development.

  2. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy.

    Science.gov (United States)

    Wong, Vincent Kam Wai; Wu, An Guo; Wang, Jing Rong; Liu, Liang; Law, Betty Yuen-Kwan

    2015-02-18

    Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington's disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or a-synuclein. Through the GFP-LC3 autophagy detection platform, we have  identified  neferine,  isolated  from  the  lotus  seed  embryo  of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74) in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7)-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.

  3. A mutant of SWAP-70, a phosphatidylinositoltrisphosphate binding protein, transforms mouse embryo fibroblasts, which is inhibited by sanguinarine.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Fukui

    Full Text Available SWAP-70, a phosphatidylinositol trisphosphate (PtdIns(3,4,5P(3 binding protein, has been suggested to be involved in transformation of mouse embryo fibroblasts (MEFs as well as membrane ruffling after growth factor stimulation of the cells. A mutant, SWAP-70-374, was found to be able to bind to F-actin in vitro, whereas wild-type SWAP-70 failed to do so. This mutant was present at the plasma membrane without any stimulation while the wild-type protein was present only in the cytosol unless cells were stimulated with EGF. Expression of this mutant in MEFs resulted in morphologic transformation, fast growth, and loss of contact inhibition, suggesting that SWAP-70 with this mutation can transform the cells. ERK1/2 was activated in SWAP-70-374-transformed cells. Use of MEK inhibitors revealed that the ERK1/2 pathway does not affect the cell growth of MEFs but is responsible for loss of contact inhibition. To investigate the function of SWAP-70 further, drugs that can inhibit SWAP-70-dependent cell responses were screened. Among various drugs, sanguinarine was found to inhibit transformation of MEFs by SWAP-70-374. This drug was able to inhibit SWAP-70-mediated membrane ruffling as well, suggesting that its effect was closely related to the SWAP-70 signaling pathway. These results suggest that SWAP-70-374 can activate some signaling pathways, including the ERK1/2 pathway, to transform MEFs.

  4. Neferine Attenuates the Protein Level and Toxicity of Mutant Huntingtin in PC-12 Cells via Induction of Autophagy

    Directory of Open Access Journals (Sweden)

    Vincent Kam Wai Wong

    2015-02-01

    Full Text Available Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington’s disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or a-synuclein. Through the GFP-LC3 autophagy detection platform, we have  identified  neferine,  isolated  from  the  lotus  seed  embryo  of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74 in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.

  5. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    CSIR Research Space (South Africa)

    Mehlo, L

    2013-09-01

    Full Text Available by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa -, 24 kDa a-A1 and the 22 kDa a-A2 kafirins...

  6. Repressor mutant forms of the Azospirillum brasilense NtrC protein.

    Science.gov (United States)

    Huergo, Luciano F; Assumpção, Marcelo C; Souza, Emanuel M; Steffens, M Berenice R; Yates, M Geoffrey; Chubatsu, Leda S; Pedrosa, Fábio O

    2004-10-01

    The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.

  7. [Comparative proteomics analysis of extracellular proteins from Listeria monocytogenes and its isogenic prfA deletion mutant].

    Science.gov (United States)

    Yin, Yuelan; Bai, Chunguang; Wang, Guoliang; Jia, Yanyan; Qu, Jin; Fu, Hong; Gao, Yunfei; Jiao, Xin'an

    2013-04-04

    Positive regulatory factor A (PrfA) protein plays a key role in the pathogenicity of Listeria monocytogenes by regulating the expression of virulence genes. We studied the regulation functions of PrfA and its role in Listeria monocytogenes (Lm) virulence. Extracellular proteins were obtained from the supernatants of parental strain LM4 and mutant strain LM4deltaprfA cultured in minimal medium. We used two-dimensional gel electrophoresis and matrix associated laser dissociation/ionization time of flight mass spectrometry (MALDI- TOF-MS) to analyze the differences of secreted proteins between LM4 and LM4deltaprfA. The electrophoresis results show that 31 different spots, 19 spots corresponding 12 proteins were identified by MALDI- TOF-MS. Some virulence related proteins were verified, such as InlC, ActA and LLO. Some new proteins that are regulated by PrfA include D-alanyl-D-alanine carboxypeptidase, dipeptide Glycine and Trytophan (GW) repeat-containing surface protein, transcriptional regulator and some hypothetical proteins with unknown functions. Real-time quantitative PCR was conducted to verify the proteomics results. The mRNA expression level of hly, actA and inlC gene was significantly reduced, and that of D-alanyl-D-alanine carboxypeptidase and GW repeat-containing surface protein's synthesis also had a reduction in LM4deltaprfA strain. PrfA plays key roles on the regulation of genes in LIPI- I and LIPI- II.

  8. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  9. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  10. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Directory of Open Access Journals (Sweden)

    Nannenga Brent L

    2011-12-01

    Full Text Available Abstract Background Membrane proteins (MPs populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as E. coli has curtailed progress in our understanding of their structure and function. Results Using the seven transmembrane segments H. turkmenica deltarhodopsin (HtdR as a reporter, we isolated a spontaneous mutant in the arabinose-inducible PBAD promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing htdR transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δtig cells, toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (N. pharonis sensory rhodopsin II was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δtig host. Conclusions Our system, which combines a downregulated version of the tightly repressed PBAD promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.

  11. Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant Goami 2.

    Science.gov (United States)

    Butardo, Vito M; Daygon, Venea Dara; Colgrave, Michelle L; Campbell, Peter M; Resurreccion, Adoracion; Cuevas, Rosa Paula; Jobling, Stephen A; Tetlow, Ian; Rahman, Sadequr; Morell, Matthew; Fitzgerald, Melissa

    2012-11-21

    Elevated proportions of amylose in cereals are commonly associated with either the loss of starch branching or starch synthase activity. Goami 2 is a high-amylose mutant of the temperate japonica rice variety Ilpumbyeo. Genotyping revealed that Goami 2 and Ilpumbyeo carry the same alleles for starch synthase IIa and granule-bound starch synthase I genes. Analyses of granule-bound proteins revealed that SSI and SSIIa accumulate inside the mature starch granules of Goami 2, which is similar to the amylose extender mutant IR36ae. However, unlike the amylose extender mutants, SBEIIb was still detectable inside the starch granules of Goami 2. Detection of SBEIIb after protein fractionation revealed that most of the SBEIIb in Goami 2 accumulates inside the starch granules, whereas most of it accumulates at the granule surface in Ilpumbyeo. Exhaustive mass spectrometric characterisations of granule-bound proteins failed to detect any peptide sequence mutation or major post-translational modifications in Goami 2. Moreover, the signal peptide was found to be cleaved normally from the precursor protein, and there is no apparent N-linked glycosylation. Finally, no difference was found in the SBEIIb structural gene sequence of Goami 2 compared with Ilpumbyeo. In contrast, a G-to-A mutation was detected in the SBEIIb gene of IR36ae located at the splice site between exon and intron 11, which could potentially introduce a premature stop codon and produce a truncated form of SBEIIb. It is suggested that the mutation responsible for producing high amylose in Goami 2 is not due to a defect in SBEIIb gene as was observed in IR36ae, even though it produces a phenotype analogous to the amylose extender mutation. Understanding the molecular genetic basis of this mutation will be important in identifying novel targets for increasing amylose and resistant starch contents in rice and other cereals.

  12. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    Directory of Open Access Journals (Sweden)

    Morgan L Henderson

    Full Text Available Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs, located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs. Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation: RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA. In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  13. Kinetics and energetics of the translocation of maltose binding protein folding mutants

    NARCIS (Netherlands)

    Tomikiewicz, Danuta; Nouwen, Nico; Driessen, Arnold J. M.; Tomkiewicz, Danuta

    2008-01-01

    Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an

  14. Correlation between the Insertion/Deletion Mutations of Prion Protein Gene and BSE Susceptibility and Milk Performance in Dairy Cows

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To investigate the 23 bp and 12 bp insertion/deletion (indel) mutations within the bovine prion protein (PRNP) gene in Chinese dairy cows, and to detect the associations of two indel mutations with BSE susceptibility and milk performance. Methods Based on bovine PRNP gene sequence, two pairs of primers for testing the 23 bp and 12 bp indel mutations were designed. The PCR ampliifcation and agarose electrophoresis were carried out to distinguish the different genotypes within the mutations. Moreover, based on previous data from other cattle breeds and present genotypic and allelic frequencies of two indels mutations in this study, the corrections between the two indel mutations and BSE susceptibility were tested, as well as the relationships between the mutations and milk performance traits were analyzed in this study based on the statistical analyses. Results In the analyzed Chinese Holstein population, the frequencies of two“del”alleles in 23 bp and 12 bp indel muations were more frequent. The frequency of haplotype of 23del-12del was higher than those of 23del-12ins and 23ins-12del. From the estimated r2 and D’ values, two indel polymorphisms were linked strongly in the Holstein population (D’=57.5%, r2=0.257). Compared with the BSE-affected cattle populations from the reported data, the signiifcant differences of genotypic and allelic frequencies were found among present Holstein and some BSE-affected populations (P0.05). Conclusions These observations revealed that the inlfuence of two indel mutations within the bovine PRNP gene on BSE depended on the breed and they did not affect the milk production traits, which layed the foundation for future selection of resistant animals, and for improving health conditions for dairy breeding against BSE in China.

  15. Rapid Proteasomal Degradation of Mutant Proteins Is the Primary Mechanism Leading to Tumorigenesis in Patients With Missense AIP Mutations

    Science.gov (United States)

    Hernández-Ramírez, Laura C.; Martucci, Federico; Morgan, Rhodri M. L.; Trivellin, Giampaolo; Tilley, Daniel; Ramos-Guajardo, Nancy; Iacovazzo, Donato; D'Acquisto, Fulvio; Prodromou, Chrisostomos

    2016-01-01

    Context: The pathogenic effect of mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene (AIPmuts) in pituitary adenomas is incompletely understood. We have identified the primary mechanism of loss of function for missense AIPmuts. Objective: This study sought to analyze the mechanism/speed of protein turnover of wild-type and missense AIP variants, correlating protein half-life with clinical parameters. Design and Setting: Half-life and protein–protein interaction experiments and cross-sectional analysis of AIPmut positive patients' data were performed in a clinical academic research institution. Patients: Data were obtained from our cohort of pituitary adenoma patients and literature-reported cases. Interventions: Protein turnover of endogenous AIP in two cell lines and fifteen AIP variants overexpressed in HEK293 cells was analyzed via cycloheximide chase and proteasome inhibition. Glutathione-S-transferase pull-down and quantitative mass spectrometry identified proteins involved in AIP degradation; results were confirmed by coimmunoprecipitation and gene knockdown. Relevant clinical data was collected. Main Outcome Measures: Half-life of wild-type and mutant AIP proteins and its correlation with clinical parameters. Results: Endogenous AIP half-life was similar in HEK293 and lymphoblastoid cells (43.5 and 32.7 h). AIP variants were divided into stable proteins (median, 77.7 h; interquartile range [IQR], 60.7–92.9 h), and those with short (median, 27 h; IQR, 21.6–28.7 h) or very short (median, 7.7 h; IQR, 5.6–10.5 h) half-life; proteasomal inhibition rescued the rapid degradation of mutant proteins. The experimental half-life significantly correlated with age at diagnosis of acromegaly/gigantism (r = 0.411; P = .002). The FBXO3-containing SKP1–CUL1–F-box protein complex was identified as the E3 ubiquitin-ligase recognizing AIP. Conclusions: AIP is a stable protein, driven to ubiquitination by the SKP1–CUL1–F-box protein complex

  16. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 4356 : evidence for protein : protein interaction of two subdomains

    NARCIS (Netherlands)

    Smit, E.; Jager, D.; Martinez, B.; Tielen, F.J.; Pouwels, P.H.

    2002-01-01

    The structure of the crystallisation domain, SAN, of the S A-protein of Lactobacillus acidophilus ATCC 4356 was analysed by insertion and deletion mutagenesis, and by proteolytic treatment. Mutant S A-protein synthesised in Escherichia coli with 7-13 amino acid insertions near the N terminus or with

  17. Human T-cell leukemia virus I tax protein sensitizes p53-mutant cells to DNA damage.

    Science.gov (United States)

    Mihaylova, Valia T; Green, Allison M; Khurgel, Moshe; Semmes, Oliver J; Kupfer, Gary M

    2008-06-15

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53-containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective.

  18. Che-1/AATF: a critical co-factor for both wild type- and mutant-p53 proteins

    Directory of Open Access Journals (Sweden)

    Tiziana eBruno

    2016-02-01

    Full Text Available The p53 protein is a key player in a wide range of protein networks that allow the state of good health of the cell. Not surprisingly, mutations of the p53 gene are one of the most common alterations associated to cancer cells. Mutated forms of p53 (mtp53 not only lose the ability to protect the integrity of the genetic heritage of the cell, but acquire pro-oncogenic functions, behaving like dangerous accelerators of transformation and tumor progression. In recent years, many studies focused on investigating possible strategies aiming to counteract this mutant p53 gain of function but the results have not always been satisfactory. Che-1/AATF is a nuclear protein that binds to RNA polymerase II and plays a role in multiple fundamental processes, including control of transcription, cell cycle regulation, DNA damage response and apoptosis. Several studies showed Che-1/AATF as an important endogenous regulator of p53 expression and activity in a variety of biological processes. Notably, this same regulation was more recently observed also on mtp53. The depletion of Che-1/AATF strongly reduces the expression of mutant p53 in several tumors in vitro and in vivo, making the cells an easier target for chemotherapy treatments. In this mini review, we report an overview of Che-1/AATF functions and discuss a possible role of Che-1/AATF in cancer therapy, with particular regard to its action on p53/mtp53.

  19. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons.

    Science.gov (United States)

    Moldovan, Mihai; Alvarez, Susana; Pinchenko, Volodymyr; Klein, Dennis; Nielsen, Finn Cilius; Wood, John N; Martini, Rudolf; Krarup, Christian

    2011-02-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies with conventional nerve conduction studies, behavioural studies using rotor-rod measurements, and histological measures to assess membrane dysfunction and its progression in protein zero deficient homozygous mutants as compared with age-matched wild-type controls. The involvement of Na(V)1.8 was investigated by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero deficient homozygous mutants to an extent that precipitates conduction failure in severely affected axons. Our data suggest that a Na(V)1.8 channelopathy contributed to the poor motor function of protein zero deficient homozygous mutants, and that the conduction failure was associated with partially reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a

  20. Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.

    Science.gov (United States)

    Martinez, Fernando J; Pratt, Gabriel A; Van Nostrand, Eric L; Batra, Ranjan; Huelga, Stephanie C; Kapeli, Katannya; Freese, Peter; Chun, Seung J; Ling, Karen; Gelboin-Burkhart, Chelsea; Fijany, Layla; Wang, Harrison C; Nussbacher, Julia K; Broski, Sara M; Kim, Hong Joo; Lardelli, Rea; Sundararaman, Balaji; Donohue, John P; Javaherian, Ashkan; Lykke-Andersen, Jens; Finkbeiner, Steven; Bennett, C Frank; Ares, Manuel; Burge, Christopher B; Taylor, J Paul; Rigo, Frank; Yeo, Gene W

    2016-11-23

    HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.

  1. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    Science.gov (United States)

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  2. Time dependent physiological characterization of yeast oxidative stress response and growth modulation of protein kinase/phosphatase mutants

    DEFF Research Database (Denmark)

    Altintas, Ali; Workman, Christopher

    2013-01-01

    The objective of the project was to investigate the time-dependent batch growth effects of oxidative environmental conditions on protein ki nase (PK) and phosphatase (PP) deletion mutants and relevant wild type strains of Saccharomyces cerevisiae . To achieve this goal, 44 different PK and PP.......25, 0.50 and 1.0 mM). Understanding the growth physiology of S. cerevisiae allows us to estimate the link between genotype and stress-response phenotype. Growth physiology parameters, such as growth rate, diauxic shift times, stress-induced stasis times, were measured in fermentative batch cultures...

  3. DNA polymorphism and total protein in mutants of Metarhizium anisopliae var. Anisopliae (Metsch.) Sorokin strain E9

    OpenAIRE

    Freire,Laurineide Lopes de Carvalho; Costa,Ana Bolena Lima da; Góes,Larissa Brandão; Oliveira,Neiva Tinti de

    2001-01-01

    Five mutants (MaE10, MaE27, MaE24, MaE41 e MaE49) of Metarhizium anisopliae wild strain E9 were analysed for DNA profile through the RAPD technique and for changes in total protein content by spectrophotometry, polyacrylamide gel electrophoresis and densitometry. The pattern of RAPD markers showed genetic polymorphism among the strains: out of twenty primers seven were selected, producing 113 bands. Forty seven bands were present in all strains (41.6% of monomorphic bands) and 66 showed polym...

  4. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  5. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  6. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    Science.gov (United States)

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.

  7. Temperature control of growth and productivity in mutant Chinese hamster ovary cells synthesizing a recombinant protein.

    Science.gov (United States)

    Jenkins, N; Hovey, A

    1993-11-05

    The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors.

  8. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Li, Xiaobo; Zhang, Ru; Patena, Weronika; Gang, Spencer S; Blum, Sean R; Ivanova, Nina; Yue, Rebecca; Robertson, Jacob M; Lefebvre, Paul A; Fitz-Gibbon, Sorel T; Grossman, Arthur R; Jonikas, Martin C

    2016-02-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.

  9. GALT Protein Database, a Bioinformatics Resource for the Manage-ment and Analysis of Structural Features of a Galactosemia-related Protein and Its Mutants

    Institute of Scientific and Technical Information of China (English)

    Antonio d'Acierno; Angelo Facchiano; Anna Marabotti

    2009-01-01

    We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type Ⅰ. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.

  10. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases.

    Science.gov (United States)

    Adnan, Humaira; Zhang, Zhenbo; Park, Hyun-Joo; Tailor, Chetankumar; Che, Clare; Kamani, Mustafa; Spitalny, George; Binnington, Beth; Lingwood, Clifford

    2016-01-01

    Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2-4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (protein misfolding diseases.

  11. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Science.gov (United States)

    He, Lihua; Kota, Pradeep; Aleksandrov, Andrei A; Cui, Liying; Jensen, Tim; Dokholyan, Nikolay V; Riordan, John R

    2013-02-01

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

  12. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... demonstrated using a complex insertion mutant library of TNF-alpha, from which different folding competent mutant proteins were uncovered....

  13. Bovine spongiform encephalopathy associated insertion/deletion polymorphisms of the prion protein gene in the four beef cattle breeds from North China.

    Science.gov (United States)

    Zhu, Xiang-Yuan; Feng, Fu-Ying; Xue, Su-Yuan; Hou, Ting; Liu, Hui-Rong

    2011-10-01

    Two insertion/deletion (indel) polymorphisms of the prion protein gene (PRNP), a 23-bp indel in the putative promoter region and a 12-bp indel within intron I, are associated with the susceptibility to bovine spongiform encephalopathy (BSE) in cattle. In the present study, the polymorphism frequencies of the two indels in four main beef cattle breeds (Hereford, Simmental, Black Angus, and Mongolian) from North China were studied. The results showed that the frequencies of deletion genotypes and alleles of 23- and 12-bp indels were lower, whereas the frequencies of insertion genotypes and alleles of the two indels were higher in Mongolian cattle than in the other three cattle breeds. In Mongolian cattle, the 23-bp insertion / 12-bp insertion was the major haplotype, whereas in Hereford, Simmental, and Black Angus cattle, the 23-bp deletion / 12-bp deletion was the major haplotype. These results demonstrated that Mongolian cattle could be more resistant to BSE, compared with the other three cattle breeds, because of its relatively low frequencies of deletion genotypes and alleles of 23- and 12-bp indel polymorphisms. Thus, this race could be important for selective breeding to improve resistance against BSE in this area.

  14. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells.

    Science.gov (United States)

    Perucca, Paola; Sommatis, Sabrina; Mocchi, Roberto; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2015-01-01

    DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.

  15. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting.

    Science.gov (United States)

    Beggah, Siham; Vogne, Christelle; Zenaro, Elena; Van Der Meer, Jan Roelof

    2008-01-01

    Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

  16. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods.

    Science.gov (United States)

    Wei, Peng-Fei; Zhang, Li; Nethi, Susheel Kumar; Barui, Ayan Kumar; Lin, Jun; Zhou, Wei; Shen, Yi; Man, Na; Zhang, Yun-Jiao; Xu, Jing; Patra, Chitta Ranjan; Wen, Long-Ping

    2014-01-01

    Autophagy is one of the well-known pathways to accelerate the clearance of protein aggregates, which contributes to the therapy of neurodegenerative diseases. Although there are numerous reports that demonstrate the induction of autophagy with small molecules including rapamycin, trehalose and lithium, however, there are few reports mentioning the clearance of aggregate-prone proteins through autophagy induction by nanoparticles. In the present article, we have demonstrated that europium hydroxide [Eu(III)(OH)3] nanorods can reduce huntingtin protein aggregation (EGFP-tagged huntingtin protein with 74 polyQ repeats), responsible for neurodegenerative diseases. Again, we have found that these nanorods induce authentic autophagy flux in different cell lines (Neuro 2a, PC12 and HeLa cells) through the expression of higher levels of characteristic autophagy marker protein LC3-II and degradation of selective autophagy substrate/cargo receptor p62/SQSTM1. Furthermore, depression of protein aggregation clearance through the autophagy blockade has also been observed by using specific inhibitors (wortmannin and chloroquine), indicating that autophagy is involved in the degradation of huntingtin protein aggregation. Since [Eu(III)(OH)3] nanorods can enhance the degradation of huntingtin protein aggregation via autophagy induction, we strongly believe that these nanorods would be useful for the development of therapeutic treatment strategies for various neurodegenerative diseases in near future using nanomedicine approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Detection of mutant protein in complex biological samples: Glucocerebrosidase mutations in Gaucher’s disease

    NARCIS (Netherlands)

    Bleijlevens, B.; van Breemen, M.J.; Donker-Koopman, W.E.; de Koster, C.G.; Aerts, J.M.F.G.

    2008-01-01

    We report a sensitive method to detect point mutations in proteins from complex samples. The method is based on surface-enhanced laser desorption/ionization time-of-flight (SELDI-ToF) MS but can be extended to other MS platforms. The target protein in this study is the lysosomal enzyme glucocerebros

  18. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    NARCIS (Netherlands)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J; Heipieper, Hermann J; Nørholm, Morten H H; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from

  19. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.

  20. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity

    OpenAIRE

    Shiwaku, Hiroki; Yoshimura, Natsue; Tamura, Takuya; Sone, Masaki; Ogishima, Soichi; Watase, Kei; Tagawa, Kazuhiko; Okazawa, Hitoshi

    2010-01-01

    Non-cell-autonomous effect of mutant proteins expressed in glia has been implicated in several neurodegenerative disorders, whereas molecules mediating the toxicity are currently not known. We identified a novel molecule named multiple α-helix protein located at ER (Maxer) downregulated by mutant ataxin-1 (Atx1) in Bergmann glia. Maxer is an endoplasmic reticulum (ER) membrane protein interacting with CDK5RAP3. Maxer anchors CDK5RAP3 to the ER and inhibits its function of Cyclin D1 transcript...

  1. A fast method for analyzing essential protein mutants in human cells.

    Science.gov (United States)

    Dietsch, Frank; Donzeau, Mariel; Cordonnier, Agnes M; Weiss, Etienne; Chatton, Bruno; Vigneron, Marc

    2017-02-01

    Here we developed a complementation method for the study of essential genes in live human cells using the CRISPR/Cas9 system. Proteins encoded by essential genes were expressed using a derivative of the pCEP4 compensating plasmid in combination with Cas9 endonuclease targeting of the chromosomal genes. We show that this strategy can be applied to essential genes, such as those coding for proliferating cell nuclear antigen (PCNA) and DNA polymerase delta subunit 2 (POLD2). As demonstrated for the PCNA protein, our method allows mutational analysis of essential protein-coding sequences in live cells.

  2. Altered expression of several genes in IIIManL-defective mutants of Streptococcus salivarius demonstrated by two-dimensional gel electrophoresis of cytoplasmic proteins.

    Science.gov (United States)

    Lapointe, R; Frenette, M; Vadeboncoeur, C

    1993-05-01

    Mannose, glucose and fructose are transported in Streptococcus salivarius by a phosphoenolpyruvate:mannose phosphotransferase system (PTS) which consists of a membrane-bound Enzyme II (EII) and two forms of IIIMan having molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), respectively. We have previously reported the isolation of spontaneous mutants lacking IIIManL and showed that they exhibit higher beta-galactosidase activity than the parental strain after growth on glucose, and that some of them constitutively express a fructose PTS which is induced by fructose in the parental strain. In an attempt to determine whether the expression of other genes is affected by the mutation and what the physiological link is between them, we examined three S. salivarius IIIManL-defective mutants (strains A37, B31 and G29) and the parental strain using two-dimensional gel electrophoresis after growth of the cells on a variety of sugars. After growth on glucose, five new proteins were detected in the cytoplasm of the three mutants. Two of these proteins were induced in the parental strain by galactose or oligosaccharides containing galactose, and one was specifically induced by melibiose. The other two proteins were not detected in the parental strain under any of the growth conditions tested. Two other proteins were only detected in glucose-grown cells of mutant A37, and a protein associated with the metabolism of fructose was constitutively expressed in mutants B31 and G29. Moreover, we have found that under identical growth conditions the amounts of several other proteins which were detected in the parental strain were either increased or decreased in the mutants. Globally, our results have indicated that (1) the expression of several genes was affected in the spontaneous IIIManL-defective mutants; (2) some of the proteins abnormally produced in the mutants were specifically induced in the parental strain by sugars; (3) the phenotypic modifications observed in the

  3. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein

    OpenAIRE

    2012-01-01

    In rice (Oryza sativa L.), leaf photosynthesis is known to be highly correlated with stomatal conductance; however, it remains unclear whether stomatal conductance dominantly limits the photosynthetic rate. SLAC1 is a stomatal anion channel protein controlling stomatal closure in response to environmental [CO2]. In order to examine stomatal limitations to photosynthesis, a SLAC1-deficient mutant of rice was isolated and characterized. A TILLING screen of N-methyl-N-nitrosourea-derived mutant ...

  4. Huntingtin-associated protein 1 (HAP1) interacts with androgen receptor (AR) and suppresses SBMA-mutant-AR-induced apoptosis.

    Science.gov (United States)

    Takeshita, Yukio; Fujinaga, Ryutaro; Zhao, Changjiu; Yanai, Akie; Shinoda, Koh

    2006-08-01

    Huntingtin-associated protein 1 (HAP1), an interactor of huntingtin, has been known as an essential component of the stigmoid body (STB) and recently reported to play a protective role against neurodegeneration in Huntington's disease (HD). In the present study, subcellular association between HAP1 and androgen receptor (AR) with a long polyglutamine tract (polyQ) derived from spinal-and-bulbar-muscular-atrophy (SBMA) was examined using HEp-2 cells cotransfected with HAP1 and/or normal ARQ25, SBMA-mutant ARQ65 or deletion-mutant AR cDNAs. The results provided the first clear evidence that HAP1 interacts with AR through its ligand-binding domain in a polyQ-length-dependent manner and forms prominent inclusions sequestering polyQ-AR, and that addition of dihydrotestosterone reduces the association strength of HAP1 with ARQ25 more dramatically than that with ARQ65. Furthermore, SBMA-mutant-ARQ65-induced apoptosis was suppressed by cotransfection with HAP1. Our findings strongly suggest that HAP1/STB is relevant to polyQ-length-dependent modification on subcellular AR functions and critically involved in pathogenesis of not only HD but also SBMA as an important intrinsic neuroprotectant determining the threshold for cellular vulnerability to apoptosis. Taking together with previous reports that HAP1/STB is selectively expressed in the brain regions spared from degenerative targets in HD and SBMA, the current study might explain the region-specific occurrence of neurodegeneration in both diseases, shedding light on common aspects of their molecular pathological mechanism and yet-to-be-uncovered diagnostic or therapeutic applications for HD and SBMA patients.

  5. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.

    Science.gov (United States)

    Hübner, S; Eam, J E; Hübner, A; Jans, D A

    2006-01-15

    Lamins, members of the family of intermediate filaments, form a supportive nucleoskeletal structure underlying the nuclear envelope and can also form intranuclear structures. Mutations within the A-type lamin gene cause a variety of degenerative diseases which are collectively referred to as laminopathies. At the molecular level, laminopathies have been shown to be linked to a discontinuous localization pattern of A-type lamins, with some laminopathies containing nuclear lamin A aggregates. Since nuclear aggregate formation could lead to the mislocalization of proteins interacting with A-type lamins, we set out to examine the effects of FLAG-lamin A N195K and R386K protein aggregate formation on the subnuclear distribution of the retinoblastoma protein (pRb) and the sterol responsive element binding protein 1a (SREBP1a) after coexpression as GFP-fusion proteins in HeLa cells. We observed strong recruitment of both proteins into nuclear aggregates. Nuclear aggregate recruitment of the NPC component nucleoporin NUP153 was also observed and found to be dependent on the N-terminus. That these effects were specific was implied by the fact that a number of other coexpressed karyophilic GFP-fusion proteins, such as the nucleoporin NUP98 and kanadaptin, did not coaggregate with FLAG-lamin A N195K or R386K. Immunofluorescence analysis further indicated that the precursor form of lamin A, pre-lamin A, could be found in intranuclear aggregates. Our results imply that redistribution into lamin A-/pre-lamin A-containing aggregates of proteins such as pRb and SREBP1a could represent a key aspect underlying the molecular pathogenesis of certain laminopathies.

  6. iTRAQ protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening.

    Science.gov (United States)

    Pan, Xiaoqi; Zhu, Benzhong; Zhu, Hongliang; Chen, Yuexi; Tian, Huiqin; Luo, Yunbo; Fu, Daqi

    2014-04-01

    Green-ripe (Gr) tomato carries a dominant mutation and yields a nonripening fruit phenotype. The mutation results from a 334 bp deletion in a gene of unknown function at the Gr locus. The putative influence of Gr gene-deletion mutation on biochemical changes underlying the nonripening phenotype remains largely unknown. Respiration of Gr fruit was found to be reduced at mature green and breaker stage of ripening, while the fruit softening was dramatically prolonged. We studied the proteome of Gr mutant fruit using high-throughput iTRAQ and high-resolution mass spectrometry and identified 43 proteins representing 43 individual genes as potential influence-targets of Gr mutated fruit. The identified proteins are involved in several ripening-related pathways including cell-wall metabolism, photosynthesis, oxidative phosphorylation, carbohydrate and fatty acid metabolism, protein synthesis, and processing. Affected protein levels are correlated with the corresponding gene transcript levels. The modulation in the accumulation levels of PI(U1)P, PGIP, and PG2 supported the delayed softening phenotype of the Gr fruit. Further investigation in GR gene-silencing fruit ascertained the doubtless modulation of these targets by the deletion mutation of GR gene.

  7. Characterization of Mutants of Human Small Heat Shock Protein HspB1 Carrying Replacements in the N-Terminal Domain and Associated with Hereditary Motor Neuron Diseases.

    Directory of Open Access Journals (Sweden)

    Lydia K Muranova

    Full Text Available Physico-chemical properties of the mutations G34R, P39L and E41K in the N-terminal domain of human heat shock protein B1 (HspB1, which have been associated with hereditary motor neuron neuropathy, were analyzed. Heat-induced aggregation of all mutants started at lower temperatures than for the wild type protein. All mutations decreased susceptibility of the N- and C-terminal parts of HspB1 to chymotrypsinolysis. All mutants formed stable homooligomers with a slightly larger apparent molecular weight compared to the wild type protein. All mutations analyzed decreased or completely prevented phosphorylation-induced dissociation of HspB1 oligomers. When mixed with HspB6 and heated, all mutants yielded heterooligomers with apparent molecular weights close to ~400 kDa. Finally, the three HspB1 mutants possessed lower chaperone-like activity towards model substrates (lysozyme, malate dehydrogenase and insulin compared to the wild type protein, conversely the environmental probe bis-ANS yielded higher fluorescence with the mutants than with the wild type protein. Thus, in vitro the analyzed N-terminal mutations increase stability of large HspB1 homooligomers, prevent their phosphorylation-dependent dissociation, modulate their interaction with HspB6 and decrease their chaperoning capacity, preventing normal functioning of HspB1.

  8. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants

    Science.gov (United States)

    Zhang, Ting; Mishra, Prashant; Hay, Bruce A; Chan, David; Guo, Ming

    2017-01-01

    Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value. DOI: http://dx.doi.org/10.7554/eLife.17834.001

  9. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    Science.gov (United States)

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  10. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Reetu Sharma

    Full Text Available Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  11. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice

    OpenAIRE

    1999-01-01

    To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in humans cause hypertrophic cardiomyopathy. Mice that are homozygous for the mutated MyBP-C alleles expre...

  12. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    Energy Technology Data Exchange (ETDEWEB)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  13. Functional testing of keratin 14 mutant proteins associated with the three major subtypes of epidermolysis bullosa simplex

    DEFF Research Database (Denmark)

    Sørensen, Charlotte B; Andresen, Brage S; Jensen, Uffe B

    2003-01-01

    in either the keratin 5 (KRT5) or keratin 14 (KRT14) gene. Previously, we identified three novel KRT14 missense mutations in Danish EBS patients associated with the three different forms of EBS (1). The identified KRT14 mutations represent the full spectrum of the classical EBS subtypes. In the present...... study we investigated these mutations in a cellular expression system in order to analyse their effects on the keratin cytoskeleton. KRT14 expression vectors were constructed by fusing the nucleotide sequence encoding the FLAG reporter peptide to the 3' end of the KRT14 cDNA sequences. The expression...... vectors were transiently transfected into normal human primary keratinocytes (NHK), HaCaT or HeLa cells in order to analyze the ability of the mutant K14 proteins to integrate into the existing endogenous keratin filament network (KFN). No effect on the keratin cytoskeleton was observed upon transfection...

  14. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants

    DEFF Research Database (Denmark)

    Baum, Cathrin; Haslinger-Löffler, Bettina; Westh, Henrik;

    2009-01-01

    Staphylococcus aureus is a major human pathogen responsible for increasing the prevalence of community- and hospital-acquired infections. Protein A (SpA) is a key virulence factor of S. aureus and is highly conserved. Sequencing of the variable-number tandem-repeat region of SpA (spa typing...

  15. Invitro Synthesis of Barley Endosperm Proteins on Wild Type and Mutant Templates

    DEFF Research Database (Denmark)

    Brandt, A.; Ingversen, J.

    1976-01-01

    electrophoresis showed that proteins with molecular weights ranging from 200,000 to 10,000 daltons were synthesized. A substantial part of the polypeptides coded for by the template associated with the membrane bound polysomes was identified as hordeins by their solubility in 55% isopropanol and by their co...

  16. CAN THE STABILITY OF PROTEIN MUTANTS BE PREDICTED BY FREE-ENERGY CALCULATIONS

    NARCIS (Netherlands)

    YUNYU, S; MARK, AE; WANG, CX; HUANG, FH; BERENDSEN, HJC; VANGUNSTEREN, WF

    1993-01-01

    The use of free energy simulation techniques in the study of protein stability is critically evaluated. Results from two simulations of the thermostability mutation Asn218 to Ser218 in Subtilisin are presented. It is shown that components of the free energy change can be highly sensitive to the comp

  17. CAN THE STABILITY OF PROTEIN MUTANTS BE PREDICTED BY FREE-ENERGY CALCULATIONS

    NARCIS (Netherlands)

    YUNYU, S; MARK, AE; WANG, CX; HUANG, FH; BERENDSEN, HJC; VANGUNSTEREN, WF

    The use of free energy simulation techniques in the study of protein stability is critically evaluated. Results from two simulations of the thermostability mutation Asn218 to Ser218 in Subtilisin are presented. It is shown that components of the free energy change can be highly sensitive to the

  18. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research

    DEFF Research Database (Denmark)

    Pedersen, Carina T; Loke, Ian; Lorentzen, Andrea

    2017-01-01

    Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one...

  19. Molecular dynamics studies on the NMR structures of rabbit prion protein wild-type and mutants: surface electrostatic charge distributions

    CERN Document Server

    Zhang, Jiapu

    2014-01-01

    Prion is a misfolded protein found in mammals that causes infectious diseases of the nervous system in humans and animals. Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elk and humans etc. Recent studies have shown that rabbits have a low susceptibility to be infected by prion diseases with respect to other animals including humans. The present study employs molecular dynamics (MD) means to unravel the mechanism of rabbit prion proteins (RaPrPC) based on the recently available rabbit NMR structures (of the wild-type and its two mutants of two surface residues). The electrostatic charge distributions on the protein surface are the focus when analysing the MD trajectories. It is found that we can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.

  20. Crystallization and preliminary X-ray diffraction analysis of Val57 mutants of the amyloidogenic protein human cystatin C

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowska, Marta; Jankowska, Elzbieta; Borek, Dominika; Otwinowski, Zbyszek; Skowron, Piotr; Szymanska, Aneta (Gdansk); (UTSMC)

    2012-03-15

    Human cystatin C (hCC) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) found in all nucleated cells. Its main physiological role is regulation of the activity of cysteine proteases. Biologically active hCC is a monomeric protein, but all crystallization efforts have resulted in a dimeric domain-swapped structure. Recently, two monomeric structures were reported for cystatin C variants. In one of them stabilization was achieved by abolishing the possibility of domain swapping by the introduction of an additional disulfide bridge connecting the two protein domains (Cys47-Cys69). In the second structure, reported by this group, the monomeric hCC fold was preserved by stabilization of the conformationally constrained loop (L1) by a single-amino-acid substitution (V57N). To further assess the influence of changes in the sequence and properties of loop L1 on the dimerization propensity of cystatin C, two additional hCC mutants were obtained: one with a residue favoured in {beta}-turns (V57D) and another with proline (V57P), a residue that is known to be a structural element that can rigidify but also broaden turns. Here, the expression, purification and crystallization of V57D and V57P variants of recombinant human cystatin C are described. Crystals were grown by the vapour-diffusion method. Several diffraction data sets were collected using a synchrotron source at the Advanced Photon Source, Argonne National Laboratory, Chicago, USA.

  1. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant

    Institute of Scientific and Technical Information of China (English)

    Sheng Xiong; Yi-Fei Wang; Xiang-Rong Ren; Bing Li; Mei-Ying Zhang; Yong Luo; Ling Zhang; Qiu-Ling Xie; Kuan-Yuan Su

    2005-01-01

    AIM: To study the influence of redox environment of Escherichia coli ( E. coli) cytoplasm on disulfide bond formation of recombinant proteins.METHODS: Bovine fibroblast growth factor (BbFGF) was selected as a model of simple proteins with a single disulfide bond and free cysteines. Anti-HBsAg single-chain Fv (HBscFv), an artificial multidomain protein, was selected as the model molecule of complex protein with 2 disulfide bonds. A BbFGF-producing plasmid, pJN-BbFGF,and a HBscFv producing-plasmid, pQE-HBscFv, were constructed and transformed into E. coli strains BL21(DE3)and M15[pREP4]respectively. At the same time, both plasmids were transformedinto a reductase-deficient host strain, E. coli Origami(DE3). The 4 recombinant E. coli strains were cultured and the target proteins were purified. Solubility and bioactivity of recombinant BbFGF and HBscFv produced in different host strains were analyzed and compared respectively.RESULTS: All recombinant E. colistrains could efficiently produce target proteins. The level of BbFGF in BL21(DE3)was 15-23% of the total protein, and was 5-10% in Origami (DE3). In addition, 65% of the BbFGF produced in BL21(DE3) formed into inclusion body in the cytoplasm,and all the target proteins became soluble in Origami (DE3). The bioactivity of BbFGF purified from Origami(DE3)was higher than its counterpart from BL21(DE3). The ED50of BbFGF from Origami(DE3) and BL21(DE3) was 1.6 μg/L and 2.2 μg/L, respectively. Both HBscFv formed into inclusion body in the cytoplasm of M15[pQE-HBscFv] or Origami[pQE-HBscFv]. But the supernatant of Origami[pQE-HBscFv] lysate displayed weak bioactivity and its counterpart from M15[pQE-HBscFv] did not display any bioactivity. The soluble HBscFv in Origami[pQE-HBscFv]was purified to be 1-2 mg/L and its affinity constant was determined to be 2.62×107 mol/L. The yield of native HBscFv refolded from indusion body in M15[pQE-H Fv] was30-35 mg/L and the affinity constant was 1.98×107 mol/L.There was no

  2. Low-Density Lipoprotein Receptor-Related Protein-1 (LRP1) C4408R Mutant Promotes Amyloid Precursor Protein (APP) α-Cleavage in Vitro.

    Science.gov (United States)

    Hou, Huayan; Habib, Ahsan; Zi, Dan; Tian, Kathy; Tian, Jun; Giunta, Brian; Sawmiller, Darrell; Tan, Jun

    2017-06-13

    Previous studies have demonstrated that the low-density lipoprotein receptor-related protein-1 (LRP1) plays conflicting roles in Alzheimer's disease (AD) pathogenesis, clearing β-amyloid (Aβ) from the brain while also enhancing APP endocytosis and resultant amyloidogenic processing. We have recently discovered that co-expression of mutant LRP1 C-terminal domain (LRP1-CT C4408R) with Swedish mutant amyloid precursor protein (APPswe) in Chinese hamster ovary (CHO) cells decreases Aβ production, while also increasing sAPPα and APP α-C-terminal fragment (α-CTF), compared with CHO cells expressing APPswe alone. Surprisingly, the location of this mutation on LRP1 corresponded with the α-secretase cleavage site of APP. Further experimentation confirmed that in CHO cells expressing APPswe or wild-type APP (APPwt), co-expression of LRP1-CT C4408R decreases Aβ and increases sAPPα and α-CTF compared with co-expression of wild-type LRP1-CT. In addition, LRP1-CT C4408R enhanced the unglycosylated form of LRP1-CT and reduced APP endocytosis as determined by flow cytometry. This finding identifies a point mutation in LRP1 which slows LRP1-CT-mediated APP endocytosis and amyloidogenic processing, while enhancing APP α-secretase cleavage, thus demonstrating a potential novel target for slowing AD pathogenesis.

  3. DNA topoisomerase 2 mutant allele mildly delays the mitotic progression and activates the checkpoint protein kinase Chk1 in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yadav, Sudhanshu; Verma, Sumit Kumar; Ahmed, Shakil

    2011-08-01

    DNA topoisomerases are specialized nuclear enzymes that perform topological modifications on double-stranded DNA (dsDNA) and hence are essential for DNA metabolism such as replication, transcription, recombination, condensation and segregation. In a genetic screen, we identified a temperature-sensitive mutant allele of topoisomerase 2 that exhibits conditional synthetic lethality with a chk1 knockout strain. The mutant allele of topoisomerase 2 is defective in chromosome segregation at a non-permissive temperature and there was increase in chromosome segregation defects in the double mutant of top2-10 and chk1 delete at a non-permissive temperature. More importantly, topoisomearse 2 mutant cells mildly delay the mitotic progression at non-permissive temperature that is mediated by checkpoint protein kinase Chk1. Additionally, top2-10 mutant cells also activate the Chk1 at a non-permissive temperature and this activation of Chk1 takes place at the time of mitosis. Interestingly, top2-10 mutant cells retain their viability at a non-permissive temperature if the cells are not allowed to enter into mitosis. Taking together our results, we speculate that in the top2-10 mutant, the segregation of entangled chromatids during mitosis could result in delaying the mitotic progression through the activation of Chk1 kinase.

  4. Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins.

    Science.gov (United States)

    Oelmüller, R; Kendrick, R E

    1991-02-01

    When dark-grown aurea mutant tomato seedlings which lack more than 95% of the phytochrome present in isogenic wild-type seedlings are kept in white or blue light, four nuclear-encoded transcripts coding for plastidic proteins (the light-harvesting chlorophyll a/b-binding protein of photosystem I and II [cab-PSII], plastocyanin and subunit 2 of photosystem I) are present in comparable amounts. These transcript levels in red light are strongly reduced in aurea seedlings when compared with those of wild type. Thus, blue light is required for normal expression of these genes in the mutant, while red light alone is not sufficient. Red light-grown aurea seedlings are very sensitive to blue light, even 10 minutes of blue light every day suffices to cause a measurable increase in cab-PSII transcript level. The action of blue light on the expression of cab-PSII in the mutant is under phytochrome control. After 8 days of blue light, phytochrome is almost as effective in inducing cab-PSII mRNA as in the isogenic wild type, whereas after 8 days of red light, only a small phytochrome response was observed in the mutant. It is concluded that blue light sensitizes the mutant to the residual phytochrome which allows normal gene expression and survival of the mutant under daylight conditions.

  5. Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins.

    Science.gov (United States)

    Kim, Seyeun; Gardner, Jeffrey F

    2011-03-01

    CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.

  6. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis.

    Science.gov (United States)

    Sheoran, Inder S; Ross, Andrew R S; Olson, Douglas J H; Sawhney, Vipen K

    2009-01-30

    In the 7B-1 male-sterile mutant of tomato, pollen development breaks down prior to meiosis in microspore mother cells (MMCs). We have used the proteomic approach to identify differentially expressed proteins in the wild type (WT) and mutant anthers with the objective of analyzing their roles in normal pollen development and in male sterility. By using 2-DE and DIGE technologies, over 1800 spots were detected and of these 215 spots showed 1.5-fold or higher volume ratio in either WT or 7B-1 anthers. Seventy spots, either up-regulated in WT, or in 7B-1, were subjected to mass spectrometry and 59 spots representing 48 distinct proteins were identified. The proteins up-regulated in WT anthers included proteases, e.g., subtilase, proteasome subunits, and 5B-protein with potential roles in tapetum degeneration, FtsZ protein, leucine-rich repeat proteins, translational and transcription factors. In 7B-1 anthers, aspartic protease, superoxide dismutase, ACP reductase, ribonucleoprotein and diphosphate kinase were up-regulated. Also, cystatin inhibitory activity was high in the mutant and correlated with the expression of male sterility. Other proteins including calreticulin, Heat shock protein 70, glucoside hydrolase, and ATPase, were present in both genotypes. The function of identified proteins in tapetum and normal pollen development, and in male sterility is discussed.

  7. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development.

    Science.gov (United States)

    Xiong, Yuqing; DeFraia, Christopher; Williams, Donna; Zhang, Xudong; Mou, Zhonglin

    2009-07-01

    Arabidopsis PGL1, PGL2, PGL4 and PGL5 are predicted to encode cytosolic isoforms of 6-phosphogluconolactonase (6PGL), whereas PGL3 is predicted to encode a 6PGL that has been shown to localize in both plastids and peroxisomes. Therefore, 6PGL may exist in the cytosol, plastids and peroxisomes. However, the function of 6PGL in these three subcellular locations has not been well defined. Here we show that PGL3 is essential, whereas PGL1, PGL2 and PGL5 are individually dispensable for plant growth and development. Knockdown of PGL3 in the pgl3 mutant leads to a dramatic decrease in plant size, a significant increase in total glucose-6-phosphate dehydrogenase activity and a marked decrease in cellular redox potential. Interestingly, the pgl3 plants exhibit constitutive pathogenesis-related gene expression and enhanced resistance to Pseudomonas syringae pv. maculicola ES4326 and Hyaloperonospora arabidopsidis Noco2. We found that although pgl3 does not spontaneously accumulate elevated levels of free salicylic acid (SA), the constitutive defense responses in pgl3 plants are almost completely suppressed by the npr1 and sid2/eds16/ics1 mutations, suggesting that the pgl3 mutation activates NPR1- and SID2/EDS16/ICS1-dependent defense responses. We demonstrate that plastidic (not peroxisomal) localization and 6PGL activity of the PGL3 protein are essential for complementing all pgl3 phenotypes, indicating that the oxidative section of the plastidic pentose phosphate pathway (PPP) is required for plant normal growth and development. Thus, pgl3 provides a useful tool not only for defining the role of the PPP in different subcellular compartments, but also for dissecting the SA/NPR1-mediated signaling pathway.

  8. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response.

    Science.gov (United States)

    Hidvegi, Tunda; Schmidt, Bela Z; Hale, Pamela; Perlmutter, David H

    2005-11-25

    In alpha(1)-antitrypsin (alpha1AT) deficiency, a polymerogenic mutant form of the secretory glycoprotein alpha1AT, alpha1ATZ, is retained in the endoplasmic reticulum (ER) of liver cells. It is not yet known how this results in liver injury in a subgroup of deficient individuals and how the remainder of deficient individuals escapes liver disease. One possible explanation is that the "susceptible" subgroup is unable to mount the appropriate protective cellular responses. Here we examined the effect of mutant alpha1ATZ on several potential protective signaling pathways by using cell lines with inducible expression of mutant alpha1AT as well as liver from transgenic mice with liver-specific inducible expression of mutant alpha1AT. The results show that ER retention of polymerogenic mutant alpha1ATZ does not result in an unfolded protein response (UPR). The UPR can be induced in the presence of alpha1ATZ by tunicamycin excluding the possibility that the pathway has been disabled. In striking contrast, ER retention of nonpolymerogenic alpha1AT mutants does induce the UPR. These results indicate that the machinery responsible for activation of the UPR can distinguish the physical characteristics of proteins that accumulate in the ER in such a way that it can respond to misfolded but not relatively ordered polymeric structures. Accumulation of mutant alpha1ATZ does activate specific signaling pathways, including caspase-12 in mouse, caspase-4 in human, NFkappaB, and BAP31, a profile that was distinct from that activated by nonpolymerogenic alpha1AT mutants.

  9. Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies.

    Science.gov (United States)

    Nefedova, Victoria V; Datskevich, Petr N; Sudnitsyna, Maria V; Strelkov, Sergei V; Gusev, Nikolai B

    2013-08-01

    Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5-188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.

  10. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants

    DEFF Research Database (Denmark)

    Baum, Cathrin; Haslinger-Löffler, Bettina; Westh, Henrik;

    2009-01-01

    Staphylococcus aureus is a major human pathogen responsible for increasing the prevalence of community- and hospital-acquired infections. Protein A (SpA) is a key virulence factor of S. aureus and is highly conserved. Sequencing of the variable-number tandem-repeat region of SpA (spa typing......) provides a rapid and reliable method for epidemiological studies. Rarely, non-spa-typeable S. aureus strains are encountered. The reason for this is not known. In this study, we characterized eight non-spa-typeable bacteremia isolates. Sequencing of the entire spa locus was successful for five strains...

  11. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    Science.gov (United States)

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  12. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity.

    Science.gov (United States)

    Shiwaku, Hiroki; Yoshimura, Natsue; Tamura, Takuya; Sone, Masaki; Ogishima, Soichi; Watase, Kei; Tagawa, Kazuhiko; Okazawa, Hitoshi

    2010-07-21

    Non-cell-autonomous effect of mutant proteins expressed in glia has been implicated in several neurodegenerative disorders, whereas molecules mediating the toxicity are currently not known. We identified a novel molecule named multiple alpha-helix protein located at ER (Maxer) downregulated by mutant ataxin-1 (Atx1) in Bergmann glia. Maxer is an endoplasmic reticulum (ER) membrane protein interacting with CDK5RAP3. Maxer anchors CDK5RAP3 to the ER and inhibits its function of Cyclin D1 transcription repression in the nucleus. The loss of Maxer eventually induces cell accumulation at G1 phase. It was also shown that mutant Atx1 represses Maxer and inhibits proliferation of Bergmann glia in vitro. Consistently, Bergmann glia are reduced in the cerebellum of mutant Atx1 knockin mice before onset. Glutamate-aspartate transporter reduction in Bergmann glia by mutant Atx1 and vulnerability of Purkinje cell to glutamate are both strengthened by Maxer knockdown in Bergmann glia, whereas Maxer overexpression rescues them. Collectively, these results suggest that the reduction of Maxer mediates functional deficiency of Bergmann glia, and might contribute to the non-cell-autonomous pathology of SCA1.

  13. Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus.

    Science.gov (United States)

    Ignatova, Zoya; Gierasch, Lila M

    2005-05-17

    Mechanistic understanding of protein aggregation, leading either to structured amyloid fibrils or to amorphous inclusion body-like deposits, should facilitate the identification of potential therapeutic intervention strategies for the devastating amyloid-based diseases. Here we focus on the in vitro aggregation of a slow-folding mutant of the beta-clam protein, cellular retinoic acid-binding protein I (P39A CRABP I), which forms inclusion bodies when expressed in Escherichia coli. Aggregation was monitored by observing the fluorescence of a fluorescein-based biarsenical dye (FlAsH) that ligates to a tetra-Cys motif, here incorporated into a flexible Omega-loop. The fluorescence signal of FlAsH on the tetra-Cys-containing P39A CRABP I is sensitive to whether this protein is native or unfolded, and was used in combination with other techniques to follow aggregate formation. The aggregation time course is compatible with a nucleation-dependent polymerization model, and detailed kinetic analysis showed that the energetically unfavorable nucleus is monomeric. A similar conclusion was reached previously for poly(Gln) species [Chen, S., Ferrone, F. A., and Wetzel, R. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 11884-11889] and points to an unfavorable equilibrium between the misfolded intermediate and the bulk pool of monomers as causative in aggregation. The P39A mutation, which removes a helix-stop signal, may slow closure of the beta-barrel in P39A CRABP I relative to the wild type, leaving it vulnerable to aggregation. Wide-angle X-ray scattering showed that the amorphous aggregates formed by the aggregation-prone intermediates of P39A CRABP I contain predominantly beta-strands structured in a lamellar fashion with 10.03 A spacing between adjacent beta-sheets.

  14. Distinct Neurodegenerative Changes in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein

    Directory of Open Access Journals (Sweden)

    Marc Ehrlich

    2015-07-01

    Full Text Available Frontotemporal dementia (FTD is a frequent form of early-onset dementia and can be caused by mutations in MAPT encoding the microtubule-associated protein TAU. Because of limited availability of neural cells from patients’ brains, the underlying mechanisms of neurodegeneration in FTD are poorly understood. Here, we derived induced pluripotent stem cells (iPSCs from individuals with FTD-associated MAPT mutations and differentiated them into mature neurons. Patient iPSC-derived neurons demonstrated pronounced TAU pathology with increased fragmentation and phospho-TAU immunoreactivity, decreased neurite extension, and increased but reversible oxidative stress response to inhibition of mitochondrial respiration. Furthermore, FTD neurons showed an activation of the unfolded protein response, and a transcriptome analysis demonstrated distinct, disease-associated gene expression profiles. These findings indicate distinct neurodegenerative changes in FTD caused by mutant TAU and highlight the unique opportunity to use neurons differentiated from patient-specific iPSCs to identify potential targets for drug screening purposes and therapeutic intervention.

  15. Differential regulation of glycogenolysis by mutant protein phosphatase-1 glycogen-targeting subunits.

    Science.gov (United States)

    Danos, Arpad M; Osmanovic, Senad; Brady, Matthew J

    2009-07-17

    PTG and G(L) are hepatic protein phosphatase-1 (PP1) glycogen-targeting subunits, which direct PP1 activity against glycogen synthase (GS) and/or phosphorylase (GP). The C-terminal 16 amino residues of G(L) comprise a high affinity binding site for GP that regulates bound PP1 activity against GS. In this study, a truncated G(L) construct lacking the GP-binding site (G(L)tr) and a chimeric PTG molecule containing the C-terminal site (PTG-G(L)) were generated. As expected, GP binding to glutathione S-transferase (GST)-G(L)tr was reduced, whereas GP binding to GST-PTG-G(L) was increased 2- to 3-fold versus GST-PTG. In contrast, PP1 binding to all proteins was equivalent. Primary mouse hepatocytes were infected with adenoviral constructs for each subunit, and their effects on glycogen metabolism were investigated. G(L)tr expression was more effective at promoting GP inactivation, GS activation, and glycogen accumulation than G(L). Removal of the regulatory GP-binding site from G(L)tr completely blocked the inactivation of GS seen in G(L)-expressing cells following a drop in extracellular glucose. As a result, G(L)tr expression prevented glycogen mobilization under 5 mm glucose conditions. In contrast, equivalent overexpression of PTG or PTG-G(L) caused a similar increase in glycogen-targeted PP1 levels and GS dephosphorylation. Surprisingly, GP dephosphorylation was significantly reduced in PTG-G(L)-overexpressing cells. As a result, PTG-G(L) expression permitted glycogenolysis under 5 mm glucose conditions that was prevented in PTG-expressing cells. Thus, expression of constructs that contained the high affinity GP-binding site (G(L) and PTG-G(L)) displayed reduced glycogen accumulation and enhanced glycogenolysis compared with their respective controls, albeit via different mechanisms.

  16. Shutdown of HIV-1 Transcription in T Cells by Nullbasic, a Mutant Tat Protein

    Directory of Open Access Journals (Sweden)

    Hongping Jin

    2016-07-01

    Full Text Available Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1 fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA and JQ1 had no effect, while suberanilohydroxamic acid (SAHA modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA, but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells.

  17. Transformation-defective mutant of avian myeloblastosis virus that is temperature sensitive for production of transforming protein p45v-myb.

    Science.gov (United States)

    Moscovici, M G; Klempnauer, K H; Symonds, G; Bishop, J M; Moscovici, C

    1985-01-01

    We have characterized a mutant of avian myeloblastosis virus (strain GA907/7) that shows a reduced capacity to transform myelomonocytic cells at the nonpermissive temperature. Myeloblasts transformed by this mutant suffer a substantial decrease in the amount of the transforming protein p45v-myb when shifted from the permissive to the nonpermissive temperature. We presume that the 5- to 10-fold decrease in the amount of p45v-myb causes the loss of the transformed phenotype. The decrease is due to a reduction in the level of v-myb mRNA. Mutant GA907/7 thus provides genetic evidence that p45v-myb is the transforming protein of avian myeloblastosis virus and apparently represents an unusual defect in the production or stability of mRNA. Images PMID:3018515

  18. DNA polymorphism and total protein in mutants of Metarhizium anisopliae var. Anisopliae (Metsch. Sorokin strain E9 Polimorfismo de DNA e proteína total em mutantes da linhagem E9 de Metarhizium anisopliae var. anisopliae (Metsch. Sorokin

    Directory of Open Access Journals (Sweden)

    Laurineide Lopes de Carvalho Freire

    2001-06-01

    Full Text Available Five mutants (MaE10, MaE27, MaE24, MaE41 e MaE49 of Metarhizium anisopliae wild strain E9 were analysed for DNA profile through the RAPD technique and for changes in total protein content by spectrophotometry, polyacrylamide gel electrophoresis and densitometry. The pattern of RAPD markers showed genetic polymorphism among the strains: out of twenty primers seven were selected, producing 113 bands. Forty seven bands were present in all strains (41.6% of monomorphic bands and 66 showed polymorphism (58.4%. The mean coefficient of similarity among all strains was 0.75 (75%. The total protein content varied, staining in the interval of 6.0-8.0 µg/µl. The electrophoresis analysis, through zymogram and protein fraction profiles by densitometry, allowed the observation of seven bands for the wild strain E9 and five bands for the mutants MaE10, MaE27, MaE34, MaE41 and MaE49, evidence of variations in µg% among protein fractions. The RAPD technique was very sensitive to detect genetic differences between the wild type and the mutants obtained through gamma radiation. The total protein analysis also showed changes in quantity and pattern of bands after electrophoresis in the mutants compared to the wild type.Foram analisados cinco mutantes MaE (MaE10, MaE27, MaE34, MaE41 e MaE49 da linhagem selvagem E9 de Metarhizium anisopliae var. anisopliae quanto ao perfil de DNA pela técnica de RAPD e também quanto ao conteúdo de proteína total por espectrometria e eletroforese em gel de poliacrilamida e densitometria. O padrão de marcadores de RAPD evidenciou polimorfismo nas amostras; dos 20 primers testados foram selecionados 7 que geraram 113 bandas. Deste total, 47 estavam presentes em todas as amostras (41.6% de bandas monomórficas e 66 mostraram polimorfismo (58.4%. O coeficiente médio de similaridade foi de 75%. O conteúdo de proteína total variou de 6 a 8 µg/µl. O zimograma e perfís das frações de proteínas obtidos por densitometria

  19. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes......). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device....

  20. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells.

    Science.gov (United States)

    Cao, Kan; Graziotto, John J; Blair, Cecilia D; Mazzulli, Joseph R; Erdos, Michael R; Krainc, Dimitri; Collins, Francis S

    2011-06-29

    Hutchinson-Gilford progeria syndrome (HGPS) is a lethal genetic disorder characterized by premature aging. HGPS is most commonly caused by a de novo single-nucleotide substitution in the lamin A/C gene (LMNA) that partially activates a cryptic splice donor site in exon 11, producing an abnormal lamin A protein termed progerin. Accumulation of progerin in dividing cells adversely affects the integrity of the nuclear scaffold and leads to nuclear blebbing in cultured cells. Progerin is also produced in normal cells, increasing in abundance as senescence approaches. Here, we report the effect of rapamycin, a macrolide antibiotic that has been implicated in slowing cellular and organismal aging, on the cellular phenotypes of HGPS fibroblasts. Treatment with rapamycin abolished nuclear blebbing, delayed the onset of cellular senescence, and enhanced the degradation of progerin in HGPS cells. Rapamycin also decreased the formation of insoluble progerin aggregates and induced clearance through autophagic mechanisms in normal fibroblasts. Our findings suggest an additional mechanism for the beneficial effects of rapamycin on longevity and encourage the hypothesis that rapamycin treatment could provide clinical benefit for children with HGPS.

  1. A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity.

    Science.gov (United States)

    Biasini, Emiliano; Unterberger, Ursula; Solomon, Isaac H; Massignan, Tania; Senatore, Assunta; Bian, Hejiao; Voigtlaender, Till; Bowman, Frederick P; Bonetto, Valentina; Chiesa, Roberto; Luebke, Jennifer; Toselli, Paul; Harris, David A

    2013-02-06

    Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).

  2. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  3. ASSEMBLY OF ALCOHOL OXIDASE IN THE CYTOSOL OF A PEROXISOME-DEFICIENT MUTANT OF HANSENULA-POLYMORPHA - PROPERTIES OF THE PROTEIN AND ARCHITECTURE OF THE CRYSTALS

    NARCIS (Netherlands)

    VANDERKLEI, IJ; SULTER, GJ; HARDER, W; VEENHUIS, M

    1991-01-01

    We have studied the expression of alcohol oxidase (AO) in a peroxisome-deficient mutant strain of Hansenula polymorpha. High levels of octameric, active AO (up to 3.0 U/mg protein) were detected in cells grown at low dilution rates in a glucose-limited chemostat in the presence of choline as the sol

  4. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire.

    Science.gov (United States)

    Votintseva, Antonina A; Fung, Rowena; Miller, Ruth R; Knox, Kyle; Godwin, Heather; Wyllie, David H; Bowden, Rory; Crook, Derrick W; Walker, A Sarah

    2014-03-12

    Staphylococcal protein A (spa) is an important virulence factor which enables Staphylococcus aureus to evade host immune responses. Genotypes known as "spa-types", based on highly variable Xr region sequences of the spa-gene, are frequently used to classify strains. A weakness of current spa-typing primers is that rearrangements in the IgG-binding region of the gene cause 1-2% of strains to be designated as "non-typeable". We developed an improved primer which enabled sequencing of all strains, containing any type of genetic rearrangement, in a large study among community carriers and hospital inpatients in Oxfordshire, UK (6110 isolates). We identified eight novel spa-gene variants, plus one previously described. Three of these rearrangements would be designated "non-typeable" using current spa-typing methods; they occurred in 1.8% (72/3905) asymptomatically carried and 0.6% (14/2205) inpatient S. aureus strains. Some individuals were simultaneously colonized by both formerly non-typeable and typeable strains; previously such patients would have been identified as carrying only currently typeable strains, underestimating mixed carriage prevalence and diversity. Formerly non-typeable strains were found in more spa-types associated with multilocus sequence type ST398 (35%), common among livestock, compared to other groups with any non-typeable strains (1-4%), suggesting particular spa-types may have been under-represented in previous human studies. This improved method allows us to spa-type previously non-typeable strains with rearrangements in the spa-gene and to resolve cases of mixed colonization with deletions in one or more strains, thus accounting for hidden diversity of S. aureus in both community and hospital environments.

  5. The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.

    Science.gov (United States)

    Myouga, Fumiyoshi; Akiyama, Kenji; Tomonaga, Yumi; Kato, Aya; Sato, Yuka; Kobayashi, Megumi; Nagata, Noriko; Sakurai, Tetsuya; Shinozaki, Kazuo

    2013-02-01

    The Chloroplast Function Database has so far offered phenotype information on mutants of the nuclear-encoded chloroplast proteins in Arabidopsis that pertains to >200 phenotypic data sets that were obtained from 1,722 transposon- or T-DNA-tagged lines. Here, we present the development of the second version of the database, which is named the Chloroplast Function Database II and was redesigned to increase the number of mutant characters and new user-friendly tools for data mining and integration. The upgraded database offers information on genome-wide mutant screens for any visible phenotype against 2,495 tagged lines to create a comprehensive homozygous mutant collection. The collection consists of 147 lines with seedling phenotypes and 185 lines for which we could not obtain homozygotes, as well as 1,740 homozygotes with wild-type phenotypes. Besides providing basic information about primer lists that were used for the PCR genotyping of T-DNA-tagged lines and explanations about the preparation of homozygous mutants and phenotype screening, the database includes access to a link between the gene locus and existing publicly available databases. This gives users access to a combined pool of data, enabling them to gain valuable insights into biological processes. In addition, high-resolution images of plastid morphologies of mutants with seedling-specific chloroplast defects as observed with transmission electron microscopy (TEM) are available in the current database. This database is used to compare the phenotypes of visually identifiable mutants with their plastid ultrastructures and to evaluate their potential significance from characteristic patterns of plastid morphology in vivo. Thus, the Chloroplast Function Database II is a useful and comprehensive information resource that can help researchers to connect individual Arabidopsis genes to plastid functions on the basis of phenotype analysis of our tagged mutant collection. It can be freely accessed at http://rarge.psc.riken.jp/chloroplast/.

  6. Temperature-Sensitive Mutants of Fujinami Sarcoma Virus: Tumorigenicity and Reversible Phosphorylation of the Transforming p140 Protein

    Science.gov (United States)

    Lee, Wen-Hwa; Bister, Klaus; Moscovici, Carlo; Duesberg, Peter H.

    1981-01-01

    Several clones of Fujinami sarcoma virus (FSV) isolated from a laboratory stock or from mutagenized virus were temperature sensitive (ts) in transformation of cells in culture. When shifted from the permissive (37°C) to the nonpermissive (41.5°C) temperature, the cellular phenotype reverted to normal within 2 h, but it required about 48 h at 37°C to revert back to the transformed morphology. A temperature-resistant (tr) FSV clone was isolated from a tumor of an animal. All ts mutants were tumorigenic in animals but induced tumors only after latent periods of 12 to 25 days, compared to 5 to 6 days with tr virus. The ts lesions of the FSV mutants affected 90% of the phosphorylation of the nonstructural, gag-related 140,000-kilodalton phosphoprotein coded by FSV (p140), but did not affect virus replication or the synthesis of p140. Upon shifting from the permissive to the nonpermissive temperature, p140 was 90% dephosphorylated with an approximate 32P half-life of 20 min. When shifted back to the permissive temperature, the preexisting p140 was rephosphorylated in the absence of protein synthesis within a 90-min test period. Likewise, most of the phosphate of fully phosphorylated p140 was exchanged at the permissive temperature within 30 to 90 min even when protein synthesis was inhibited. However, the protein structure of p140 had a half-life of 5 h at both temperatures. These results prove p140 to be a substrate of reversible phosphorylation. Superinfection and transformation of ts FSV-infected cells maintained at the nonpermissive temperature with acute leukemia virus MC29 failed to phosphorylate p140. It would follow that in vivo phosphorylation of ts p140 is controlled by an FSV-specific mechanism and is a prerequisite, not a consequence, of transformation. p140 of ts FSV recovered from cells maintained at 41.5°C with anti-gag serum was over 10 times less phosphorylated by associated kinase than the same protein recovered from cells at 37°C if assayed in

  7. Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato.

    Science.gov (United States)

    Oelmüller, R; Kendrick, R E; Briggs, W R

    1989-08-01

    Polyclonal antibodies against pea phytochrome detect 2 protein bands (about 116 and 120 kDa) on blots of crude protein extracts and protein of microsomal preparations of dark-grown tomato seedlings. Both protein bands are undetectable in Western blots of the aurea mutant extracts. Neither protein band is detectable after isogenic wild-type seedlings are illuminated with 3 h of red light, either in the crude extract or in the membrane fraction of the irradiated seedlings; this result is consistent with the hypothesis that both bands are phytochrome. When dark-grown wild-type seedlings are illuminated with 3 h of red light or blue light against a red light background, the transcript levels for chlorophyll a/b-binding proteins of photosystem I and II, plastocyanin, and the subunit II of photosystem I increase. In all cases, the same fluence rate of blue light is much more effective than red light alone, a result that indicates the involvement of a blue/UV-A light photoreceptor in addition to the involvement of the far-red-absorbing form of phytochrome, Pfr. The aurea mutant responds neither to red light nor to blue light. Thus, no Pfr-independent induction of the four transcripts by a blue/UV-A light photoreceptor can be measured in the aurea mutant.

  8. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies.

    Science.gov (United States)

    Kariya, Shingo; Re, Diane B; Jacquier, Arnaud; Nelson, Katelyn; Przedborski, Serge; Monani, Umrao R

    2012-08-01

    Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are among the most common motor neuron diseases to afflict the human population. A deficiency of the survival of motor neuron (SMN) protein causes SMA and is also reported to be an exacerbating factor in the development of ALS. However, pathways linking the two diseases have yet to be defined and it is not clear precisely how the pathology of ALS is aggravated by reduced SMN or whether mutant proteins underlying familial forms of ALS interfere with SMN-related biochemical pathways to exacerbate the neurodegenerative process. In this study, we show that mutant superoxide dismutase-1 (SOD1), a cause of familial ALS, profoundly alters the sub-cellular localization of the SMN protein, preventing the formation of nuclear 'gems' by disrupting the recruitment of the protein to Cajal bodies. Overexpressing the SMN protein in mutant SOD1 mice, a model of familial ALS, alleviates this phenomenon, most likely in a cell-autonomous manner, and significantly mitigates the loss of motor neurons in the spinal cord and in culture dishes. In the mice, the onset of the neuromuscular phenotype is delayed and motor function enhanced, suggestive of a therapeutic benefit for ALS patients treated with agents that augment the SMN protein. Nevertheless, this finding is tempered by an inability to prolong survival, a limitation most likely imposed by the inexorable denervation that characterizes ALS and eventually disrupts the neuromuscular synapses even in the presence of increased SMN.

  9. Tricyclic pyrone compounds prevent aggregation and reverse cellular phenotypes caused by expression of mutant huntingtin protein in striatal neurons

    Directory of Open Access Journals (Sweden)

    McMurray Cynthia T

    2009-07-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a CAG repeat expansion mutation in the coding region of a novel gene. The mechanism of HD is unknown. Most data suggest that polyglutamine-mediated aggregation associated with expression of mutant huntingtin protein (mhtt contributes to the pathology. However, recent studies have identified early cellular dysfunctions that preclude aggregate formation. Suppression of aggregation is accepted as one of the markers of successful therapeutic approaches. Previously, we demonstrated that tricyclic pyrone (TP compounds efficiently inhibited formation of amyloid-β (Aβ aggregates in cell and mouse models representing Alzheimer's Disease (AD. In the present study, we aimed to determine whether TP compounds could prevent aggregation and restore early cellular defects in primary embryonic striatal neurons from animal model representing HD. Results TP compounds effectively inhibit aggregation caused by mhtt in neurons and glial cells. Treatment with TP compounds also alleviated cholesterol accumulation and restored clathrin-independent endocytosis in HD neurons. Conclusion We have found that TP compounds not only blocked mhtt-induced aggregation, but also alleviated early cellular dysfunctions that preclude aggregate formation. Our data suggest TP molecules may be used as lead compounds for prevention or treatment of multiple neurodegenerative diseases including HD and AD.

  10. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis.

    Science.gov (United States)

    Wang, Qishan; Bag, Jnanankur

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including alpha-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.

  11. ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells.

    Science.gov (United States)

    Li, Dun; Marchenko, Natalia D

    2017-01-24

    Mutations in the p53 tumor suppressor gene are the most prevalent genetic events in human Her2-positive breast cancer and are associated with poor prognosis and survival. Human clinical data and our in vitro and in vivo studies strongly suggest potent oncogenic cooperation between mutant p53 and Her2 (ErbB2). Yet, the translational significance of mutant p53 in Her2 positive breast cancer, especially with respect to Her2-targeted therapies, has not been evaluated. Our previous work identified novel oncogenic activity of mutant p53 whereby mutp53 amplifies ErbB2 signaling via the mutp53-HSF1-ErbB2 feed-forward loop. Here we report that pharmacological interception of this circuit by ErbB2 inhibitor lapatinib downregulates mutant p53 in vitro and in vivo. We found that ErbB2 inhibition by lapatinib inhibits transcription factor HSF1, and its target Hsp90, followed by mutant p53 degradation in MDM2 dependent manner. Thus, our data suggest that mutant p53 sensitizes cancer cells to lapatinib via two complementary mechanisms: mutant p53 mediated amplification of ErbB2 signaling, and simultaneous annihilation of both potent oncogenic drivers, ErbB2 and mutant p53. Hence, our study could provide valuable information for the optimization of therapeutic protocols to achieve superior clinical effects in the treatment of Her2 positive breast cancer.

  12. Induction of lytic pathways in T cell clones derived from wild-type or protein tyrosine kinase Fyn mutant mice.

    Science.gov (United States)

    Lancki, D W; Fields, P; Qian, D; Fitch, F W

    1995-08-01

    The OVA-reactive CD4+ Th1 clones and alloreactive CD8+ clones derived from wild-type or fyn-/- mice serve as model systems which have allowed us to investigate several aspects of the molecular events associated with T cell-mediated cytotoxicity, including 1) the differential utilization of two distinct cytolytic pathways by CD4+ Th1 clones and CD8+ CTL, 2) a comparison of the pathways of lysis induced by stimulation of the TCR or by alternative stimuli, 3) the requirement of Fyn for derivation of antigen-specific T-cell clones having properties of CD4+ Th1 and CD8+ CTL cells 4) the differential requirement of Fyn in the induction of responses by TCR and the alternative stimuli. Stimulation through the TCR, either by APC bearing relevant antigen or by immobilized anti-CD3 mAb, resulted in comparable levels of target cell lysis by clones from both wild-type and fyn-/- mice. These clones also utilize the Fas pathway to lyse target cells. Thus, Fyn does not appear to be required for expression of the Fas pathway when triggered through the TCR. In contrast, lysis of target cells by T-cell clones lacking Fyn was deficient when stimulated through Thy-1 or Ly-6C (using mAb) or with Con A or phorbol ester as compared to clones derived from wild-type mice. The basis for the defect in response to stimulation through the GPI-linked molecules appears to be a signaling defect which affects all of the functional responses we measured, while the defect in response to Con A stimulation appears to affect lysis but not lymphokine production. Thus, Fyn expression is selectively required for efficient activation of the Fas pathway of lysis through Thy-1, Ly-6C, and by Con A or phorbol ester in these T-cell clones. CD8+ clones derived from fyn-/- mutant mice, like clones derived from wild-type mice, display antigen-specific lysis, and appear to express perforin message and perforin protein. A Ca(++)-dependent (presumably perforin/exocytosis) component and Fas component of lysis was

  13. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases

    Science.gov (United States)

    Park, Hyun-Joo; Tailor, Chetankumar; Che, Clare; Kamani, Mustafa; Spitalny, George; Binnington, Beth

    2016-01-01

    Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2–4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD–exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases. PMID:27935997

  14. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics.

    Science.gov (United States)

    Gravesen, A; Sørensen, K; Aarestrup, F M; Knøchel, S

    2001-01-01

    A concern regarding the use of bacteriocins, as for example the lantibiotic nisin, for biopreservation of certain food products is the possibility of resistance development and potential cross-resistance to antibiotics in the target organism. The genetic basis for nisin resistance development is as yet unknown. We analyzed changes in gene expression following nisin resistance development in Listeria monocytogenes 412 by restriction fragment differential display. The mutant had increased expression of a protein with strong homology to the glycosyltransferase domain of high-molecular-weight penicillin-binding proteins (PBPs), a histidine protein kinase, a protein of unknown function, and ClpB (putative functions from homology). The three former proteins had increased expression in a total of six out of 10 independent mutants originating from five different wild-type strains, indicating a prevalent nisin resistance mechanism under the employed isolation conditions. Increased expression of the putative PBP may affect the cell wall composition and thereby alter the sensitivity to cell wall-targeting compounds. The mutants had an isolate-specific increase in sensitivity to different beta-lactams and a slight decrease in sensitivity to another lantibiotic, mersacidin. A model incorporating these observations is proposed based on current knowledge of nisin's mode of action.

  15. DNA polymorphism and total protein in mutants of Metarhizium anisopliae var. Anisopliae (Metsch.) Sorokin strain E9 Polimorfismo de DNA e proteína total em mutantes da linhagem E9 de Metarhizium anisopliae var. anisopliae (Metsch.) Sorokin

    OpenAIRE

    Laurineide Lopes de Carvalho Freire; Ana Bolena Lima da Costa; Larissa Brandão Góes; Neiva Tinti de Oliveira

    2001-01-01

    Five mutants (MaE10, MaE27, MaE24, MaE41 e MaE49) of Metarhizium anisopliae wild strain E9 were analysed for DNA profile through the RAPD technique and for changes in total protein content by spectrophotometry, polyacrylamide gel electrophoresis and densitometry. The pattern of RAPD markers showed genetic polymorphism among the strains: out of twenty primers seven were selected, producing 113 bands. Forty seven bands were present in all strains (41.6% of monomorphic bands) and 66 showed polym...

  16. Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    Science.gov (United States)

    Maftouni, Negin; Amininasab, Mehriar; Ejtehadi, Mohammad Reza; Kowsari, Farshad; Dastvan, Reza

    2013-02-01

    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.

  17. A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1 gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Directory of Open Access Journals (Sweden)

    Ansar Muhammad

    2008-11-01

    Full Text Available Abstract Background Grebe-type chondrodysplasia (GCD is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (CDMP1 gene cause Grebe-type chondrodysplasia. Methods Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to CDMP1 locus on chromosome 20q11.22. To screen for a mutation in CDMP1 gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer. Results Genotyping results showed linkage of the family to CDMP1 locus. Sequence analysis of the CDMP1 gene identified a novel four bases insertion mutation (1114insGAGT in exon 2 of the gene causing frameshift and premature termination of the polypeptide. Conclusion We describe a 4 bp novel insertion mutation in CDMP1 gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of CDMP1 in the development of limbs.

  18. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein.

    Science.gov (United States)

    Rivillas-Acevedo, Lina; Maciel-Barón, Luis; García, Javier E; Juaristi, Eusebio; Quintanar, Liliana

    2013-09-01

    The prion protein coordinates copper with high affinity in the regions encompassing residues 92-99 (GGGTHSQW) and 106-115 (KTNMKHMAGA). Cu(II) binding to these sites involves the coordination of the His96/His111 imidazole ring and backbone deprotonated amides that precede the His residue. Such a coordination arrangement involves the formation of hexa- and penta-membered cycles that provide further stabilization of the metal-peptide complex. The purpose of the present study is to introduce a methylene group in the peptide backbone, to evaluate the impact of increasing the size of these cycles in Cu(II) binding. Thus, a β-alanine residue was inserted at different positions preceding the His residue in these prion fragments, and their Cu(II) coordination properties were assessed by UV-Visible absorption, circular dichroism, and electron paramagnetic resonance. Spectroscopic data show that the insertion of a methylene group leads to a completely different Cu(II) coordination that involves the His96/His111 imidazole ring and nitrogen or oxygen atoms provided by the peptide backbone towards the C-terminal. This study clearly shows that two main factors determine the nature of Cu(II)-peptide complexes involving an anchoring His residue and deprotonated amides from the backbone chain: i) the stabilization of Cu(II)-peptide complexes due to the formation of cyclic structures (i.e. chelate effect) and ii) the nature of the residues associated to the deprotonated amide groups that participate in metal ion coordination.

  19. 空肠弯曲菌cheA基因插入突变及其对小鼠空肠定植能力的影响%Construction of cheA insertion mutant of Campylobacter jejuni and the effect of its adhesion on mice jejunum

    Institute of Scientific and Technical Information of China (English)

    谢礼丽; 张颂; 姚薇

    2011-01-01

    [目的]构建空肠弯曲菌(Campylobacter jejuni)cheA基因插入突变株,了解CheA与空肠弯曲菌小鼠体内定植的相关性.[方法]运用同源重组的原理构建空肠弯曲菌cheA基因突变株,采用PCR技术检测cheA突变株的构建情况.通过基因回补试验构建cheA基因回补株.空肠弯曲菌感染小鼠,运用小鼠空肠内容物涂板计数的方法检测cheA突变株、cheA基因回补株和野生株定植小鼠能力的差异.[结果]PCR检测显示成功构建cheA基因突变株.空肠弯曲菌cheA基因突变株定植小鼠空肠的数量明显减少(P0.05).[结论]本研究成功构建cheA基因突变株及其回补株.cheA基因可能参与空肠弯曲菌在小鼠体内定植的过程.%[Objective]To construct cheA ( chemotaxis, che) insertion mutant of Campylobacter jejuni and to observe the role of cheA gene in adhesion of Campylobacter jejuni on mice jejunum.]Methods]We generated cheA gene insertion mutant of C.jejuni NCTC11168 based on homologous recombination.The cheA mutant was checked by PCR and sequencing.We detected the difference in mice jejunal adhesion between cheA mutant and wild-type of C.jejuni NCTC11168 by CFU (Colony-Forming Units) counting of C.jejuni in jejunal content.We confirmed the of role cheA gene plays in mice jejunal adhesion of Campylobacter jejuni by complementation analysis.[Results]PCR results reveal that we have successfully constructed cheA insertion mutant of C.jejuni NCTC11168.The cheA mutant displayed significantly attenuated colonization on jejunal mucosa of mice compared to wild-type strain ( P < 0.05 ).Complementation analysis shows that the complementation of cheA mutant regained its ability in colonization on jejunal mucosa of mice.]Conclusion]The cheA mutant and its complementation were successfully constructed.The cheA gene may play an important role in colonization of C.jejuni on jejunal mucosa of mice.

  20. Nanopore analysis of wild-type and mutant prion protein (PrP(C: single molecule discrimination and PrP(C kinetics.

    Directory of Open Access Journals (Sweden)

    Nahid N Jetha

    Full Text Available Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrP(C in the central nervous system into the infectious isoform (PrP(Sc. The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrP(Sc. A number of pathogenic PrP(C mutants exist that are characterized by an increased propensity for conversion into PrP(Sc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrP(C conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrP(C, (a PrP(C mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease, exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrP(C capture event. Moreover, we present a four-state model to describe wild-type PrP(C kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrP(C. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between

  1. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.

  2. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins.

    Science.gov (United States)

    Vincent-Sealy, L V; Thomas, J D; Commander, P; Salmond, G P

    1999-08-01

    The dsbA genes, which encode major periplasmic disulfide-bond-forming proteins, were isolated from Erwinia carotovora subsp. carotovora (Ecc) and Erwinia carotovora subsp. atroseptica (Eca), and the dsbC gene, encoding another periplasmic disulfide oxidoreductase was isolated from Ecc. All three genes were sequenced and mutants deficient in these genes were created by marker exchange mutagenesis. The Ecc mutants were severely affected in activity and secretion of pectate lyase, probably due to the absence of functional PelC, which is predicted to require disulfide bond formation to achieve its correct conformation prior to secretion across the outer membrane. Similarly, endopolygalacturonase, also predicted to possess disulfide bonds, displayed reduced activity. The major Ecc cellulase (CelV) does not contain cysteine residues and was still secreted in dsbA-deficient strains. This observation demonstrated unequivocally that the localization and activity of the individual components of the Out apparatus are independent of disulfide bond formation. Surprisingly, cellulase activity was shown to be increased approximately two- to threefold in the DsbA mutant. This phenomenon resulted from transcriptional up-regulation of celV gene expression. In contrast, transcription of both pelC and peh were down-regulated in dsbA-deficient strains when compared to the wild-type. Protease (Prt) activity and secretion were unaffected in the Ecc dsbA mutant. Prt activity was considerably reduced in the double dsbA dsbC mutant. However Prt was secreted normally in this strain. The Eca dsbA mutant was found to be non-motile, suggesting that disulfide bond formation is essential for motility in this strain. All of the dsb mutants showed reduced tissue maceration in planta. These results suggest that a feedback regulation system operates in Ecc. In this system, defects in periplasmic disulfide bond formation act as a signal which is relayed to the transcription machinery regulating gene

  3. Insertion of Cecropin A and reconstitution of bacterial outer membrane protein FhuA variants in polymeric membranes

    OpenAIRE

    Muhammad, Noor

    2011-01-01

    Polymer based nanocompartments (polymersomes) have potential applications in synthetic biology (pathway engineering), medicine (drug release), and industrial biotechnology (chiral nanoreactors, multistep synthesis, bioconversions in non-aqueous environments, and selective product recovery). The aforementioned goals can be accomplished by polymer membrane functionalization through covalent bonding or inclusion of proteins/peptides, to obtain specific properties like recognition, catalytic acti...

  4. Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Erika V. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850-1301 (United States); McCloskey, Diane E. [Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033 (United States); Kinsland, Cynthia [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850-1301 (United States); Pegg, Anthony E. [Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033 (United States); Ealick, Steven E., E-mail: see3@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850-1301 (United States)

    2008-04-01

    The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and the three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction.

  5. Investigation of endoglin wild-type and missense mutant protein heterodimerisation using fluorescence microscopy based IF, BiFC and FRET analyses.

    Directory of Open Access Journals (Sweden)

    Tassilo Förg

    Full Text Available The homodimeric transmembrane receptor endoglin (CD105 plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells. Nevertheless, other functions of endoglin have been revealed to be involved in different cellular functions and in other cell types than endothelial cells. Compared to the exploration of its natural function, little experimental data have been gathered about the mode of action of endoglin HHT mutations at the cellular level, especially missense mutations, and to what degree these might interfere with normal endoglin function. In this paper, we have used fluorescence-based microscopic techniques, such as bimolecular fluorescence complementation (BiFC, immunofluorescence staining with the endoglin specific monoclonal antibody SN6, and protein interaction studies by Förster Resonance Energy Transfer (FRET to investigate the formation and cellular localisation of possible homo- and heterodimers composed of endoglin wild-type and endoglin missense mutant proteins. The results show that all of the investigated missense mutants dimerise with themselves, as well as with wild-type endoglin, and localise, depending on the position of the affected amino acid, either in the rough endoplasmic reticulum (rER or in the plasma membrane of the cells. We show that the rER retained mutants reduce the amount of endogenous wild-type endoglin on the plasma membrane through interception in the rER when transiently or stably expressed in HMEC-1 endothelial cells. As a result of this, endoglin modulated TGF-β1 signal transduction is also abrogated, which is not due to TGF-β receptor ER trafficking interference. Protein interaction analyses by FRET show that rER located endoglin missense mutants do not perturb protein processing

  6. Investigation of endoglin wild-type and missense mutant protein heterodimerisation using fluorescence microscopy based IF, BiFC and FRET analyses.

    Science.gov (United States)

    Förg, Tassilo; Hafner, Mathias; Lux, Andreas

    2014-01-01

    The homodimeric transmembrane receptor endoglin (CD105) plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells. Nevertheless, other functions of endoglin have been revealed to be involved in different cellular functions and in other cell types than endothelial cells. Compared to the exploration of its natural function, little experimental data have been gathered about the mode of action of endoglin HHT mutations at the cellular level, especially missense mutations, and to what degree these might interfere with normal endoglin function. In this paper, we have used fluorescence-based microscopic techniques, such as bimolecular fluorescence complementation (BiFC), immunofluorescence staining with the endoglin specific monoclonal antibody SN6, and protein interaction studies by Förster Resonance Energy Transfer (FRET) to investigate the formation and cellular localisation of possible homo- and heterodimers composed of endoglin wild-type and endoglin missense mutant proteins. The results show that all of the investigated missense mutants dimerise with themselves, as well as with wild-type endoglin, and localise, depending on the position of the affected amino acid, either in the rough endoplasmic reticulum (rER) or in the plasma membrane of the cells. We show that the rER retained mutants reduce the amount of endogenous wild-type endoglin on the plasma membrane through interception in the rER when transiently or stably expressed in HMEC-1 endothelial cells. As a result of this, endoglin modulated TGF-β1 signal transduction is also abrogated, which is not due to TGF-β receptor ER trafficking interference. Protein interaction analyses by FRET show that rER located endoglin missense mutants do not perturb protein processing of other

  7. Regulation of promyelocytic leukemia (PML) protein levels and cell morphology by bovine herpesvirus 1 infected cell protein 0 (bICP0) and mutant bICP0 proteins that do not localize to the nucleus.

    Science.gov (United States)

    Gaudreault, Natasha; Jones, Clinton

    2011-03-01

    BHV-1 is an important pathogen of cattle. The infected cell protein 0 (bICP0) encoded by BHV-1 is an important regulatory protein because it is constitutively expressed and can activate all viral promoters. The mechanism by which bICP0 activates viral promoters is not well understood because bICP0 does not appear to be a sequence specific binding protein. A C(3)HC(4) zinc RING (really interesting novel gene) motif at the N-terminus of bICP0 has E3 ubiquitin ligase activity, which is important for activating viral gene expression and inhibiting interferon dependent transcription. Like other alpha-herpesvirinae ICP0 homologues, bICP0 is associated with promyelocytic leukemia (PML) protein-containing nuclear domains. During productive infection of cultured cells, BHV-1 induces degradation of the PML protein, which correlates with efficient productive infection. In this study, we demonstrated that a plasmid expressing bICP0 reduces steady state levels of the PML protein, and the C(3)HC(4) zinc RING finger is important for PML degradation. Surprisingly, bICP0 mutants with an intact C(3)HC(4) zinc RING finger that lack a nuclear localization signal also reduces steady PML protein levels. In addition, mutant bICP0 proteins that primarily localize to the cytoplasm induced morphological changes in transfected cells. During productive infection, bICP0 was detected in the cytoplasm of low-passage bovine kidney, but not established bovine kidney cells. These studies demonstrated that bICP0, even when not able to efficiently localize to the nucleus, was able to induce degradation of the PML protein and alter the morphology of transfected cells.

  8. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2016-12-01

    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  9. Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis.

    Science.gov (United States)

    Kim, W; Whitman, W B

    1999-01-01

    To learn more about autotrophic growth of methanococci, we isolated nine conditional mutants of Methanococcus maripaludis after transformation of the wild type with a random library in pMEB.2, a suicide plasmid bearing the puromycin-resistance cassette pac. These mutants grew poorly in mineral medium and required acetate or complex organic supplements such as yeast extract for normal growth. One mutant, JJ104, was a leaky acetate auxotroph. A plasmid, pWDK104, was recovered from this mutant by electroporation of a plasmid preparation into Escherichia coli. Transformation of wild-type M. maripaludis with pWDK104 produced JJ104-1, a mutant with the same phenotype as JJ104, thus establishing that insertion of pWDK104 into the genome was responsible for the phenotype. pWDK104 contained portions of the methanococcal genes encoding an ABC transporter closely related to MJ1367-MJ1368 of M. jannaschii. Because high levels of molybdate, tungstate, and selenite restored growth to wild-type levels, this transporter may be specific for these oxyanions. A second acetate auxotroph, JJ117, had an absolute growth requirement for either acetate or cobalamin, and wild-type growth was observed only in the presence of both. Cobinamide, 5', 6'-dimethylbenzimidazole, and 2-aminopropanol did not replace cobalamin. This phenotype was correlated with tandem insertions in the genome but not single insertions and appeared to have resulted from an indirect effect on cobamide metabolism. Plasmids rescued from other mutants contained portions of ORFs denoted in M. jannaschii as endoglucanase (MJ0555), transketolase (MJ0681), thiamine biosynthetic protein thiI (MJ0931), and several hypothetical proteins (MJ1031, MJ0835, and MJ0835.1). PMID:10430573

  10. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayek, Rekha; Mori, Tetsuya; Xu, Yao; Pattanayek, Sabuj; Johnson, Carl H.; Egli, Martin; (Vanderbilt)

    2010-09-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.

  11. Genes encoding chimeras of Neurospora crassa erg-3 and human TM7SF2 proteins fail to complement Neurospora and yeast sterol C-14 reductase mutants

    Indian Academy of Sciences (India)

    A Prakash; Durgadas P Kasbekar

    2002-03-01

    The human gene TM7SF2 encodes a polypeptide (SR-1) with high sequence similarity to sterol C-14 reductase, a key sterol biosynthetic enzyme in fungi, plants and mammals. In Neurospora and yeast this enzyme is encoded by the erg-3 and erg24 genes respectively. In an effort to demonstrate sterol C-14 reductase activity for SR-1 we constructed six recombinant genes coding for chimeras of the Neurospora erg-3 and SR-1 protein sequences and tested them for complementation of the Neurospora erg-3 mutant. To our surprise, all the chimeras failed to complement erg-3. A few of the chimeric proteins were also tested against the yeast erg24 mutant, but again there was no complementation. We discuss some reasons that might account for these unexpected findings.

  12. Stimulation of the Replication of ICP0-Null Mutant Herpes Simplex Virus 1 and pp71-Deficient Human Cytomegalovirus by Epstein-Barr Virus Tegument Protein BNRF1

    Science.gov (United States)

    Lu, Yongxu; Orr, Anne

    2016-01-01

    ABSTRACT It is now well established that several cellular proteins that are components of promyelocytic leukemia nuclear bodies (PML NBs, also known as ND10) have restrictive effects on herpesvirus infections that are countered by viral proteins that are either present in the virion particle or are expressed during the earliest stages of infection. For example, herpes simplex virus 1 (HSV-1) immediate early (IE) protein ICP0 overcomes the restrictive effects of PML-NB components PML, Sp100, hDaxx, and ATRX while human cytomegalovirus (HCMV) IE protein IE1 targets PML and Sp100, and its tegument protein pp71 targets hDaxx and ATRX. The functions of these viral regulatory proteins are in part interchangeable; thus, both IE1 and pp71 stimulate the replication of ICP0-null mutant HSV-1, while ICP0 increases plaque formation by pp71-deficient HCMV. Here, we extend these studies by examining proteins that are expressed by Epstein-Barr virus (EBV). We report that EBV tegument protein BNRF1, discovered by other investigators to target the hDaxx/ATRX complex, increases the replication of both ICP0-null mutant HSV-1 and pp71-deficient HCMV. In addition, EBV protein EBNA-LP, which targets Sp100, also augments ICP0-null mutant HSV-1 replication. The combination of these two EBV regulatory proteins had a greater effect than each one individually. These findings reinforce the concept that disruption of the functions of PML-NB proteins is important for efficient herpesvirus infections. IMPORTANCE Whether a herpesvirus initiates a lytic infection in a host cell or establishes quiescence or latency is influenced by events that occur soon after the viral genome has entered the host cell nucleus. Certain cellular proteins respond in a restrictive manner to the invading pathogen's DNA, while viral functions are expressed that counteract the cell-mediated repression. One aspect of cellular restriction of herpesvirus infections is mediated by components of nuclear structures known as

  13. Reduction of drosopterin content caused by a 45-nt insertion in Henna pre-mRNA of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phenylalanine hydroxylase is assumed to be a key enzyme in drosopterin metabolism, but direct in vivo evidence to support this hypothesis is still absent.In the present study, we found a new natural reces-sive purple eye mutant of Drosophila melanogaster, Hnbp, which was a 45-nt insertion mutant in the second exon of Henna.The insertion resulted in a predicted protein with 15 additional amino acids as compared to the wild-type protein.Further analysis of protein structure showed that the predicted mutant protein probably had two more β-sheets, which may cause instability of two α-helices near the catalytic centre of the enzyme in the Biopterin-Hydroxyl binding domain.Hnbp mutant showed eye color defect with decrease of mRNA level, as well as drosopterin content reduction.The drosopterin defect could be fully rescued by expression of wild type Henna in the Hnbp background by GMR-GAL4 UAS-Henna/UAS-Henna:Hnbp/Hnbp transgenic line.All taken together, it can be concluded that the mu-tation in Henna is responsible for drosopterin reduction in mutant Hnbp, which provides key in vivo evidence to support the hypothesis that Henna is involved in drosopterin synthesis.

  14. Reduction of drosopterin content caused by a 45-nt insertion in Henna pre-mRNA of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    WANG Qin; ZHAO ChunJiang; BAI LiHua; DENG XueMei; WU ChangXin

    2008-01-01

    Phenylalanine hydroxylase is assumed to be a key enzyme in drosopterin metabolism, but direct in vivo evidence to support this hypothesis is still absent. In the present study, we found a new natural reces-sive purple eye mutant of Drosophila melanogaster, Hnbp, which was a 45-nt insertion mutant in the second exon of Henna. The insertion resulted in a predicted protein with 15 additional amino acids as compared to the wild-type protein. Further analysis of protein structure showed that the predicted mutant protein probably had two more β-sheets, which may cause instability of two α-helices near the catalytic centre of the enzyme in the Biopterin-Hydroxyl binding domain. Hnbp mutant showed eye color defect with decrease of mRNA level, as well as drosopterin content reduction. The drosopterin defect could be fully rescued by expression of wild type Henna in the Hnbp background by GMR-GAL4 UAS-Henna/UAS-Henna:Hn/Hnbptransgenic line. All taken together, it can be concluded that the mu-tation in Henna is responsible for drosopterin reduction in mutant Hnbp, which provides key in vivo evidence to support the hypothesis that Henna is involved in drosopterin synthesis.

  15. Nicotinic acetylcholine receptor α7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors

    Institute of Scientific and Technical Information of China (English)

    Teresa A MURRAY; Qiang LIU; Paul WHITEAKER; Jie WU; Ronald J LUKAS

    2009-01-01

    Aim: Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR a.7 subunit without compromising formation of functional receptors.Methods: A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplamsic loop between the third and fourth transmembrane domains of the mouse nAChR al sub-unit (a7Y). SH-EP1 cells were transfected with mouse nAChR wild type a.7 subunits (a.7) or with a7Y subunits, alone or with the chaperone protein, hRJC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with 125I-labeled a-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy.Results: Whole-cell currents revealed that a7Y nAChRs and al nAChRs were functional with comparable EC50 values for the a7 nAChR-selective agonist, choline, and IC50 values for the a.7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that a7Y had primarily intracel-lular rather than surface expression. TIRF microscopy confirmed that little a7Y localized to the plasma membrane, typical of a7 nAChRs.Conclusion: nAChRs composed as homooligomers of a7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of a.7 nAChRs. a7Y nAChRs may be used to elucidate properties of a.7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion.

  16. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  17. The expression analysis of cysteine proteinase-like protein in wild-type and nm2 mutant silkworm (Lepidoptera: Bombyx mori).

    Science.gov (United States)

    Wu, Fan; Kang, Lequn; Wang, Pingyang; Zhao, Qiaoling

    2016-07-15

    The mutant of non-molting in the 2nd instar (nm2) is a recently discovered mutant of Bombyx mori. The mutant cannot molt and exuviate and died successively in premolting of 2nd instar. In this study, two dimensional gel electrophoresis (2-DE) was performed to screen the differential expression of epidermis proteins in pre-molting larvae of 2nd instar between the wild-type and nm2 mutant. Interestingly, a cysteine proteinase-like (BmCP-like) protein in nm2 was significantly higher than that of the wild-type. The transcription profiles of BmCP-like gene were investigated by quantitative real-time PCR (qRT-PCR), and the result revealed that BmCP-like mRNA was remarkably higher in nm2 than that of the wild-type. The transcription level of BmCP-like was high in the epidermis while low in the midgut and hemocytes, and fluctuate with development, while the highest in the newly molted larvae of 3rd and lowest in the pre-molting of the 1st and 2nd instar. The body of injected BmCP-like RNAi of 2nd larvae formed a dark spots around the injection place. These results suggested the BmCP-like gene play a key role in the degradation of the cuticle and epidermis layer during molting of 1st and 2nd instar silkworm. Furthermore, the ORF of BmCP-like gene in nm2 was the same to the wild-type. These studies give us a hint that BmCP-like gene maybe not the major gene responsible for nm2, but BmCP-like gene might participate in the immune systems of silkworm, and the upregulation of BmCP-like transcription in the nm2 mutant might be induced by the disadvantages that limit the growth and development of silkworm in order to survive.

  18. Human Papillomavirus Type 16 Mutant E7 Protein Induces Oncogenic Transformation via Up-regulation of Cyclin A and cdc25A

    Institute of Scientific and Technical Information of China (English)

    Jin-hua LIU; Yu-liang ZHANG; Li-qin ZHU; Yin-yu XU; Min ZHAO; Xin-xing WU

    2008-01-01

    A new mutant human papiUomavirus type 16 E7 gene, termed HPV16 HBE7, was isolated from cervical carcinoma biopsy samples from patients in an area with high incidence of cervical cancer (Hubei province, China). A previous study showed that the HPVI6 HBE7 protein was primarily cytoplasmic while wild-type HPV16 E7 protein, termed HPV16 WET, was concentrated in the nucleus. With the aim of studying the biological functions of HPV16 HBE7, the transforming potential of HPV16 HBE7 in NIH/3T3 cells was detected through observation of cell morphology, cell proliferation assay and anchorage-independent growth assay. The effect of HPVI6 HBE7 on cell cycle was examined by flow cytometry. Dual-luciferase reporter assay and RT-PCR were used to investigate the influence of HPVI6 HBE7 protein on the expression of regulation factors associated with GI/S checkpoint. The results showed that HPV16 HBE7 protein, as well as HPV16 WE7 protein, held transformation activity. NIH/3T3 cells expressing HPV16 HBE7 could easily transition from G1 phase into S phase and expressed high level of cyclin A and cdc25A. These results indicated HPV16 mutant E7 protein, located in the cytoplasm, induces oncogenic transformation of NIH/3T3 cells via up-regulation of cyclin A and cdc25A.

  19. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease

    Science.gov (United States)

    Zeng, Yixuan; Guo, Wenyuan; Xu, Guangqing; Wang, Qinmei; Feng, Luyang; Long, Simei; Liang, Fengyin; Huang, Yi; Lu, Xilin; Li, Shichang; Zhou, Jiebin; Burgunder, Jean-Marc; Pang, Jiyan; Pei, Zhong

    2016-01-01

    Huntington’s disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt). Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington’s disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson’s and Alzheimer’s diseases. To identify potential neuroprotective molecules for Huntington’s disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington’s disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a stable trimeric complex that can prevent the formation of mutant Htt aggregates. Taken together, we conclude that xyloketal derivatives could be novel drug candidates for treating Huntington’s disease. Molecular target analysis is a good method to simulate the interaction between proteins and drug compounds. Further, protective candidate drugs could be designed in future using the guidance of molecular docking results. PMID:27110099

  20. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington's disease.

    Science.gov (United States)

    Zeng, Yixuan; Guo, Wenyuan; Xu, Guangqing; Wang, Qinmei; Feng, Luyang; Long, Simei; Liang, Fengyin; Huang, Yi; Lu, Xilin; Li, Shichang; Zhou, Jiebin; Burgunder, Jean-Marc; Pang, Jiyan; Pei, Zhong

    2016-01-01

    Huntington's disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt). Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington's disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson's and Alzheimer's diseases. To identify potential neuroprotective molecules for Huntington's disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington's disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a stable trimeric complex that can prevent the formation of mutant Htt aggregates. Taken together, we conclude that xyloketal derivatives could be novel drug candidates for treating Huntington's disease. Molecular target analysis is a good method to simulate the interaction between proteins and drug compounds. Further, protective candidate drugs could be designed in future using the guidance of molecular docking results.

  1. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Science.gov (United States)

    Mitobe, Jiro; Sinha, Ritam; Mitra, Soma; Nag, Dhrubajyoti; Saito, Noriko; Shimuta, Ken; Koizumi, Nobuo; Koley, Hemanta

    2017-07-01

    Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  2. Structure–Biological Function Relationship Extended to Mitotic Arrest-Deficient 2-Like Protein Mad2 Native and Mutants-New Opportunity for Genetic Disorder Control

    Science.gov (United States)

    Avram, Speranta; Milac, Adina; Mernea, Maria; Mihailescu, Dan; Putz, Mihai V.; Buiu, Catalin

    2014-01-01

    Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53–0.65) and fitted correlation r2 (0.82–0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN. PMID:25411801

  3. Structure–Biological Function Relationship Extended to Mitotic Arrest-Deficient 2-Like Protein Mad2 Native and Mutants-New Opportunity for Genetic Disorder Control

    Directory of Open Access Journals (Sweden)

    Speranta Avram

    2014-11-01

    Full Text Available Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2 to active closed (C-Mad2 conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20 or Mad1 were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53–0.65 and fitted correlation r2 (0.82–0.90. Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.

  4. The prognostic value of polycomb group protein B-cell-specific moloney murine leukemia virus insertion site 1 in stage II colon cancer patients

    DEFF Research Database (Denmark)

    Espersen, Maiken L. M.; Linnemann, Dorte; Christensen, Ib J.

    2016-01-01

    The aim of this study was to investigate the prognostic value of B-cell-specific moloney murine leukemia virus insertion site 1 (BMI1) protein expression in primary tumors of stage II colon cancer patients. BMI1 protein expression was assessed by immunohistochemistry in a retrospective patient...... cohort consisting of 144 stage II colon cancer patients. BMI1 expression at the invasive front of the primary tumors correlated with mismatch repair status of the tumors. Furthermore, BMI1 expression at the luminal surface correlated with T-stage, tumor location, and the histological subtypes....... Likewise, there was no association between 5-year overall survival and BMI1 expression at the invasive front (HR: 1.12; 95% CI 0.80–1.56; p = 0.46) or at the luminal surface of the tumor (HR: 1.16; 95% CI 0.86–1.60; p = 0.33). In conclusion, BMI1 expression in primary tumors of stage II colon cancer...

  5. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    Science.gov (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  6. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    OpenAIRE

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL)...

  7. pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants.

    Science.gov (United States)

    Murugan, Elavazhagan; Venkatraman, Anandalakshmi; Lei, Zhou; Mouvet, Victoria; Rui Yi Lim, Rayne; Muruganantham, Nandhakumar; Goh, Eunice; Swee Lim Peh, Gary; Beuerman, Roger W; Chaurasia, Shyam S; Rajamani, Lakshminarayanan; Mehta, Jodhbir S

    2016-03-31

    Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4(th)_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4(th)_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities.

  8. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein.

    Science.gov (United States)

    Kusumi, Kensuke; Hirotsuka, Shoko; Kumamaru, Toshiharu; Iba, Koh

    2012-09-01

    In rice (Oryza sativa L.), leaf photosynthesis is known to be highly correlated with stomatal conductance; however, it remains unclear whether stomatal conductance dominantly limits the photosynthetic rate. SLAC1 is a stomatal anion channel protein controlling stomatal closure in response to environmental [CO(2)]. In order to examine stomatal limitations to photosynthesis, a SLAC1-deficient mutant of rice was isolated and characterized. A TILLING screen of N-methyl-N-nitrosourea-derived mutant lines was conducted for the rice SLAC1 orthologue gene Os04g0674700, and four mutant lines containing mutations within the open reading frame were obtained. A second screen using an infrared thermography camera revealed that one of the mutants, named slac1, had a constitutive low leaf temperature phenotype. Measurement of leaf gas exchange showed that slac1 plants grown in the greenhouse had significantly higher stomatal conductance (g (s)), rates of photosynthesis (A), and ratios of internal [CO(2)] to ambient [CO(2)] (C (i)/C (a)) compared with wild-type plants, whereas there was no significant difference in the response of photosynthesis to internal [CO(2)] (A/C (i) curves). These observations demonstrate that in well-watered conditions, stomatal conductance is a major determinant of photosynthetic rate in rice.

  9. Mini-Mu insertions in the tetracycline resistance determinant from Proteus mirabilis

    Directory of Open Access Journals (Sweden)

    Magalhães V.D.

    1997-01-01

    Full Text Available The inducible tetracycline resistance determinant isolated from Proteus mirabilis cloned into the plasmid pACYC177 was mutagenized by insertion of a mini-Mu-lac phage in order to define the regions in the cloned sequences encoding the structural and regulatory proteins. Three different types of mutants were obtained: one lost the resistance phenotype and became Lac+; another expressed the resistance at lower levels and constitutively; the third was still dependent on induction but showed a lower minimal inhibitory concentration. The mutant phenotypes and the locations of the insertions indicate that the determinant is composed of a repressor gene and a structural gene which are not transcribed divergently as are other known tetracycline determinants isolated from Gram-negative bacteria

  10. A Novel Insertion Variant of CRYGD Is Associated with Congenital Nuclear Cataract in a Chinese Family.

    Science.gov (United States)

    Zhuang, Xiaotong; Wang, Lianqing; Song, Zixun; Xiao, Wei

    2015-01-01

    To investigate a novel insertion variant of CRYGD identified in a Chinese family with nuclear congenital cataract. A Chinese family with congenital nuclear cataract was recruited for the mutational screening of candidate genes by direct sequencing. Recombinant N-terminal Myc tagged wildtype or mutant CRYGD was expressed in HEK293T cells. The expression pattern, protein solubility and subcellular distribution were analyzed by western blotting and immunofluorescence. A novel insertion variant, c.451_452insGACT, in CRYGD was identified in the patients. It causes a frameshift and a premature termination of the polypeptide to become Y151*. A significantly reduced solubility was observed for this mutant. Unlike wildtype CRYGD, which existed mainly in the cytoplasm, Y151* was mis-located in the nucleus. We have identified a novel mutation, c.451_452insGACT, in CRYGD, which is associated with nuclear cataract. This is the first insertion mutation of CRYGD found to cause autosomal dominant congenital cataract. The mutant protein, with loss of solubility and localization to the nucleus, is hypothesized to be the major cause of cataract in these patients.

  11. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    Science.gov (United States)

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  12. Long-distance effects of insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Ruchi Singhal

    Full Text Available BACKGROUND: Most common systems of genetic engineering of mammalian cells are associated with insertional mutagenesis of the modified cells. Insertional mutagenesis is also a popular approach to generate random alterations for gene discovery projects. A better understanding of the interaction of the structural elements within an insertional mutagen and the ability of such elements to influence host genes at various distances away from the insertion site is a matter of considerable practical importance. METHODOLOGY/PRINCIPAL FINDINGS: We observed that, in the context of a lentiviral construct, a transcript, which is initiated at an internal CMV promoter/enhancer region and incorporates a splice donor site, is able to extend past a collinear viral LTR and trap exons of host genes, while the polyadenylation signal, which is naturally present in the LTR, is spliced out. Unexpectedly, when a vector, which utilizes this phenomenon, was used to produce mutants with elevated activity of NF-κB, we found mutants, which owed their phenotype to the effect of the insert on a gene located tens or even hundreds of kilobases away from the insertion site. This effect did not result from a CMV-driven transcript, but was sensitive to functional suppression of the insert. Interestingly, despite the long-distance effect, expression of loci most closely positioned to the insert appeared unaffected. CONCLUSIONS/SIGNIFICANCE: We concluded that a polyadenylation signal in a retroviral LTR, when occurring within an intron, is an inefficient barrier against the formation of a hybrid transcript, and that a vector containing a strong enhancer may selectively affect the function of genes far away from its insertion site. These phenomena have to be considered when experimental or therapeutic transduction is performed. In particular, the long-distance effects of insertional mutagenesis bring into question the relevance of the lists of disease-associated retroviral integration

  13. Screening Pigment Mutons in Monascus purpureus T-DNA Insertion Mutant Library%红曲霉T-DNA插入突变库中色素突变子的筛选

    Institute of Scientific and Technical Information of China (English)

    庄静娜; 蔡琪敏; 曹丽凌; 韦凤; 蒋冬花

    2011-01-01

    Monascus purpureus has been an important traditional edible and officinal microbe in China that produces Monascus pigment, Monacolin K, -γ-aminobutyric acid, ergosterol and other substances. It has been widely used in the production of food fermentation agents, food coloring agent, nutraceutical, medicine etc. The application history was no fewer than a thousand years. As materials 734 mutants from Monascus mutant library mediated by Agrobacterri-iun tumefacUns were studied. Among them nine mutants of pigment mulon with significant changes in producing Monascus pigment were selected using ethanol extraction, the color value of mutant S50 in 505 nm was decreased by 0. 12 fold than the original strain S, almost turning to an albino strain. The results of UV-VIS scanned map in 300 -600 nm indicated that the pigment mutons changed not only in color value, but also in absorption wavelength and the absorption peak. Hereafter, the features of pigment mutons, including colony morphology, microscopic morphology, hygromycin resistance, genetic stability and citrinin production capacity, were analyzed. It laid the foundation for the research of Monasaa pigment-related genes.%红曲霉(Monacus purpureus )是我国重要的传统食用和药用微生物,能分泌红曲色素、莫纳卡琳(Monacolin K)、γ-氨基丁酸、麦角固醇等物质,被广连用于生产食品发酵剂、食品着色剂、保健食品和药品等,在我国有上千年的应用历史.本实验以根癌农杆菌(Agrobacterrium tumefaciens)介导的红曲霉突变体库中754株突变子菌株为材料,通过乙醇提取法筛选出了9株产红曲色素发生显著变化的色素突变子,其中S50在505 nm波长处的色价降为原始菌株S的0.12倍,几乎变为白化株.300 ~ 600 nm波长下UV-VIS扫描图谱特征显示,色素突变子不仅色价发生了变化,而且吸收波长、吸收峰值也发生了不同程度的变化.最后,对色素突变子菌落形态、显微结构、潮霉素

  14. Purification, crystallization and preliminary X-ray diffraction of wild-type and mutant recombinant human transforming growth factor beta-induced protein (TGFBIp).

    Science.gov (United States)

    Runager, Kasper; García-Castellanos, Raquel; Valnickova, Zuzana; Kristensen, Torsten; Nielsen, Niels Chr; Klintworth, Gordon K; Gomis-Rüth, F Xavier; Enghild, Jan J

    2009-03-01

    Transforming growth factor beta-induced protein (TGFBIp) has been linked to several corneal dystrophies as certain point mutations in the protein may give rise to a progressive accumulation of insoluble protein material in the human cornea. Little is known about the biological functions of this extracellular protein, which is expressed in various tissues throughout the human body. However, it has been found to interact with a number of extracellular matrix macromolecules such as collagens and proteoglycans. Structural information about TGFBIp might prove to be a valuable tool in the elucidation of its function and its role in corneal dystrophies caused by mutations in the TGFBI gene. A simple method for the purification of wild-type and mutant forms of recombinant human TGFBIp from human cells under native conditions is presented here. Moreover, the crystallization and preliminary X-ray analysis of TGFBIp are reported.

  15. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM).

    Science.gov (United States)

    Ruiz, Zandra; Mihaylov, Ivailo S; Cotmore, Susan F; Tattersall, Peter

    2011-02-20

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA(32), which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins.

  16. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae.

  17. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells.

    Science.gov (United States)

    Ragg, S; Xu-Welliver, M; Bailey, J; D'Souza, M; Cooper, R; Chandra, S; Seshadri, R; Pegg, A E; Williams, D A

    2000-09-15

    Direct reversal of O6 adducts caused by chemotherapy agents is accomplished in mammalian cells by the protein O6-methylguanine DNA methyltransferase (MGMT). Some tumors overexpress MGMT and are resistant to alkylator therapy. One future approach to treatment of these tumors may rely on concurrent pharmacological depletion of tumor MGMT with O6-benzylguanine (6-BG) and protection of sensitive tissues, such as hematopoietic stem and progenitor cells, using genetic modification with 6-BG-resistant MGMT mutants. We have used retroviral-mediated gene transfer to transduce murine hematopoietic bone marrow cells with MGMT point mutants showing resistance to 6-BG depletion in vitro. These mutants include proline to alanine and proline to lysine substitutions at the 140 position (P140A and P140K, respectively), which show 40- and 1000-fold resistance to 6-BG compared with wild-type (WT) MGMT. Lethally irradiated mice were reconstituted with murine stem cells transduced with murine stem cell virus retrovirus expressing each mutant, WT MGMT, or mock-infected cells and then treated with a combination of 30 mg/kg 6-BG and 10 mg/kg 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or with 40 mg/kg BCNU alone. Compared with mice treated with BCNU alone, significant myeloid toxicity and death occurred in mice reconstituted with mock-infected or WT MGMT (0.70; no treatment, <0.1). These data demonstrate that mutant MGMT expressed in the bone marrow can protect mice from time- and dose-intensive chemotherapy and that the combination of 6-BG and BCNU leads to uniform selection of transduced stem cells in vivo in mice.

  18. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein

    Science.gov (United States)

    Xie, Peng; Zhou, Panwang; Alsaedi, Ahmed; Zhang, Yan

    2017-03-01

    The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.

  19. Constitutive expression and enzymatic activity of Tan protein in brain and epidermis of Ceratitis capitata and of Drosophila melanogaster wild-type and tan mutants.

    Science.gov (United States)

    Pérez, M M; Sabio, G; Badaracco, A; Quesada-Allué, L A

    2011-09-01

    The present report shows a partial biochemical characterization and life cycle expression of N-β-alanyldopamine hydrolase (Tan protein) in Ceratitis capitata and Drosophila melanogaster. This enzyme catalyzes the hydrolysis of N-β-alanyldopamine (NBAD), the main tanning precursor of insect brown cuticles. It also plays an important role in the metabolism of brain neurotransmitters, recycling dopamine and histamine. In contrast to NBAD-synthase, Tan is expressed constitutively in epidermis and does not respond directly to microbial challenge. Immunodetection experiments showed the novel localization of NBAD-hydrolase in the embryo central neural system and in different regions of the adult brain, in addition to optic lobes. We sequenced and characterized Drosophila mutants tan¹ and tan³. The latter appears to be a mutant with normal expression in neural tissue but weak one in epidermis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Heat shock protein 90 inhibition results in altered downstream signaling of mutant KIT and exerts synergistic effects on Kasumi-1 cells when combining with histone deacetylase inhibitor.

    Science.gov (United States)

    Yu, Wenjuan; Wang, Jianxiang; Jin, Jie; Qian, Wenbin; Qian, Jiejing; Cheng, Yizhi; Wang, Lei

    2011-09-01

    KIT mutations may be associated with a poor prognosis in t(8;21) AML. Heat shock protein 90 (Hsp90) is a molecular chaperone frequently used by cancer cells to stabilize mutant oncoproteins. Inhibition of Hsp90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) disrupted downstream signaling pathways of mutant KIT in Kasumi-1 cells. AML1-ETO fusion gene and mutated KIT act as "two-hit" factors in Kasumi-1 cells. Histone deacetylation (HDAC) inhibitors sodium phenylbutyrate (PB) and valproic acid (VPA) block AML1-ETO. Co-treatment with 17-AAG and PB or 17-AAG and VPA resulted in a synergistic effect in Kasumi-1 cells. Our results confirmed that Hsp90 and mutated KIT were valid molecular targets in the therapy of AML. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Identification of a Conserved 8 aa Insert in the PIP5K Protein in the Saccharomycetaceae family of Fungi and the Molecular Dynamics Simulations and Structural Analysis to investigate its Potential Functional Role.

    Science.gov (United States)

    Khadka, Bijendra; Gupta, Radhey S

    2017-04-13

    Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly-positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert (CSI), with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. This article is protected by copyright. All rights reserved.

  2. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    LENUS (Irish Health Repository)

    Tudor, E L

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.

  3. Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17.

    Science.gov (United States)

    Marsden, H S; Crombie, I K; Subak-Sharpe, J H

    1976-06-01

    The polypeptides induced in cells infected with a Glasgow isolate of HSV-I (17 syn+) have been characterized by SDS polyacrylamide gel electrophoresis. Study of the kinetics of synthesis in three cell lines has detected a total of 52 polypeptides, 33 of which can be identified in polypeptide profiles of purified virions. These include six low mol. wt. polypeptides that have not been previously reported. Several polypeptides were labelled with glucosamine in infected BHK cells. The different polypeptide patterns obtained at permissive (31 degrees C) and nonpermissive (38 degrees C) temperature in cells infected with 16 temperature-sensitive (ts) mutants are reported. The effect of multiplicity of infection (m.o.i.) on the polypeptide profile has been examined for two of the DNA -ve mutants: below ten, the profile varied with the m.o.i. whereas above ten it was constant. All mutants were therefore examined at an m.o.i. of approx. 20. Mutants from the same complementation group showed very similar profiles. A number of general conclusions concerning control of protein synthesis in HSV infected cells can be made: (I) As most of the 16 ts mutants affected the synthesis of several or many polypeptides it follows that a large proportion of genome specifies controlling functions. (2) The high frequency with which some polypeptides were affected suggests they are at or near the terminus of biosynthetic pathways which are under multiple control. (3) Conversely, some polypeptides were affected with a low frequency suggesting that their synthesis is not dependent on the expression of many virus functions. (4) Several individual ts mutations lead to the synthesis of increased amounts of different large polypeptides. (5) Analysis of every band detectably affected by at least one ts mutation has disclosed nine classes of dependence relationship between polypeptide synthesis and the DNA phenotype of the mutants, illustrating that this relationship is complex and different for

  4. Functional analysis of a frame-shift mutant of the dihydropyridine receptor pore subunit (α1S expressing two complementary protein fragments

    Directory of Open Access Journals (Sweden)

    Mortenson Lindsay

    2001-12-01

    Full Text Available Abstract Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1. This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S expressed the N-terminal half of α1S (M1 to L670 and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel.

  5. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants.

    Science.gov (United States)

    Mochizuki, Tomofumi; Yamazaki, Ryota; Wada, Tomoya; Ohki, Satoshi T

    2014-05-01

    In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.

  6. A VAPB mutant linked to amyotrophic lateral sclerosis generates a novel form of organized smooth endoplasmic reticulum.

    Science.gov (United States)

    Fasana, Elisa; Fossati, Matteo; Ruggiano, Annamaria; Brambillasca, Silvia; Hoogenraad, Casper C; Navone, Francesca; Francolini, Maura; Borgese, Nica

    2010-05-01

    VAPB (vesicle-associated membrane protein-associated protein B) is an endoplasmic reticulum (ER)-resident tail-anchored adaptor protein involved in lipid transport. A dominantly inherited mutant, P56S-VAPB, causes a familial form of amyotrophic lateral sclerosis (ALS) and forms poorly characterized inclusion bodies in cultured cells. To provide a cell biological basis for the understanding of mutant VAPB pathogenicity, we investigated its biogenesis and the inclusions that it generates. Translocation assays in cell-free systems and in cultured mammalian cells were used to investigate P56S-VAPB membrane insertion, and the inclusions were characterized by confocal imaging and electron microscopy. We found that mutant VAPB inserts post-translationally into ER membranes in a manner indistinguishable from the wild-type protein but that it rapidly clusters to form inclusions that remain continuous with the rest of the ER. Inclusions were induced by the mutant also when it was expressed at levels comparable to the endogenous wild-type protein. Ultrastructural analysis revealed that the inclusions represent a novel form of organized smooth ER (OSER) consisting in a limited number of parallel cisternae (usually 2 or 3) interleaved by a approximately 30 nm-thick electron-dense cytosolic layer. Our results demonstrate that the ALS-linked VAPB mutant causes dramatic ER restructuring that may underlie its pathogenicity in motoneurons.

  7. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Charlene Desbonnet

    2016-04-01

    Full Text Available The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins” is reliant on the presence of class A penicillin-binding proteins (Pbps PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2 of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP. Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system.

  8. The vhs1 mutant form of herpes simplex virus virion host shutoff protein retains significant internal ribosome entry site-directed RNA cleavage activity.

    Science.gov (United States)

    Lu, P; Saffran, H A; Smiley, J R

    2001-01-01

    The virion host shutoff (vhs) protein of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated turnover of host and viral mRNAs during HSV infection. As well, it induces endoribonucleolytic cleavage of RNA substrates when produced in a rabbit reticulocyte lysate (RRL) in vitro translation system. The vhs1 point mutation (Thr 214-->Ile) eliminates vhs function during virus infection and in transiently transfected mammalian cells and was therefore previously considered to abolish vhs activity. Here we demonstrate that the vhs1 mutant protein induces readily detectable endoribonuclease activity on RNA substrates bearing the internal ribosome entry site of encephalomyocarditis virus in the RRL assay system. These data document that the vhs1 mutation does not eliminate catalytic activity and raise the possibility that the vhs-dependent endoribonuclease employs more than one mode of substrate recognition.

  9. Chest tube insertion

    Science.gov (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  10. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  11. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding.

    Science.gov (United States)

    Wang, J; Suzuki, N; Nishida, Y; Kataoka, T

    1993-07-01

    In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.

  12. Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T mutant proteins.

    Science.gov (United States)

    Wang, Donghai; Höing, Susanne; Patterson, Heide Christine; Ahmad, Umtul M; Rathinam, Vijay A K; Rajewsky, Klaus; Fitzgerald, Katherine A; Golenbock, Douglas T

    2013-02-15

    Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne Syndrome (PAPA syndrome) is an autoinflammatory disease caused by aberrant production of the proinflammatory cytokine interleukin-1. Mutations in the gene encoding proline serine threonine phosphatase-interacting protein-1 (PSTPIP1) have been linked to PAPA syndrome. PSTPIP1 is an adaptor protein that interacts with PYRIN, the protein encoded by the Mediterranean Fever (MEFV) gene whose mutations cause Familial Mediterranean Fever (FMF). However, the pathophysiological function of PSTPIP1 remains to be elucidated. We have generated mouse strains that either are PSTPIP1 deficient or ectopically express mutant PSTPIP1. Results from analyzing these mice suggested that PSTPIP1 is not an essential regulator of the Nlrp3, Aim2, or Nlrc4 inflammasomes. Although common features of human PAPA syndrome such as pyogenic arthritis and skin inflammation were not recapitulated in the mouse model, ectopic expression of the mutant but not the wild type PSTPIP1 in mice lead to partial embryonic lethality, growth retardation, and elevated level of circulating proinflammatory cytokines.

  13. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant.

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2015-01-01

    Full Text Available During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2, suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a 'TIR-NBS only' immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.

  14. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells.

    Science.gov (United States)

    Peterson, S R; Kurimasa, A; Oshimura, M; Dynan, W S; Bradbury, E M; Chen, D J

    1995-04-11

    The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.

  15. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.R. [Los Alamos National Lab., NM (United States)]|[Tottori Univ., Yonago (Japan); Kurimasa, Akihiro; Oshimura, Mitsuo [Tottori Univ., Yonago (Japan); Dynan, W.S. [Univ. of Colorado, Boulder, CO (United States); Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[Univ. of California, Davis, CA (United States); Chen, D.J. [Los Alamos National Lab., NM (United States)

    1995-04-11

    The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an {approx}350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway. 38 refs., 3 figs.

  16. Exploring Beta-Amyloid Protein Transmembrane Insertion Behavior and Residue-Specific Lipid Interactions in Lipid Bilayers Using Multiscale MD Simulations

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2013-03-01

    Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02

  17. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    Science.gov (United States)

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  18. Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3.

    Science.gov (United States)

    Adamiec, Małgorzata; Gibasiewicz, Krzysztof; Luciński, Robert; Giera, Wojciech; Chełminiak, Przemysław; Szewczyk, Sebastian; Sipińska, Weronika; van Grondelle, Rienk; Jackowski, Grzegorz

    2015-12-01

    The composition of LHCII trimers as well as excitation energy transfer and charge separation in grana cores of Arabidopsis thaliana mutant lacking chlorophyll a/b binding protein Lhcb3 have been investigated and compared to those in wild-type plants. In grana cores of lhcb3 plants we observed increased amounts of Lhcb1 and Lhcb2 apoproteins per PSII core. The additional copies of Lhcb1 and Lhcb2 are expected to substitute for Lhcb3 in LHCII trimers M as well as in the LHCII "extra" pool, which was found to be modestly enlarged as a result of the absence of Lhcb3. Time-resolved fluorescence measurements reveal a deceleration of the fast phase of excitation dynamics in grana cores of the mutant by ~15 ps, whereas the average fluorescence lifetime is not significantly altered. Monte Carlo modeling predicts a slowing down of the mean hopping time and an increased stabilization of the primary charge separation in the mutant. Thus our data imply that absence of apoprotein Lhcb3 results in detectable differences in excitation energy transfer and charge separation.

  19. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines

    OpenAIRE

    JIAN, YUAN; Chen, Yuling; GENG, CHUANYING; Liu, Nian; YANG, GUANGZHONG; Liu, Jinwei; Li, Xin; Deng, Haiteng; CHEN, WENMING

    2016-01-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially ex...

  20. Xyloketal-derived small molecules show protective effect by decreasing mutant Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Zeng YX

    2016-04-01

    Full Text Available Yixuan Zeng,1,2,* Wenyuan Guo,1,* Guangqing Xu,3 Qinmei Wang,4 Luyang Feng,1,2 Simei Long,1 Fengyin Liang,1 Yi Huang,1 Xilin Lu,1 Shichang Li,5 Jiebin Zhou,5 Jean-Marc Burgunder,6 Jiyan Pang,5 Zhong Pei1,2 1Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, 2Guangzhou Center, Chinese Huntington’s Disease Network, 3Department of Rehabilitation, The First Affiliated Hospital, 4Key laboratory on Assisted Circulation, Ministry of Health, Department of Cardiovascular Medicine of the First Affiliated Hospital, 5School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China; 6Swiss Huntington’s Disease Center, Department of Neurology, University of Bern, Bern, Switzerland *These authors contributed equally to this work Abstract: Huntington’s disease is an autosomal-dominant neurodegenerative disorder, with chorea as the most prominent manifestation. The disease is caused by abnormal expansion of CAG codon repeats in the IT15 gene, which leads to the expression of a glutamine-rich protein named mutant Huntingtin (Htt. Because of its devastating disease burden and lack of valid treatment, development of more effective therapeutics for Huntington’s disease is urgently required. Xyloketal B, a natural product from mangrove fungus, has shown protective effects against toxicity in other neurodegenerative disease models such as Parkinson’s and Alzheimer’s diseases. To identify potential neuroprotective molecules for Huntington’s disease, six derivatives of xyloketal B were screened in a Caenorhabditis elegans Huntington’s disease model; all six compounds showed a protective effect. Molecular docking studies indicated that compound 1 could bind to residues GLN369 and GLN393 of the mutant Htt protein, forming a

  1. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  2. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  3. Nif- Hup- mutants of Rhizobium japonicum.

    OpenAIRE

    Moshiri, F; Stults, L; Novak, P.; Maier, R J

    1983-01-01

    Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains...

  4. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus.

    Science.gov (United States)

    Youderian, Philip; Hartzell, Patricia L

    2006-03-01

    Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a delta aglU (A-) strain with the defective transposon, magellan-4, and screened for S- mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism.

  5. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-05-31

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread.

  6. The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster.

    Science.gov (United States)

    Karagas, Nicholas E; Jones, Christie N; Osborn, Deborah J; Dzierlenga, Anika L; Oyala, Paul; Konkle, Mary E; Whitney, Emily M; David Britt, R; Hunsicker-Wang, Laura M

    2014-10-01

    Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in 15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.

  7. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    Science.gov (United States)

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  8. Quantitative analysis of wild-type and V600E mutant BRAF proteins in colorectal carcinoma using immunoenrichment and targeted mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hang [Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (China); Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122 (China); Hsiao, Yung-Chin [Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (China); Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Chiang, Sum-Fu [Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Wu, Chia-Chun; Lin, Yu-Tsun [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Liu, Hsuan [Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (China); Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Zhao, Hong [Experimental Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110122 (China); Chen, Jinn-Shiun [Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Chang, Yu-Sun [Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (China); Department of Otolaryngology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); and others

    2016-08-24

    The BRAF V600E mutation is one of the most common mutations implicated in the development of several types of cancer including colorectal cancer (CRC), where it is associated with aggressive disease phenotypes and poor outcomes. The status of the BRAF V600E mutation is frequently determined by direct DNA sequencing. However, no previous study has sought to quantify the BRAF V600E protein in cancer specimens. Here, we evaluated immunoenrichment coupled with two MS-based quantitative techniques, namely multiple reaction monitoring (MRM) and single ion monitoring conjugated accurate inclusion mass screening (SIM-AIMS), to detect and precisely quantify wild-type (WT) and V600E mutant BRAF proteins in DNA sequence-confirmed CRC tissue specimens. WT and V600E BRAF proteins were immunoprecipitated from a CRC cell line (HT-29), and their representative peptides ({sup 592}IGDFGLATVK{sup 601} and {sup 592}IGDFGLATEK{sup 601}, respectively) were confirmed by LC-MS/MS analysis and then quantified by MRM or SIM-AIMS with spiked stable isotope-labeled peptide standards. Both assays worked well for measuring WT BRAF from different amounts of HT-29 cell lysates, but the MRM assay was more sensitive than SIM-AIMS assay for quantifying lower levels of V600E BRAF. In protein extracts (2 mg) from 11 CRC tissue specimens, the MRM assay could measure WT BRAF in all 11 cases (0.32–1.66 ng) and the V600E BRAF in two cases (0.1–0.13 ng; mutant-to-WT ratio, 0.16–0.17). The SIM-AIMS assay could also detect WT and V600E BRAF in CRC specimens, but the measured levels of both targets were lower than those determined by MRM assay. Collectively, this study provides an effective method to precisely quantify WT and V600E BRAF proteins in complex biological samples using immunoenrichment-coupled targeted MS. Since the V600E BRAF protein has emerged as an important therapeutic target for cancer, the developed assay should facilitate future BRAF-related basic and clinical studies

  9. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  10. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis

    Science.gov (United States)

    1976-01-01

    In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are

  11. Effects of mutant TDP-43 on the Nrf2/ARE pathway and protein expression of MafK and JDP2 in NSC-34 cells.

    Science.gov (United States)

    Tian, Y P; Che, F Y; Su, Q P; Lu, Y C; You, C P; Huang, L M; Wang, S G; Wang, L; Yu, J X

    2017-05-10

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons and lacks an effective treatment. The disease pathogenesis has not been clarified at present. Pathological transactive response DNA-binding protein 43 (TDP-43) plays an important role in the pathogenesis of ALS. Nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is found in a mutant TDP-43 transgenic cell model, but its downstream antioxidant enzyme expression is decreased. To elucidate the specific mechanism of Nrf2/ARE (antioxidant responsive element) signaling dysfunction, we constructed an ALS cell model with human mutant TDP-43 using the NSC-34 cell line to evaluate the impact of the TDP-43 mutation on the Nrf2/ARE pathway. We found the nuclear translocation of Nrf2, but the expression of total Nrf2, cytoplasmic Nrf2, and downstream phase II detoxifying enzyme (NQO1) was decreased in NSC-34 cells transfected with the TDP-43-M337V plasmid. Besides, TDP-43-M337V plasmid-transfected NSC-34 cells were rounded with reduced neurites, shortened axons, increased levels of intracellular lipid peroxidation products, and decreased viability, which suggests that the TDP-43-M337V plasmid weakened the antioxidant capacity of NSC-34 cells and increased their susceptibility to oxidative damage. We further showed that expression of the MafK protein and the Jun dimerization protein 2 (JDP2) was reduced in TDP-43-M337V plasmid-transfected NSC-34 cells, which might cause accumulation of Nrf2 in nuclei but a decrease in NQO1 expression. Taken together, our results confirmed that TDP-43-M337V impaired the Nrf2/ARE pathway by reducing the expression of MafK and JDP2 proteins, and provided information for further research on the molecular mechanisms of TDP-43-M337V in ALS.

  12. Purification and Characterization of a New Heme-Binding Protein (HBP59) from the Mutant Strain DJ35 of Azotobacter vinelandii

    Institute of Scientific and Technical Information of China (English)

    Shao-Min Bian; Huang-Ping Wang; Hui-Na Zhou; Ying Zhao; Jian-Feng Zhao; Ju-Fu Huang

    2007-01-01

    A new protein, an approximately 59-kDa monomer containing iron atoms, was first isolated from the mutant strain DJ35 of Azotobacter vinelandli Lipmann. After analysis by matrix-assisted laser desorptlon ionization time-offlight mass spectrometry, the protein was identified as the product of a predicted gene. Thus, the protein was tentatively called HBP59. Its absorption spectra (ABS) in the reduced state exhibited three peaks at 421,517, and 556nm and the maximal peak was shifted from 421 to 413 nm after exposure of HBP59 to air. The Soret circular dichroism (CD) spectrum of HBP59 in the reduced state displayed four positive peaks at 364, 382, 406, and 418 nm and two negative peaks at 398 and 433 nm; the Δε (CD extinction coefficient) values of these peaks were found to be 0.92, 0.58, 0.87, 0.72, -0.65 and -1.12 L/mol per cm, respectively. Titration with heme showed that the protein has 0.1 heme molecules/protein molecule. After HBP59 had fully interacted with heme, its maximal ABS value and Soret CD intensity were increased by approximately 10-fold compared with values before interaction. Therefore, it seems that one molecule of HBP59 can be interacted with only one heme. These results indicate that HBP59 contains heme with iow spin and may be involved in heme utilization or adhesion.

  13. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines.

    Science.gov (United States)

    Jian, Yuan; Chen, Yuling; Geng, Chuanying; Liu, Nian; Yang, Guangzhong; Liu, Jinwei; Li, Xin; Deng, Haiteng; Chen, Wenming

    2016-06-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells.

  14. An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function1

    Science.gov (United States)

    Mazzoni, Serina M.; Petty, Elizabeth M.; Stoffel, Elena M.; Fearon, Eric R.

    2015-01-01

    Heterozygous, germline nonsense mutations in AXIN2 have been reported in two families with oligodontia and colorectal cancer (CRC) predisposition, including an AXIN2 1989G>A mutation. Somatic AXIN2 mutations predicted to generate truncated AXIN2 (trAXIN2) proteins have been reported in some CRCs. Our studies of cells from an AXIN2 1989G>A mutation carrier showed that the mutant transcripts are not significantly susceptible to nonsense-mediated decay and, thus, could encode a trAXIN2 protein. In transient transfection assays, trAXIN2 was more abundant than wild-type AXIN2 protein, and in contrast to AXIN2, glycogen synthase kinase 3β inhibition did not increase trAXIN2 levels. Like AXIN2, the trAXIN2 protein interacts with β-catenin destruction complex proteins. When ectopically overexpressed, trAXIN2 inhibits β-catenin/T-cell factor–dependent reporter gene activity and SW480 CRC cell colony formation. These findings suggest the trAXIN2 protein may retain some wild-type functions when highly expressed. However, when stably expressed in rat intestinal IEC-6 cells, the trAXIN2 protein did not match AXIN2’s activity in inhibiting Wnt-mediated induction of Wnt-regulated target genes, and SW480 cells with stable expression of trAXIN2 but not AXIN2 could be generated. Our data suggest the AXIN2 1989G>A mutation may not have solely a loss-of-function role in CRC. Rather, its contribution may depend on context, with potential loss-of-function when AXIN2 levels are low, such as in the absence of Wnt pathway activation. However, given its apparent increased stability in some settings, the trAXIN2 protein might have gain-of-function in cells with substantially elevated AXIN2 expression, such as Wnt pathway–defective CRC cells. PMID:26025668

  15. Down-regulation of paramyxovirus hemagglutinin-neuraminidase glycoprotein surface expression by a mutant fusion protein containing a retention signal for the endoplasmic reticulum.

    Science.gov (United States)

    Tanaka, Y; Heminway, B R; Galinski, M S

    1996-08-01

    The human parainfluenza virus type 3 (HPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins are the principal components involved in virion receptor binding, membrane penetration, and ultimately, syncytium formation. While the requirement for both F and HN in this process has been determined from recombinant expression studies, stable physical association of these proteins in coimmunoprecipitation studies has not been observed. In addition, coexpression of other heterologous paramyxovirus F or HN glycoproteins with either HPIV3 F or HN does not result in the formation of syncytia, suggesting serotype-specific protein differences. In this study, we report that simian virus 5 and Sendai virus heterologous HN proteins and measles virus hemagglutinin (H) were found to be down-regulated when coexpressed with HPIV3 F. As an alternative to detecting physical associations of these proteins by coimmunoprecipitation, further studies were performed with a mutant HPIV3 F protein (F-KDEL) lacking a transmembrane anchor and cytoplasmic tail and containing a carboxyl-terminal retention signal for the endoplasmic reticulum (ER). F-KDEL was defective for transport to the cell surface and could down-regulate surface expression of HPIV3 HN and heterologous HN/H proteins from simian virus 5, Sendai virus, and measles virus in coexpression experiments. HN/H down-regulation appeared to result, in part, from an early block to HPIV3 HN synthesis, as well as an instability of the heterologous HN/H proteins within the ER. In contrast, coexpression of F-KDEL with HPIV3 wild-type F or the heterologous receptor-binding proteins, respiratory syncytial virus glycoprotein (G) and vesicular stomatitis virus glycoprotein (G), were not affected in transport to the cell surface. Together, these results support the notion that the reported serotype-specific restriction of syncytium formation may involve, in part, down-regulation of heterologous HN expression.

  16. Role of citrate and phosphate anions in the mechanism of iron(III) sequestration by ferric binding protein: kinetic studies of the formation of the holoprotein of wild-type FbpA and its engineered mutants.

    Science.gov (United States)

    Weaver, Katherine D; Gabricević, Mario; Anderson, Damon S; Adhikari, Pratima; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-07-27

    Ferric binding protein A (FbpA) plays a central role in the iron acquisition processes of pathogenic Neisseria gonorrheae, Neisseria meningitidis, and Haemophilus influenzae. FbpA functions as an iron shuttle within the periplasmic space of these Gram-negative human pathogens. Iron is picked up by FbpA at the periplasmic aspect of the outer membrane with concomitant acquisition of a synergistic anion. Here we report the kinetics and mechanisms involved with loading of iron(III) into iron-free FbpA using iron(III) citrate as an iron source in the presence of excess citrate or phosphate (physiologically available anions) at pH 6.5. In the presence of excess phosphate, iron(III) citrate loads into apo-FbpA in three kinetically distinguishable steps, while in the presence of excess citrate, only two steps are discernible. A stable intermediate containing iron(III) citrate-bound FbpA is observed in each case. The observation of an additional kinetic step and moderate increase in apparent rate constants suggests an active role for phosphate in the iron insertion process. To further elucidate a mechanism for iron loading, we report on the sequestration kinetics of iron(III) citrate in the presence of phosphate with binding site mutant apo-FbpAs, H9E, E57D, E57Q, Q58A, Y195F, and Y196H. Tyrosine mutations drastically alter the kinetics and hamper iron sequestration ability. H9E, E57D, and E57Q have near native iron sequestration behavior; however, iron binding rates are altered, enabling assignment of sequential side chain interactions. Additionally, this investigation elaborates on the function of FbpA as a carrier for iron chelates as well as "naked" or free iron as originally proposed.

  17. A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin.

    Science.gov (United States)

    Ochi, K

    1990-12-01

    A relaxed (rel) mutant was found among 70 thiopeptin-resistant isolates of Streptomyces coelicolor A3(2) which arose spontaneously. The ability of the rel mutant to accumulate ppGpp during Casamino acid deprivation was reduced 10-fold compared to the wild-type. Analysis of the ribosomal proteins by two-dimensional PAGE revealed that the mutant lacked a ribosomal protein, tentatively designated ST-L11. It was therefore classified as a relC mutant. The mutant was defective in producing A-factor and the pigmented antibiotic prodigiosin, in both liquid and agar cultures, but produced agarase normally. Production of actinorhodin, another pigmented antibiotic, was also abnormal; it appeared suddenly in agar cultures after 10 d incubation. Although aerial mycelium still formed, its appearance was markedly delayed. Whereas liquid cultures of the parent strain accumulated ppGpp, agar cultures accumulated only trace amounts. Instead, a substance characterized only as an unidentified HPLC peak accumulated intracellularly in the late growth phase, just before aerial mycelium formation and antibiotic production. This substance did not accumulate in mutant cells. It was found in S. lividans 66 and S. parvulus, but not in seven other Streptomyces species tested. The significance of these observations, and the relationship of the mutant to earlier rel isolates of Streptomyces is discussed.

  18. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    Science.gov (United States)

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  19. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron.

    Science.gov (United States)

    Johnson, Cayla M; Fisher, Derek J

    2013-01-01

    Chlamydia trachomatis is an obligate, intracellular bacterial pathogen that has until more recently remained recalcitrant to genetic manipulation. However, the field still remains hindered by the absence of tools to create selectable, targeted chromosomal mutations. Previous work with mobile group II introns demonstrated that they can be retargeted by altering DNA sequences within the intron's substrate recognition region to create site-specific gene insertions. This platform (marketed as TargeTron™, Sigma) has been successfully employed in a variety of bacteria. We subsequently modified TargeTron™ for use in C. trachomatis and as proof of principle used our system to insertionally inactivate incA, a chromosomal gene encoding a protein required for homotypic fusion of chlamydial inclusions. C. trachomatis incA::GII(bla) mutants were selected with ampicillin and plaque purified clones were then isolated for genotypic and phenotypic analysis. PCR, Southern blotting, and DNA sequencing verified proper GII(bla) insertion, while continuous passaging in the absence of selection demonstrated that the insertion was stable. As seen with naturally occurring IncA(-) mutants, light and immunofluorescence microscopy confirmed the presence of non-fusogenic inclusions in cells infected with the incA::GII(bla) mutants at a multiplicity of infection greater than one. Lack of IncA production by mutant clones was further confirmed by Western blotting. Ultimately, the ease of retargeting the intron, ability to select for mutants, and intron stability in the absence of selection makes this method a powerful addition to the growing chlamydial molecular toolbox.

  20. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  1. Cooperative assembly of proteins in the ribosomal GTPase centre demonstrated by their interactions with mutant 23S rRNAs

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1995-01-01

    The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions) and nume......The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions...

  2. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.

    Science.gov (United States)

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel

    2009-12-01

    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  3. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD(+) Analog.

    Science.gov (United States)

    Gibson, Bryan A; Kraus, W Lee

    2017-01-01

    The PARP family of ADP-ribosyl transferases contains 17 members in human cells, most of which catalyze the transfer of the ADP-ribose moiety of NAD(+) onto their target proteins. This posttranslational modification plays important roles in cellular signaling, especially during cellular stresses, such as heat shock, inflammation, unfolded protein responses, and DNA damage. Knowing the specific proteins that are substrates for individual PARPs, as well as the specific amino acid residues in a given target protein that are ADP-ribosylated, is a key step in understanding the biology of individual PARPs. Recently, we developed a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition ("click chemistry") reactions. When coupled with proteomics and mass spectrometry, the analog-sensitive PARP approach can be used to identify the specific amino acids that are ADP-ribosylated by individual PARP proteins. In this chapter, we describe the key facets of the experimental design and application of the analog-sensitive PARP methodology to identify site-specific modification of PARP target proteins.

  4. Phenotype to genotype using forward-genetic Mu-seq for identification and functional classification of maize mutants

    Directory of Open Access Journals (Sweden)

    Charles T Hunter

    2014-01-01

    Full Text Available In pursuing our long-term goals of identifying causal genes for mutant phenotypes in maize, we have developed a new, phenotype-to-genotype approach for transposon-based resources, and used this to identify candidate genes that co-segregate with visible kernel mutants. The strategy incorporates a redesigned Mu-seq protocol (sequence-based, transposon mapping for high-throughput identification of individual plants carrying Mu insertions. Forward-genetic Mu-seq also involves a genetic pipeline for generating families that segregate for mutants of interest, and grid designs for concurrent analysis of genotypes in multiple families. Critically, this approach not only eliminates gene-specific PCR genotyping, but also profiles all Mu-insertions in hundreds of individuals simultaneously. Here, we employ this scalable approach to study 12 families that showed Mendelian segregation of visible seed mutants. These families were analyzed in parallel, and 7 showed clear co-segregation between the selected phenotype and a Mu insertion in a specific gene. Results were confirmed by PCR. Mutant genes that associated with kernel phenotypes include those encoding: a new allele of Whirly1 (a transcription factor with high affinity for organellar and single-stranded DNA, a predicted splicing factor with a KH domain, a small protein with unknown function, a putative mitochondrial transcription-termination factor, and three proteins with pentatricopeptide repeat domains (predicted mitochondrial. Identification of such associations allows mutants to be prioritized for subsequent research based on their functional annotations. Forward-genetic Mu-seq also allows a systematic dissection of mutant classes with similar phenotypes. In the present work, a high proportion of kernel phenotypes were associated with mutations affecting organellar gene transcription and processing, highlighting the importance and non-redundance of genes controlling these aspects of seed development.

  5. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli

    Science.gov (United States)

    Echave, Pedro; Esparza-Cerón, M. Angel; Cabiscol, Elisa; Tamarit, Jordi; Ros, Joaquim; Membrillo-Hernández, Jorge; Lin, E. C. C.

    2002-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase (AdhE) that catalyzes successive reductions of acetyl-CoA to acetaldehyde and then to ethanol reversibly at the expense of NADH. Mutant JE52, serially selected for acquired and improved ability to grow aerobically on ethanol, synthesized an AdhEA267T/E568K with two amino acid substitutions that sequentially conferred improved catalytic properties and stability. Here we show that the aerobic growth ability on ethanol depends also on protection of the mutant AdhE against metal-catalyzed oxidation by the chaperone DnaK (a member of the Hsp70 family). No DnaK protection of the enzyme is evident during anaerobic growth on glucose. Synthesis of DnaK also protected E. coli from H2O2 killing under conditions when functional AdhE is not required. Our results therefore suggest that, in addition to the known role of protecting cells against heat stress, DnaK also protects numerous kinds of proteins from oxidative damage. PMID:11917132

  6. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1.

    Science.gov (United States)

    Ferrero-Serrano, Ángel; Assmann, Sarah M

    2016-05-01

    Essential in the Green Revolution was the development of high-yielding dwarf varieties of rice (Oryza sativa L.), but their selection was not based on responses to water limitation. We studied physiological responses to progressive drought of the dwarf rice mutant, d1, in which the RGA1 gene, which encodes the GTP-binding α-subunit of the heterotrimeric G protein, is non-functional. Wild-type (WT) plants cease net carbon fixation 11 days after water is withheld, while d1 plants maintain net photosynthesis for an additional week. During drought, d1 plants exhibit greater stomatal conductance than the WT, but both genotypes exhibit the same transpirational water loss per unit leaf area. This is explained by a smaller driving force for water loss in d1 owing to its lower leaf temperatures, consistent with its more erect architecture. As drought becomes more severe, WT plants show an accelerated decline in photosynthesis, which may be exacerbated by the higher leaf temperatures in the WT. We thus show how a rice mutant with dwarf and erect leaves has a decreased susceptibility to water stress. Accordingly, it may be useful to incorporate RGA1 mutation in breeding or biotechnological strategies for development of drought-resistant rice.

  7. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  8. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors.

    Science.gov (United States)

    Modlich, Ute; Navarro, Susana; Zychlinski, Daniela; Maetzig, Tobias; Knoess, Sabine; Brugman, Martijn H; Schambach, Axel; Charrier, Sabine; Galy, Anne; Thrasher, Adrian J; Bueren, Juan; Baum, Christopher

    2009-11-01

    Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.

  9. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues

    National Research Council Canada - National Science Library

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-01-01

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties...

  10. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?!

    Science.gov (United States)

    Banoei, Mohammad Mehdi; Houshmand, Massoud; Panahi, Mehdi Shafa Shariat; Shariati, Parvin; Rostami, Maryam; Manshadi, Masoumeh Dehghan; Majidizadeh, Tayebeh

    2007-11-01

    The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington's disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.

  11. Modeling and Docking Studies on Novel Mutants (K71L and T204V of the ATPase Domain of Human Heat Shock 70 kDa Protein 1

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2014-04-01

    Full Text Available The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO were mutated. 3D mutant models (K71L and T204V using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255, as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy.

  12. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Pinchenko, Volodymyr; Klein, Dennis

    2011-01-01

    by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  13. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Wei, Shi-Cheng, E-mail: kqsc-wei@bjmu.edu.cn [Peking University School of Stomatology, Beijing 100081 (China); Liang, Yu-He, E-mail: kqsc-wei@bjmu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China)

    2007-09-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.

  14. Tie rod insertion test

    CERN Multimedia

    B. LEVESY

    2002-01-01

    The superconducting coil is inserted in the outer vaccum tank and supported by a set of tie rods. These tie rods are made of titanium alloy. This test reproduce the final insertion of the tie rods inside the outer vacuum tank.

  15. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis

    Science.gov (United States)

    Hingston, Patricia A.; Piercey, Marta J.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm2 relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  16. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity

    Science.gov (United States)

    Grabowska, Joanna; Kuffel, Anna; Zielkiewicz, Jan

    2016-08-01

    Water molecules from the solvation shell of the ice-binding surface are considered important for the antifreeze proteins to perform their function properly. Herein, we discuss the problem whether the extent of changes of the mean properties of solvation water can be connected with the antifreeze activity of the protein. To this aim, the structure of solvation water of a type III antifreeze protein from Macrozoarces americanus (eel pout) is investigated. A wild type of the protein is used, along with its three mutants, with antifreeze activities equal to 54% or 10% of the activity of the native form. The solvation water of the ice-binding surface and the rest of the protein are analyzed separately. To characterize the structure of solvation shell, parameters describing radial and angular characteristics of the mutual arrangement of the molecules were employed. They take into account short-distance (first hydration shell) or long-distance (two solvation shells) effects. The obtained results and the comparison with the results obtained previously for a hyperactive antifreeze protein from Choristoneura fumiferana lead to the conclusion that the structure and amino acid composition of the active region of the protein evolved to achieve two goals. The first one is the modification of the properties of the solvation water. The second one is the geometrical adjustment of the protein surface to the specific crystallographic plane of ice. Both of these goals have to be achieved simultaneously in order for the protein to perform its function properly. However, they seem to be independent from one another in a sense that very small antifreeze activity does not imply that properties of water become different from the ones observed for the wild type. The proteins with significantly lower activity still modify the mean properties of solvation water in a right direction, in spite of the fact that the accuracy of the geometrical match with the ice lattice is lost because of the

  17. Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation.

    Science.gov (United States)

    Craver, Mary Patricia J; Rooney, Peggy J; Knoll, Laura J

    2010-02-01

    Within warm-blooded animals, Toxoplasma gondii switches from an actively replicating form called a tachyzoite into a slow growing encysted form called a bradyzoite. To uncover the genes involved in bradyzoite development, we screened over 8000 T. gondii insertional mutants by immunofluorescence microscopy. We identified nine bradyzoite development mutants that were defective in both cyst wall formation and expression of a bradyzoite specific heat shock protein. One of these mutants, named 42F5, contained an insertion into the predicted gene TGME49_097520. The disrupted protein is serine/proline-rich with homology to proteophosphoglycans from Leishmania. T. gondii proteophosphoglycan (GU182879) expressed from the native promoter was undetectable in tachyzoites, but bradyzoites show punctate spots within the parasite and staining around the parasitophorous vacuole. Complementation of the 42F5 mutant with GU182879 expressed from either the alpha-tubulin or native promoter restores cyst wall formation. Overall, GU182879 is upregulated in bradyzoites and enhances cyst wall component expression and assembly.

  18. Protein profiles construction and differential expressed proteins of the Arabidopsis thaliana quadruple mutant phyA phyB cry1 cry2.

    OpenAIRE

    Fox, Ana Romina; Muschietti, Jorge P.; Mazzella, Agustina; XXVIII Argentinean Reunion of Vegetal Physiology

    2010-01-01

    En Arabidopsis phyA phyB cry1 y cry2, son los cuatro fotorreceptores más importantes que controlan el crecimiento y desarrollo por la luz. La técnica de geles bidimensionales provee información sobre la abundancia de una proteína y sus modificaciones postraduccionales. Con el objetivo de identificar nuevos componentes en la fototrasnducción de señales estudiamos el perfil proteómico del cuádruple mutante phyA phyB cry1 cry2 (tet). Para esto obtuvimos y comparamos los proteomas específicos del...

  19. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  20. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type

  1. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  2. PREPHENATE DEHYDRATASE OF THE ACTINOMYCETE AMYCOLATOPSIS-METHANOLICA - PURIFICATION AND CHARACTERIZATION OF WILD-TYPE AND DEREGULATED MUTANT PROTEINS

    NARCIS (Netherlands)

    EUVERINK, GJW; WOLTERS, DJ; DIJKHUIZEN, L

    1995-01-01

    Prephenate dehydratase (PDT) is a key regulatory enzyme in L-phenylalanine biosynthesis in the Gram-positive bacterium Amycolatopsis methanolica. The PDT protein was purified to homogeneity (1957-fold) from wild-type cells with a final yield of 6.5%. It was characterized as a 150 kDa homotetrameric

  3. Constitutive expression of a COOH-terminal leucine mutant of lysosome-associated membrane protein-1 causes its exclusive localization in low density intracellular vesicles.

    Science.gov (United States)

    Akasaki, Kenji; Shiotsu, Keiko; Michihara, Akihiro; Ide, Norie; Wada, Ikuo

    2014-07-01

    Lysosome-associated membrane protein-1 (LAMP-1) is a type I transmembrane protein with a short cytoplasmic tail that possesses a lysosome-targeting signal of GYQTI(382)-COOH. Wild-type (WT)-LAMP-1 was exclusively localized in high density lysosomes, and efficiency of LAMP-1's transport to lysosomes depends on its COOH-terminal amino acid residue. Among many different COOH-terminal amino acid substitution mutants of LAMP-1, a leucine-substituted mutant (I382L) displays the most efficient targeting to late endosomes and lysosomes [Akasaki et al. (2010) J. Biochem. 148: , 669-679]. In this study, we generated two human hepatoma cell lines (HepG2 cell lines) that stably express WT-LAMP-1 and I382L, and compared their intracellular distributions. The subcellular fractionation study using Percoll density gradient centrifugation revealed that WT-LAMP-1 had preferential localization in the high density secondary lysosomes where endogenous human LAMP-1 was enriched. In contrast, a major portion of I382L was located in a low density fraction. The low density fraction also contained approximately 80% of endogenous human LAMP-1 and significant amounts of endogenous β-glucuronidase and LAMP-2, which probably represents occurrence of low density lysosomes in the I382L-expressing cells. Double immunofluorescence microscopic analyses distinguished I382L-containing intracellular vesicles from endogenous LAMP-1-containing lysosomes and early endosomes. Altogether, constitutive expression of I382L causes its aberrant intracellular localization and generation of low density lysosomes, indicating that the COOH-terminal isoleucine is critical for normal localization of LAMP-1 in the dense lysosomes.

  4. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina.

    Science.gov (United States)

    Arredondo, Juan; Lara, Marian; Ng, Fiona; Gochez, Danielle A; Lee, Diana C; Logia, Stephanie P; Nguyen, Joanna; Maselli, Ricardo A

    2014-05-01

    Collagen Q (ColQ) is a key multidomain functional protein of the neuromuscular junction (NMJ), crucial for anchoring acetylcholinesterase (AChE) to the basal lamina (BL) and accumulating AChE at the NMJ. The attachment of AChE to the BL is primarily accomplished by the binding of the ColQ collagen domain to the heparan sulfate proteoglycan perlecan and the COOH-terminus to the muscle-specific receptor tyrosine kinase (MuSK), which in turn plays a fundamental role in the development and maintenance of the NMJ. Yet, the precise mechanism by which ColQ anchors AChE at the NMJ remains unknown. We identified five novel mutations at the COOH-terminus of ColQ in seven patients from five families affected with endplate (EP) AChE deficiency. We found that the mutations do not affect the assembly of ColQ with AChE to form asymmetric forms of AChE or impair the interaction of ColQ with perlecan. By contrast, all mutations impair in varied degree the interaction of ColQ with MuSK as well as basement membrane extract (BME) that have no detectable MuSK. Our data confirm that the interaction of ColQ to perlecan and MuSK is crucial for anchoring AChE to the NMJ. In addition, the identified COOH-terminal mutants not only reduce the interaction of ColQ with MuSK, but also diminish the interaction of ColQ with BME. These findings suggest that the impaired attachment of COOH-terminal mutants causing EP AChE deficiency is in part independent of MuSK, and that the COOH-terminus of ColQ may interact with other proteins at the BL.

  5. Photoisomerization and proton transfer in the forward and reverse photoswitching of the fast-switching M159T mutant of the Dronpa fluorescent protein.

    Science.gov (United States)

    Kaucikas, Marius; Tros, Martijn; van Thor, Jasper J

    2015-02-12

    The fast-switching M159T mutant of the reversibly photoswitchable fluorescent protein Dronpa has an enhanced yield for the on-to-off reaction. The forward and reverse photoreactions proceed via cis-trans and trans-cis photoisomerization, yet protonation and deprotonation of the hydroxyphenyl oxygen of the chromophore is responsible for the majority of the resulting spectroscopic contrast. Ultrafast visible-pump, infrared-probe spectroscopy was used to detect the picosecond, nanosecond, as well as metastable millisecond intermediates. Additionally, static FTIR difference measurements of the Dronpa-M159T mutant correspond very closely to those of the wild type Dronpa, identifying the p-hydroxybenzylidene-imidazolinone chromophore in the cis anion and trans neutral forms in the bright "on" and dark "off" states, respectively. Green excitation of the on state is followed by dominant radiative decay with characteristic time constants of 1.9 ps, 185 ps, and 1.1 ns, and additionally reveals spectral changes belonging to the species decaying with a 1.1 ns time constant, associated with both protein and chromophore modes. A 1 ms measurement of the on state identifies bleach features that correspond to those seen in the static off-minus-on Fourier transform infrared (FTIR) difference spectrum, indicating that thermal protonation of the hydroxyphenyl oxygen proceeds within this time window. Blue excitation of the off state directly resolves the formation of the primary photoproduct with 0.6 and 14 ps time constants, which is stable on the nanosecond time scale. Assignment of the primary photoproduct to the cis neutral chromophore in the electronic ground state is supported by the frequency positions expected relative to those for the nonplanar distorted geometry for the off state. A 1 ms measurement of the off state corresponds closely with the on-minus-off FTIR difference spectrum, indicating thermal deprotonation and rearrangement of the Arg66 side chain to be complete.

  6. The peroxyl radical-induced oxidation of Escherichia coli FtsZ and its single tryptophan mutant (Y222W) modifies specific side-chains, generates protein cross-links and affects biological function.

    Science.gov (United States)

    Escobar-Álvarez, Elizabeth; Leinisch, Fabian; Araya, Gissela; Monasterio, Octavio; Lorentzen, Lasse G; Silva, Eduardo; Davies, Michael J; López-Alarcón, Camilo

    2017-11-01

    FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein.

    Science.gov (United States)

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-08-08

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We've also identified four historical mutations that are able to produce a "GST-like" S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution.

  8. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein

    Science.gov (United States)

    Tan, Wei-Hung; Cheng, Shu-Chun; Liu, Yu-Tung; Wu, Cheng-Guo; Lin, Min-Han; Chen, Chiao-Che; Lin, Chao-Hsiung; Chou, Chi-Yuan

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We’ve also identified four historical mutations that are able to produce a “GST-like” S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. PMID:27499004

  9. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  10. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  11. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Huntington's disease (HD is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG(n repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt, formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs, expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1 significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.

  12. Elucidating the Mechanism of Gain of Toxic Function From Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    Science.gov (United States)

    2015-10-01

    in Hereditary Angioedema PRINCIPAL INVESTIGATOR: Dr. Bruce Zuraw, M.D. CONTRACTING: ORGANIZATION Veterans Medical Research Foundation San...C1 Inhibitor 5a. CONTRACT NUMBER Proteins in Hereditary Angioedema 5b. GRANT NUMBER W81XWH-14-1-0506 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...unique structural characteristics of C1INH make it more susceptible to GOTF than other serpins. 2. KEYWORDS: Hereditary angioedema , C1 inhibitor, serpin

  13. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  14. New Strategies for Protein Functionalization: Inserting Unnatural Amino Acids into Proteins%蛋白质功能化新策略:嵌入非天然氨基酸

    Institute of Scientific and Technical Information of China (English)

    张春秋; 罗全; 刘俊秋; 沈家骢

    2012-01-01

    天然蛋白质由20种天然氨基酸组成,这些蛋白质的构筑基元包含功能基团:羧基、氨基、巯基、硫醚、羟基、碱性胺、烷基和芳基。然而,这些有限的功能基团却不足以完成生物体内所有的生物学功能。为了更好地让生命的体现者——蛋白质完成更加精确和多样的生物学功能,自然界会对蛋白质进行翻译后的修饰,包括:磷酸化,甲基化,乙酰化或者羟基化,甚至在某些情况下,进化出一种新型的翻译机制以便插入硒代半胱氨酸或者吡咯霉素。受此启发,生物化学家发展出各种生物或化学方法来改变或插入新的蛋白质构筑基元,使天然蛋白质完成其相应的生物学功能或者使其具有某些特殊的性质,甚至是创造一种新酶。该文将简单介绍这些蛋白质修饰策略以及该领域的最新进展。%Although 20 natural amino acids served as the building blocks of proteins contain several functional groups including carboxylic acids, amides, thiols, thiol ethers, alcohols, basic amines, and alkyl and aryl groups, they are still unable to carry out all of the natural functions. In order to improve the precision and diversity of protein to perform the biological processes, organisms have provided a variety of posttranslational modifications including phosphorylation, methylation, acetylation, and hydroxylation, even evolved novel translational machinery to incorporate either selenocysteine or pyrrolysine. Inspired by biological system, many biological or chemical methods have been developed to alter or insert new building blocks into protein, which enable protein to perform relevant functions or have some special properties, even create a new kind of enzyme. Here, we give a brief overview of the strategies for protein modification and the latest progress in this field

  15. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants

    NARCIS (Netherlands)

    Garcia-Cerdan, Jose G.; Kovacs, Laszlo; Toth, Tuende; Kereiche, Sami; Aseeva, Elena; Boekema, Egbert J.; Mamedov, Fikret; Funk, Christiane; Schroder, Wolfgang P.; Tóth, Tünde; Kereïche, Sami; Schröder, Wolfgang P.

    2011-01-01

    P>PsbW, a 6.1-kDa low-molecular-weight protein, is exclusive to photosynthetic eukaryotes, and associates with the photosystem II (PSII) protein complex. In vivo and in vitro comparison of Arabidopsis thaliana wild-type plants with T-DNA insertion knock-out mutants completely lacking the PsbW protei

  16. An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function

    Directory of Open Access Journals (Sweden)

    Serina M. Mazzoni

    2015-05-01

    Full Text Available Heterozygous, germline nonsense mutations in AXIN2 have been reported in two families with oligodontia and colorectal cancer (CRC predisposition, including an AXIN2 1989G>A mutation. Somatic AXIN2 mutations predicted to generate truncated AXIN2 (trAXIN2 proteins have been reported in some CRCs. Our studies of cells from an AXIN2 1989G>A mutation carrier showed that the mutant transcripts are not significantly susceptible to nonsense-mediated decay and, thus, could encode a trAXIN2 protein. In transient transfection assays, trAXIN2 was more abundant than wild-type AXIN2 protein, and in contrast to AXIN2, glycogen synthase kinase 3β inhibition did not increase trAXIN2 levels. Like AXIN2, the trAXIN2 protein interacts with β-catenin destruction complex proteins. When ectopically overexpressed, trAXIN2 inhibits β-catenin/T-cell factor–dependent reporter gene activity and SW480 CRC cell colony formation. These findings suggest the trAXIN2 protein may retain some wild-type functions when highly expressed. However, when stably expressed in rat intestinal IEC-6 cells, the trAXIN2 protein did not match AXIN2’s activity in inhibiting Wnt-mediated induction of Wnt-regulated target genes, and SW480 cells with stable expression of trAXIN2 but not AXIN2 could be generated. Our data suggest the AXIN2 1989G>A mutation may not have solely a loss-of-function role in CRC. Rather, its contribution may depend on context, with potential loss-of-function when AXIN2 levels are low, such as in the absence of Wnt pathway activation. However, given its apparent increased stability in some settings, the trAXIN2 protein might have gain-of-function in cells with substantially elevated AXIN2 expression, such as Wnt pathway–defective CRC cells.

  17. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis

    DEFF Research Database (Denmark)

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid...... by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn2+ and Ca2+ ions were differently sequestered in pam71, with Ca2+ enriched in pam71...

  18. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein

    Science.gov (United States)

    Hallmann, Anna-Lena; Araúzo-Bravo, Marcos J.; Mavrommatis, Lampros; Ehrlich, Marc; Röpke, Albrecht; Brockhaus, Johannes; Missler, Markus; Sterneckert, Jared; Schöler, Hans R.; Kuhlmann, Tanja; Zaehres, Holm; Hargus, Gunnar

    2017-01-01

    Astroglial pathology is seen in various neurodegenerative diseases including frontotemporal dementia (FTD), which can be caused by mutations in the gene encoding the microtubule-associated protein TAU (MAPT). Here, we applied a stem cell model of FTD to examine if FTD astrocytes carry an intrinsic propensity to degeneration and to determine if they can induce non-cell-autonomous effects in neighboring neurons. We utilized CRISPR/Cas9 genome editing in human induced pluripotent stem (iPS) cell-derived neural progenitor cells (NPCs) to repair the FTD-associated N279K MAPT mutation. While astrocytic differentiation was not impaired in FTD NPCs derived from one patient carrying the N279K MAPT mutation, FTD astrocytes appeared larger, expressed increased levels of 4R-TAU isoforms, demonstrated increased vulnerability to oxidative stress and elevated protein ubiquitination and exhibited disease-associated changes in transcriptome profiles when compared to astrocytes derived from one control individual and to the isogenic control. Interestingly, co-culture experiments with FTD astrocytes revealed increased oxidative stress and robust changes in whole genome expression in previously healthy neurons. Our study highlights the utility of iPS cell-derived NPCs to elucidate the role of astrocytes in the pathogenesis of FTD. PMID:28256506

  19. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas.

    Science.gov (United States)

    Naylor, Tara L; Tang, Huaping; Ratsch, Boris A; Enns, Andreas; Loo, Alice; Chen, Liqing; Lenz, Peter; Waters, Nigel J; Schuler, Walter; Dörken, Bernd; Yao, Yung-Mae; Warmuth, Markus; Lenz, Georg; Stegmeier, Frank

    2011-04-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and CD79A/B. In this study, we offer evidence of therapeutic potential for the selective PKC (protein kinase C) inhibitor sotrastaurin (STN) in preclinical models of DLBCL. A significant fraction of ABC DLBCL cell lines exhibited strong sensitivity to STN, and we found that the molecular nature of NF-κB pathway lesions predicted responsiveness. CD79A/B mutations correlated with STN sensitivity, whereas CARD11 mutations rendered ABC DLBCL cell lines insensitive. Growth inhibitory effects of PKC inhibition correlated with NF-κB pathway inhibition and were mediated by induction of G₁-phase cell-cycle arrest and/or cell death. We found that STN produced significant antitumor effects in a mouse xenograft model of CD79A/B-mutated DLBCL. Collectively, our findings offer a strong rationale for the clinical evaluation of STN in ABC DLBCL patients who harbor CD79 mutations also illustrating the necessity to stratify DLBCL patients according to their genetic abnormalities.

  20. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain.

    Science.gov (United States)

    Shioda, Norifumi; Beppu, Hideyuki; Fukuda, Takaichi; Li, En; Kitajima, Isao; Fukunaga, Kohji

    2011-01-05

    In humans, mutations in the gene encoding ATRX, a chromatin remodeling protein of the sucrose-nonfermenting 2 family, cause several mental retardation disorders, including α-thalassemia X-linked mental retardation syndrome. We generated ATRX mutant mice lacking exon 2 (ATRX(ΔE2) mice), a mutation that mimics exon 2 mutations seen in human patients and associated with milder forms of retardation. ATRX(ΔE2) mice exhibited abnormal dendritic spine formation in the medial prefrontal cortex (mPFC). Consistent with other mouse models of mental retardation, ATRX(ΔE2) mice exhibited longer and thinner dendritic spines compared with wild-type mice without changes in spine number. Interestingly, aberrant increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity was observed in the mPFC of ATRX(ΔE2) mice. Increased CaMKII autophosphorylation and activity were associated with increased phosphorylation of the Rac1-guanine nucleotide exchange factors (GEFs) T-cell lymphoma invasion and metastasis 1 (Tiam1) and kalirin-7, known substrates of CaMKII. We confirmed increased phosphorylation of p21-activated kinases (PAKs) in mPFC extracts. Furthermore, reduced protein expression and activity of protein phosphatase 1 (PP1) was evident in the mPFC of ATRX(ΔE2) mice. In cultured cortical neurons, PP1 inhibition by okadaic acid increased CaMKII-dependent Tiam1 and kalirin-7 phosphorylation. Together, our data strongly suggest that aberrant CaMKII activation likely mediates abnormal spine formation in the mPFC. Such morphological changes plus elevated Rac1-GEF/PAK signaling seen in ATRX(ΔE2) mice may contribute to mental retardation syndromes seen in human patients.

  1. Chest tube insertion - slideshow

    Science.gov (United States)

    ... presentations/100008.htm Chest tube insertion - series—Normal anatomy To use the sharing features ... pleural space is the space between the inner and outer lining of the lung. It is normally very thin, and lined only ...

  2. Ear tube insertion - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  3. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  4. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research.

    Science.gov (United States)

    Pedersen, Carina T; Loke, Ian; Lorentzen, Andrea; Wolf, Sara; Kamble, Manoj; Kristensen, Sebastian K; Munch, David; Radutoiu, Simona; Spillner, Edzard; Roepstorff, Peter; Thaysen-Andersen, Morten; Stougaard, Jens; Dam, Svend

    2017-08-01

    Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N-glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N-glycan patterns as documented using mass spectrometry and glycan-recognising antibodies, indicating successful identification of null mutations in the target glyco-genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3-fucosyltransferase (Lj3fuct) mutant completely lacked α1,3-core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N-glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N-acetylglucosaminyltransferase I, and α1,3-fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N-glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N-glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian-like N-glycosylation features. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Deregulation of the actin cytoskeleton and macropinocytosis in response to phorbol ester by the mutant protein kinase C gamma that causes spinocerebellar ataxia type 14

    Directory of Open Access Journals (Sweden)

    Kazuhiro eYamamoto

    2014-04-01

    Full Text Available Several missense mutations in the protein kinase Cγ (γPKC gene have been found to cause spinocerebellar ataxia type 14 (SCA14, an autosomal dominant neurodegenerative disease. γPKC is a neuron-specific member of the classical PKCs and is activated and translocated to subcellular regions as a result of various stimuli, including diacylglycerol synthesis, increased intracellular Ca2+ and phorbol esters. We investigated whether SCA14 mutations affect the γPKC-related functions by stimulating HeLa cells with TPA (12-O-tetradecanoylpholbol 13-acetate, a type of phorbol ester. Wild-type (WT γPKC-GFP was translocated to the plasma membrane within 10 min of TPA stimulation, followed by its perinuclear translocation and cell shrinkage, in a PKC kinase activity- and microtubule-dependent manner. On the other hand, although SCA14 mutant γPKC-GFP exhibited a similar translocation to the plasma membrane, the subsequent perinuclear translocation and cell shrinkage were significantly impaired in response to TPA. Translocated WT γPKC colocalized with F-actin and formed large vesicular structures in the perinuclear region. The uptake of FITC-dextran, a marker of macropinocytosis, was promoted by TPA stimulation in cells expressing WT γPKC, and FITC-dextran was surrounded by γPKC-positive vesicles. Moreover, TPA induced the phosphorylation of MARCKS, which is a membrane-substrate of PKC, resulting in the translocation of phosphorylated MARCKS to the perinuclear region, suggesting that TPA induces macropinocytosis via γPKC activation. However, TPA failed to activate macropinocytosis and trigger the translocation of phosphorylated MARCKS in cells expressing the SCA14 mutant γPKC. These findings suggest that γPKC is involved in the regulation of the actin cytoskeleton and macropinocytosis in HeLa cells, while SCA14 mutant γPKC fails to regulate these processes due to its reduced kinase activity at the plasma membrane. This property might be involved in

  6. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability.

    Science.gov (United States)

    Merlino, Antonello; Russo Krauss, Irene; Castellano, Immacolata; Ruocco, Maria Rosaria; Capasso, Alessandra; De Vendittis, Emmanuele; Rossi, Bianca; Sica, Filomena

    2014-03-01

    A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa.

    Science.gov (United States)

    Yurgel, Svetlana N; Kahn, Michael L

    2008-12-02

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO(2) by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N(2) to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N(2) fixation is that N(2) fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate "excess" ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix(+)) but was not effective (Eff(-)) in substantially increasing plant growth. Fixed (15)N(2) was transported to the shoots, but most fixed (15)N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix(+)Eff(-) symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior.

  8. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa

    Science.gov (United States)

    Yurgel, Svetlana N.; Kahn, Michael L.

    2008-01-01

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO2 by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N2 to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N2 fixation is that N2 fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate “excess” ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix+) but was not effective (Eff−) in substantially increasing plant growth. Fixed 15N2 was transported to the shoots, but most fixed 15N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix+Eff− symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior. PMID:19020095

  9. Amplified UvrA protein can ameliorate the ultraviolet sensitivity of an Escherichia coli recA mutant.

    Science.gov (United States)

    Kiyosawa, K; Tanaka, M; Matsunaga, T; Nikaido, O; Yamamoto, K

    2001-12-19

    When a recA strain of Escherichia coli was transformed with the multicopy plasmid pSF11 carrying the uvrA gene of E. coli, its extreme ultraviolet (UV) sensitivity was decreased. The sensitivity of the lexA1 (Ind(-)) strain to UV was also decreased by pSF11. The recA cells expressing Neurospora crassa UV damage endonuclease (UVDE), encoding UV-endonuclease, show UV resistance. On the other hand, only partial amelioration of UV sensitivity of the recA strain was observed in the presence of the plasmid pNP10 carrying the uvrB gene. Host cell reactivation of UV-irradiated lambda phage in recA cells with pSF11 was as efficient as that in wild-type cells. Using an antibody to detect cyclobutane pyrimidine dimers, we found that UV-irradiated recA cells removed dimers from their DNA more rapidly if they carried pSF11 than if they carried a vacant control plasmid. Using anti-UvrA antibody, we observed that the expression level of UvrA protein was about 20-fold higher in the recA strain with pSF11 than in the recA strain without pSF11. Our results were consistent with the idea that constitutive level of UvrA protein in the recA cells results in constitutive levels of active UvrABC nuclease which is not enough to operate full nucleotide excision repair (NER), thus leading to extreme UV sensitivity.

  10. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.

    Science.gov (United States)

    Favia, Maria; Mancini, Maria T; Bezzerri, Valentino; Guerra, Lorenzo; Laselva, Onofrio; Abbattiscianni, Anna C; Debellis, Lucantonio; Reshkin, Stephan J; Gambari, Roberto; Cabrini, Giulio; Casavola, Valeria

    2014-07-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced chloride permeability. Therefore, a combined administration of correctors and potentiators of the gating defect is ideal. We recently found that 4,6,4'-trimethylangelicin (TMA), besides inhibiting the expression of the IL-8 gene in airway cells in which the inflammatory response was challenged with Pseudomonas aeruginosa, also potentiates the cAMP/PKA-dependent activation of wild-type CFTR or F508del CFTR that has been restored to the plasma membrane. Here, we demonstrate that long preincubation with nanomolar concentrations of TMA is able to effectively rescue both F508del CFTR-dependent chloride secretion and F508del CFTR cell surface expression in both primary or secondary airway cell monolayers homozygous for F508del mutation. The correction effect of TMA seems to be selective for CFTR and persisted for 24 h after washout. Altogether, the results suggest that TMA, besides its anti-inflammatory and potentiator activities, also displays corrector properties.

  11. Comparing Leaf and Root Insertion

    Directory of Open Access Journals (Sweden)

    Jaco Geldenhuys

    2010-07-01

    Full Text Available We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method, and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of comparisons required by leaf insertion.

  12. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    Directory of Open Access Journals (Sweden)

    Kumagai Yoshinori

    2010-12-01

    Full Text Available Abstract Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium, several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica.

  13. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein-detergent complexes.

    Science.gov (United States)

    Pollock, Naomi L; Satriano, Letizia; Zegarra-Moran, Olga; Ford, Robert C; Moran, Oscar

    2016-04-01

    CFTR is an anionic channel expressed in epithelia whose mutations cause cystic fibrosis. Wild (WT) and mutated (F508del) types were over-expressed in yeast, solubilised in the detergent LPG-14 and purified. The detergent-CFTR complexes were studied by SAXS techniques using a solvent of variable density. The final result of the study is the numerical value of a set of parameters: molecular mass, volume and radius of gyration, average electron density and second moment of the electron density fluctuations inside the particles. It is also shown that in the complex the centres of gravity of CFTR and of the detergent are displaced relative to each other. The analysis of these parameters led to the determination of the size and shape of the volumes occupied by protein and by detergent in the complex. WT-CFTR to be an elongated molecule (maximum diameter ∼12.4nm) which spans a flat detergent micelle. The distance distribution function, P(r) confirms that the WT-CFTR is elongated and with an inhomogeneous electronic density. The F508del-CFTR molecule is also elongated (maximum diameter ∼13.2nm), but the associated detergent micelle hides a larger surface, plausibly related to an increased exposure of hydrophobic portions of the mutated protein. The corresponding P(r) is consistent with the presence of well defined domains, probably linked by flexible regions. These differences suggest that the full-length mutant F508del-CFTR has a detectably different conformation, in contrast to the minor differences observed for the isolated F508-containing domain. We interpret the data in terms of an incomplete post-translational assembly of the protein domains.

  14. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    Science.gov (United States)

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  15. Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants.

    Science.gov (United States)

    Cheng, Xin-Hua; Hillman, Christopher C; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2013-01-01

    During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

  16. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a protein with diminished activity (Brindled; Mo (Br (/y .

    Directory of Open Access Journals (Sweden)

    Sukru Gulec

    Full Text Available During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1. Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [Mo (Br (/y ]. Mutant mice were rescued by perinatal copper injections, and, after a 7-8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates. Adult Mo (Br (/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived Mo (Br (/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and Mo (Br (/y increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin activity in Mo (Br (/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, Mo (Br (/y mice were able to adequately regulate iron absorption

  17. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics.

    Science.gov (United States)

    Ramalingam, Jothi; Vennila, Jannet; Subbiah, Parthasarathy

    2013-09-01

    Mutations within transpeptidase domain of penicillin-binding protein 2B of the strains of Streptococcus pneumoniae leads to resistance against β-lactam antibiotics. To uncover the important residues responsible for sensitivity and resistance, the recently determined three dimensional structures of penicillin-binding protein 2B of both wild-type R6 (sensitive) and mutant 5204 (resistant) strains along with the predicted structures of other mutant strains G54, Hungary19A-6 and SP195 were considered for the interaction study with β-lactam antibiotics using induced-fit docking of Schrödinger. Associated binding energies of the complexes and their intermolecular interactions in the binding site clearly show that the wild-type R6 as sensitive, mutant strains 5204 and G54 as highly resistant, and the mutant strains Hungary19A-6 and SP195 as intermediate resistant. The study also reveals that the mutant strains Hungary19A-6 and SP195 exhibit intermediate resistant because of the existence of mutations till the intermediate 538th and 516th positions, respectively, and not till the end of the C-terminus. Furthermore, our investigations show that if the mutations are extended till the end of the C terminus, then the antibiotic resistance of induced-mutated strains increases from intermediate to high as in the strains 5204 and G54. The binding patterns obtained in the study are useful in designing potential inhibitors against multidrug resistant S. pneumoniae.

  18. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  19. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  20. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Yoon, Hyunjin; Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; Mcclelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-03-11

    In recent years the profound importance of sRNA-mediated translational/post-transcriptional regulation has been increasingly appreciated. However, the global role played by translational regulation in control of gene expression has never been elucidated in any organism for the simple reason that global proteomics methods required to accurately characterize post-transcriptional processes and the knowledge of translational control mechanisms have only become available within the last few years. The proteins Hfq and SmpB are essential for the biological activity of a range of regulatory sRNAs and thus provide a means to identify potential targets of sRNA regulation. We performed a sample-matched global proteomics and transcriptional analysis to examine the role of Hfq and SmpB in global protein translation and virulence using the Salmonella typhimurium model system. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all Salmonella proteins, respectively, with limited correlation between transcription and protein expression. This is the first report suggesting that SmpB could be a general translational regulator. The broad spectrum of proteins modulated by Hfq was also surprising including central metabolism, LPS biosynthesis, two-component regulatory systems, quorum sensing, SP1-TTSS, oxidative stress, fatty acid metabolism, nucleoside and nucleotide metabolism, envelope stress, aminoacyl-tRNA synthetases, amino acid biosynthesis, peptide transport, and motility.. The extent of global regulation of translation by Hfq is unexpected, with profound effects in all stages of Salmonella’s life cycle. Our results represent the first global systems-level analysis of translational regulation; the elucidated potential targets of sRNA regulation from our analysis will

  1. Comparison of protein patterns between Plasmodium falciparum mutant clone T9/94-M1-1(b3) induced by pyrimethamine and the original parent clone T9/94

    Institute of Scientific and Technical Information of China (English)

    Kanchana Rungsihirunrat; Wanna Chaijaroenkul; Napaporn Siripoon; Aree Seugorn; Sodsri Thaithong; Kesara Na-Bangchang

    2012-01-01

    Objective: To compare the protein patterns from the extracts of the mutant clone T9/94-M1-1(b3) induced by pyrimethamine, and the original parent clone T9/94 following separation of parasite extracts by two-dimensional electrophoresis (2-DE). Methods: Proteins were solubilized and separated according to their charges and sizes. The separated protein spots were then detected by silver staining and analyzed for protein density by the powerful image analysis software. Results:Differentially expressed protein patterns (up- or down-regulation) were separated from the extracts from the two clones. A total of 223 and 134 protein spots were detected from the extracts of T9/94 and T9/94-M1-1(b3) clones, respectively. Marked reduction in density of protein expression was observed with the extract from the mutant (resistant) clone compared with the parent (sensitive) clone. A total of 25 protein spots showed at least two-fold difference in density, some of which exhibited as high as ten-fold difference. Conclusions: These proteins may be the molecular targets of resistance of Plasmodium falciparum to pyrimethamine. Further study to identify the chemical structures of these proteins by mass spectrometry is required.

  2. Mutant Forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation.

    Science.gov (United States)

    Kuo, Fang-Ting; Bentsi-Barnes, Ikuko K; Barlow, Gillian M; Pisarska, Margareta D

    2011-10-01

    Premature ovarian failure in the autosomal dominant disorder blepharophimosis-ptosis-epicanthus inversus is due to mutations in the gene encoding Forkhead L2 (FOXL2), producing putative truncated proteins. We previously demonstrated that FOXL2 is a transcriptional repressor of the steroidogenic acute regulatory (StAR), P450SCC (CYP11A), P450aromatase (CYP19), and cyclin D2 (CCND2) genes, markers of ovarian follicle proliferation and differentiation. Furthermore, we found that mutations of FOXL2 may regulate wild-type FOXL2, leading to loss of transcriptional repression of CYP19, similar to StAR. However, the regulatory mechanisms underlying these premature ovarian failure-associated mutations remain largely unknown. Therefore, we examined the effects of a FOXL2 mutant protein on the transcriptional repression of the CYP19 promoter by the full-length protein. We found that mutant FOXL2 exerts a dominant-negative effect on the repression of CYP19 by wild-type FOXL2. Both wild-type and mutant FOXL2 and can form homo- and heterodimers. We identified a minimal -57-bp human CYP19 promoter containing two potential FOXL2-binding regions and found that both wild-type and mutant FOXL2 can bind to either of these regions. Mutational analysis revealed that either site is sufficient for transcriptional repression by wild-type FOXL2, and the dominant-negative effect of mutant FOXL2, but these are eliminated when both sites are mutated. These findings confirm that mutant FOXL2 exerts a dominant-negative effect on wild-type FOXL2's activity as a transcriptional repressor of key genes in ovarian follicle differentiation and suggest that this is likely due to heterodimer formation and possibly also competition for DNA binding.

  3. Nif- Hup- mutants of Rhizobium japonicum.

    Science.gov (United States)

    Moshiri, F; Stults, L; Novak, P; Maier, R J

    1983-01-01

    Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity. Images PMID:6874648

  4. Screening and identification of mutants of Magnaporthe grisea by REMI

    Institute of Scientific and Technical Information of China (English)

    XIONG Ruyi; LIU Juan; ZHOU Yijun; FAN Yongjian; ZHENG Xiaobo

    2007-01-01

    The plasmid pUCATPH was used to establish a transformation system in wild-type isolate M131 of Magnaporthe grisea.Six hundred and thirty-nine transformants were obtained by restriction enzyme-mediated integration (REMI) with hygromycin B (hyg B) resistance as a tag.Morphological analysis of two of the REMI mutants confirmed that they produced little melanin under black light and continued for three generations.Pathogenicity identification of six mutants screened proved that they made pathogenicity changes on three sets of differential varieties with different resistance genes.Rep-PCR analyses showed that two morphological mutants and two pathogenicity mutants differed from wild-type isolate M131 at the molecular level.RFLP analyses were performed to study the four mutants at the molecular level and the integration sites of the plasmid DNA.The results showed that the plasmid was inserted into all four mutants and that the insertion sites were random.

  5. Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability.

    Science.gov (United States)

    Takemura, H; Horinouchi, S; Beppu, T

    1991-11-01

    Acetobacter pasteurianus NCI1380, a thermophilic strain isolated from the surface culture of acetic acid fermentation, showed genetic instability to produce at high frequency spontaneous mutants which were deficient in ethanol oxidation because of the loss of alcohol dehydrogenase activity. Southern hybridization experiments with the cloned alcohol dehydrogenase-cytochrome c gene cluster as the probe showed insertion of an unknown DNA fragment into a specific position in the cytochrome c gene in most of the mutant strains. Cloning and sequencing analyses revealed that the inserted sequence was 1,665 bp in length and had a terminal inverted repeat of 15 bp. In addition, this inserted sequence was found to generate a 4-bp duplication at the inserted site upon transposition. The target site specificity was not very strict, but a TCGA sequence appeared to be preferentially used. The inserted sequence contains two long open reading frames of 461 and 222 amino acids which are overlapped and encoded by different strands. Although these open reading frames showed no homology to any protein registered in the DNA data bases, the longer open reading frame contained many basic amino acids (87 of 461), as was observed with transposases of so-called insertion sequence (IS) elements. All of these characteristics are typical of IS elements, and the sequence was named IS1380. The copy number of IS1380 in a cell of A. pasteurianus NCI1380 was estimated to be about 100. Several strains of acetic acid bacteria also contained IS1380 at high copy numbers. These results suggest that IS1380 is associated with the genetic loss of ethanol-oxidizing ability as well as the genetic instability of acetic acid bacteria in general.

  6. A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy.

    Science.gov (United States)

    Lyu, Ya-Su; Shi, Pei-Liang; Chen, Xiao-Ling; Tang, Yue-Xiao; Wang, Yan-Fang; Liu, Rong-Rong; Luan, Xiao-Rui; Fang, Yu; Mei, Ru-Huan; Du, Zhen-Fang; Ke, Hai-Ping; Matro, Erik; Li, Ling-En; Lin, Zhao-Yu; Zhao, Jing; Gao, Xiang; Zhang, Xian-Ning

    2016-03-22

    Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion-deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9(+/mut) and Krt9(mut/mut) mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9(+/mut)) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9(+/mut) mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.

  7. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein.

    Science.gov (United States)

    Ersoy Tunalı, Nagehan; Marobbio, Carlo M T; Tiryakioğlu, N Ozan; Punzi, Giuseppe; Saygılı, Seha K; Onal, Hasan; Palmieri, Ferdinando

    2014-05-01

    The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely.

  8. The construction and preliminary analysis of a Tn5 transposon based random mutant library of baculovirus

    Institute of Scientific and Technical Information of China (English)

    Li Hui; Zhao Minglei; Yin Juan; Zhong Jiang

    2006-01-01

    A transposon-based random mutation library of AcMNPV,the type species of baculovirus,was constructed using a Tn5 transposon.The green fluorescence protein gene under the control of the Drosophila hsp70 promoter was inserted into the transposon for easy tracking in insect cells.In vitro transposition was carried out using the transposon and AcMNPV genomic DNA to allow the random insertion of the transposon into the virus genome.The transposed genome was then used to transfect Sf21 insect cells,and a library of mutant viruses capable of expressing green fluorescence protein was obtained.Two mutant viruses,B9F and Li6A were isolated,and the sites of transposon insertion were determined to be within the coding regions of the 94k and p10 genes,respectively.Both genes were determined to be nonessential in viral replication and infection.This technique will be very useful in the functional study of baculovirus genes.

  9. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells.

    Science.gov (United States)

    Mariati; Yeo, Jessna H M; Koh, Esther Y C; Ho, Steven C L; Yang, Yuansheng

    2014-01-01

    The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild-type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers.

  10. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    Science.gov (United States)

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  11. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  12. BCR and its mutants, the reciprocal t(9;22-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Directory of Open Access Journals (Sweden)

    Puccetti Elena

    2006-11-01

    Full Text Available Abstract Background The reciprocal (9;22 translocation fuses the bcr (breakpoint cluster region gene on chromosome 22 to the abl (Abelson-leukemia-virus gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+ the derivative 9+ encodes either the p40(ABL/BCR fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96(ABL/BCR fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. Methods We investigated the effects of BCR and ABL/BCRs i. on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii. on the actin cytoskeleton by direct immunofluorescence; and iii on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. Results Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. Conclusion Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22 ABL/BCR fusion proteins in comparison to their physiological counterpart BCR.

  13. A Mutant of Hepatitis B Virus X Protein (HBxΔ127 Promotes Cell Growth through A Positive Feedback Loop Involving 5-Lipoxygenase and Fatty Acid Synthase

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2010-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide. Hepatitis B virus X protein (HBx contributes to the development of HCC, whereas HBx with COOH-terminal deletion is a frequent event in the HCC tissues. Previously, we identified a natural mutant of HBx-truncated 27 amino acids at the COOH-terminal (termed HBxΔ127, which strongly enhanced cell growth. In the present study, we focused on investigating the mechanism. Accordingly, fatty acid synthase (FAS plays a crucial role in cancer cell survival and proliferation; thus, we examined the signaling pathways involving FAS. Our data showed that HBxΔ127 strongly increased the transcriptional activities of FAS in human hepatoma HepG2 and H7402 cells. Moreover, we found that 5-lipoxygenase (5-LOX was responsible for the up-regulation of FAS by using MK886 (an inhibitor of 5-LOX and 5-LOX small interfering RNA. We observed that HBxΔ127 could upregulate 5-LOX through phosphorylated extracellular signal-regulated protein kinases 1/2 and thus resulted in the increase of released leukotriene B4 (LTB4, a metabolite of 5-LOX by ELISA. The additional LTB4 could upregulate the expression of FAS in the cells as well. Interestingly, we found that FAS was able to upregulate the expression of 5-LOX in a feedback manner by using cerulenin (an inhibitor of FAS. Collectively, HBxΔ127 promotes cell growth through a positive feedback loop involving 5-LOX and FAS, in which released LTB4 is involved in the up-regulation of FAS. Thus, our finding provides a new insight into the mechanism involving the promotion of cell growth mediated by HBxΔ127.

  14. QM/MM MD and free energy simulations of G9a-like protein (GLP and its mutants: understanding the factors that determine the product specificity.

    Directory of Open Access Journals (Sweden)

    Yuzhuo Chu

    Full Text Available Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs using S-adenosyl-L-methionine (AdoMet as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three to be added (termed as product specificity. It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examples is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM molecular dynamics (MD and free energy simulations are performed on wild type G9a-like protein (GLP and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. The results suggest that the space and active-site interactions around the ε-amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs.