WorldWideScience

Sample records for insertable b-layer detector

  1. The ATLAS Insertable B-Layer Detector (IBL)

    CERN Document Server

    Huegging, F; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phases towards SLHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during a longer shutdown of the LHC machine, the so-called Phase I Upgrade. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. In order to achieve these goals the pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. Main component of the module development for the IBL is the new ATLAS pixel readout chip, FE-I4, designed in 130 nm technology which features an array of 80 by 336 pixels with a pixel size of 50x250 µ...

  2. Detector control system of the ATLAS insertable B-Layer

    International Nuclear Information System (INIS)

    Kersten, S.; Kind, P.; Lantzsch, K.; Maettig, P.; Zeitnitz, C.; Gensolen, F.; Citterio, M.; Meroni, C.; Verlaat, B.; Kovalenko, S.

    2012-01-01

    To improve tracking robustness and precision of the ATLAS inner tracker, an additional, fourth pixel layer is foreseen, called Insertable B-Layer (IBL). It will be installed between the innermost present Pixel layer and a new, smaller beam pipe and is presently under construction. As, once installed into the experiment, no access is possible, a highly reliable control system is required. It has to supply the detector with all entities required for operation and protect it at all times. Design constraints are the high power density inside the detector volume, the sensitivity of the sensors against heat-ups, and the protection of the front end electronics against transients. We present the architecture of the control system with an emphasis on the CO 2 cooling system, the power supply system, and protection strategies. As we aim for a common operation of Pixel and IBL detector, the integration of the IBL control system into the Pixel control system will also be discussed. (authors)

  3. ATLAS insertable B-layer

    Czech Academy of Sciences Publication Activity Database

    Marčišovský, Michal

    2011-01-01

    Roč. 633, č. 1 (2011), "S224"-"S225" ISSN 0168-9002. [International workshop on radiation imaging detectors /11./. Praha, 26.06.2009-02.07.2009] R&D Projects: GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * pixel detector * insertable B-layer Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011

  4. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    Backhaus, Malte

    2014-01-01

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  5. Upgrade of the BOC for the ATLAS Pixel Insertable B-Layer

    CERN Document Server

    Dopke, J; Heima, T; Kugel, A; Mattig, P; Schroer, N; Zeitnitz, C

    2009-01-01

    The phase 1 upgrade of the ATLAS [1] pixel detector will be done by inserting a fourth pixel layer together with a new beampipe into the recent three layer detector. This new detector, the Insertable B-Layer (IBL) should be integrated into the recent pixel system with as few changes in services as possible, but deliver some advantages over the recent system. One of those advantages will be a new data transmission link from the detector modules to the off-detector electronics, requiring a re-design of the electro-optical converters on the off-detector side. First ideas of how to implement those, together with some ideas to reduce cost by increasing the systems throughput are discussed.

  6. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218666; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is the innermost layer of pixel detectors, and was installed in May 2014 at a radius of 3.3 cm from the beam axis, between the existing Pixel detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D sensors and CMOS 130 nm technology. The IBL detector construction was completed within about two years (2012-2014), and the key features and challenges met during the IBL project are presented, as well as its commissioning and operational experience at the LHC

  7. Production and integration of the ATLAS Insertable B-Layer

    Science.gov (United States)

    Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-01

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  8. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. The IBL detector construction was achieved within about two years starting from mid-2012 to the May 2014 installation in ATLAS, a very tight schedule to meet the ATLAS installation and detector closure before starting the Run2 in Spring 2015. The key features and challenges met during the IBL project will be presented, as well as its commissioning and operational experience in LHC.

  9. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Kagan, M; The ATLAS collaboration

    2014-01-01

    The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was setup in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.

  10. Overview of the ATLAS Insertable B-Layer (IBL) Project

    Science.gov (United States)

    Kagan, M. A.

    2014-06-01

    The first upgrade for the Pixel Detector will be a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. A production quality control test bench was set up in the ATLAS inner detector assembly clean room to verify and rate the performance of the detector elements before integration around the beam-pipe. An overview of the IBL project, of the module design, the qualification for these sensor technologies, the integration quality control setups and recent results in the construction of this full scale new concept detector is discussed.

  11. arXiv Production and Integration of the ATLAS Insertable B-Layer

    CERN Document Server

    Abbott, B.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L.S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R.G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C.C.; Chauveau, J.; Chen, S.P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G.F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K.K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M.P.; Giugni, D.; Gjersdal, H.; Glitza, K.W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N.P.; Hetmánek, M.; Hinman, R.R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S.C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J.M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H.J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; Mc Goldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; Rø hne, O.; Rossi, C.; Rossi, L.P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M.S.; Rummier, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D.S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M.S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-16

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  12. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Kagan, M; The ATLAS collaboration

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. 32 \

  13. Radiation induced effects in the \\\\ATLAS Insertable B-Layer readout chip

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The ATLAS Insertable B-Layer is the innermost pixel barrel layer of the ATLAS detector installed in 2014. During the first year of $pp$ collisions at $\\sqrt{s} = 13~{\\rm TeV}$ in 2015, an unusual increase was observed in the low voltage currents of the readout chips. This increase was found to be due to radiation damage to the chips. The dependence of the current on the total ionising dose and temperature has been studied using X-ray and proton beam sources, and will be presented in this note together with its possible parametrisation and operation guidelines for the detector.

  14. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  15. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Pohl, D-L; The ATLAS collaboration

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector will be the construction of a new pixel layer which is currently under construction and will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. Two different silicon sensor technologies, planar n-in-n and 3D, will be used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. 32 FEs with sensors are glued to a light weight carbon-carbon structure which incorporates a titanium cooling tube for a CO2 cooling system. In total th...

  16. Overview of the ATLAS Insertable B-Layer (IBL) Project

    International Nuclear Information System (INIS)

    Røhne, O.

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector is the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, in 2013–2014. The new detector, called the Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL has required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. The IBL presents several changes to the design of the present ATLAS Pixel Detector: two different and promising silicon sensor technologies, planar n-in-n and 3D, will be used for the IBL. A new read-out chip FE-I4 has been designed in 130 nm technology, the material budget is minimized by using new lightweight mechanical support materials and a CO 2 based cooling system has been developed. An overview of the IBL project, of the module design and the qualification for these sensor technologies with particular emphasis on irradiation and beam tests will be presented

  17. Control Logic for the Interlock system of the ATLAS Insertable B-Layer

    CERN Document Server

    Riegel, Christian

    Part of the first upgrade program of the ATLAS detector is the installation of the Insertable B-Layer (IBL) as a fourth and innermost detector layer of the ATLAS pixel detector to prepare the tracking system for the expected increase of pile-up events. As with every sub-detector, the IBL and its components have to be monitored and controlled via a Detector Control System (DCS). A hardware-based interlock system is installed on-site to prevent detector and people working at the detector from serious harm and damage. For the IBL, the logical processing of interlock signals is realised in Interlock Matrix Crates (IMCs) using Complex Programmable Logic Devices (CPLD). One part of this master thesis is the automatic implementation of the logical assignments from database information. A script was developed to generate the needed file to program the CPLD. The second part of this thesis is the design of a test setup to verify the functionality of the electrical components of each IMC and to confirm the correct proce...

  18. Commissioning of the ATLAS Insertable B-Layer and first operation experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439451; Dobos, Daniel; Rembser, Christoph

    Todays research in particle physics offers a wide field of opportunities for scientists from a variety of different subjects. Discoveries can only be made, with hundreds up to thousands of people working together in collaborations. Designing high precision detectors that can be up to several stories tall, followed by production, construction, commissioning and successful operation is only achievable with the combined effort of skilled and experienced detector physicists and engineers, while the vast amount of data recorded with those detectors calls for specialists in data analysis which are able to find the needle in a haystack or in other words the higgs in a sea of underground events. One of the biggest science collaborations worldwide is the ATLAS collaboration with more than 5000 members from around 180 institutes. ATLAS is one of four big particle physics experiments at the LHC. Its tracking system has been upgraded with a new innermost layer, referred to as Insertable B-Layer (IBL), in 2014. This thesi...

  19. The construction of the Insertable B-Layer and the $b$-tagging performance at high-\\pt of the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00362129; La Rosa, Alessandro; Ferrere, Didier

    Although the recent discovery of the Higgs boson by the LHC experiments represented a major success of the Standard Model theory, several questions need still to be answered. The search of new physics particles beyond the Standard Model will require the LHC to collect a large amount of data. To achieve this goal the LHC collider went through a long shutdown, increasing both the energy and the luminosity. In particular the increase of luminosity will require the ATLAS Inner Detector to operate in a more track-dense environment, which mainly affects the ATLAS Pixel Detector. In order to cope with the high pile-up expected with the increase of luminosity the Pixel detector was then upgraded during the long shutdown with the insertion of a fourth innermost layer, the Insertable B-Layer (IBL). This thesis focuses on the construction of the IBL. This includes the loading of silicon pixel detector modules on the support staves, the quality assurance of these instrumented staves and the commissioning after the integr...

  20. Experimental study of a depth-encoding PET detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.

    2018-04-01

    A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.

  1. Simulation study of a depth-encoding positron emission tomography detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Kim, Kyu Bom; Choi, Yong; Kang, Jihoon

    2017-10-01

    This study introduces a depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between the pixilated scintillation crystal layers. This design allows light spreading so that scintillation photons can travel only through the X direction and allows alteration in the light distribution so that it can generate a unique pattern diagram of the two-dimensional (2-D) flood histogram that identifies depth position as well as X-Y position of γ-ray interaction. A Monte Carlo simulation was conducted for the assessment of the depth of interaction (DOI)-PET detector. The traced light distribution for each event was converted into the 2-D flood histogram. Light loss caused by inserting the horizontal-striped glass between the crystal layers was estimated. Applicable weighting factors were examined for each DOI-PET detector. No considerable degradation of light loss was observed. The flood histogram, without overlapping of each crystal position, can be generated for the DOI detector based on each crystal block by inserting the horizontal-striped glass with a thickness of >1 mm and the modified resistive charge division networks with applicable weighting factors. This study demonstrated that the proposed DOI-PET detector can extract the three-dimensional γ-ray interaction position without considerable performance degradations of the PET detector from the 2-D flood histogram.

  2. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  3. Overview of the Insertable B-Layer (IBL) Project of the ATLAS Experiment at the Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    Flick, Tobias

    2013-06-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013/14. The new sub-detector, named Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new smaller diameter beam-pipe at a radius of 33 mm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed and are currently under investigation and production for the IBL. Furthermore, the physics performance should be improved through the reduction of pixel size whereas targeting for a low material budget, pushing for a new mechanical support using lightweight staves and a CO 2 -based cooling system. An overview of the IBL project, the results of beam tests on different sensor technologies, testing of pre-series staves made before going into production in order to qualify the assembly procedure, the loaded module electrical integrity, and the read-out chain will be presented. (authors)

  4. Insertable B-Layer integration in the ATLAS experiment and development of future 3D silicon pixel sensors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371528; Røhne, Ole

    This work has two distinct objectives: the development of software for the integration of the Insertable B-Layer (IBL) in the ATLAS offline software framework and the study of the performance of 3D silicon sensors produced by SINTEF for future silicon pixel detectors. The former task consists in the implementation of the IBL byte stream converter. This offline tool performs the decoding of the binary-formatted data coming from the detector into information (e.g. hit position and Time over Threshold) that is stored in a format used in the reconstruction data flow. It also encodes the information extracted from simulations into a simulated IBL byte stream. The tool has been successfully used since the beginning of the LHC Run II data taking. The experimental work on SINTEF 3D sensors was performed in the framework of the development of pixel sensors for the next generation of tracking detectors. Preliminary tests on SINTEF 3D sensors showed that the majority of these devices suffers from high leakage currents, ...

  5. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  6. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run 2 of the LHC collider sets new challenges to track and vertex reconstruction because of its higher energy, pileup and luminosity. The ATLAS tracking performance relies critically on the Pixel Detector. Therefore, in view of Run 2, the ATLAS collaboration has constructed the first 4-layer pixel detector in Particle Physics by installing a new pixel layer, called Insertable B-Layer (IBL). Operational experience and performance of the 4-layer Pixel Detector during Run 2 are presented.

  7. Energy resolution of a four-layer depth of interaction detector block for small animal PET

    International Nuclear Information System (INIS)

    Tsuda, Tomoaki; Kawai, Hideyuki; Orita, Narimichi; Murayama, Hideo; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga; Omura, Tomohide

    2004-01-01

    We are now planning to develop a positron emission tomograph dedicated to small animals such as rats and mice which meets the demand for higher sensitivity. We proposed a new depth of interaction (DOI) detector arrangement to obtain DOI information by using a four-layer detector with all the same crystal elements. In this DOI detector, we control the behavior of scintillation photons by inserting the reflectors between crystal elements so that the DOI information of four layers can be extracted from one two-dimensional (2D) position histogram made by Anger-type calculation. In this work, we evaluate the energy resolution of this four-layer DOI detector. (author)

  8. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  9. R&D for the local support structure and cooling channel for the ATLAS PIXEL Detector Insertable B-Layer (IBL)

    CERN Document Server

    Coelli, S; The ATLAS collaboration

    2010-01-01

    ABSTRACT: The scope of the present R&D is to develop an innovative support, with an integrated cooling and based on carbon composites, for the electronic sensors of the Silicon Pixel Tracker, to be installed into the ATLAS Experiment on the Large Hadron Collider at CERN. The inner layer of the detector is installed immediately outside the Beryllium beam pipe at a distance of 50 mm from the Interaction Point, where the high energy protons collide: the intense radiation field induce a radiation damage on the sensors so that a cooling system is necessary to remove the electrical power dissipated as heat, maintaining the sensor temperature sufficiently low. The task of the support system is to hold the detector modules in positions with high accuracy, minimizing the deformation induced by the cooling; this must be done with the lower possible mass because there are tight requirements in terms of material budget. An evaporative boiling system to remove the power dissipated by the sensors is incorporated in the...

  10. Study of the mechanical stability of the ATLAS Insertable B-Layer

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    During the commissioning and alignment of the ATLAS Insertable B-Layer (IBL) using cosmic-ray data, a mechanical distortion of the IBL was observed. This distortion is caused by a difference in the coefficients of thermal expansion of the IBL stave components. The results of a preliminary study of the mechanical stability of the IBL are presented in this note. The qualitative properties of the distortion are confirmed using a 3D finite element analysis. Using cosmic-ray data collected in March 2015, the magnitude of the distortion is found to depend linearly on the operating temperature of the IBL, with a gradient of $\\sim10~{\\rm \\mu m/K}$. The peak-to-peak temperature variation of the IBL staves is measured to be less than 0.2 K during the same cosmic-ray run. The expected bias to the transverse impact parameter $(d_{0})$ of charged tracks under a temperature variation of 0.2 K is evaluated to be $\\sim 1~{\\rm \\mu m}$ using $Z\\rightarrow{\\mu^+\\mu^-}$ events from a Mote Carlo simulation of proton-proton collis...

  11. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  12. Detector production for the R3B Si-tracker

    Energy Technology Data Exchange (ETDEWEB)

    Borri, M., E-mail: marcello.borri@liverpool.ac.uk [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lemmon, R. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Thornhill, J.; Bate, R.; Chartier, M. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Clague, N. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Herzberg, R.-D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Labiche, M. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-11-11

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  13. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  14. Performance of the modules for layer 1 of the CMS phase 1 pixel detector upgrade

    CERN Document Server

    Meinhard, Maren Tabea; Berger, Pirmin; Starodumov, Andrey

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider will increase to up to 2x10$^{34}$\\;cm$^{-2}$s$^{-1}$ by 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced in January 2017. The upgraded detector features four sensitive layers in the barrel part. A designated readout chip (PROC600V2) is used for layer 1, which is closest to the interaction point and therefore has to handle larger particle fluxes. An irradiation campaign has been performed with PROC600V2 to verify its radiation tolerance up to the maximum expected dose for 2017 of 0.2\\;MGy. Modules for layer 1 have been built with PROC600V2 for the detector production. The quality of every inserted module was assessed in a number of tests, some of which were performed using X-radiation. The characteristics of the modules used in the detector as well as the main failure modes will be presented.

  15. Simulation of a silicon neutron detector coated with TiB2 absorber

    International Nuclear Information System (INIS)

    Krapohl, D; Nilsson, H-E; Petersson, S; Slavicek, T; Thungström, G; Pospisil, S

    2012-01-01

    Neutron radiation cannot be directly detected in semiconductor detectors and therefore needs converter layers. Planar clean-room processing can be used in the manufacturing process of semiconductor detectors with metal layers to produce a cost-effective device. We used the Geant4 Monte-Carlo toolkit to simulate the performance of a semiconductor neutron detector. A silicon photo-diode was coated with vapour deposited titanium, aluminium thin films and a titaniumdiboride (TiB 2 ) neutron absorber layer. The neutron capture reaction 10B(n, alpha)7Li is taken advantage of to create charged particles that can be counted. Boron-10 has a natural abundance of about SI 19.8%. The emitted alpha particles are absorbed in the underlying silicon detector. We varied the thickness of the converter layer and ran the simulation with a thermal neutron source in order to find the best efficiency of the TiB 2 converter layer and optimize the clean room process.

  16. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction imposed by the higher collision energy, pileup and luminosity that are being delivered. The ATLAS tracking performance relies critically on the Pixel Detector, therefore, in view of Run-2 of LHC, the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and an additional optical link per module was added to overcome in some layers the readout bandwidth limitation when LHC will exceed the nominal peak luminosity by almost a factor of 3. The key features and challenges met during the IBL project will be presented, as well as its operational experience and Pixel Detector performance in LHC.

  17. Hybrid PET/MRI insert: B0 field optimization by applying active and passive shimming on PET detector level

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jakob [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Weissler, Bjoern [Philips Research Europe, Aachen (Germany); Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Philips Research Europe, Aachen (Germany)

    2014-07-29

    Combining PET and MRI into a hybrid device is challenging since both systems might influence each other. A typical interference problem of such a combined device is the distortion of the MRI’s B{sub 0} field distribution due to the material brought inside the MRI’s FOV which is in particular challenging for small-bore PET-systems. High field homogeneity is needed for a good MRI acquisition in general as well as in certain applications. Typically, active shimming using dedicated coils is applied to improve the field homogeneity. However, these techniques are limited especially for localized distortion profiles with higher-order characteristics caused by PET/MRI inserts. As a consequence, we are exploring the potential application of shimming on PET detector level (for the Hyperion-II{sup D} PET/MRI insert), meaning that the distortion profile caused by PET modules is compensated using additional magnetic materials (passive shimming) and DC coils (active shimming). To explore the technique, B{sub 0} field measurements have been performed using a whole-body phantom in combination with the MRI body coil. An FFE sequence was used to measure distortion maps of DC loops and small magnetic objects (capacitors, ferrites). These distortion maps served as input for a software framework which has been written to perform the field optimization. The implementation was verified by measurements and fits were performed to extract characteristic parameters of the tested objects. Finally, the implemented software framework was used to homogenize a measured distortion map produced by a single PET module by superimposing distortion corrections from additional simulated materials. The resulting superimposed distortion map showed a significantly improved B{sub 0} field map quality (reduced spectral width and improved homogeneity). The simulated susceptibility distribution will be applied on PET module level and tested in experiments. Results and details about this study will be

  18. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  19. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  20. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  1. Silicon micro-vertex detector for Belle II

    International Nuclear Information System (INIS)

    Mohanty, Gagan

    2013-01-01

    The Belle experiment at the KEK B-factory is Japan provided the landmark experimental confirmation of CP violation mechanism within the standard model that led to the physics Nobel prize in 2008. In its second phase, called Belle II, it would seek for the holy-grail of new physics using rare decays of B and D mesons and tau leptons as a probe, in complimentary to the direct searches carried out with the LHC experiments. An important component of this upgrade is to replace the innermost subdetector, namely the silicon micro-vertex detector (SVD). The new SVD will, like the old one, consist of four layers of double-sided silicon strip detector, but made from 6âĂİ wafers and located at higher radii as a novel, two-layer DEPFET pixel detector will be inserted very dose to the beam- pipe. Starting with the physics motivation, we discuss the design concept, fabrication and the Indian contributions toward the Belle II SVD. (author)

  2. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    International Nuclear Information System (INIS)

    Zhang, Xuezhu; Thiessen, Jonathan D; Goertzen, Andrew L; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr

    2013-01-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  3. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  4. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00084948; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  5. First MCM-D modules for the b-physics layer of the ATLAS Pixel Detector

    CERN Document Server

    Basken, O; Ehrmann, O; Gerlach, P; Grah, C; Gregor, I M; Linder, C; Meuser, S; Richardson, J; Topper, M; Wolf, J

    2000-01-01

    The innermost layer (b-physics layer) of the ATLAS Pixel Detector will consist of modules based on MCM-D technology. Such a module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out ICs, each serving 24* 160 pixel unit cells, a module controller chip (MCC), an optical transceiver and the local signal interconnection and power distribution busses. We show a prototype of such a module with additional test pads on both sides. The outer dimensions of the final module will be 21.4 mm*67.8 mm. The extremely high wiring density, which is necessary to interconnect the read-out chips, was achieved using a thin film copper/photo-BCB process on the pixel array. The bumping of the read out chips was done using electroplating PbSn. All dice are then attached by flip-chip assembly to the sensor diodes and the local busses. The focus of this paper is the description of the first results of such MCM-D-type modules. (11 refs).

  6. Improvement of crystal identification performance for a four-layer DOI detector composed of crystals segmented by laser processing

    Science.gov (United States)

    Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga

    2017-09-01

    We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all

  7. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  8. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  9. Oxide layers for silicon detector protection against enviroment effects

    International Nuclear Information System (INIS)

    Bel'tsazh, E.; Brylovska, I.; Valerian, M.

    1986-01-01

    It is shown that for protection of silicon detectors of nuclear radiations oxide layers could be used. The layers are produced by electrochemical oxidation of silicon surface with the following low-temperature annealing. These layers have characteristics similar to those for oxide layers produced by treatment of silicon samples at elevated temperature in oxygen flow. To determine properties of oxide layers produced by electrochemical oxidation the α-particle back-scattering method and the method of volt-farad characteristics were used. Protection properties of such layers were checked on the surface-barrier detectors. It was shown that protection properties of such detectors were conserved during long storage at room temperature and during their storage under wet-bulb temperature. Detectors without protection layer have worsened their characteristics

  10. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  11. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  12. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    Science.gov (United States)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  13. High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Yu, Tao [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Zhengyong; Zhong, Huicai [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Khamis, Khamis Masoud [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191 (China)

    2016-07-15

    The perpendicular magnetic anisotropy (PMA) of a series of top MgO/CoFeB/W stacks were studied. In these stacks, the thickness of CoFeB is limited in a range of 1.1–2.2 nm. It was found that the stack can still maintain PMA in a 1.9 nm thick CoFeB free layer. Besides, we investigated the thermal stability factor ∆ of a spin transfer torque magnetic random access memory (STT-MRAM) by inserting an ultra-thin W film of 0.8 nm between two CoFeB films. The result shows a clear PMA behavior for the samples with CoFeB thickness up to 2.5 nm, and an in-plane magnetic anisotropy (IMA) when the CoFeB is thicker than 2.5 nm. Moreover, the thermal stability factor ∆ of the CoFeB stack with W insertion is about 132 for a 50 nm size STT-MRAM device, which is remarkably improved compared to 112 for a sample without W insertion. Our results represent an alternative way to realize the endurance at high annealing temperature, high-density and high ∆ in STT-MRAM device by ultra-thin W insertion. - Highlights: • The MgO/CoFeB/W multilayer can still maintain PMA in a CoFeB thickness of 1.9 nm. • The sample with 2.5 nm thickness of CoFeB by W insertion can still maintain PMA. • The sample with W insertion can still maintain PMA until the annealing temperature as high as 350 °C. • The thermal stability factor ∆ of sample with W insertion could be increase to about 132 for a 50 nm size STT-MRAM device.

  14. SU-G-IeP2-09: Iodine Imaging at Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, Ohio (United States); Dhanantwari, A; Halliburton, S; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To evaluate the attenuation response of iodine and the accuracy of iodine quantification on a detector-based spectral CT scanner. Methods: A Gammex 461A phantom was scanned using a dual-layer detector (IQon, Philips) at 120 kVp using helical acquisition with a CDTIvol of 15 mGy to approximate the hospital’s clinical body protocol. No modifications to the standard protocol were necessary to enable spectral imaging. Iodine inserts at 6 concentrations (2, 5, 7.5, 10, 15, 20 mg/ml) were scanned individually at the center of the phantom and the 20 mg/ml insert was additionally scanned at the 3, 6, and 12 o’clock positions. Scans were repeated 10 times. Conventional, virtual monoenergetic (40–200 keV) and iodine-no-water images (with pixel values equal to iodine concentration of corresponding tissue) were reconstructed from acquired data. A circular ROI (diameter=30 pixels) was used in each conventional and monoenergetic image to measure the mean and standard deviation of the CT number in HU and in each iodine-no-water image to measure iodine concentration in mg/ml. Results: Mean CT number and contrast-to-noise ratio (CNR) measured from monoenergetic images increased with decreasing keV for all iodine concentrations and matched measurements from conventional images at 75 keV. Measurements from the 20 ml insert showed the CT number is independent of location and CNR is a function only of noise, which was higher in the center. Measured concentration from iodine-no-water images matched phantom manufacturer suggested concentration to within 6% on average for inserts at the center of the phantom. Measured concentrations were systematically higher due to optimization of iodine quantification parameters for clinical mixtures of iodine and blood/tissue. Conclusion: Spectral acquisition and reconstruction with a dual-layer detector represents the physical behavior of iodine as expected and accurately quantifies the material concentration. This should permit a

  15. Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers

    International Nuclear Information System (INIS)

    Baek, Seung-heon Chris; Seo, Yu-Jin; Oh, Joong Gun; Albert Park, Min Gyu; Bong, Jae Hoon; Yoon, Seong Jun; Lee, Seok-Hee; Seo, Minsu; Park, Seung-young; Park, Byong-Guk

    2014-01-01

    In this paper, we report the alleviation of the Fermi-level pinning on metal/n-germanium (Ge) contact by the insertion of multiple layers of single-layer graphene (SLG) at the metal/n-Ge interface. A decrease in the Schottky barrier height with an increase in the number of inserted SLG layers was observed, which supports the contention that Fermi-level pinning at metal/n-Ge contact originates from the metal-induced gap states at the metal/n-Ge interface. The modulation of Schottky barrier height by varying the number of inserted SLG layers (m) can bring about the use of Ge as the next-generation complementary metal-oxide-semiconductor material. Furthermore, the inserted SLG layers can be used as the tunnel barrier for spin injection into Ge substrate for spin-based transistors.

  16. Passivation layer of Si/Li ionizing radiation detectors

    International Nuclear Information System (INIS)

    Vidra, M.; Reznicek, L.

    1992-01-01

    The proposed passivating layer of Si/Li ionizing radiation detectors ensures a good long-time stability of their volt-ampere characteristics and noise properties. The layer can be applied to protect the detector junction surface in systems cyclically cooled to liquid nitrogen temperature, and in preamplifier feedback optoelectronics to prevent light from entering into the detector. The passivating layer is obtained by evaporating solvent from a cured suspension of boron nitride or aluminium oxide powder in a solution containing piceine and a nonpolar solvent such as toluene. The weight proportions are 1 to 8 parts of piceine, 3 to 9 parts of boron nitride or aluminium oxide, and 1 to 10 parts of the nonpolar solvent. (Z.S.)

  17. Interplay between the Lorentz Angle drift and residual mean biases in the IBL of the ATLAS detector

    CERN Document Server

    Verschuuren, Pim Jordi

    2018-01-01

    Dedicated studies on the performance of the Inner Detector are conducted to ensure an optimal track reconstruction of the particles created by the proton-proton collisions in the ATLAS detector at the LHC. In 2015 the insertable B-Layer was added to the Inner Detector as the new layer closest to the beam pipe. This extra addition was placed in 2014 during Long Shutdown 1 and was necessary because of the expected decrease in B-tagging efficiency and vertexing precision associated with the revision of the luminosity profile evolution at the LHC. The initial Pixel detector, the 3 most inner layers of the ID excluding the IBL, were build for a luminosity of 10^{34}cm^{−2}s^{−1} while the expected luminosity for Run-2 was higher[1]. The new IBL would help to preserve the tracking performance needed in the new high luminosity regions that we are approaching. This paper describes a study of the IBL Lorentz Angle, residual mean biases and possible correlation between these two to improve the tracking performance...

  18. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  19. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  20. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    Science.gov (United States)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  1. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  2. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  3. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  4. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Kim, Y.K.; Hwang, J.Y.; Yim, H.I.; Rhee, J.R.; Kim, T.W.

    2007-01-01

    Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic Ni 16 Fe 62 Si 8 B 14 free layers, were investigated. NiFeSiB has a lower saturation magnetization (M s : 800 emu/cm 3 ) than Co 90 Fe 10 and a higher anisotropy constant (K u : 2700 erg/cm 3 ) than Ni 80 Fe 20 . By increasing the free layer thickness, the tunnel magnetoresistance (TMR) ratio of up to 41% was achieved and it exhibited a much lower switching field (H sw ) than the conventionally used CoFe free layer MTJ. Furthermore, by inserting a thin CoFe layer (1 nm) at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were enhanced

  5. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    Science.gov (United States)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  6. Evaluation of PET performance and MR compatibility of a preclinical PET/MR insert with digital silicon photomultiplier technology

    Energy Technology Data Exchange (ETDEWEB)

    Hallen, Patrick; Schug, David; Wehner, Jakob [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Weissler, Bjorn [Department of Chemical Application Research, Philips Research (Germany); Gebhardt, Pierre [Division of Imaging Sciences and Biomedical Engineering, King’s College London (United Kingdom); Goldschmidt, Benjamin [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Salomon, Andre [Department of Oncology Solutions, Philips Research (Germany); Duppenbecker, Peter [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Kiessling, Fabian [Institute for Experimental Molecular Imaging, RWTH Aachen University (Germany); Schultz, Volkmar [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany)

    2015-05-18

    In this work we present detailed characterizations of our preclinical high resolution PET/MR insert based on the Hyperion-IID platform. The PET/MR insert consists of a ring of 10 singles detection modules, each comprising 2x3 scintillation detector stacks. Each detector stack features a 30x30 pixelated LYSO crystal array with a height of 12 mm and a pitch of 1 mm, coupled via a slit 2 mm light guide to a digital SiPM tile. The PET performance is stable under a wide range of operating points. The spatial resolution is below 1Ä,mm and the CRT reaches 260 or 450 ps depending on trigger settings. The energy resolution is 12.6% FWHM. The characterization of the MR compatibility showed no relevant degradation in PET performance during MRI operation. On the MRI side, we observe a degradation in B0 homogeneity from a VRMS of 0.03 ppm to 0.08 ppm with active shimming, while observing only minor degradations in the B0 field. The noise floor is slightly increased by 2-15% without any observable dependence on the activity. The Z gradients induces an observable eddy current inside the PET inserts which can lead to ghosting artifacts for EPI sequences. However, we don't observe any visible image degradation for widely used anatomical imaging sequences such as gradient echo and turbo spin echo sequences. To prove the viability of our PET/MR insert for in vivo small animal studies, we successfully performed a longitudinal mouse study with subcutaneously injected tumor model cells. The simultaneously acquired PET/MR images provide a high level of anatomical information and soft tissue contrast in the MR layer together with a high resolution image of the FDG tracer distribution in the PET layer.

  7. Studies of the ATLAS Inner Detector material using $\\sqrt{s}=$13 TeV $pp$ collision data

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The ATLAS Inner Detector comprises three different technologies: the Pixel detector (Pixel), the silicon strip tracker (SCT), and the transition radiation drift tube tracker (TRT). The material in the ATLAS Inner Detector is studied with several methods, using the $pp$ collision sample collected at $\\sqrt{s}=$13 TeV in 2015. The material within the innermost barrel regions of the ATLAS Inner Detector is studied using reconstructed hadronic interaction and photon conversion vertices from samples of minimum bias events. It was found that the description of the Insertable B-Layer, which is the new, innermost Pixel layer installed in 2014, in the geometry model was missing some material components. After updating the model, data and simulation show good agreement at the barrel region. The Pixel services (cables, cooling pipes, support trays) were modified between the Pixel and SCT detectors in 2014. The material in this region is also studied by investigating the efficiency with which tracks reconstructed only in...

  8. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    Science.gov (United States)

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P  0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  9. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  10. Performance of B-10 based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Mathieu; Anderson, Tom; Johnson, Nathan; Mckinny, Kevin; Mcpheeters, Matthew [GE Measurement and Control - Reuter-Stokes, Twinsburg, Ohio (United States)

    2015-07-01

    Helium-3 gas-filled detectors have been used in nuclear safeguards applications, in homeland security neutron detection modules and in research for over 30 years. With the current shortage of {sup 3}He gas, GE's Reuter-Stokes business developed a {sup 10}B lined proportional counter and a {sup 10}B hybrid detector, in which a small amount of {sup 3}He is added to a 10B detector to enhance the neutron sensitivity. In 2010, GE's Reuter-Stokes successfully developed a commercial alternative to 3He gas-filled detectors for homeland security neutron detection modules based on 10B lined proportional counters. We will present the concept behind the {sup 10}B neutron detection modules, as drop-in replacement to existing 3He neutron detection modules deployed, and the timeline and development needed to get a fully commercial application. To ensure the highest quality, each {sup 10}B neutron detection unit is put through a series of tests: temperature cycles from -40 deg. C to +55 deg. C, vibration testing at levels up to 2.5 g from 10 Hz to 50 Hz in every direction, neutron sensitivity reaching up to 4.5 cps/(ng {sup 252}CF at 2 m), and gamma insensitivity with field reaching 1 Sv/hr. In 2013, GE's Reuter-Stokes developed the B10Plus+{sup R} detector, in which a small amount of {sup 3}He is added to a {sup 10}B lined proportional counter. Depending on the amount of {sup 3}He added, the B10Plus+{sup R} can more than double the neutron sensitivity compared to a {sup 10}B lined proportional counter. {sup 10}B lined proportional counters and B10Plus+{sup R} have excellent gamma rejection and excellent performance even at very high neutron flux. The gamma rejection and high neutron flux performance of these detectors are comparable, if not better, than traditional {sup 3}He proportional counters. GE's Reuter-Stokes business modelled, designed, built and tested prototype coincidence counters using the {sup 10}B lined detectors and the {sup 10}B hybrid

  11. Irradiation induced effects in the FE-I4 front-end chip of the ATLAS IBL detector

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) detector was installed into the ATLAS experiment in 2014 and has been in operation since 2015. During the first year of IBL data taking an increase of the low voltage currents produced by the FE-I4 front-end chip was observed and this increase was traced back to the radiation damage in the chip. The dependence of the current on the total-ionising dose and temperature has been tested with Xray and proton irradiations and will be presented in this paper together with the detector operation guidelines.

  12. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    International Nuclear Information System (INIS)

    Gabrielli, A.; Balbi, G.; Falchieri, D.; Lama, L.; Travaglini, R.; Backhaus, M.; Bindi, M.; Chen, S.P.; Hauck, S.; Hsu, S.C.; Flick, T.; Wensing, M.; Kretz, M.; Kugel, A.

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014

  13. nBn Infrared Detector Containing Graded Absorption Layer

    Science.gov (United States)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  14. B-factory detectors

    International Nuclear Information System (INIS)

    Marlow, D.R.

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B 0 →J/ΨK S decays and related modes

  15. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  16. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Vacavant, L.

    1997-06-01

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c 2 . A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (m H = 100 GeV/c 2 ), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: R g =39±5 R u = 60 ± 9 R s = 38 ± 5 R c = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  17. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  18. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  19. Comparison of single and dual layer detector blocks for pre-clinical MRI–PET

    International Nuclear Information System (INIS)

    Thompson, Christopher; Stortz, Greg; Goertzen, Andrew; Berg, Eric; Retière, Fabrice; Kozlowski, Piotr; Ryner, Lawrence; Sossi, Vesna; Zhang, Xuezhu

    2013-01-01

    Dual or multi-layer crystal blocks have been proposed to minimise the radial blurring effect in PET scanners with small ring diameters. We measured two potential PET detector blocks' performance in a configuration which would allow 16 blocks in a ring which could be inserted in a small animal 7T MRI scanner. Two crystal sizes, 1.60×1.60 mm 2 and 1.20×1.20 mm 2 , were investigated. Single layer blocks had 10 or 12 mm deep crystals, the dual layer blocks had 4 mm deep crystals on the top layer and 6 mm deep crystals on the bottom layer. The crystals in the dual layer blocks are offset by ½ of the crystal pitch to allow for purely geometric crystal identification. Both were read out with SensL 4×4 SiPM arrays. The software identifies 64 crystals in the single layer and either 85 or 113 crystals in the dual layer array, (either 49 or 64 in the lower layers and 36 or 49 in the upper layers). All the crystals were clearly visible in the crystal identification images and their resolvability indexes (average FWHM/crystal separation) were shown to range from 0.29 for the best single layer block to 0.33 for the densest dual layer block. The best coincidence response FWHM was 0.95 mm for the densest block at the centre of the field. This degraded to 1.83 mm at a simulated radial offset of 16 mm from the centre, while the single layer crystals blurred this result to 3.4 mm. The energy resolution was 16.4±2.2% averaged over the 113 crystals of the densest block

  20. Si(Li) detectors with thin dead layers for low energy x-ray detection

    International Nuclear Information System (INIS)

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or ''dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si Kα absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO 2 at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab

  1. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  2. A multilayer surface detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoffbauer, M.A.; Morris, C.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B.; Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Bacon, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blatnik, M. [Cleveland State University, Cleveland, OH 44115 (United States); Brandt, A.E. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J.; Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Gao, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hickerson, K.P. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Holley, A.T. [Tennessee Technological University, Cookeville, TN 38505 (United States); Ito, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, C.-Y. [Indiana University, Bloomington, IN 47405 (United States); and others

    2015-10-21

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top {sup 10}B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the {sup 10}B layer is a few microns thick, which is sufficient to detect the charged particles from the {sup 10}B(n,α){sup 7}Li neutron-capture reaction, while thin enough that ample light due to α and {sup 7}Li escapes for detection by photomultiplier tubes. A 100-nm thick {sup 10}B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing {sup 3}He and {sup 10}B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  3. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  4. Charged-Particle Distributions and Material Measurements in $\\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS Inner Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00403090; Schioppa, Marco

    The Run 2 of the Large Hadron Collider, which began in Spring 2015, offers new challenges to the Experiments with its unprecedented energy scale and high luminosity regime. To cope with the new experimental conditions, the ATLAS Experiment was upgraded during the first long shutdown of the collider, in the period 2013-2014. The most relevant change which occurred in the ATLAS Inner Detector was the installation of a fourth pixel layer, the Insertable B-Layer, at a radius of 33 mm together with a new thinner beam pipe. The pixel services, located between the pixel detector and the semiconductor strip tracker, were also modified. Owing to the radically modified Inner Detector layout, many aspects of the track reconstruction programs had to be re-optimised. In this thesis, the improvements to the tracking algorithms and the studies of the material distribution in the Inner Detector are described in detail, together with the improvements introduced in the geometry model description in simulation as well as the re...

  5. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Choi, Yong; Cho, Gyuseong; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-01-01

    A positron emission tomograph dedicated to small animal imaging should have high spatial resolution and sensitivity, and dual layer scintillators have been developed for this purpose. In this study, simulations were performed to optimize the order and the length of each crystal of a dual layer phoswich detector, and to evaluate the possibility of measuring signals from each layer of the phoswich detector. A simulation tool GATE was used to estimate the sensitivity and resolution of a small PET scanner. The proposed scanner is based on dual layer phoswich detector modules arranged in a ring of 10 cm diameter. Each module is composed of 8 x 8 arrays of phoswich detectors consisting of LSO and LuYAP with a 2 mm x 2 mm sensitive area coupled to a Hamamatsu R7600-00-M64 PSPMT. The length of the front layer of the phoswich detector varied from 0 to 10 mm at 1 mm intervals, and the total length (LSO + LuYAP) was fixed at 20 mm. The order of the crystal layers of the phoswich detector was also changed. Radial resolutions were kept below 3.4 mm and 3.7 mm over 8 cm FOV, and sensitivities were 7.4% and 8.0% for LSO 5 mm-LuYAP 15 mm, and LuYAP 6 mm-LSO 14 mm phoswich detectors, respectively. Whereas, high and uniform resolutions were achieved by using the LSO front layer, higher sensitivities were obtained by changing the crystal order. The feasibilities for applying crystal identification methods to phoswich detectors consisting of LSO and LuYAP were investigated using simulation and experimentally derived measurements of the light outputs from each layer of the phoswich detector. In this study, the optimal order and lengths of the dual layer phoswich detector were derived in order to achieve high sensitivity and high and uniform radial resolution

  6. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Melvin David; Kim, Hyunki [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806 (Korea, Republic of); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of)

    2015-05-15

    Highlights: • Ni-embedding transparent conductor effectively reduces the resistivity. • Ni insertion improves the carrier mobility and collection efficiencies. • ITO/Ni/AZO is effective to improve photo-responses compared to ITO/AZO. - Abstract: A thin Ni layer of 5 nm thickness was deposited in between indium-tin-oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers of 50 nm thickness each. The Ni inserting tri-layer structure (ITO/Ni/AZO) showed lower resistivity of 5.51 × 10{sup −4} Ωcm which is nearly 20 times lesser than 97.9 × 10{sup −4} Ωcm of bilayer structure (ITO/AZO). A thin Ni layer in between ITO and AZO enhanced the carrier concentration, mobility and photoresponse behaviors so that figure of merit (FOM) value of ITO/Ni/AZO device was greater than that of ITO/AZO device. ITO/Ni/AZO structure showed improved quantum efficiencies over a broad range of wavelengths (∼350–950 nm) compared to that of ITO/AZO bilayer structure, resulting in enhanced photoresponses. These results show that the optical, electrical and photoresponse properties of ITO/AZO structure could be enhanced by inserting Ni layer of 5 nm thickness in between ITO and AZO layers.

  7. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  8. ATLAS inner detector: the Run 1 to Run 2 transition, and first experience from Run 2

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment is equipped with a tracking system, the Inner Detector, built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded; taking advantage of the long showdown, the Pixel Detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm from the beam axis. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point and the increase of Luminosity that LHC will face in Run-2, a new read-out chip within CMOS 130nm and two different silicon sensor pixel technologies (planar and 3D) have been developed. SCT and TRT systems consolidation was also carri...

  9. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  10. A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers

    CERN Document Server

    Di Mauro, Antonio; Martinengo, Paolo; Napri, Eugenio; Peskov, Vladimir; Periale, Luciano; Picchi, P.; Pietropaolo, Francesco; Rodionov, I.

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers: CuO or CrO. These detectors can operate stably at gains close to 10E5 and they are very robust. We discovered that the cathodes of these detectors could be coated by CsI layers and in such a way the detectors gain high efficiency for the UV photons. We also demonstrated that such detectors can operate stably in the cascade mode and high overall gains (~10E6) are reachable. This opens applications in several areas, for example in RICH or in noble liquid TPCs. Results from the first applications of these devices for UV photon detection at room and cryogenic temperatures are given.

  11. The Read-Out Driver (ROD) card for the ATLAS experiment: commissioning for the IBL detector and upgrade studies for the Pixel Layers 1 and 2

    CERN Document Server

    Travaglini, R; The ATLAS collaboration; Bindi, M; Falchieri, D; Gabrielli, A; Lama, L; Chen, S P; Hsu, S C; Hauck, S; Kugel, A; Flick, T; Wensing, M

    2013-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called Insertable B-layer (IBL). IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered in order to perform tests with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this contribution both setups and results will be described, as well as preliminary studies on changes in order to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  12. The Influence Of Dead Layer Effect On The Characteristics Of The High Purity Germanium P-Type Detector

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    2011-01-01

    The present work aims at reviewing the studies of the influence of dead layer effect on the characteristics of a high purity germanium (HPGe) p-type detector, obtained by the author and his colleagues in the recent years. The object for study was the HPGe GC1518 detector-based gamma spectrometer of the Center for Nuclear Techniques, Ho Chi Minh City. The studying problems were: The modeling of an HPGe detector-based gamma spectrometer with using the MCNP code; the method of determining the thickness of dead layer by experimental measurements of gamma spectra and the calculations using MCNP code; the influence of material parameters and dead layer on detector efficiency; the increase of dead layer thickness over the operating time of the GC1518 detector; the influence of dead layer thickness increase on the decrease of detector efficiency; the dead layer effect for the gamma spectra measured in the GC1518 detector. (author)

  13. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  14. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  15. Functional fluorescent protein insertions in herpes simplex virus gB report on gB conformation before and after execution of membrane fusion.

    Directory of Open Access Journals (Sweden)

    John R Gallagher

    2014-09-01

    Full Text Available Entry of herpes simplex virus (HSV into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.

  16. Study of a scintillation neutron detector of {sup 1O}B+ZnS(Ag) as alternative to the {sup 3}He detectors: model MCNPX and validation; Estudio de un detector de neutrones de centelleo de {sup 10}B+ZnS(Ag) como alternativa a los detectores de {sup 3}He: modelo MCNPX y validacion

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Gallego D, E.; Lorente F, A.; Ibanez F, S. [Universidad Politecnica de Madrid, Departamento de Ingenieria Energetica, E.T.S. Ing. Industriales, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Mendez V, R. [CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Gonzalez, J. A., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Politecnica de Madrid, Laboratorio de Ingenieria Nuclear, ETSI Caminos, Canales y Puertos, Ciudad Universitaria, C. Profesor Aranguren 3, 28040 Madrid (Spain)

    2015-10-15

    Using Monte Carlo methods with the code MCNPX, was estimated the response of a scintillation neutron detector of Zn S(Ag) with a mixture of {sup 10}B high enrichment. The detector consists of four plates of Poly (methyl methacrylate) (PMMA) and five layers of ∼0, 017 cm {sup 10}B+ZnS(Ag) in contact with PMMA. The naked detector response was calculated and with different thicknesses of high density polyethylene moderator, for 29 monoenergetic sources and for sources of {sup 241}AmBe and {sup 252}Cf of neutrons. In these calculations the reactions {sup 10}B(n,α){sup 7}Li and neutron fluence in the sensitive area of detector {sup 10}B+ZnS(Ag) were estimated. Measurements were performed in the Laboratory of Neutron Measurement to quantify detections in counts per second to a neutron source of {sup 252}Cf to 200 cm on the bench, modeling with MCNPX, these measures were compared to validate the model and the Zn S(Ag) efficiency of α detection was estimated. Calculations in the LPN-CIEMAT were realized. Starting from the validation new models were carried out with geometries that improve the detector response, trying reaching the detection of 2, 5 cps-ng of {sup 252}Cf comparable requirement for responding to the installed equipment of {sup 3}He in the radiation portal monitor. This type of detector can be considered an alternative to detectors of {sup 3}He for detecting special nuclear material. (Author)

  17. Observation of meander pattern in signals from superconducting MgB{sub 2} detector by scanning pulsed laser imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takekazu, E-mail: ishida@center.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Yagi, Ikutaro; Yoshioka, Naohito; Huy, Ho Thanh [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Yotsuya, Tsutomu [Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 2-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Shimakage, Hisashi [Department of Electrical and Electronic Engineering, College of Engineering, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Miki, Shigehito [Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2429 (Japan); Wang, Zhen [Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2429 (Japan)

    2013-01-15

    Highlights: ► We fabricate a superconducting MgB{sub 2} meander detector as a solid-state neutron detector. ► MgB{sub 2} detector uses XYZ stage, optical fiber and focused lens to scan as a microscope. ► The 6 μm line-and-space in meandering pattern can be resolved in signals against pulsed laser. -- Abstract: Superconducting MgB{sub 2} meander detector has been imaged by scanning a spot of 1.5-μm focused pulsed laser. The superconducting detector using high-quality {sup 10}B-enriched MgB{sub 2} thin films at higher operating temperatures has been fabricated to utilize a resistance change induced by the nuclear energy of {sup 10}B and neutron. The MgB{sub 2} detector consists of a 200-nm-thick MgB{sub 2} thin-film meander line, a 300-nm-thick SiO protective layer, and 150-nm-thick Nb electrodes with 1-μm MgB{sub 2} wires. The devices were placed in a 4 K refrigerator to control at a certain temperature below T{sub c}. A scanning laser spot can be used by the combination of the XYZ piezo-drive stage and an optical fibre with an aspheric focused lens. The measurement system is fully controlled by LabVIEW based software. We succeeded in observing a line-and-space image of a meandering pattern by analysing response signals.

  18. Improvement of thick a-Si radiation detectors by field profile tailoring

    International Nuclear Information System (INIS)

    Drewery, J.S.; Cho, G.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D.

    1992-04-01

    Application of thick (∼50 μm) a-Si p-i-n diodes as a direct radiation detector for minimum ionizing particles is hampered by the need to apply large bias voltages in order fully to deplete the detecting intrinsic layer, which typically contains 5 - 10 x 10 14 ionizable dangling bonds per CM 3 . By insertion of thin p-type layers at intervals within the intrinsic layer, the required depletion voltage can be reduced by a factor of at least 1/(n+l) where n is the number of layers inserted. This principle is demonstrated for devices approximately 12μm in thickness. It is shown that electron losses within the p type layer can be kept to minimum by choice of a low doping concentration for the introduced players

  19. The thermal neutron detection using 4H-SiC detectors with 6LiF conversion layer

    International Nuclear Information System (INIS)

    Zatko, B.; Bohacek, P.; Sekacova, M.; Arbet, J.; Sagatova, A.; Necas, V.

    2016-01-01

    In this paper we have examined 4H-SiC detector using a thermal neutron source and studied its detection properties. The detector was exposed to neutrons generated by 238 Pu-Be radiation source. The detection properties of 4H-SiC detectors were evaluated considering the use of the 6 LiF conversion. We prepared 4H-SiC Schottky contact detectors based on high-quality of epitaxial layer. The current-voltage characteristic show operating region between 100 V and 400 V. The detector was connected to the spectrometric set-up and used for detection of alpha particles from 241 Am. Following the 6 LiF conversion layer was applied on the Schottky contact of detector and the detection of thermal neutrons was performed. We are able to resolve alpha particles and tritons which are products of nuclear reaction between thermal neutrons and conversion layer. Also bare detector was used for neutron detection to clearly show significant influence of the used conversion layer.(authors)

  20. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  1. Simulation of the depletion voltage evolution of the ATLAS Pixel Detector

    CERN Document Server

    Beyer, Julien-christopher; The ATLAS collaboration

    2017-01-01

    The ATLAS Pixel detector has been operating since 2010 and consists of hybrid pixel modules where the sensitive elements are planar n-in-n sensors. In order to investigate and predict the evolution of the depletion voltage and of the leakage current in the different layers, a fully analytical implementation of the Hamburg model was derived. The parameters of the model, describing the dependence of the depletion voltage (U_depl) on fluence, temperature and time were tuned with a fit to the available measurements of Udepl in the last years of operation. A particular emphasis is put on the B-Layer, where the highest fluence has been accumulated up to now. A precise input of temperature and radiation dose is generated from the on-module temperature monitoring and the luminosity data. The analysis is then also extended to the Insertable B-Layer (IBL), installed at the end of Run-1, where we expect the fastest evolution of the radiation damage with luminosity, due to its closer position to the interaction point. Di...

  2. Monte Carlo simulation of a four-layer DOI detector with relative offset in animal PET

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Hwang, Ji Yeon; Baek, Cheol-Ha; Lee, Seung-Jae; Ito, Mikiko; Lee, Jae Sung; Hong, Seong Jong

    2011-01-01

    We have built a four-layer detector to obtain depth of interaction (DOI) information in which all four layers have a relative offset of half a crystal pitch with each other. The main characteristics of the detector, especially the energy and spatial resolutions, strongly depend on the crystal surface treatments. As a part of the development of an animal PET, we have investigated the effect of crystal surface treatment on detector performances using Monte Carlo simulations in order to optimize the surface conditions of crystals composing a four-layer detector. The proposed detector consists of four LYSO layers with crystal dimensions of 1.5x1.5x7.0 and 1.5x1.5x5.0 mm 3 . A simulation tool (DETECT2000) was used and validated against the experimental results; flood images were acquired by a prototype module. Flood images were simulated by varying the surface treatment of the crystals. The optimal surface conditions of the four-layer crystals were derived for a small animal PET with a view towards achieving high sensitivity, as well as high and uniform radial resolution.

  3. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  4. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hamersvelt, Robbert W. van; Willemink, Martin J.; Jong, Pim A. de; Schilham, Arnold M.R.; Leiner, Tim [University Medical Center Utrecht, Department of Radiology, P.O. Box 85500, Utrecht (Netherlands); Milles, Julien [CT Clinical Science, Philips HealthCare, Best (Netherlands); Vlassenbroek, Alain [CT Clinical Science, Philips HealthCare, Brussels (Belgium)

    2017-09-15

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. (orig.)

  5. Effect of an interface Mg insertion layer on the reliability of a magnetic tunnel junction based on a Co{sub 2}FeAl full-Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungmin; Kil, Gyuhyun; Lee, Gaehun; Choi, Chulmin; Song, Yunheub [Hanyang University, Seoul (Korea, Republic of); Sukegawa, Hiroaki; Mitani, Seiji [National Institute for Materials Science, Ibaraki (Japan)

    2014-04-15

    The reliability of a magnetic tunnel junction (MTJ) based on a Co{sub 2}FeAl (CFA) full-Heusler alloy with a MgO tunnel barrier was evaluated. In particular, the effect of a Mg insertion layer under the MgO was investigated in view of resistance drift by using various voltage stress tests. We compared the resistance change during constant voltage stress (CVS) and confirmed a trap/detrap phenomenon during the interval stress test for samples with and without a Mg insertion layer. The MTJ with a Mg insertion layer showed a relatively small resistance change for the CVS test and a reduced trap/detrap phenomenon for the interval stress test compared to the sample without a Mg insertion layer. This is understood to be caused by the improved crystallinity at the bottom of the CFA/MgO interface due to the Mg insertion layer, which provides a smaller number of trap site during the stress test. As a result, the interface condition of the MgO layer is very important for the reliability of a MTJ using a full-Heusler alloy, and the the insert of a Mg layer at the MgO interface is expected to be an effective method for enhancing the reliability of a MTJ.

  6. Effect of CuPc layer insertion on the memory performance of CdS nanocomposite diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K., E-mail: surya@pu.ac.in; Kaur, Ramneek; Jyoti

    2016-09-15

    Highlights: • CdS nanocomposite as an active layer investigated for memory device application. • Effect of copper phthalocyanine layer insertion on the memory performance studied. • Bipolar switching behaviour with high ON/OFF ratio ∼1.4 × 10{sup 4}. • Series resistance and interface states dominate the electrical properties of the device. - Abstract: In the present work, semiconductor diodes with CdS nanocomposite as an active layer have been fabricated and investigated for memory device applications. The effect of copper phthalocyanine (CuPc) layer insertion between the bottom electrode and CdS nanocomposite has been studied. I–V characteristics show electrical hysteresis behaviour vital for memory storage application. The as-fabricated devices exhibit bipolar switching behaviour with OFF to ON state transition at positive bias and vice versa. Device with CuPc layer exhibits I{sub ON}/I{sub OFF} ratio ∼ 1.4 × 10{sup 4}. Possible conduction mechanism has been described on the basis of theoretical current conduction models. The frequency dispersion capacitance, series resistance and conductance of the devices have been studied and discussed. At low frequency, the series resistance and the interface states dominate the electrical properties of the device. The results indicate that the multilayered devices open up the possibility of new generation non-volatile memory devices with low cost, high density and stability.

  7. The in-beam tracking detectors for R3B

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, Stefanos; Johansen, Jacob; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); Heil, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, Thomas [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Krivshich, Anatoly [PNPI St. Petersburg, 188300 Gatchina (Russian Federation); Collaboration: R3B-Collaboration

    2015-07-01

    The R3B experiment is part of the NUSTAR pillar at FAIR. One of the great strengths of the R3B experiment is the kinematically complete measurement of reactions with exotic ions with energies of up to 1 AGeV. Key components of the R3B experiment are the neutron detector NeuLAND, the γ and charge-particle calorimeter CALIFA, the Si Tracker and the in-beam tracking detectors. A cornerstone instrument of the setup is the new dipole magnet (GLAD) which bends and momentum analyses the high-rigidity beams. A precise tracking of the charged particles through the magnetic field is crucial to resolve the masses of heavy ions and measure the momentum of the fragments with high resolution. In this contribution we present the technical design details of the in-beam tracking detectors that will be used in the R3B experiment together with recent results obtained from in-beam prototype testing. In particular, we discuss Si detectors, detectors based on plastic-scintillator fibers and paddles, straw-tube gas detectors and the overall performance of the system.

  8. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  9. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  10. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    V. B. Naik

    2012-12-01

    Full Text Available We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB free layer (FL on magnetic and tunneling magnetoresistance (TMR properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA. It is found that the critical thickness (tc to sustain PMA is doubled (tc = 2.6 nm in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm. While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  11. The ALFA Roman Pot Detectors of ATLAS

    CERN Document Server

    Abdel Khalek, S.

    2016-11-23

    The ATLAS Roman Pot system is designed to determine the total proton-proton cross-section as well as the luminosity at the Large Hadron Collider (LHC) by measuring elastic proton scattering at very small angles. The system is made of four Roman Pot stations, located in the LHC tunnel in a distance of about 240~m at both sides of the ATLAS interaction point. Each station is equipped with tracking detectors, inserted in Roman Pots which approach the LHC beams vertically. The tracking detectors consist of multi-layer scintillating fibre structures readout by Multi-Anode-Photo-Multipliers.

  12. Ultracold neutron detectors based on {sup 10}B converters used in the qBounce experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, Tobias, E-mail: tjenke@ati.ac.at [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Cronenberg, Gunther; Filter, Hanno [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Klein, Martin [Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Lauer, Thorsten [FRM II, TU München, Lichtenbergstraße 1, 85748 Garching (Germany); Mitsch, Kevin [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Saul, Heiko [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); FRM II, TU München, Lichtenbergstraße 1, 85748 Garching (Germany); Seiler, Dominik [Physik Department, TU München, James-Franck-Straße, 85748 Garching (Germany); Stadler, David [Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Thalhammer, Martin [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Abele, Hartmut, E-mail: abele@ati.ac.at [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Physik Department, TU München, James-Franck-Straße, 85748 Garching (Germany)

    2013-12-21

    Gravity experiments with very slow, so-called ultracold neutrons connect quantum mechanics with tests of Newton's inverse square law at short distances. These experiments face a low count rate and hence need highly optimized detector concepts. In the frame of this paper, we present low-background ultracold neutron counters and track detectors with micron resolution based on a {sup 10}B converter. We discuss the optimization of {sup 10}B converter layers, detector design and concepts for read-out electronics focusing on high-efficiency and low-background. We describe modifications of the counters that allow one to detect ultracold neutrons selectively on their spin-orientation. This is required for searches of hypothetical forces with spin–mass couplings. The mentioned experiments utilize a beam-monitoring concept which accounts for variations in the neutron flux that are typical for nuclear research facilities. The converter can also be used for detectors, which feature high efficiencies paired with high spatial resolution of 1–2μm. They allow one to resolve the quantum mechanical wave function of an ultracold neutron bound in the gravity potential above a neutron mirror.

  13. The front-end chip of the SuperB SVT detector

    International Nuclear Information System (INIS)

    Giorgi, F.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Fabbri, L.; Gabrielli, A.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.; Morris, J.

    2013-01-01

    The asymmetric e + e − collider SuperB is designed to deliver a high luminosity, greater than 10 36 cm −2 s −1 , with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. The innermost detector is the Silicon Vertex Tracker which is made of 5 layers of double sided silicon strip sensors plus a layer 0, that can be equipped with short striplets detectors in a first phase of the experiment. In order to achieve an overall track reconstruction efficiency above 98% it is crucial to optimize both analog and digital readout circuits. The readout architecture being developed for the front-end chips will be able to cope with the very high rates expected in the first layer. The digital readout will be optimized to be fully efficient for hit rates up to 2 MHz/strip, including large margins on the maximum expected background rates, but can potentially accommodate higher rates with a proper tuning of the buffer depth. The readout is based on a triggered architecture where each of the 128 strip channel is provided with a dedicated digital buffer. Each buffer collects the digitized charge information by means of a 4-bit TOT, storing it in conjunction with the related time stamp. The depth of buffers was dimensioned considering the expected trigger latency and hit rate including suitable safety margins. Every buffer is connected to a highly parallelized circuit handling the trigger logic, rejecting expired data in the buffers and channeling the parallel stream of triggered hits to the common output of the chip. The presented architecture has been modeled by HDL language and investigated with a Monte Carlo hit generator emulating the analog front-end behavior. The simulations showed that even applying the highest stressing conditions, about 2 MHz per strip, the efficiency of the digital readout remained above 99.8%

  14. Facile insertion of a cyclic alkyl(amino) carbene carbon into the B-B bond of diboron(4) reagents.

    Science.gov (United States)

    Eichhorn, Antonius F; Kuehn, Laura; Marder, Todd B; Radius, Udo

    2017-10-24

    We report herein the room temperature insertion of the carbene carbon atom of the cyclic (alkyl)(amino) carbene cAAC Me into the B-B single bonds of the diboron(4) compounds B 2 pin 2 , B 2 cat 2 , B 2 neop 2 , and B 2 eg 2 (pin = pinacolato, cat = catecholato, neop = neopentylglycolato, eg = ethyleneglycolato).

  15. Characterization of the relationship between APOBEC3B deletion and ACE Alu insertion.

    Directory of Open Access Journals (Sweden)

    Kang Wang

    Full Text Available The insertion/deletion (I/D polymorphism of the angiotensin converting enzyme (ACE, commonly associated with many diseases, is believed to have affected human adaptation to environmental changes during the out-of-Africa expansion. APOBEC3B (A3B, a member of the cytidine deaminase family APOBEC3s, also exhibits a variable gene insertion/deletion polymorphism across world populations. Using data available from published reports, we examined the global geographic distribution of ACE and A3B genotypes. In tracking the modern human dispersal routes of these two genes, we found that the variation trends of the two I/D polymorphisms were directly correlated. We observed that the frequencies of ACE insertion and A3B deletion rose in parallel along the expansion route. To investigate the presence of a correlation between the two polymorphisms and the effect of their interaction on human health, we analyzed 1199 unrelated Chinese adults to determine their genotypes and other important clinical characteristics. We discovered a significant difference between the ACE genotype/allele distribution in the A3B DD and A3B II/ID groups (P = 0.045 and 0.015, respectively, indicating that the ACE Alu I allele frequency in the former group was higher than in the latter group. No specific clinical phenotype could be associated with the interaction between the ACE and A3B I/D polymorphisms. A3B has been identified as a powerful inhibitor of Alu retrotransposition, and primate A3 genes have undergone strong positive selection (and expansion for restricting the mobility of endogenous retrotransposons during evolution. Based on these findings, we suggest that the ACE Alu insertion was enabled (facilitated by the A3B deletion and that functional loss of A3B provided an opportunity for enhanced human adaptability and survival in response to the environmental and climate challenges arising during the migration from Africa.

  16. ALGORITHMS FOR OPTIMIZATION OF SYSYTEM PERFORMANCE IN LAYERED DETECTION SYSTEMS UNDER DETECTOR COORELATION

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Heasler, Patrick G.; Daly, Don S.

    2010-01-01

    Almost all of the 'architectures' for radiation detection systems in Department of Energy (DOE) and other USG programs rely on some version of layered detector deployment. Efficacy analyses of layered (or more generally extended) detection systems in many contexts often assume statistical independence among detection events and thus predict monotonically increasing system performance with the addition of detection layers. We show this to be a false conclusion for the ROC curves typical of most current technology gamma detectors, and more generally show that statistical independence is often an unwarranted assumption for systems in which there is ambiguity about the objects to be detected. In such systems, a model of correlation among detection events allows optimization of system algorithms for interpretation of detector signals. These algorithms are framed as optimal discriminant functions in joint signal space, and may be applied to gross counting or spectroscopic detector systems. We have shown how system algorithms derived from this model dramatically improve detection probabilities compared to the standard serial detection operating paradigm for these systems. These results would not surprise anyone who has confronted the problem of correlated errors (or failure rates) in the analogous contexts, but is seems to be largely underappreciated among those analyzing the radiation detection problem - independence is widely assumed and experimental studies typical fail to measure correlation. This situation, if not rectified, will lead to several unfortunate results. Including overconfidence in system efficacy, overinvestment in layers of similar technology, and underinvestment in diversity among detection assets.

  17. The performance and development of the ATLAS Inner Detector Trigger

    International Nuclear Information System (INIS)

    Washbrook, A

    2014-01-01

    A description of the ATLAS Inner Detector (ID) software trigger algorithms and the performance of the ID trigger for LHC Run 1 are presented, as well as prospects for a redesign of the tracking algorithms in Run 2. The ID trigger HLT algorithms are essential for a large number of signatures within the ATLAS trigger. During the shutdown, modifications are being made to the LHC machine, to increase both the beam energy and luminosity. This in turn poses significant challenges for the trigger algorithms both in terms of execution time and physics performance. To meet these challenges the ATLAS HLT software is being restructured to run as a single stage rather than in the two distinct levels present during the Run 1 operation. This is allowing the tracking algorithms to be redesigned to make optimal use of the CPU resources available and to integrate new detector systems being added to ATLAS for post-shutdown running. Expected future improvements in the timing and efficiencies of the Inner Detector triggers are also discussed. In addition, potential improvements in the algorithm performance resulting from the additional spacepoint information from the new Insertable B-Layer are presented

  18. Tuning of Rashba/Dresselhaus Spin Splittings by Inserting Ultra-Thin InAs Layers at Interfaces in Insulating GaAs/AlGaAs Quantum Wells.

    Science.gov (United States)

    Yu, Jinling; Zeng, Xiaolin; Cheng, Shuying; Chen, Yonghai; Liu, Yu; Lai, Yunfeng; Zheng, Qiao; Ren, Jun

    2016-12-01

    The ratio of Rashba and Dresselhaus spin splittings of the (001)-grown GaAs/AlGaAs quantum wells (QWs), investigated by the spin photocurrent spectra induced by circular photogalvanic effect (CPGE) at inter-band excitation, has been effectively tuned by changing the well width of QWs and by inserting a one-monolayer-thick InAs layer at interfaces of GaAs/AlGaAs QWs. Reflectance difference spectroscopy (RDS) is also employed to study the interface asymmetry of the QWs, whose results are in good agreement with that obtained by CPGE measurements. It is demonstrated that the inserted ultra-thin InAs layers will not only introduce structure inversion asymmetry (SIA), but also result in additional interface inversion asymmetry (IIA), whose effect is much stronger in QWs with smaller well width. It is also found that the inserted InAs layer brings in larger SIA than IIA. The origins of the additional SIA and IIA introduced by the inserted ultra-thin InAs layer have been discussed.

  19. Time dependence of changes of two cartilage layers in anterior cruciate ligament insertion after resection on chondrocyte apoptosis and decrease in glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Sakane Masataka

    2009-12-01

    Full Text Available Abstract Background The purpose of this study is to clarify the differences in time-dependent histological changes (chondrocyte apoptosis and glycosaminoglycan (GAG layer thickness decrease between uncalcified fibrocartilage (UF and calcified fibrocartilage (CF layers at the anterior cruciate ligament (ACL insertion after ACL resection of rabbits. Methods Forty male Japanese white rabbits underwent ACL substance resection in the right knee (resection group and same operation without resection in the left knee (sham group. Animals were sacrificed 1, 2, 4 and 6 weeks after surgery. Results In the UF layer, the apoptosis rate in the resection group was significantly higher than that in the sham group at 1 and 2 weeks. The GAG layer thicknesses of the UF layer in the resection group at 1, 2, 4 and 6 weeks were lower than those in the sham group. In the CF layer, the apoptosis rate in the resection group was significantly higher than that in the sham group at 2 and 4 weeks. The GAG layer thickness of the CF layer in the resection group was lower than that in the sham group only at 6 weeks. Conclusion The increase in chondrocyte apoptosis rate preceded the decrease in GAG layer thickness in both layers. In the UF layer, the increase in chondrocyte apoptosis rate and the decrease in GAG layer thickness preceded those in the CF layer. Using a surviving ligament and minimizing a debridement of ACL remnant during ACL reconstruction may be important to maintain cartilage layers of ACL insertion. An injured ACL should be repaired before degenerative changes of the insertion occur.

  20. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    Science.gov (United States)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  1. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hamersvelt, Robbert W. van; Schilham, Arnold M.R.; Harder, Annemarie M. den; Leiner, Tim; Jong, Pim A. de; Willemink, Martin J. [University Medical Centre Utrecht, Department of Radiology, P.O. Box 85500, Utrecht (Netherlands); Engelke, Klaus [University of Erlangen-Nuernberg, Institute of Medical Physics, Erlangen (Germany); Keizer, Bart de [University Medical Centre Utrecht, Department of Nuclear Medicine, Utrecht (Netherlands); Verhaar, Harald J. [University Medical Centre Utrecht, Department of Geriatric Medicine, Utrecht (Netherlands)

    2017-10-15

    To investigate the accuracy of bone mineral density (BMD) quantification using dual-layer spectral detector CT (SDCT) at various scan protocols. Two validated anthropomorphic phantoms containing inserts of 50-200 mg/cm{sup 3} calcium hydroxyapatite (HA) were scanned using a 64-slice SDCT scanner at various acquisition protocols (120 and 140 kVp, and 50, 100 and 200 mAs). Regions of interest (ROIs) were placed in each insert and mean attenuation profiles at monochromatic energy levels (90-200 keV) were constructed. These profiles were fitted to attenuation profiles of pure HA and water to calculate HA concentrations. For comparison, one phantom was scanned using dual energy X-ray absorptiometry (DXA). At both 120 and 140 kVp, excellent correlations (R = 0.97, P < 0.001) were found between true and measured HA concentrations. Mean error for all measurements at 120 kVp was -5.6 ± 5.7 mg/cm{sup 3} (-3.6 ± 3.2%) and at 140 kVp -2.4 ± 3.7 mg/cm{sup 3} (-0.8 ± 2.8%). Mean measurement errors were smaller than 6% for all acquisition protocols. Strong linear correlations (R{sup 2} ≥ 0.970, P < 0.001) with DXA were found. SDCT allows for accurate BMD quantification and potentially opens up the possibility for osteoporosis evaluation and opportunistic screening in patients undergoing SDCT for other clinical indications. However, patient studies are needed to extend and translate our findings. (orig.)

  2. ATLAS Inner Detector Alignment Performance with February 2015 Cosmic Rays Data

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    Results of the first alignment of the new insertable B-Layer, which was installed during the first long shutdown, are presented. These results were obtained by using cosmic ray data collected in February 2015. Different alignment techniques have been used to improve the description of the detector geometry. After the alignment, biases in the track-to-hit residuals in cosmic ray data events have been corrected, and the improvement of the active modules resolution is quantified in terms of the Full Width Half Maximum figures of merit. The IBL global position has been determined at micron level with an averaged module resolution of 32 $\\mu$m along the most sensitive direction of the module. Track parameters resolution has been studied using reconstructed split tracks.

  3. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    International Nuclear Information System (INIS)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni; Kasap, Safa O.; Mainprize, James G.; Rowlands, J. A.; Smith, Charles; Tuemer, Tuemay; Verpakhovski, Vladimir; Yin Shi; Yaffe, Martin J.

    2007-01-01

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 μm and the blocking layer thicknesses varied from 1 to 51 μm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was ∼200 μm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk

  6. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Paoloni, E., E-mail: eugenio.paoloni@pi.infn.it [Università degli Studi di Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa (Italy); Comotti, D. [Università degli Studi di Bergamo (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università degli Studi di Bergamo (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy); Fabbri, L.; Gabrielli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Giorgi, F.; Pellegrini, G.; Sbarra, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Berra, A.; Lietti, D.; Prest, M. [Università dell' Insubria, Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Bevan, A. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Wilson, F. [STFC Rutherford Appleton Laboratory, Harwell, Oxford Didcot OX11 0QX (United Kingdom); Beck, G. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); and others

    2013-12-11

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm{sup 2} range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported.

  7. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Paoloni, E.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Fabbri, L.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.

    2013-01-01

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm 2 range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported

  8. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    Science.gov (United States)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  9. Characterization of detectors of neutrons from B+ZnS (Ag) as an alternative to 3He detectors

    International Nuclear Information System (INIS)

    Gonzalez, Juan A.; Suarez, Maria J.; Pujol, Luis; Lorente, Alfredo; Gallego, Eduardo

    2013-01-01

    The objective of this paper is to present the progress made in the design of prototypes for dynamic detection of neutron detectors based on scintillation of B + ZnS (Ag), which can replace existing 3 He detectors for the detection of illicit traffic of radioactive material and special nuclear material. These detectors B + ZnS (Ag) can be used, together with gamma detectors, PVT and NaI (Tl) also developed in the UPM. Two neutron detectors of different shapes and sizes were characterized using two neutron sources of 241 Am + Be. Were determined depth, overall efficiency, intrinsic efficiency and limit of detection. The results of these tests allow to verify that: 1) two cylindrical detectors B + ZnS (Ag) of 5x68 cm, or 4x15x132 cm rectangular detector can replace the cylindrical detector of 5x180 cm 3 He currently employed in the arcades. 2) the dynamic detection limit obtained is less than 20000 neutrons per second, when the sample becomes 2 m to 2m/s, with a probability of having no false positive or negative of the 99.99% 3) digital electronics eliminates interference from gamma emissions samples when their dose rate in the neutron detector is 65 μSv/h in less than factor 10 - 8, and keeps its detection limit and 4) two cylindrical detectors with two moderators of different thickness, of 25 to 50 mm of high density polyethylene, allow to measure the average energy of the neutrons

  10. A projective geometry lead fiber scintillator detector

    International Nuclear Information System (INIS)

    Paar, H.; Thomas, D.; Sivertz, M.; Ong, B.; Acosta, D.; Taylor, T.; Shreiner, B.

    1990-01-01

    The Superconducting Super Collider (SSC), presently under construction near Dallas, Texas requires highly sophisticated particle detectors. The energy and particle flux at the SSC are more than an order of magnitude higher than the highest machine located at the Fermi National Accelerator near Chicago. An important element of particle detectors for the SSC is the calorimeter. It measures a particle's energy by sampling its energy deposit in heavy material, such as (depleted) uranium or lead. The sampling medium must be interspersed with heavy absorber material. In the case of scintillating plastic, two methods are under consideration: plates and fibers. In the case of plates, a sandwich of scintillator plates and uranium plates is constructed. In the use of fibers (still in the prototype stage), 1 mm. diameter cylindrical scintillating fibers are inserted into grooves that are machined into lead layers. The layers are stacked and epoxied together to form the required geometrical shape of the detector. Lead and scintillating plastic sampling can meet the physics requirements of the detector. This has been shown in an R ampersand D program which is underway at the University of California at San Diego (UCSD), High Energy Physics Group. This R ampersand D is funded by the Department of Energy, High Energy Physics and SSC Divisions

  11. Studies of Inner Detector Layouts with 5 Pixel layers for the Phase-II Upgrade

    CERN Document Server

    Ludwig, A; The ATLAS collaboration; Garcia-Sciveres, M

    2013-01-01

    This note describes a study of Inner Detector layouts for the phase-II upgrade. Starting from the LOI layout the impact of adding a 5th pixel layer, and shortening the pixel and/or SCT barrel layers is studied.

  12. Numerical study of the particle transport in fast neutron detectors with conversion layer

    International Nuclear Information System (INIS)

    Sedlackova, K.; Zatko, B.; Necas, V.

    2012-01-01

    This paper deals with fast neutron and recoil proton transport simulation using statistical analysis of Monte Carlo radiation transport code (MCNPX). Its possibilities in the detector design and optimization are presented. MCNPX proved as a very advantageous self-contained simulation program for fast neutron and secondary proton tracking. Simulations of respective particle transport through conversion layer of HDPE and further in the active volume of detector let us to follow important characteristics as neutron/proton flux density, reaction rate of elastic scattering on hydrogen nuclei and deposited energy as well as their dependencies on incident neutron energy and conversion layer/active region thickness. The efficiency of neutrons to protons conversion has been calculated and its maximum was reached for 500 μm thick conversion layer. The minimum active region thickness has been estimated to be about 300 μm.(authors)

  13. Detector Development for the abBA Experiment.

    Science.gov (United States)

    Seo, P-N; Bowman, J D; Mitchell, G S; Penttila, S I; Wilburn, W S

    2005-01-01

    We have developed a new type of field-expansion spectrometer to measure the neutron beta decay correlations (a, b, B, and A). A precision measurement of these correlations places stringent requirements on charged particle detectors. The design employs large area segmented silicon detectors to detect both protons and electrons in coincidence. Other requirements include good energy resolution (electron-backscattering events, and nearly unity efficiency. We report results of testing commercially available surface-barrier silicon detectors for energy resolution and timing performance, and measurement of the dead-layer thickness of ion-implanted silicon detectors with a 3.2 MeV alpha source.

  14. Development of neutron detectors for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myungkook; Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Changhwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-10-15

    Various kinds of detectors are used in accordance with the experimental purpose, such as zero dimensional detector, 1-D or 2-D position-sensitive detectors. Most of neutron detectors use He-3 gas because of its high neutron sensitivity. Since the He-3 supply shortage took place in early 2010, various He-3 alternative detectors have been developed even for the other neutron application. We have developed a new type alternative detector on the basis of He-3 detector technology. Although B- 10 has less neutron detection efficiency compared with He-3, it can be covered by the use of multiple B-10 layers. In this presentation, we would like to introduce the neutron detectors under development and developed detectors. Various types of detector were successfully developed and result of the technical test performance is promising. Even though the detection efficiency of the B-10 detector lower than He-3 one, the continuous research and development is needed for currently not available He-3.

  15. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  16. Objective image characterization of a spectral CT scanner with dual-layer detector

    Science.gov (United States)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  17. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H.; Yoon, Seokryung [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, (Austria)

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  18. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    Viret, S.

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  19. Field profile tailoring in a-Si:H radiation detectors

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Quershi, S.; Wildermuth, D.; Street, R.A.

    1990-03-01

    The capability of tailoring the field profile in reverse-biased a-Si:H diodes by doping and/or manipulating electrode shapes opens a way to many interesting device structures. Charge collection in a-Si:H radiation detectors is improved for high LET particle detection by inserting thin doped layers into the i-layer of the usual p-i-n diode. This buried p-i-n structure enables us to apply higher reverse-bias and the electric field is enhanced in the mid i-layer. Field profiles of the new structures are calculated and the improved charge collection process is discussed. Also discussed is the possibility of field profile tailoring by utilizing the fixed space charges in i-layers and/or manipulating electrode shapes of the reverse-biased p-i-n diodes. 10 refs., 7 figs

  20. BABAR - the detector for the PEP II B Factory at SLAC

    International Nuclear Information System (INIS)

    Lueth, V.

    1994-09-01

    BABAR refers to the detector that is being designed for the PEP II B-Factory at SLAC to perform a comprehensive study of CP violation in B meson decays. The design requirements and the principal detector components are briefly described. A summary of the expected physics performance is presented

  1. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  2. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    International Nuclear Information System (INIS)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-01-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital

  3. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  4. Development of a neutron imager based on superconducting detectors

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-01-01

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a "1"0B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with "1"0B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  5. IBL Module Loading onto Stave and Quality Check

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    During the long shutdown between Run 1 and Run 2 of the LHC, a fourth, innermost, Pixel Detector layer has been installed in the ATLAS experiment: the Insertable B-Layer, IBL. The purpose of the new layer is to add redundancy against radiation damage of the B-layer, to ensure high quality tracking and improve the flavor tagging performance. New pixel silicon detector modules have been produced and loaded onto support structures known as staves, the building blocks of IBL. A total of 20 staves have been assembled. Procedures and results of the stave loading process are presented in this note.

  6. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  7. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  8. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  9. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  10. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    Science.gov (United States)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector's vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL ("PXL") sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ˜3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.

  11. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  12. Layer-Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium-Storage Anode.

    Science.gov (United States)

    Huang, Zhaodong; Hou, Hongshuai; Zhang, Yan; Wang, Chao; Qiu, Xiaoqing; Ji, Xiaobo

    2017-09-01

    Liquid phase exfoliation of few-layer phosphorene (FL-P) is extensively explored in recent years. Nevertheless, their deficiencies such as ultralong sonication time, limited flake size distribution, and uncontrollable thicknesses are major hurdles for the development of phosphorene-based materials. Herein, electrochemical cationic intercalation has been introduced to prepare phosphorene, through which large-area FL-P without surface functional groups can be efficiently attained (less than 1 h). More importantly, its layer number (from 2 to 11 layers) can be manipulated by changing the applied potential. The as-obtained phosphorene delivers superior sodium-storage performances when directly utilized as an anode material in sodium-ion batteries. This electrochemical cation insertion method to prepare phosphorene should greatly facilitate the development of phosphorene-based technologies. Moreover, this work provides the possibility for the scalable preparation of monolayer 2D materials by exploring intercalation ions. Additionally, the successful electrochemical exfoliation of phosphorene can promote the application of electrochemical exfoliation in other 2D materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spacer layer effect and microstructure on multi-layer [NdFeB/Nb]n films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Yao, Y.-D.; Chin, T.-S.; Kronmueller, H.

    2002-01-01

    Spacer layer effect on multi-layer [NdFeB/Nb] n films has been investigated from the variation of magnetic properties and microstructure of the films. From a HRTEM cross-section view observation, the average grain size of [NdFeB/Nb] n multi-layers was controlled by both annealing temperature and thickness of NdFeB layer. Selected area diffraction pattern indicated that the structure of Nb spacer layer was amorphous. The grain size and coercivity of [NdFeB x /Nb] n films change from 50 nm and 16.7 kOe to 167 nm and 9 kOe for films with x=40 nm, n=10 and x=200 nm, n=2, respectively

  14. Calibration and Characterization of the UNCB and Nab Detectors

    Science.gov (United States)

    Zeck, Bryan; UCNB Collaboration; Nab Collaboration

    2017-09-01

    The UCNB and Nab experiments are designed to produce precision measurements of the free neutron decay angular correlations B, a, and b. Measurements of B and a require a coincident detection of the proton and electron produced in neutron decay, while for b, which manifests as a subtle shift in the electron energy spectrum, energy resolution better than 3 keV is desired and excellent fidelity for energy reconstruction is required, including characterization of non-linearity to the 10-4 level. To this end, a thick segmented silicon detector with a 100 nm dead layer and a 100 cm active area has been extensively characterized at LANL. The thin dead layer allows protons accelerated to 30 keV to deposit energy above threshold in the active volume of the detector, and the paired amplifer chain, developed at LANL, has a risetime of approximately 40 ns. Comparison of simulation to experiment reveals a detector resolution better than σ = 2.5 keV. A complete characterization of the detector will be presented. This work has been supported by Grants from the US National Science Foundation and the Department of Energy.

  15. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  17. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  18. Detector normalization and scatter correction for the jPET-D4: A 4-layer depth-of-interaction PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan)]. E-mail: kitam@shimadzu.co.jp; Ishikawa, Akihiro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Mizuta, Tetsuro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Eiji [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    The jPET-D4 is a brain positron emission tomography (PET) scanner composed of 4-layer depth-of-interaction (DOI) detectors with a large number of GSO crystals, which achieves both high spatial resolution and high scanner sensitivity. Since the sensitivity of each crystal element is highly dependent on DOI layer depth and incidental {gamma} ray energy, it is difficult to estimate normalization factors and scatter components with high statistical accuracy. In this work, we implemented a hybrid scatter correction method combined with component-based normalization, which estimates scatter components with a dual energy acquisition using a convolution subtraction-method for an estimation of trues from an upper energy window. In order to reduce statistical noise in sinograms, the implemented scheme uses the DOI compression (DOIC) method, that combines deep pairs of DOI layers into the nearest shallow pairs of DOI layers with natural detector samplings. Since the compressed data preserve the block detector configuration, as if the data are acquired using 'virtual' detectors with high {gamma}-ray stopping power, these correction methods can be applied directly to DOIC sinograms. The proposed method provides high-quality corrected images with low statistical noise, even for a multi-layer DOI-PET.

  19. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    Science.gov (United States)

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 10⁹ Mcps mm⁻² in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (≤ 10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous

  20. Progress report on physics and detector at KEK asymmetric B factory

    International Nuclear Information System (INIS)

    1992-05-01

    Among the questions that remain unanswered by the Standard Model, there are the origin of fermion generations and the relation between them. In the Standard Model, leptons and quarks are classified into three generations. However, while the electroweak interaction among leptons appears to be strictly limited to be within the same generation, the interaction among quarks couples different generations. The Kobayashi-Masukawa (KM) model accommodating this coupling is discussed. B-meson decay, the measurement of CP angles, the CP-violating asymmetry in the decay of B O , the examination of B decay modes, CPT-violating interaction and so on are explained. During the past year, tests were carried out on the prototype of each detector elements. The beam test of single sided, one-dimensional silicon strip detectors demonstrated that the required spatial resolution can be achieved. The next step is to do the similar test with double sided, two-dimensional strip detectors. In this report, the research and development of the micro vertex detector, Monte Carlo simulation, and data acquisition, trigger and computer farm are described. (K.I.)

  1. The outer tracker detector of the HERA-B experiment. Pt. 3. Operation and performance

    International Nuclear Information System (INIS)

    Albrecht, H.; Bauer, T.S.; Utrecht Univ.; Beck, M.

    2006-12-01

    In this paper we describe the operation and performance of the HERA-B Outer Tracker, a 112674 channel system of planar drift tube layers. The performance of the HERA-B Outer Tracker system fullfilled all requirements for stable and efficient operation in a hadronic environment, thus confirming the adequacy of the honeycomb drift tube technology and of the front-end readout system. The detector was stably operated with a gas gain of 3 . 10 4 in an Ar/CF 4 /CO 2 (65:35:5) gas mixture, yielding a good efficiency for triggering and track reconstruction, larger than 95 % for tracks with momenta above 5 GeV/c. The hit resolution of the drift cells was 300 to 320 μm and the relative momentum resolution can be described as: σ(p)/p(%) = (1.61 ± 0.02) + (0.0051 ± 0.0006) . p. At the end of the HERA-B running no aging effects in the Outer Tracker cells were observed. (orig.)

  2. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  3. Performance of self-powered neutron detectors in pressurized water reactors

    International Nuclear Information System (INIS)

    Warren, H.D.; Bozarch, D.P.

    1977-01-01

    A typical Babcock and Wilcox pressurized water reactor (PWR) contains 364 rhodium self-powered neutron detectors (SPNDs) and 52 background detectors. The detectors are inserted into the reactor core in 52 dry, multidetector assemblies. Each assembly contains seven SPNDs and one background detector. By mid-1977, eight B and W PWRs, each fitted with SPNDs, were in operation. Many of the SPNDs have operated successfully for more than four years. This paper describes the operational performance of the SPNDs and special tests conducted to improve that performance. Topics included are (1) insulation performance versus neutron dose to the SPND, (2) background signals in the leadwire region of the SPND, and (3) depletion of the SPND emitter versus absorbed neutron dose

  4. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    International Nuclear Information System (INIS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Li, Run-Wei; Wu, Y. H.; Zhang, S.

    2016-01-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y_3Fe_5O_1_2 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  5. FastSim: A Fast Simulation for the SuperB Detector

    International Nuclear Information System (INIS)

    Andreassen, R; Sokoloff, M; Arnaud, N; Burmistrov, L; Brown, D N; Carlson, J; Gaponenko, I; Suzuki, A; Cheng, C-h; Simone, A Di; Manoni, E; Perez, A; Walsh, J; Rama, M; Roberts, D; Rotondo, M; Simi, G

    2011-01-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  6. FastSim: A Fast Simulation for the SuperB Detector

    Science.gov (United States)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  7. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces

    International Nuclear Information System (INIS)

    Bashiri, Hadi; Azim Karami, Mohammad; Mohammadnejad, Shahramm

    2017-01-01

    By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. (paper)

  8. Comparison of forward collider vertex detectors for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Harr, R.F.; Karchin, P.E.; Kennedy, C.J.

    1993-01-01

    Two silicon vertex detector designs have been proposed for a forward collider B physics experiment at the SSC: in one the silicon system is put outside the beampipe (like in the forward part of the proposed BCD detector); and in the other the silicon system is put inside the beampipe, close to the circulating beams, with the use of open-quote roman pots close-quote (as in the COBEX proposal). In what follows these will be referred to as the inside and outside designs. The two designs are significantly different in their construction and impact on the rest of the experiment. The authors would like to understand how the designs compare for doing B physics and what are the factors that most greatly influence the results. Two measurements relying on the vertex detector and of particular importance for B physics are the reconstructed vertex position and B mass. They have analyzed the resolution achievable in these 2 quantities for open-quote models close-quote of the two forward collider vertex detector designs. The design parameters - beampipe radius and thickness, silicon position and resolution, etc. - have been varied about their normal values to observe their effect on these resolutions. They find very little difference between the two designs; both give nearly the same decay length error, impact parameter error, and reconstructed B mass error, for a large range of geometrical parameters. The design parameter having the most significant impact on the errors of B decay vertices is found to be the point resolution of the silicon detectors

  9. The performance of the ATLAS initial detector layout for B-physics channels

    International Nuclear Information System (INIS)

    Epp, B.; Ghete, V.M.; Kuhn, D.; Zhang, Y.J.

    2004-01-01

    At the start-up of LHC one expects parts of the ATLAS detector to be missing. This layout is called initial layout, whereas the fully staged detector is called complete layout. B-physics channels were simulated, reconstructed and analyzed using the software tools of ATLAS data challenge-1 (DC1). The performance of the detector with respect to quantities relevant to the analysis of the B s → D s π channel and the validation of the full chain generation-simulation-reconstruction-analysis were evaluated for the initial and complete layout. (author)

  10. Novel methods in track-based alignment to correct for time-dependent distortions of the ATLAS Inner Detector

    CERN Document Server

    Estrada Pastor, Oscar; The ATLAS collaboration

    2017-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution and unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of its alignment. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). The offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters, representing a considerable numerical challenge in terms of both CPU time and precision. An outline of the track based alignment approach and its implementation within the ATLAS software is presented. Special attention is paid to describe the techniques allowing to pinpoint and eliminate track parameters biases. During Run-II, ATLAS Inner Detector Alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-det...

  11. Novel methods in track-based alignment to correct for time-dependent distortions of the ATLAS Inner Detector

    CERN Document Server

    Estrada Pastor, Oscar; The ATLAS collaboration

    2017-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of its offline alignment. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters, representing a considerable numerical challenge in terms of both CPU time and precision. An outline of the track based alignment approach and its implementation within the ATLAS software will be presented. Special attention will be paid to describe the techniques allowing to pinpoint and eliminate track parameters biases due to alignment. During Run-II, ATLAS Inner Detector Alignment framework has been adapted and upgraded to correct very short time sc...

  12. Hardening device, by inserts, of electronic component against radiation

    International Nuclear Information System (INIS)

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  13. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  14. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection

    International Nuclear Information System (INIS)

    Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal; Mascagni, Daniela Branco Tavares; Leite de Moraes, Marli; Ferreira, Marystela

    2016-01-01

    In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm −2 )/(mmol L −1 ) and a detection limit of 0.33 mmol L −1 . - Highlights: • Monoamine oxidase B incorporation in liposomes was proposed to preserve the enzyme. • Layer-by-layer films composed of MAO-B (free and in liposomes) were fabricated. • Amperometric response using ITO/Prussian Blue covered with the MAO-B films was studied. • Sensitivity, limit of detection and apparent Michaelis–Menten constant were compared.

  15. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal [Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo (Brazil); Mascagni, Daniela Branco Tavares [Universidade Estadual de São Paulo — UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Universidade Federal de São Paulo, Unifesp, São José dos Campos, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Universidade Federal de São Carlos, UFSCar, CCTS, Sorocaba, São Paulo (Brazil)

    2016-01-01

    In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm{sup −2})/(mmol L{sup −1}) and a detection limit of 0.33 mmol L{sup −1}. - Highlights: • Monoamine oxidase B incorporation in liposomes was proposed to preserve the enzyme. • Layer-by-layer films composed of MAO-B (free and in liposomes) were fabricated. • Amperometric response using ITO/Prussian Blue covered with the MAO-B films was studied. • Sensitivity, limit of detection and apparent Michaelis–Menten constant were compared.

  16. Determination of the dead layer and full-energy peak efficiency of an HPGe detector using the MCNP code and experimental results

    Directory of Open Access Journals (Sweden)

    M Moeinifar

    2017-02-01

    Full Text Available One important factor in using an High Purity Germanium (HPGe detector is its efficiency that highly depends on the geometry and absorption factors, so that when the configuration of source-detector geometry is changed, the detector efficiency must be re-measured. The best way of determining the efficiency of a detector is measuring the efficiency of standard sources. But considering the fact that standard sources are hardly available and it is time consuming to find them, determinig the efficiency by simulation which gives enough efficiency in less time, is important. In this study, the dead layer thickness and the full-energy peak efficiency of an HPGe detector was obtained by Monte Carlo simulation, using MCNPX code. For this, we first measured gamma–ray spectra for different sources placed at various distances from the detector and stored the measured spectra obtained. Then the obtained spectra were simulated under similar conditions in vitro.At first, the whole volume of germanium was regarded as active, and the obtaind spectra from calculation were compared with the corresponding experimental spectra. Comparison of the calculated spectra with the measured spectra showed considerable differences. By making small variations in the dead layer thickness of the detector (about a few hundredths of a millimeter in the simulation program, we tried to remove these differences and in this way a dead layer of 0.57 mm was obtained for the detector. By incorporating this value for the dead layer in the simulating program, the full-energy peak efficiency of the detector was then obtained both by experiment and by simulation, for various sources at various distances from the detector, and both methods showed good agreements. Then, using MCNP code and considering the exact measurement system, one can conclude that the efficiency of an HPGe detector for various source-detector geometries can be calculated with rather good accuracy by simulation method

  17. Self-powered neutron detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1974-01-01

    The invention relates a self-powered neutron detector comprising an emitting body, an insulating material surrounding said body, and a conducting outer cover, a power conductor connected to the emitting body and passing through the insulating material permitting to insert an ammeter between said emitting body and said cover. The invention is characterized in that said emitting body is surrounded by a thin conducting layer of small cross section for neutrons made of high density material said material being capable of absorbing the beta-radiations due to the degradation of the emitting body activating product, while transmitting the fast electrons of high average energy emitted by said emitting body. This can be applied to safety control devices required to provide a quick answer [fr

  18. The 160 bp insertion in the promoter of Rht-B1i plays a vital role in increasing wheat height

    Directory of Open Access Journals (Sweden)

    Xueyuan eLou

    2016-03-01

    Full Text Available The extensive use of two alleles (Rht-B1b and Rht-D1b at the Rht-1 locus in wheat allowed dramatic increases in yields, triggering the so-called Green Revolution. Here, we found that a new natural allelic variation (Rht-B1i containing a single missense SNP (A614G in the coding region significantly increased plant height against the genetic background of both Rht-D1a (11.68% and Rht-D1b (7.89%. To elucidate the molecular mechanism of Rht-B1i, we investigated the promoter region. Sequence analysis showed that the Rht-B1i promoter could be divided into two classes depending on the presence or absence of a specific 160 bp insertion: Rht-B1i-1 (with the 160 bp insertion and Rht-B1i-2 (without the 160 bp insertion. The promoter of Rht-B1i-1 contained 32 more possible cis-acting elements than Rht-B1a, including a unique auxin response element AUXREPSIAA4. Quantitative RT-PCR analysis indicated that the 160 bp insertion is likely to promote the transcription of the Rht-B1i-1 gene. The coleoptile lengths of wheat varieties treated with IAA, GA3, and IAA/GA3, combined with the histochemical staining of transgenic Arabidopsis containing the Rht-B1i-1 promoter, showed that the height-increasing effect of Rht-B1i-1 may be due to the synergistic action of IAA and GA3. These results augment our understanding of the regulatory mechanisms of Rht-1 in wheat and provide new genetic resources for wheat improvement.

  19. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  20. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  1. B-meson factories: Physics, machines and detectors

    International Nuclear Information System (INIS)

    Kolanoski, H.

    1990-10-01

    This report gives a short survey of the present status of B-meson factory plans and discussions at different laboratories. The physics motivation for an e + e - machine running with the highest possible luminosity in the Γ(4S) energy region is outlined emphasizing the possibility to observe CP violation in the B-meson system. The technical concepts for such machines together with the basic luminosity limitations are discussed. Finally, the requirements on a detector which is able to cover the rich physics program are presented. (orig.)

  2. The impact of two-photon physics on a B factory detector

    International Nuclear Information System (INIS)

    Bauer, D.A.

    1992-01-01

    While preceding workshops have outlined the broad range of physics topics which could be addressed at a B Factory, the challenge in this workshop was to define the impacts of this physics on the detector and delineate areas which will need further study. In this report, the author briefly recap the two-photon physics prospects at a B Factory and then show studies done to assess how the detector at such a facility could accommodate such physics

  3. SU-E-J-27: Shifting Multiple EPID Imager Layers to Improve Image Quality and Resolution in MV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Rottmann, J; Yip, S; Berbeco, R [Brigham and Women’s Hospital, Boston, Massachusetts (United States); Morf, D; Fueglistaller, R; Star-Lack, J; Zentai, G [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose: Vertical stacking of four conventional EPID layers can improve DQE for MV-CBCT applications. We hypothesize that shifting each layer laterally by half a pixel relative to the layer above, will improve the contrast-to-noise ratio (CNR) and image resolution. Methods: For CNR assessment, a 20 cm diameter digital phantom with 8 inserts is created. The attenuation coefficient of the phantom is similar to lung at the average energy of a 6 MV photon beam. The inserts have attenuations 1, 2…8 times of lung. One of the inserts is close to soft tissue, resembling the case of a tumor in lung. For resolution assessment, a digital phantom featuring a bar pattern is created. The phantom has an attenuation coefficient similar to soft tissue and the bars have an attenuation coefficient of calcium sulfate. A 2 MeV photon beam is attenuated through these phantoms and hits each of the four stacked detector layers. Each successive layer is shifted by half a pixel in the x only, y only, and x and y (combined) directions, respectively. Blurring and statistical noise are added to the projections. Projections from one, two, three and four layers are used for reconstruction. CNR and image resolution are evaluated and compared. Results: When projections from multiple layers are combined for reconstruction, CNR increases with the number of layers involved. CNR in reconstructions from two, three and four layers are 1.4, 1.7 and 1.99 times that from one layer. The resolution from the shifted four layer detector is also improved from a single layer. In a comparison between one layer versus four layers in this preliminary study, the resolution from four shifted layers is at least 20% better. Conclusion: Layer-shifting in a stacked EPID imager design enhances resolution as well as CNR for half scan MV-CBCT. The project described was supported, in part, by a grant from Varian Medical Systems, Inc., and Award No. R01CA188446-01 from the National Cancer Institute. The content is solely

  4. Self-powered neutron and γ-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.

    1983-01-01

    According to the invention there is provided a self-powered neutron and γ-ray flux detector, comprising: a) an emitter core wire; b) an emitter outer layer around the core wire and of different metal thereto; c) a metal collector around the emitter core wire and the emitter outer layer; and d) dielectric insulation electrically insulating the emitter core wire and the emitter outer layer from the metal collector. The improvement comprises: a) the overall diameter of the emitter core wire and the emitter outer layer is at least of the order of 0.4 mm in diameter; b) the emitter outer layer covers only of the order of l0 percent of the order of 90 percent of the emitter core wire surface area and comprises at least one band around the emitter core wire and is of a thickness in the range of the order 0.02 mm to of the order of 0.07 mm; and c) the metal of the emitter core wire, the metal of the emitter outer layer, the metal of the metal collector, the overall diameter of the emitter core wire and the emitter outer layer and the surface area of the emitter core wire that is covered by the emitter outer layer are selected so that the detector has a prompt fraction in the range of the order of 90 percent to of the order of 96 percent and has a dynamic response which substantially matches the dynamic response of the power in the fuel of the nuclear reactor in which the detector is to be used

  5. A dual layer DOI GSO block detector for a small animal PET

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2009-01-01

    For a high resolution animal positron emission tomography (PET), depth-of-interaction (DOI) is a useful method to improve both spatial resolution and sensitivity. Gd 2 SiO 5 (GSO) with different amounts of Ce can provide different decay times and is ideal for DOI detector using pulse shape analysis. Dual layer DOI GSO block detectors using different amounts of Ce were developed for a new animal PET. The DOI GSO block detector employed two types of GSOs; one with 1.5 mol% Ce concentration (decay time: 35 ns) and the other with 0.5 mol% (decay time: 60 ns). These two GSO types were optically coupled in the DOI direction. The sizes of single GSOs were 1.9 mmx1.9 mmx6 mm and 1.9 mmx1.9 mmx9 mm, for 1.5 and 0.5 mol%, respectively. These GSO were arranged by 11x37 matrix and optically coupled to three position sensitive photomultiplier tubes (PSPMTs), where the PSPMTs used were Hamamatsu R8520U-00-C12. Different lengths of reflectors were used between crystals to increase the useful field-of-view (FOV) of the PSPMT and to avoid the dead areas between PSPMTs. With this configuration, almost all islands in a 2-D position histogram corresponding to GSO cells could be separated. The width of the GSO block was 22 mm in the transaxial direction and 74 mm in axial direction with no gaps. Also, two types of GSO of different decay time could be separated using dual integration method for pulse shape analysis. These results indicate that developed block detectors might be useful for a high resolution and high sensitivity animal PET with dual layer DOI detection capability, with no gaps in transaxial or axial directions.

  6. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.jp; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-11-21

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu{sub 2(1−x)}Y{sub 2x}SiO{sub 5} (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were

  7. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu 2(1−x) Y 2x SiO 5 (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were achieved for

  8. Timing resolution improvement using DOI information in a four-layer scintillation detector for TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Kengo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)], E-mail: shibuken@gakushikai.jp; Nishikido, Fumihiko [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan); Tsuda, Tomoaki [Technology Research Laboratory, Shimadzu Corporation, Hikaridai 3-9-4, Seika-cho, Kyoto 619-0237 (Japan); Kobayashi, Tetsuya [Department of Medical System Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522 (Japan); Lam, Chihfung; Yamaya, Taiga; Yoshida, Eiji; Inadama, Naoko; Murayama, Hideo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)

    2008-08-11

    Depth-of-interaction (DOI) detectors are considered to be advantageous for time-of-flight positron emission tomography (TOF-PET) because they can correct timing errors arising in the scintillation crystals due to a propagation speed difference between annihilation radiation and scintillation photons. We experimentally measured this timing error, using our four-layer DOI encoding method. The upper layers exhibited the larger timing delays due to the longer path lengths after conversion from annihilation radiation into scintillation photons that traveled by zigzag paths at a speed decreased by a factor of the refractive index (n). The maximum timing delay between the uppermost and the lowermost layers was evaluated as 164 ps when n=1.47. A TOF error correction was demonstrated to improve the timing resolution of the four-layer DOI detector by 10.3%, which would increase the effective sensitivity of the scanner by about 12% comparison with a non-DOI TOF-PET scanner. This is the first step towards combining these two important fields in PET instrumentation, namely DOI and TOF, for the purpose of achieving a higher sensitivity as well as a more uniform spatial resolution.

  9. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  10. B-physics performance with Initial and Complete Inner detector layouts in Data Challenge-1

    CERN Document Server

    Benekos, N C; Bouhova-Thacker, E; Epp, B; Ghete, V M; Jones, R; Kartvelishvili, V G; Lagouri, T; Laporte, J F; Nairz, A; Nikitine, N; Reznicek, P; Sivoklokov, S Yu; Smizanska, M; Testa, M; Toms, K

    2004-01-01

    The B-physics performance for the Initial and the Complete Inner Detector layouts is presented. Selected types of B-physics events were simulated, reconstructed and analyzed using the software tools of ATLAS Data Challenge-1 (DC1). The results were compared to those obtained with an older ATLAS detector design the so-called TDR layout. Within the limitations of the DC1 software tools an attempt was made to evaluate the performance loss due to missing detector parts in the Initial layout in comparison with the Complete detector.

  11. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency e...

  12. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  13. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  14. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  15. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  16. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: approximately 97% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  17. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  19. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  20. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films

    International Nuclear Information System (INIS)

    Sosiati, H.; Hata, S.; Doi, T.; Matsumoto, A.; Kitaguchi, H.; Nakashima, H.

    2013-01-01

    Highlights: ► Nanostructure characterization of Ni and B layers as artificial pinning centers (APCs). ► Relationship between nanostructure and J c property. ► Enhanced J c in parallel field by parallel APCs within the MgB 2 film. -- Abstract: Research on the MgB 2 /Ni and MgB 2 /B multilayer films fabricated by an electron beam (EB) evaporation technique have been extensively carried out. The critical current density, J c of MgB 2 /Ni and MgB 2 /B multilayer films in parallel fields has been suggested to be higher than that of monolayer MgB 2 film due to introducing the artificial pinning centers of nano-sized Ni and B layers. Nanostructure characterization of the artificial pinning centers in the multilayer films were examined by transmission electron microscopy (TEM) and scanning TEM (STEM-energy dispersive X-ray spectroscopy (STEM-EDS))–EDS to understand the mechanism of flux pinning. The growth of columnar MgB 2 grains along the film-thickness direction was recognized in the MgB 2 /Ni multilayer film, but not in the MgB 2 /B multilayer film. Nano-sized Ni layers were present as crystalline epitaxial layers which is interpreted that Ni atoms might be incorporated into the MgB 2 lattice to form (Mg,Ni)B 2 phase. On the other hand, nano-sized B layers were amorphous layers. Crystalline (Mg,Ni)B 2 layers worked more effectively than amorphous B-layers, providing higher flux-pinning force that resulted in higher J c of the MgB 2 /Ni multilayer film than the MgB 2 /B multilayer film

  2. Dead layer and active volume determination for GERDA Phase II detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERDA experiment investigates the neutrinoless double beta decay of {sup 76}Ge and is currently running Phase I of its physics program. Using the same isotope as the Heidelberg Moscow (HDM) experiment, GERDA aims to directly test the claim of observation by a subset of the HDM collaboration. For the update to Phase II of the experiment in 2013, the collaboration organized the production of 30 new Broad Energy Germanium (BEGe) type detectors from original 35 kg enriched material and tested their performance in the low background laboratory HADES in SCK.CEN, Belgium. With additional 20 kg of detectors, GERDA aims to probe the degenerated hierarchy scenario. One of the crucial detector parameters is the active volume (AV) fraction which directly enters into all physics analysis. This talk presents the methodology of dead layer and AV determination with different calibration sources such as {sup 241}Am, {sup 133}Ba, {sup 60}Co and {sup 228}Th and the results obtained for the new Phase II detectors. Furthermore, the AV fraction turned out to be the largest systematic uncertainty in the analysis of Phase I data which makes it imperative to reduce its uncertainty for Phase II. This talk addresses the major contributions to the AV uncertainty and gives an outlook for improvements in Phase II analysis.

  3. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  4. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    International Nuclear Information System (INIS)

    Yang Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R.G.

    2003-01-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single 31 P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31 P ions

  5. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changyi E-mail: cjy@physics.unimelb.edu.auc.yang@physics.unimelb.edu.au; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R.G

    2003-09-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single {sup 31}P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO{sub 2} surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 {mu}m) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV {sup 31}P ions.

  6. The supermodule insertion tool of the CMS electromagnetic calorimeter and the first trial insertion of a supermodule.

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first trial insertion of a complete Electromagnetic Calorimeter (ECAL) "supermodule" (1700 lead-tungstate crystals, with support structures, light detectors (avalanche photodiodes), readout electronics and cooling system) was performed on 1st March. This delicate operation - sliding a 2-tonne 3m-long object onto support rails (in real life these are attached to the barrel hadron calorimeter (HCAL)) - made use of a custom designed "squirrel cage". The rotatable squirrel cage allows the insertion of any supermodule into any of the 18 positions, including very fine (sub-mm) adjustments. The first supermodule will be inserted into the real HCAL later this month in preparation for the "magnet test and cosmic-ray challenge" (MTCC). In the first image the supermodule is in the centre and the alignment disks are highlighted by the flash.

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  8. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Oda, Ichiro [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm{sup 2}x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  9. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Oda, Ichiro; Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga; Kitamura, Keishi; Murayama, Hideo

    2010-01-01

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm 2 x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  10. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  11. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus

    International Nuclear Information System (INIS)

    Ma Shiliang; Sorensen, Annette Balle; Kunder, Sandra; Sorensen, Karina Dalsgaard; Quintanilla-Martinez, Leticia; Morris, David W.; Schmidt, Joerg; Pedersen, Finn Skou

    2006-01-01

    ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas

  12. Experience from the construction and operation of the STAR PXL detector

    International Nuclear Information System (INIS)

    Greiner, L.; Anderssen, E.C.; Contin, G.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.

    2015-01-01

    A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m 2 . Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ∼ 3.8 cm 2 . The pixel (PXL) detector has a low power dissipation of 170 mW/cm 2 , which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented

  13. Experience from the construction and operation of the STAR PXL detector

    Science.gov (United States)

    Greiner, L.; Anderssen, E. C.; Contin, G.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H. H.; Woodmansee, S.

    2015-04-01

    A new silicon based vertex detector called the Heavy Flavor Tracker (HFT) was installed at the Soleniodal Tracker At RHIC (STAR) experiment for the Relativistic Heavy Ion Collider (RHIC) 2014 heavy ion run to improve the vertex resolution and extend the measurement capabilities of STAR in the heavy flavor domain. The HFT consists of four concentric cylinders around the STAR interaction point composed of three different silicon detector technologies based on strips, pads and for the first time in an accelerator experiment CMOS monolithic active pixels (MAPS) . The two innermost layers at a radius of 2.8 cm and 8 cm from the beam line are constructed with 400 high resolution MAPS sensors arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors giving a total silicon area of 0.16 m2. Each sensor consists of a pixel array of nearly 1 million pixels with a pitch of 20.7 μm with column-level discriminators, zero-suppression circuitry and output buffer memory integrated into one silicon die with a sensitive area of ~ 3.8 cm2. The pixel (PXL) detector has a low power dissipation of 170 mW/cm2, which allows air cooling. This results in a global material budget of 0.5% radiation length per layer for detector used in this run. A novel mechanical approach to detector insertion allows for the installation and integration of the pixel sub detector within a 12 hour period during an on-going STAR run. The detector specifications, experience from the construction and operation, lessons learned and initial measurements of the PXL performance in the 200 GeV Au-Au run will be presented.

  14. Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films

    Energy Technology Data Exchange (ETDEWEB)

    Khaplanov, A; Hall-Wilton, R [European Spallation Source, P.O Box 176, SE-22100 Lund (Sweden); Piscitelli, F; Buffet, J-C; Clergeau, J-F; Correa, J; Esch, P van; Ferraton, M; Guerard, B [Institute Laue Langevin, Rue Jules Horowitz, FR-38042 Grenoble (France)

    2013-10-15

    Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare {sup 3}He gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for {gamma}-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement with {sup 10}B thin film prototypes and a {sup 3}He detector. It is demonstrated that equal {gamma}-ray rejection to that of {sup 3}He tubes is achieved with the new technology. The arguments and results presented here are also applicable to gas detectors with converters other than solid {sup 10}B layers, such as {sup 6}Li layers and {sup 10}BF{sub 3} gas.

  15. Status of the SLAC/LBL/LLNL B-factory and the BABAR detector

    International Nuclear Information System (INIS)

    Oddone, P.

    1994-10-01

    After a brief introduction on the physics reach of the SLAC/LBL/LLNL Asymmetric B-Factory, the author describes the status of the accelerator and the detector as of the end of 1994. At this time, essentially all major decisions have been made, including the choice of particle identification for the detector. The author concludes this report with the description of the schedule for the construction of both accelerator and detector

  16. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  17. Inserts for nuclear fuel elements

    International Nuclear Information System (INIS)

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  18. Controlled carrier screening in p-n NiO/GaN piezoelectric generators by an Al2O3 insertion layer

    Science.gov (United States)

    Johar, Muhammad Ali; Jeong, Dae Kyung; Afifi Hassan, Mostafa; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2017-12-01

    The performance of a piezoelectric generator (PG) depends significantly on the internal screening process inside the device. As piezoelectric charges appear on both ends of the piezoelectric crystal, internal screening starts to decrease the piezoelectric bias. Therefore, the piezoelectric energy generated by external stress is not fully utilized by external circuit, which is the most challenging aspect of high-efficiency PGs. In this work, the internal screening effect of a NiO/GaN p-n PG was analyzed and controlled with an Al2O3 insertion layer. Internal screening in the p-n diode PG was categorized into free-carrier screening in neutral regions and junction screening due to charge drift across the junction. It was observed that junction screening could be significantly suppressed by inserting an Al2O3 layer and that effect was dominant in a leaky diode PG. With this implementation, the piezoelectric bias of the NiO/GaN PG was improved by a factor of ~100 for high-leakage diodes and a factor of ~1.6 for low-leakage diodes. Consequently, NiO/Al2O3/GaN PGs under a stress of 5 MPa provided a piezoelectric bias of 12.1 V and a current density of 2.25 µA cm-2. The incorporation of a highly resistive Al2O3 layer between p-NiO and n-GaN layers in NiO/GaN heterojunctions provides an efficient means of improving the piezoelectric performance by controlling the internal screening of the piezoelectric field.

  19. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  20. Silicon sensor technologies for ATLAS IBL upgrade

    CERN Document Server

    Grenier, P; The ATLAS collaboration

    2011-01-01

    New pixel sensors are currently under development for ATLAS Upgrades. The first upgrade stage will consist in the construction of a new pixel layer that will be installed in the detector during the 2013 LHC shutdown. The new layer (Insertable-B-Layer, IBL) will be inserted between the inner most layer of the current pixel detector and the beam pipe at a radius of 3.2cm. The expected high radiation levels require the use of radiation hard technology for both the front-end chip and the sensor. Two different pixel sensor technologies are envisaged for the IBL. The sensor choice will occur in July 2011. One option is developed by the ATLAS Planar Pixel Sensor (PPS) Collaboration and is based on classical n-in-n planar silicon sensors which have been used for the ATLAS Pixel detector. For the IBL, two changes were required: The thickness was reduced from 250 um to 200 um to improve the radiation hardness. In addition, so-called "slim edges" were designed to reduce the inactive edge of the sensors from 1100 um to o...

  1. Quantum hacking on a practical continuous-variable quantum cryptosystem by inserting an external light

    Science.gov (United States)

    Qin, Hao; Kumar, Rupesh; Alleaume, Romain

    2015-10-01

    We report here a new side channel attack on a practical continuous-variable (CV) quantum key distribution (QKD) system. Inspired by blinding attack in discrete-variable QKD, we formalize an attack strategy by inserting an external light into a CV QKD system implemented Gaussian-modulated coherent state protocol and show that our attack can compromise its practical security. In this attack, we concern imperfections of a balanced homodyne detector used in CV QKD. According to our analysis, if one inserts an external light into Bob's signal port, due to the imperfect subtraction from the homodyne detector, the leakage of the external light contributes a displacement on the homodyne signal which causes detector electronics saturation. In consequence, Bob's quadrature measurement is not linear with the quadrature sent by Alice. By considering such vulnerability, a potential Eve can launch a full intercept-resend attack meanwhile she inserts an external light into Bob's signal port. By selecting proper properties of the external light, Eve actively controls the induced displacement value from the inserted light which results saturation of homodyne detection. In consequence, Eve can bias the excess noise due to the intercept-resend attack and the external light, such that Alice and Bob believe their excess noise estimation is below the null key threshold and they can still share a secret key. Our attack shows that the detector loopholes also exist in CV QKD, and it seems influence all the CV QKD systems using homodyne detection, since all the practical detectors have finite detection range.

  2. THz detectors using surface Josephson plasma waves in layered superconductors

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco

    2006-01-01

    We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves

  3. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  4. Effect of inserting of thin Rubrene layer on performance of Organic Light-Emitting Diodes based on Zn(BTz)2

    Science.gov (United States)

    Tomova, R. L.; Petrova, P. K.; Stoycheva-Topalova, R. T.

    2010-11-01

    Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz)2) in configuration: ITO/PVK:TPD/ Zn(BTz)2 (x nm)/ Rubrene (1 nm)/ Zn(BTz)2 (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz)2 (x→ 0-15 nm) and to Zn(BTz)2/Al (x→ 70-75 nm) interfaces and shift toward emission of Zn(BTz)2 increasing the distance of Rubrene from both interfaces (x→35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.

  5. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  6. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  7. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  8. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  9. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  10. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Giacomo, E-mail: gcontin@lbl.gov

    2016-09-21

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark–Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm{sup 2} power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √s{sub NN}=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT. - Highlights: • First MAPS-based vertex detector in a collider experiment. • Achieved low material budget of 0.39% of radiation length per detector layer. • Track pointing resolution to the primary vertex better than 10⊕24 GeV/p×c μm. • Gain in significance for the topological reconstruction of the D{sup 0}−>K+π decay in STAR. • Observed latch-up induced damage of MAPS sensors.

  11. Firmware development and testing of the ATLAS IBL Back Of Crate card

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    ATLAS is one of the four big LHC experiments and currently its Pixel Detector was upgraded with a new innermost 4th layer: the Insertable B-Layer (IBL). The upgrade will result in better tracking efficiency and compensate radiation damages of the Pixel-Detector. Newly developed front-end electronics and the higher than originally planned LHC luminosity required a complete re-design of the Off Detector Electronics consisting of the Back Of Crate card (BOC) and the Read Out Driver (ROD). The main purpose of the BOC card is the distribution of the LHC clock to all Pixel Detector components as well as interfacing the detector and the higher level readout optically. The data-path to the detector is running a 40 MHz bi phase mark (BPM) encoded stream. The 160 MHz 8b10b encoded data path from the detector is phase and word aligned in the firmware and then forwarded to the ROD after decoding. The ROD will send out the processed data which is then forwarded to the higher level readout by the BOC card. An overview of t...

  12. A measurement of B bar B mixing with the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Franco, S.

    1992-01-01

    The data collected during 1990 and 1991 LEP runs with the DELPHI detector have been analyzed to measure the probability χ for a B meson to undergo mixing before decay. A study based on events containing two identified leptons lying on opposite detector sides yielded χ=0.121± 0.040 0.044 (stat.)±0.017(syst.); a comparison between the charge of a high p t muon and the one of the jet recoiling in the opposite direction gave χ=0.075±0.053 (stat. direct-sum syst.); the combined result is χ=0.101±0.035 (stat. direct-sum syst.). No signal of CP violation has been observed

  13. Low operation voltage of GaN-based LEDs with Al-doped ZnO upper contact directly on p-type GaN without insert layer

    Science.gov (United States)

    Chen, P. H.; Chen, Yu An; Chang, L. C.; Lai, W. C.; Kuo, Cheng Huang

    2015-07-01

    Al-doped ZnO (AZO) film was evaporated on double-side polished sapphire, p-GaN layers, n+-InGaN-GaN short-period superlattice (SPS) structures, and GaN-based light-emitting diodes (LEDs) by e-beam. The AZO film on the p-GaN layer after thermal annealing exhibited an extremely high transparency (98% at 450 nm) and a small specific contact resistance of 2.19 × 10-2 Ω cm2, which was almost the same as that of as-deposited AZO on n+-SPS structure. With 20 mA injection current, the forward voltages were 3.30 and 3.27 V, whereas the output powers were 4.32 and 4.07 mW for the LED with AZO on insert n+-SPS upper contact and the LED with AZO on p-GaN upper contact (without insert layer), respectively. The small specific contact resistance and low operation voltage of LED with AZO on p-GaN upper contact was achieved by rapid thermal annealing (RTA) process.

  14. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-02

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  15. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    International Nuclear Information System (INIS)

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made

  16. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  17. Beam test of a dual layer silicon charge detector (SCD) for the CREAM experiment

    International Nuclear Information System (INIS)

    Park, N.H.; Ahn, H.S.; Ganel, O.; Han, J.H.; Jeon, J.A.; Kim, C.H.; Kim, K.C.; Lutz, L.; Lee, M.H.; Malinin, A.; Nam, S.; Park, I.H.; Park, J.H.; Seo, E.S.; Walpole, P.; Wu, J.; Yang, J.; Yoo, J.H.; Yoon, Y.S.; Zinn, S.Y.

    2007-01-01

    The Cosmic Ray Energetics and Mass (CREAM) balloon-borne experiment is designed for direct measurement of high-energy cosmic rays. The experimental goal is to measure single-element fluxes of all cosmic-ray nuclei from hydrogen to iron with energies up to the 'knee', or spectral index change near 10 15 eV, observed in the all-particle spectrum. The dual layer Silicon Charge Detector (SCD) was designed to provide precise charge measurements. Each SCD layer has an active area of 77.9cmx79.5cm and consists of 156 silicon sensors mounted on 24 ladders. Each sensor contains a 4 x 4 array of single-sided DC type silicon pixels with an active area of 2.1cm 2 . The detector was flown on the second CREAM flight (December 2005-January 2006) and recovered successfully. The SCD was refurbished for the third CREAM flight and tested with high-energy electron and hadron beams at CERN. This paper reports on the performance of the SCD during the beam test

  18. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  19. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  20. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  1. Optimization of LSO/LuYAP phoswich detector for small animal PET

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Chung, Yong Hyun; Devroede, Olivier; Krieguer, Magalie; Bruyndonckx, Peter; Tavernier, Stefaan

    2007-01-01

    LSO/LuYAP phoswich detectors for small animal PET were developed to measure the depth of interaction (DOI), and to improve the spatial resolution at the edge of the field of view (FOV). The aim of this study was to optimize the optical coupling conditions between the crystal and photomultiplier tube (PMT) to maximize the light-collection efficiency, and to develop a method for rejecting scatter events by applying an equal energy window in each crystal layer. The light yields of the phoswich detector were estimated by changing the refractive index of the optical coupling material using a DETECT simulation. The accuracy of the DOI measurement on the phoswich detector, using an optical coupling material with the optimal light yield, were evaluated experimentally and compared with the air condition. The energy window for the photopeak events cannot be applied properly because the light outputs of LSO and LuYAP are different. The LSO/LuYAP photopeaks need to be superposed in order to effectively discriminate the scattered events by applying an equal energy window. The photopeaks of the LSO and LuYAP can be superposed by inserting a reflecting material between the crystals. The optimal coverage ratio of the inserting material was derived from a DETECT simulation, and its performance was investigated. In the simulation result, optimal refractive index of the optical coupling material was 1.7. The average DOI measurement errors of the LSO/LuYAP were 0.6%/3.4% and 4.9%/41.4% in the phoswich detector with and without an optical coupling material, respectively. The photopeaks of the LSO and LuYAP were superposed by covering 75% of the contact surface between the crystals with white Teflon. The DOI measurement errors of the LSO/LuYAP were 0.2%/2.4%. In this study, the optimal condition of the optical coupling material inserted between the crystal and PMT was derived to improve the accuracy of DOI measurement, and a photopeak superposition method of the LSO and LuYAP was

  2. Measurements of hadronic B decays to excited-charm mesons, observation of a new charm resonance and construction of a silicon vertex detector for CLEO II.V

    Science.gov (United States)

    Nelson, Timothy Knight

    We describe measurements of the branching ratiosmath> B(B --->D*+p- p-total) =(29.2+/-4.5+/-3.8+/-3.1) ×10-4 B(B- --> D*+p- p -non- res)=( 9.7+/-3.6+/-1.5+/-1.9)× 10- 4 B(B---> D1(2420) 0p-) B(D1( 2420)0--> D*+p- )= (6.9+1.8-1.4 +/-1.1+/-0.4)× 10-4 B(B---> D01( j= / )p- ) B(D01 (j= /) -->D* +p-) = ( 10.6+/-1.9+/-1.7+/-2.3)× 10-4 B(B---> D*2( 2460)0p- )B(D *2( 2460)0--> D*+p- )= (3.1+/- 0.84+/-0.46+/-0.28)×10 -4, using data collected by the CLEO II detector. These measurements provide the first observation of the D01(j=/) with a mass and width of 2.461+0.053- 0.049GeV and 290+110 - 91MeV respectively. The mixing angles between the partial waves and strong phase shifts among the resonances are also measured assuming one possible parameterization of the amplitude. A method allowing full reconstruction of the signal without reconstruction of the D meson in the final state is used. The measurements are extracted using an four-dimensional, unbinned, maximum- likelihood fit to the distributions of the D*+p- mass and the decay angles. The primary element of the CLEO II.V upgrade was the installation of a three-layer Silicon Vertexing Detector. The design and construction of this detector are described in detail.

  3. Search for $B_c \\to B_s \\pi$, $B_s \\to J/\\psi \\phi$ decay with the CDF Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Edwin Lloyd [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2010-01-01

    This analysis details the search for B$+\\atop{c}$ → B$0\\atop{s}$ π+, B$0\\atop{s}$ → J/ΨΦ decays, and the charge conjugate mode, using the CDF II detector at the Fermi National Accelerator Laboratory. The search is derived from a sample of 5.84 fb-1 of data from p$\\bar{p}$ collisions of √s = 1.96 TeV collected via J/Ψ trigger paths.

  4. A Comparative study of early postpartum IUCD insertion to interval IUCD insertion at Tertiary Care Centre

    OpenAIRE

    Roopal, Dr.; Bisht, Vandana

    2018-01-01

    Background: A Comparative study of early postpartum IUCD insertion to interval IUCD insertion at Tertiary Care Centre.Methods: This prospective study was conducted among 100 women at tertiary care centre, Haldwani, Nainital. Patients were divided in to two groups. Group A (n=50)-post placental insertion within 10 minutes of delivery of placenta. Group B (n=50)-Interval insertion after 6 weeks of delivery. Both groups were compared in terms of pain abdomen, bleeding, missing thread, expulsion,...

  5. Detectors for the Atacama B-mode Search experiment

    Science.gov (United States)

    Appel, John William

    Inflation is the leading theory for explaining the initial conditions that brought about our homogeneous and isotropic Universe. It predicts the presence of gravitational waves in the early Universe, which implant a characteristic B-mode polarization pattern on the Cosmic Microwave Background (CMB). The Atacama B-mode Search (ABS) experiment is a polarimeter observing from Cerro Toco (located in the Atacama desert of Chile at an altitude of 5190 m), searching for the yet undetected B-mode signal. ABS carries 480 superconducting Transition Edge Sensor (TES) Bolometers that couple 150 GHz radiation via planar Ortho-Mode Transducers (OMTs) mounted at the output of corrugated feedhorns. The feedhorn beam is projected onto the sky through crossed Dragonian reflectors, a set of reflective and absorptive filters, and a rotating Half Wave Plate (HWP) that modulates any polarized sky signal at 10.2 Hz. The bolometers are cooled to 300 mK by a He3-He4 adsorption fridge system backed by pulse tubes. The reflectors are located within the 4 K cavity of the cryostat, while the HWP is mounted on frictionless air bearings above the cryostat window. This thesis discusses the development and construction of the ABS detector focal plane, and presents results of its performance in the field through August 2012. The ABS detector array sensitivity of 31 μKs 1/2, together with the experiment's unique set of systematic controls, and expected multi-year integration time, could detect a B-mode signal with tensor to scalar ratio r ˜ 0.1.

  6. Multicell x-ray detector

    International Nuclear Information System (INIS)

    Stone, B.N.; Shelley, P.S.; Love, W.D.

    1981-01-01

    This invention is concerned with improving multicell detectors, particularly those used in computerized tomography. Existing ionization detectors have problems maintaining the precise dimensional spacing between electrodes required for accuracy. In addition, mechanical vibrations set up microphonic effects between the electrode plates. In this invention, pairs of electrode plates are separated by grooved insulating members. The upper and lower edges of an array of electrode plates are inserted in corresponding grooves in the insulating members, and, the whole electrode assembly is securely anchored in the detector chamber

  7. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H., E-mail: r.h.wellenberg@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Boomsma, M.F., E-mail: m.f.boomsma@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Osch, J.A.C. van, E-mail: j.a.c.van.osch@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Vlassenbroek, A., E-mail: alain.vlassenbroek@philips.com [Philips Medical Systems, Brussels (Belgium); Milles, J., E-mail: julien.milles@philips.com [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A., E-mail: m.a.edens@isala.nl [Department of Innovation and Science, Isala, Zwolle (Netherlands); Streekstra, G.J., E-mail: g.j.streekstra@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Slump, C.H., E-mail: c.h.slump@utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede (Netherlands); Maas, M., E-mail: m.maas@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2017-03-15

    Highlights: • Dual-layer detector CT reduces metal artefacts at high monochromatic energies (keV). • 130 keV images were optimal based on quantitative analysis on CNRs. • Optimal keVs varied from 74 to 150 keV for different hip prostheses configurations. • The Titanium alloy resulted in less severe artefacts compared to the Cobalt alloy. • Severe metal artefacts, caused by extensive photon-starvation, were not reduced. - Abstract: Purpose: To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. Methods: The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0 mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200 keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. Results: In 70 and 74 keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130 keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130 keV images

  8. Evidence for the $H \\rightarrow b\\bar{b}$ decay with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    A search for the decay of the Standard Model Higgs boson into a $b\\bar{b}$ pair when produced in association with a $W$ or $Z$ boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1~\\fb, were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing 0, 1 and 2 charged leptons (electrons or muons) are considered, targeting the decays $Z \\to \

  9. Effect of inserting of thin Rubrene layer on performance of Organic Light-Emitting Diodes based on Zn(BTz){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tomova, R L; Petrova, P K; Stoycheva-Topalova, R T, E-mail: reni@clf.bas.b [Institute of optical materials and technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, ' Acad. G. Bonchev' str. bl. 109, 1113 Sofia (Bulgaria)

    2010-11-01

    Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz){sub 2}) in configuration: ITO/PVK:TPD/ Zn(BTz){sub 2} (x nm)/ Rubrene (1 nm)/ Zn(BTz){sub 2} (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz){sub 2} (x{yields} 0-15 nm) and to Zn(BTz){sub 2}/Al (x{yields} 70-75 nm) interfaces and shift toward emission of Zn(BTz){sub 2} increasing the distance of Rubrene from both interfaces (x{yields}35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.

  10. Nicotinamide dependence of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site.

    Science.gov (United States)

    Li, Zhaoli; Bouckaert, Julie; Deboeck, Francine; De Greve, Henri; Hernalsteens, Jean-Pierre

    2012-03-01

    NAD and NADP are ubiquitous in the metabolism of Escherichia coli K-12. NAD auxotrophy can be rendered by mutation in any of the three genes nadB, nadA and nadC. The nadB and nadA genes were defined as antivirulence loci in Shigella spp., as a mutation (mainly in nadB) disrupting the synthesis of quinolinate is required for virulence. Uropathogenic E. coli (UPEC) isolates from acute cystitis patients, exhibiting nicotinamide auxotrophy, were of serotype O18 : K1 : H7. E. coli UTI89, the model uropathogenic and O18 : K1 : H7 strain, requires nicotinamide or quinolinate for growth. A mutation in the nadB gene, encoding L-aspartate oxidase, was shown to be responsible for the nicotinamide requirement of UTI89. This was further confirmed by complementation of UTI89 with a recombinant plasmid harbouring the nadB gene of E. coli K-12. An Ala28Val point mutant of the recombinant plasmid failed to support the growth of UTI89 in minimal medium. This proves that the Ala28Val mutation in the NadB gene of UTI89 completely impedes de novo synthesis of nicotinamide. In spontaneous prototrophic revertants of UTI89, the nadB gene has a Val28Ala mutation. Both analyses implicate that the nicotinamide auxotrophy of UTI89 is caused by a single Ala28Val mutation in NadB. We showed that the same mutation is also present in other NAD auxotrophic E. coli O18 strains. No significant differences were observed between the virulence of isogenic NAD auxotrophic and prototrophic strains in the murine ascending urinary tract infection model. Considering these data, we applied the nadB locus as a neutral site for DNA insertions in the bacterial chromosome. We successfully restored the parental phenotype of a fimH mutant by inserting fimH, with a synthetic em7 promoter, into the nadB gene. This neutral insertion site is of significance for further research on the pathogenicity of UPEC.

  11. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  12. The MAPS based PXL vertex detector for the STAR experiment

    Science.gov (United States)

    Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.

    2015-03-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance

  13. CO_2 evaporative cooling: The future for tracking detector thermal management

    International Nuclear Information System (INIS)

    Tropea, P.; Daguin, J.; Petagna, P.; Postema, H.; Verlaat, B.; Zwalinski, L.

    2016-01-01

    In the last few years, CO_2 evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO_2 evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  14. Photoconductive detector of circularly polarized radiation based on a MIS structure with a CoPt layer

    Science.gov (United States)

    Kudrin, A. V.; Dorokhin, M. V.; Zdoroveishchev, A. V.; Demina, P. B.; Vikhrova, O. V.; Kalent'eva, I. L.; Ved', M. V.

    2017-11-01

    A photoconductive detector of circularly polarized radiation based on the metal-insulator-semiconductor structure of CoPt/(Al2O3/SiO2/Al2O3)/InGaAs/GaAs is created. The efficiency of detection of circularly polarized radiation is 0.75% at room temperature. The operation of the detector is based on the manifestation of the effect of magnetic circular dichroism in the CoPt layer, that is, the dependence of the CoPt transmission coefficient on the sign of the circular polarization of light and magnetization.

  15. Development of PET insert for simultaneous PET/MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun; Lim, Hyun Keong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Oh, Changheun; Park, HyunWook; Cho, Gyuseong [Departments of Electrical Engineering and Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2014-07-29

    Recently, there has been great interest on the development of combined PET/MR, which is a useful tool for both functional and anatomic imaging. The purpose of this study was to develop a MR compatible PET insert for simultaneous PET and MR imaging of human brain and to evaluate the performance of the hybrid PET-MRI. The PET insert consisted of 18 detector blocks arranged in a ring of 390 mm diameter with 60 mm axial FOV. Each detector block was composed of 4 × 4 matrix of detector modules, each of which consisted of a 4 × 4 array LYSO coupled to a 4 × 4 GAPD array. The PET gantry was shielded with gold-plated conductive fabric tapes. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuits (PDCs) and then transferred to FPGA-embedded DAQ modules. The PDCs and DAQ modules were enclosed in an aluminum box and located at the rear of the MR bore inside MRI room. 3-T human MRIs of two different vendors were used to evaluate the MR compatibility of developed PET insert. No significant changes of the PET performance and the homogeneity of MR images caused by the non-compatibility of PET-MRI were observed with the 2 different MRIs. The signal intensities of MR images were slightly degraded (<3.6%) with the both MRI systems. The difference between independently and simultaneously acquired PET images of brain phantom was negligibly small (<4.3%). High quality simultaneous brain PET and MRI of 3 normal volunteers were successfully acquired. Experimental results indicate that the high performance compact and lightweight PET insert for hybrid PET/MRI, which could be utilized with the MRI from various manufactures, can be developed using GAPD arrays and charge signal transmission method proposed in this study.

  16. Time-dependent flux from pulsed neutrons revealed by superconducting Nb current-biased kinetic inductance detector with "1"0B converter operated at 4 K

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Narukami, Yoshito; Shishido, Hiroaki; Yoshioka, Naohito; Ishida, Takekazu; Fujimaki, Akira; Hidaka, Mutsuo; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi

    2015-01-01

    We have demonstrated a new superconducting detector for a neutron based on Nb superconductor meanderline with a "1"0B conversion layer. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meanderline, for detection of a neutron with high spatial resolution and fast response. The thickness of Nb meanderlines is 40 nm and widths are 3 μm, 1 μm, and 0.6 μm. The CB-KIDs are fabricated at the center of the Si chip of the size 22 mm × 22 mm and the total area of CB-KIDs covers 8 mm × 8 mm. The chip was cooled to a temperature lower than 4 K below the transition temperature of Nb using a Gifford-McMahon (GM) cryocooler. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons at the material life science experimental facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) center. The response time of CB-KIDs is about a few tens ns. We have also obtained the time dependence of neutron flux generated from pulsed neutrons using a CB-KID. Experimental results were in good agreement with the simulated results. (author)

  17. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  18. Physical properties of layered homologous RE-B-C(N) compounds

    International Nuclear Information System (INIS)

    Mori, Takao; Zhang Fuxiang; Leithe-Jasper, Andreas

    2004-01-01

    Physical properties of a series of homologous RE-B-C(N) B 12 cluster compounds REB 17 CN, REB 22 C 2 N, and REB 28.5 C 4 (RE=Er,Ho) were investigated. The structures of the compounds are layer-like along the c-axis, with rare earth and B 6 octahedral layers separated by B 12 icosahedral and C-B-C chain layers whose number increases successively from two B 12 layers for the REB 17 CN compound to four for the REB 28.5 C 4 compound. The rare earth atoms are configured in two triangular flat layers which are stacked on top of one another in AB stacking where the nearest-neighbor rare earth directions are the three atoms forming a triangle in the adjacent layer. The series of homologous compounds exhibit a spin glass transition with T f shifting in correspondence with variations of the basal plane lattice constants, consistent with the magnetic interaction being effective in the basal planes. The isothermal remanent magnetization shows a stretched exponential decay I m (t)∝ exp[-Ct -(1-n) ]. Exponents determined for the different homologous compounds were scaled as a function of T r =T/T f and found to follow the empirical dependency determined for typical spin glasses. It is indicated that a mixture of disorder originating from the partial occupancy of the rare earth sites and frustration of interactions due to the unique configuration is responsible for the manifestation of spin glass transitions in these homologous systems

  19. The FE-I4 Pixel Readout Chip and the IBL Module

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte; Fang, Xiao-Chao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Hans, Kruger; Kruth, Andre; Wermes, Norbert; /Bonn U.; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Alexander; /Marseille, CPPM; Beccherle, Roberto; Darbo, Giovanni; /INFN, Genoa; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; /LBL, Berkeley /NIKHEF, Amsterdam /Gottingen U. /SLAC

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  20. Study of a scintillation neutron detector of 1OB+ZnS(Ag) as alternative to the 3He detectors: model MCNPX and validation

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Gallego D, E.; Lorente F, A.; Ibanez F, S.; Vega C, H. R.; Mendez V, R.; Gonzalez, J. A.

    2015-10-01

    Using Monte Carlo methods with the code MCNPX, was estimated the response of a scintillation neutron detector of Zn S(Ag) with a mixture of 10 B high enrichment. The detector consists of four plates of Poly (methyl methacrylate) (PMMA) and five layers of ∼0, 017 cm 10 B+ZnS(Ag) in contact with PMMA. The naked detector response was calculated and with different thicknesses of high density polyethylene moderator, for 29 monoenergetic sources and for sources of 241 AmBe and 252 Cf of neutrons. In these calculations the reactions 10 B(n,α) 7 Li and neutron fluence in the sensitive area of detector 10 B+ZnS(Ag) were estimated. Measurements were performed in the Laboratory of Neutron Measurement to quantify detections in counts per second to a neutron source of 252 Cf to 200 cm on the bench, modeling with MCNPX, these measures were compared to validate the model and the Zn S(Ag) efficiency of α detection was estimated. Calculations in the LPN-CIEMAT were realized. Starting from the validation new models were carried out with geometries that improve the detector response, trying reaching the detection of 2, 5 cps-ng of 252 Cf comparable requirement for responding to the installed equipment of 3 He in the radiation portal monitor. This type of detector can be considered an alternative to detectors of 3 He for detecting special nuclear material. (Author)

  1. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    International Nuclear Information System (INIS)

    Nunes Pauli, Gisele Elias; Araruna, Felipe B.; Eiras, Carla; Leite, José Roberto S.A.; Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima; Chavero, Lucas Natálio; Sartorelli, Maria Luisa

    2015-01-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H 2 O 2 ) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H 2 O 2 . This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H 2 O 2 . - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum

  2. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection.

    Science.gov (United States)

    Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal; Mascagni, Daniela Branco Tavares; de Moraes, Marli Leite; Ferreira, Marystela

    2016-01-01

    In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm(-2))/(mmol L(-1)) and a detection limit of 0.33 mmol L(-1).

  3. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    NARCIS (Netherlands)

    Wellenberg, R. H. H.; Boomsma, M. F.; van Osch, J. A. C.; Vlassenbroek, A.; Milles, J.; Edens, M. A.; Streekstra, G. J.; Slump, C. H.; Maas, M.

    2017-01-01

    To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer

  4. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  5. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  6. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  7. Development of flat panel X-ray detector utilizing a CdZnTe film as conversion layer

    International Nuclear Information System (INIS)

    Tokuda, Satoshi; Kishihara, Hiroyuki; Kaino, Masatomo; Sato, Toshiyuki

    2006-01-01

    A polycrystalline CdZnTe film formed by the CSS (closed-spaced sublimation) method is one of the most promising materials as a conversion layer of next-generation highly efficient flat-panel X-ray detectors. Therefore, we have developed a prototype of a new flat-panel X-ray detector (a sensing region of 3 inches by 3 inches) with the film and evaluated its commercial feasibility. This paper describes evaluation of the physical and imaging properties of the prototype and explains the features of the CdZnTe film and the construction, specifications, and fabrication procedures of the prototype. Also included in this paper are formation of a semiconductor thin film barrier layer by the CBD (chemical bath deposition) method and conjunction of a sensor substrate and a TFT array substrate with the bump electrodes formed by screen printing, both of which we have developed during the course of the development of the prototype. (author)

  8. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    KAUST Repository

    Zhang, Qianfan

    2010-09-08

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.

  9. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution

  10. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution.

  11. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  12. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  13. CO{sub 2} evaporative cooling: The future for tracking detector thermal management

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, P., E-mail: paola.tropea@cern.ch [CERN, Geneva (Switzerland); Daguin, J.; Petagna, P.; Postema, H. [CERN, Geneva (Switzerland); Verlaat, B. [CERN, Geneva (Switzerland); Nikhef, Amsterdam (Netherlands); Zwalinski, L. [CERN, Geneva (Switzerland)

    2016-07-11

    In the last few years, CO{sub 2} evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO{sub 2} evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  14. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    Science.gov (United States)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  15. Pixel detector modules using MCM-D technology

    CERN Document Server

    Grah, C

    2001-01-01

    For the upcoming ATLAS-experiment at CERN it is planned to build a large area pixel detector, providing more than 100*10/sup 6/ sensor cells. For the innermost layer, the B-physics layer, it is planned to use MCM-D technology to perform the signal interconnections and power distribution on the modules. Focus of this paper is to give an introduction to this technology and present measurements on single chip MCM-D assemblies and a full scale MCM-D module prototype. (10 refs).

  16. Insertion of liquid crystal molecules into hydrocarbon monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Piotr, E-mail: ppopov@kent.edu; Mann, Elizabeth K. [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Lacks, Daniel J. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jákli, Antal [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001 (United States)

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  17. Study of improved K{sub S}{sup 0} detection at the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Leonard; Kuehn, Wolfgang; Lange, Soeren [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    In the near future, the Belle II experiment at the SuperKEKB accelerator at KEK in Tsukuba, Japan, will start operation at a luminosity a factor 40 higher than its predecessor experiment, Belle. The physics program includes the search for physics beyond the Standard Model of particle physics by the investigation of CP violating processes and rare B meson decays. Many important decay channels involve K{sub S}{sup 0} mesons. The detector features two layers of silicon pixel cells (PXD) closest to the interaction point surrounded by four layers of double sided silicon strip detectors (SVD). The high background level of the Pixel Detector requires an online data reduction system: Using the SVD and the surrounding detectors, the online reconstructed tracks of charged particles are extrapolated to the PXD layers, where Regions of Interest (ROIs) are defined around the intercepts. Only the pixel data inside these ROIs are stored. Thus, particles creating an insufficient number of hits in the outer detectors are not reconstructed and subsequently no ROIs are created, resulting in the loss of the related hits in the Pixel Detector. As a consequence, particles creating a sufficient number of hits in all six layers, but not in the outer four, are lost. In this contribution, we perform online tracking using all six layers to find the tracks of pions for improved K{sub S}{sup 0} detection. The combinatorics of the hit-track assignments is reduced by artificial neural networks.

  18. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Pauli, Gisele Elias [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); Araruna, Felipe B. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima [Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba (Brazil); Chavero, Lucas Natálio; Sartorelli, Maria Luisa [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); and others

    2015-02-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H{sub 2}O{sub 2}) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H{sub 2}O{sub 2}. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H{sub 2}O{sub 2}. - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum.

  19. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  20. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  1. Advanced alignment of the ATLAS tracking system

    CERN Document Server

    AUTHOR|(CDS)2085334; The ATLAS collaboration

    2016-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, silicon planar modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments of the active detector elements and deformations of the structures (which can lead to \\textit{Weak Modes}) deteriorate resolution of the track reconstruction and lead to systematic biases on the measured track parameters. The applied alignment procedures exploit various advanced techniques in order to minimise track-hit residuals and remove detector deformations. For the LHC Run II, the Pixel Detector has been refurbished and upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  2. Whole body detectors for clinical applications

    International Nuclear Information System (INIS)

    Silar, J.

    The requirements are presented on the parameters of whole-body detectors suitable for clinical retention assays and the detector-patient configuration described. A whole-body detector was developed with an axial configuration of two pairs of large-volume scintillation detectors with NaI(Tl) crystals. One pair is placed under the bed, the other above the bed on which the patient is being examined. The axes of the crystals are located at a distance of 90 cm apart. The field of vision of the detector is described for the application of a 137 Cs source in the air and in a 24 cm layer of water. The positive characteristics of the detector are listed as being homogeneous sensitivity, energy resolution, long-term stability of signal pulse amplitude and average pulse rate in the integral mode. The results obtained show that the detector may be used to evaluate the level of contamination of persons by gamma emitters within the region of approximately 800 Bq to 74 MBq. The error in converting the number of signal pulses in the integral mode does not exceed 50% for gamma emitters with a photon energy above 30O keV. (J.B.)

  3. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  4. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  5. Gravity Probe B Detector Mount Assembly

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) detector mount assembly is shown in comparison to the size of a dime. The assembly is used to detect exactly how much starlight is coming through different beams from the beam splitter in the telescope. The measurements from the tiny chips inside are what keeps GP-B aimed at the guide star. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Paul Ehrensberger, Stanford University.)

  6. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    International Nuclear Information System (INIS)

    Peng, B.; Zhang, W.L.; Liu, J.D.; Zhang, W.X.

    2011-01-01

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 μm)/Cu(0.25 μm)/FeCoSiB(1.5 μm) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: → We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. → We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. → Stress impedance effect increases with thickness of both FeCoSiB and Cu layer.→ Stress impedance effect is dependent on current frequency. → Results are understood using stress and frequency-dependent permeability.

  7. Trade off study on different envelope detectors for B-mode imaging

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Bagge, J. P.; Jensen, Jørgen Arendt

    2003-01-01

    sum of the real and imaginary signals. The four detectors were evaluated on in-vivo data acquired with a B-K Medical 2102 scanner interfaced to the sampling system RASMINE. Three data sets were acquired with three different center frequencies. Hundred images were acquired as the transducer was moved......Generation of B-mode images involves envelope detection of the RF-signals. Various detection algorithms are available. A trade off between performance, price, and complexity determines the choice of algorithm in an ultrasound system. A Hilbert Transform (HT) and a subsequent computation...... of the magnitude give the ideal envelope, but the approach (IDE) is expensive and complex. A rectifier (REC) is a simple, low-cost solution, but the performance is severely degraded (especially in dynamic imaging). This study has investigated the possibility of providing a detector with a complexity and cost close...

  8. Firmware development and testing of the ATLAS IBL Read-Out Driver card

    CERN Document Server

    Chen, S-P; The ATLAS collaboration; Falchieri, D; Gabrielli, A; Hauck, S; Hsu, S-C; Kretz, M; Kugel, A; Travaglini, R; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shutdown. In particular, the Pixel detector is inserting an additional inner layer called Insertable B-Layer (IBL). The Read-Out Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development focused on migrating and tailoring HDL code blocks from Pixel ROD to ensure modular compatibility in future ROD upgrades, in which a unified code version will interface with IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using a realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, tested in testbench and on ROD prototypes, will be ...

  9. Firmware development and testing of the ATLAS IBL Readout Driver card

    CERN Document Server

    Chen, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector is inserting an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development focused on migrating and tailoring HDL code blocks from PixelROD to ensure modular compatibility in future ROD upgrades, in which a unified code version will interface with IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path implementation, tested in testbench and on ROD prototypes, will be report...

  10. Search for ZX → ν anti ν b anti b Events in the D-Zero Detector

    International Nuclear Information System (INIS)

    Abbott, B.

    1997-10-01

    We report on a search for a new particle, X, decaying via X → b anti b, made through associated production with a Z boson. We use data collected with the D0 detector operating at the Fermilab Tevatron p anti p collider with √s = 1.8 TeV. We utilize muon-tagged jets to identify b-quarks and the ν anti ν channel to detect Z bosons. Preliminary results on cross section limits for X masses between 90 GeV/c 2 and 180 GeV/c 2 are presented

  11. Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer

    International Nuclear Information System (INIS)

    Zhao Geng; Cheng Xiao-Man; Du Bo-Qun; Tian Hai-Jun; Liang Xiao-Yu

    2011-01-01

    We fabricate pentacene-based organic field effect transistors (OFETs), inserting a transition metal oxide (V 2 O 5 ) layer between the pentacene and Al source-drain (S/D) electrodes. The performance of the devices with V 2 O 5 /Al S/D electrodes is considerably improved compared to the pentacene-based OFET with only Al S/D electrodes. After the 10-nm V 2 O 5 layer modification, the effective field-effect mobility of the devices increases from 2.7 × 10 −3 cm 2 /V·s to 8.93× 10 −1 cm 2 /V·s. Owing to the change of the injection property, the effective threshold voltage (V th ) is changed from −7.5 V to −5 V and the on/off ratio shifts from 10 2 to 10 4 . Moreover, the dispersion of sub-threshold current in the devices disappears. These performance improvements are ascribed to the low carrier injection barrier and the reduction of contact resistance. It is indicated that V 2 O 5 layer modification is an effective approach to improve pentacene-based OFET performance. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Neutron detection using a current biased kinetic inductance detector

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Miyajima, Shigeyuki; Ishida, Takekazu; Narukami, Yoshito; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi; Hidaka, Mutsuo; Fujimaki, Akira

    2015-01-01

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. 10 B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors

  13. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  14. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  15. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  16. Influence of Gradual Elongation to the Patella Tendon Insertion in Rabbits

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-08-01

    Full Text Available The purpose of this study was to examine the histological changes at the patella tendon (PT insertion site under gradual elongation in rabbits. Gradual elongation of the PT was performed using external fixation for 4 weeks, with a lengthening speed of 0.5 mm/day (elongation group; n = 24. Rabbits in the sham group underwent the same surgical procedure without gradual elongation (sham group; n = 24. Eight animals were sacrificed 1, 2 and 4 weeks after surgery in each group, respectively. Average thicknesses of stained glycosaminoglycan (GAGs areas by Safranin-O staining in the total cartilage layer and the uncalcified fibrocartilage layer in the elongation group were significantly higher than that in the sham group at 4 weeks (p < 0.05 and that in the intact PT group (n = 6, p < 0.05. In the elongation group, the peak in the average thicknesses of the stained GAGs areas in the total cartilage layer and the uncalcified fibrocartilage layer were observed at 4 weeks. Gradual elongation of PT insertion significantly affected the increase in the average thicknesses of the stained GAGs areas in the cartilage layer especially in the uncalcified fibrocartilage layer at 4 weeks in rabbits. Clinically, insertions of tendon and ligament can extend during gradual elongation using external fixation more than 4 weeks after the operation.

  17. Long-distance transmission of light in a scintillator-based radiation detector

    Science.gov (United States)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  18. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  19. Intravascular imaging with a storage phosphor detector

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L II; Fritz, Shannon G [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Bujenovic, L Steven [PET Imaging Center, Our Lady of the Lake Medical Center, Baton Rouge, LA (United States); Xu Tong, E-mail: pshikhal@lsu.ed [Department of Physics, Carleton University, Ottawa (Canada)

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm{sup 3} volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 {mu}Ci cm{sup -3} activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm{sup -2} were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360{sup 0} circumference. Spatial

  20. Enhancement of Hole Confinement by Monolayer Insertion in Asymmetric Quantum-Barrier UVB Light Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-04-01

    We study the enhanced hole confinement by having a large bandgap AlGaN monolayer insertion (MLI) between the quantum well (QW) and the quantum barrier (QB). The numerical analysis examines the energy band alignment diagrams, using a self-consistent 6 × 6 k ·p method and, considering carrier distribution, recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates), under equilibrium and forward bias conditions. The active region is based on AlaGa1-aN (barrier)/AlbGa1-bN (MLI)/AlcGa1-cN (well)/AldGa1-dN (barrier), where b > d > a > c. A large bandgap AlbGa1-bN mono layer, inserted between the QW and QB, was found to be effective in providing stronger hole confinement. With the proposed band engineering scheme, an increase of more than 30% in spatial overlap of carrier wavefunction was obtained, with a considerable increase in carrier density and direct radiative recombination rates. The single-QW-based UV-LED was designed to emit at 280 nm, which is an effective wavelength for water disinfection.

  1. The MAPS based PXL vertex detector for the STAR experiment

    International Nuclear Information System (INIS)

    Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.

    2015-01-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m 2 . Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ∼ 3.8 cm 2 . The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm 2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector

  2. Evaluation of a high resolution silicon PET insert module

    Energy Technology Data Exchange (ETDEWEB)

    Grkovski, Milan, E-mail: milan.grkovski@ijs.si [Jožef Stefan Institute, Ljubljana (Slovenia); Memorial Sloan Kettering Cancer Center, New York, NY (United States); Brzezinski, Karol [IFIC/CSIC, Valencia (Spain); Cindro, Vladimir [Jožef Stefan Institute, Ljubljana (Slovenia); Clinthorne, Neal H. [University of Michigan, Ann Arbor, MI (United States); Kagan, Harris [Ohio State University, Columbus, OH (United States); Lacasta, Carlos [IFIC/CSIC, Valencia (Spain); Mikuž, Marko [Jožef Stefan Institute, Ljubljana (Slovenia); Solaz, Carles [IFIC/CSIC, Valencia (Spain); Studen, Andrej [Jožef Stefan Institute, Ljubljana (Slovenia); Weilhammer, Peter [Ohio State University, Columbus, OH (United States); Žontar, Dejan [Jožef Stefan Institute, Ljubljana (Slovenia)

    2015-07-11

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm{sup 2} pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2–4.8 mm) filled with {sup 18}F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm)

  3. Combining two major ATLAS inner detector components

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The semiconductor tracker is inserted into the transition radiation tracker for the ATLAS experiment at the LHC. These make up two of the three major components of the inner detector. They will work together to measure the trajectories produced in the proton-proton collisions at the centre of the detector when the LHC is switched on in 2008.

  4. Higgs Boson in Multi-b-Jets Final States Reconstruction with Full Simulation of Atlas Detector

    International Nuclear Information System (INIS)

    Sapinski, M.; Cavalli, D.

    2001-01-01

    Channels with multi-b-jet final states are very important in the discovery strategies for the Higgs boson search in ATLAS experiment at LHC. Excellent jets reconstruction efficiencies and mass resolution capability of the di-jet system are crucial aspects of the detector performance for the signal observability in these channels. Full simulation and reconstruction of the four representative channels with b-jets in final states is discussed: WH, t(anti)tH with H → b(anti)b and A → Zh, H → hh with h → b(anti)b. These channels are used as benchmark ones to study the different complexity of events, level of combinatorial background from signal itself and universality of the algorithms used for jets reconstruction and energy calibration at the wide range of energy/mass scales. Equivalently important aspect of this study is to verify applicability of the fast detector simulation, based on parametrisation of main features of the detector, for studying signal and background rates for the above channels. For that reason the detailed comparisons of the expected efficiencies and acceptances in full (based on GEANT 3) and fast simulations are shown at the different stages of the selection procedures. In general good agreement is found between results obtained in both approaches. (author)

  5. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  6. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  8. Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice.

    Science.gov (United States)

    Hoerder-Suabedissen, Anna; Hayashi, Shuichi; Upton, Louise; Nolan, Zachary; Casas-Torremocha, Diana; Grant, Eleanor; Viswanathan, Sarada; Kanold, Patrick O; Clasca, Francisco; Kim, Yongsoo; Molnár, Zoltán

    2018-05-01

    The thalamus receives input from 3 distinct cortical layers, but input from only 2 of these has been well characterized. We therefore investigated whether the third input, derived from layer 6b, is more similar to the projections from layer 6a or layer 5. We studied the projections of a restricted population of deep layer 6 cells ("layer 6b cells") taking advantage of the transgenic mouse Tg(Drd1a-cre)FK164Gsat/Mmucd (Drd1a-Cre), that selectively expresses Cre-recombinase in a subpopulation of layer 6b neurons across the entire cortical mantle. At P8, 18% of layer 6b neurons are labeled with Drd1a-Cre::tdTomato in somatosensory cortex (SS), and some co-express known layer 6b markers. Using Cre-dependent viral tracing, we identified topographical projections to higher order thalamic nuclei. VGluT1+ synapses formed by labeled layer 6b projections were found in posterior thalamic nucleus (Po) but not in the (pre)thalamic reticular nucleus (TRN). The lack of TRN collaterals was confirmed with single-cell tracing from SS. Transmission electron microscopy comparison of terminal varicosities from layer 5 and layer 6b axons in Po showed that L6b varicosities are markedly smaller and simpler than the majority from L5. Our results suggest that L6b projections to the thalamus are distinct from both L5 and L6a projections.

  9. Improved (0 0 1)-texture of FePt-C for heat-assisted magnetic recording media by insertion of Cr buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiroyama, T.; Wang, J.; Felicia, A.; Takahashi, Y.K.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2017-06-15

    Highlights: • Improvement of (0 0 1)-texture of prototype FePt-C granular films for heat heat assisted magnetic recording media. • Insertion of Cr buffer layer improves the crystallographic textures of the MgO underlayers, thereby reduces in-plane component in the FePt-C recording layer. • The growth in the grain size of the MgO underlayer as well as the (0 0 1)-texture of the MgO underlayer are the key factor in reducing the in-plane component in the FePt-C recording layer. - Abstract: FePt-C granular films deposited on MgO underlayers are the prototype media for heat-assisted magnetic recording. To reduce the in-plane magnetic component in the FePt-C media, we investigated the effect of Cr buffer layers on the crystallographic textures of the MgO underlayers and the resultant magnetic properties of the FePt-C layers. By growing a MgO underlayer on a Cr buffer layer, the (0 0 1) texture of the MgO underlayer is improved, on which the in-plane component of a FePt-C film is substantially reduced. We conclude that the growth in the grain size of the MgO underlayer is the key factor in reducing the in-plane component in the FePt-C recording layer.

  10. Performance of CaSO4:Dy detectors

    International Nuclear Information System (INIS)

    Setti, M.C.; Silva, G.R.; Pela, C.A.; Bruco, J.L.; Borges, J.C.

    2004-01-01

    CaSO 4 :Dy detectors have been used in personal dosimetry. The MRA company recently entered into the market of these detectors. Searching to assure a product quality level that would satisfy its customs most expectancies, MRA programmed several tests to qualify and quantify these detectors main characteristics, before their definitive insertion in the market. Preliminary tests furnished a value of 29,5 ± 1,2 nC for homogeneity and a maximum dispersion of 3 % for linearity . (author)

  11. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  12. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M. [CERN/MediPix Consortium, Geneva (Switzerland); Heijne, E.H.M. [CERN/MediPix Consortium, Geneva (Switzerland); Llopart, X. [CERN/MediPix Consortium, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Giganon, A. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Giomataris, Y. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Chefdeville, M. [NIKHEF, Amsterdam (Netherlands); Colijn, A.P. [NIKHEF, Amsterdam (Netherlands); Fornaini, A. [NIKHEF, Amsterdam (Netherlands); Graaf, H. van der [NIKHEF, Amsterdam (Netherlands)]. E-mail: vdgraaf@nikhef.nl; Kluit, P. [NIKHEF, Amsterdam (Netherlands); Timmermans, J. [NIKHEF, Amsterdam (Netherlands); Visschers, J.L. [NIKHEF, Amsterdam (Netherlands); Schmitz, J. [University of Twente/MESA (Netherlands)

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50{mu}m above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as {delta}-rays. With a gas layer thickness of only 1mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  13. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    International Nuclear Information System (INIS)

    Campbell, M.; Heijne, E.H.M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A.P.; Fornaini, A.; Graaf, H. van der; Kluit, P.; Timmermans, J.; Visschers, J.L.; Schmitz, J.

    2006-01-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1mm, the device could be applied as vertex detector, outperforming all Si-based detectors

  14. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    Science.gov (United States)

    Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  15. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  16. Chemical interaction of B4C, B, and C with Mo/Si layered structures

    International Nuclear Information System (INIS)

    Rooij-Lohmann, V. I. T. A. de; Veldhuizen, L. W.; Zoethout, E.; Yakshin, A. E.; Kruijs, R. W. E. van de; Thijsse, B. J.; Gorgoi, M.; Schaefers, F.; Bijkerk, F.

    2010-01-01

    To enhance the thermal stability, B 4 C diffusion barrier layers are often added to Mo/Si multilayer structures for extreme ultraviolet optics. Knowledge about the chemical interaction between B 4 C and Mo or Si, however is largely lacking. Therefore, the chemical processes during annealing up to 600 deg. C of a Mo/B 4 C/Si layered structure have been investigated in situ with hard x-ray photoelectron spectroscopy and ex situ with depth profiling x-ray photoelectron spectroscopy. Mo/B/Si and Mo/C/Si structures have also been analyzed as reference systems. The chemical processes in these systems have been identified, with two stages being distinguished. In the first stage, B and C diffuse and react predominantly with Mo. MoSi x forms in the second stage. If the diffusion barrier consists of C or B 4 C, a compound forms that is stable up to the maximum probed temperature and annealing time. We suggest that the diffusion barrier function of B 4 C interlayers as reported in literature can be caused by the stability of the formed compound, rather than by the stability of B 4 C itself.

  17. Neutron detection using a current biased kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Narukami, Yoshito [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi [Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors.

  18. The MINDView brain PET detector, feasibility study based on SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    González, Antonio J., E-mail: agonzalez@i3m.upv.es [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Majewski, Stan [Radiology Research, Department of Radiology, University of Virginia, VA 22903 (United States); Sánchez, Filomeno [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Aussenhofer, Sebastian [NORAS MRI products GmbH, Hochberg (Germany); Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Pani, Roberto; Bettiol, Marco; Fabbri, Andrea [Department of Molecular Medicine, Sapienza University of Rome (Italy); Bert, Julien; Visvikis, Dimitris [Université de Bretagne Occidentale, Brest (France); Jackson, Carl; Murphy, John; O’Neill, Kevin [SensL Technologies, Cork (Ireland); Benlloch, Jose M. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain)

    2016-05-11

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm{sup 2} active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  19. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Oh, B.S.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Saito, S.; Yoshimura, S.; Tsunoda, M.; Takahashi, M.; Kim, Y.K.

    2006-01-01

    Ferromagnetic amorphous Ni 16 Fe 62 Si 8 B 14 layer have been studied as free layers for magnetic tunnel junctions (MTJs) to enhance cell switching performance. Traditional MTJ free layer materials such as NiFe and CoFe were also prepared for switching comparison purposes. Both NiFeSiB and NiFe resulted in an order of magnitude smaller switching fields compared to the CoFe. The switching field was further reduced for the synthetic antiferromagnetic NiFeSiB free layered structure

  20. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  1. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Laminated Amorphous Silicon Neutron Detector (pre-print)

    International Nuclear Information System (INIS)

    McHugh, Harry; Branz, Howard; Stradins, Paul; Xu, Yueqin

    2009-01-01

    An internal R and D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  3. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    Science.gov (United States)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  4. The SLD Vertex Detector Upgrade (VXD3) and a study of b anti bg events

    International Nuclear Information System (INIS)

    Dervan, P.J.

    1998-04-01

    This thesis presents a variety of work concerning the design, construction and use of the SLD's vertex detector. SLD's pioneering 120 Mpixel vertex detector, VXD2, was replaced by VXD3, a 307Mpixel CCD vertex detector in january 1996. The motivation for the up-grade detector and its subsequent construction and testing are described in some detail. This work represents the collaborative work of a large number of people. The authors' work was mainly carried out at EEV on the testing of the CCDs and subsequent ladders. VXD3 was commissioned during the 1996 SLD run and performed very close to design specifications. Monitoring the position of VXD3 is crucial for reconstructing the data in the detector for physics analysis. This was carried out using a capacitive wire position monitoring system. The system indicated that VXD3 was very stable during the whole of the 1996 run, except for known controlled movements. VXD3 was aligned globally for each period in-between these known movements using the tracks from e + e - → Z 0 → hadrons. The structure of three-jet b anti bg events has been studied using hadronic Z 0 decays from the 1993--1995 SLD data. Three-jet final states were selected and the CCD-based vertex detector was used to identify two of the jets as a b or anti b. The distributions of the gluon energy and polar angle with respect to the electron beam direction were examined and were compared with perturbative QCD predictions. It was found that the QCD Parton Shower prediction was needed to describe the data well

  5. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  6. Production and Properties of B-Hadrons with the ATLAS Detector

    CERN Document Server

    Reznicek, Pavel; The ATLAS collaboration

    2017-01-01

    A wide program of studies on heavy flavours is performed with the ATLAS detector. Production cross sections have been measured for hadrons with b and c quark, for quarkonia states, and for associated production J/psi+J/psi, J/psi+muon, J/psi+W and J/psi+Z. The talk will discuss recent results on J/psi+J/psi prompt production (including the extraction of the double-parton-scattering component), and on the kinematical correlation in B hadron pair production, studied through their inclusive decays to J/psi and muons, respectively. Exotic states containing b and c quark have also been studies, and the talk will report on the searches for structures in the invariant mass of J/psi+hadron in the decay products of Lambda_b, and in the mass spectrum of Bs+pion.

  7. High field Nb3Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    International Nuclear Information System (INIS)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb 3 Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm 2 . In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb 3 Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent

  8. Growth, microstructure, and hard magnetic properties of Nd-Fe-B layers; Wachstum, Mikrostruktur und hartmagnetische Eigenschaften von Nd-Fe-B-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, U.

    2004-07-01

    In this thesis with pulsed laser deposition Nd-Fe-B layers were deposited. The Nd-Fe-B layers were deposited both on chromium and on tantalum buffers. The layers, which were deposed on tantalum buffers, showed a strong dependence of the nicrostructure and the magnetic properties on the deposition temperature. On layers which were deposited at deposition temperatures around 630 C on the tantalum buffer, the epitactical growth of Nd{sub 2}Fe{sub 14}B could be observed. Summarizingly these layers can be described as micrometer-large and parallely oriented single crystals.

  9. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896

    International Nuclear Information System (INIS)

    Pandey, S.U.

    1998-01-01

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors

  10. Subnanosecond timing with ion-implanted detectors

    International Nuclear Information System (INIS)

    Rijken, H.A.; Klein, S.S.; Jacobs, W.; Teeuwen, L.J.H.G.W.; Voigt, M.J.A. de; Burger, P.

    1992-01-01

    The energy resolution of ion-implanted charged particle detectors may be improved by decreasing the thickness of the implanted detector window to minimize energy straggling. Because of the resistance of this layer, however, the timing depends on the position of entry. Two solutions to this conflict between energy resolution and time resolution are studied: evaporating a very thin aluminum layer on the detector window and fabricating a rectangular detector. Both solutions are shown to be successful with a total time resolution in the low subnanosecond region (<200 ps). (orig.)

  11. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    This scenario could for example occur if the vertex detector is exposed to a large dose of machine background from the accelerator. The optimization of the radius of the innermost layer is an important aspect in the design of a vertex detector for a linear collider. VX32: Five layers and double material thickness (0.128% X0 ...

  12. TID-dependent current measurements of IBL readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Dette, Karola [TU Dortmund, Experimentelle Physik IV (Germany); CERN (Switzerland); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    The ATLAS detector consists of several subsystems with a hybrid pixel detector as the innermost component of the tracking system. The pixel detector has been composed of three layers of silicon sensor assemblies during the first data taking run of the LHC and has been upgraded with a new 4th layer, the so-called Insertable B-Layer (IBL), in summer 2014. Each silicon sensor of the IBL is connected to a Front End readout chip (FE-I4) via bump bonds. During the first year of data taking an increase of the LV current produced by the readout chips was observed. This increase could be traced back to radiation damage inside the silicon. The dependence of the current on the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations and will be presented in this talk.

  13. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  14. Development of Silicon Drift Detectors using Boron layer technology

    OpenAIRE

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X-ray detectors, incoming photons ionize inert gas and create electron and ions which can be collected at a thin wire anode inside of the chamber. The advantage of this type of detector is the possibi...

  15. Studies of rare B meson decays with the CMS detector

    CERN Document Server

    Shi, Xin

    2013-01-01

    Rare beauty decays are usually an excellent probe to the physics beyond the standard model. Especially those decays, that are proceed through flavor-changing neutral currents, can have the interference from new physics with the loop diagrams. Some of these decays are well predicted by the theory, such as $B_{s,d} \\to \\mu^+\\mu^-$ branching fractions and the $A_\\mathrm{FB}$ of the $B\\to K^{*}\\mu^+\\mu^-$, are the gold plate searches at the colliders. In this talk these searches in pp collisions at LHC using the data collected bythe CMS detector are presented.

  16. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  17. [The detector, the command neuron and plastic convergence].

    Science.gov (United States)

    Sokolov, E N

    1977-01-01

    The paper deals with the structure of detectors, the function of commanding neurones and the problem of relationship between detectors and commanding neurons. An example of hierarchial organization of detectors is provided by the colour analyser in which a layer of receptors, a layer of opponent neurones and a layer of colour-selective detectors are singled out. The colour detector is selectively sensitive to a certain combination of excitations at the input. If the detector is selectively activated by a certain combination of excitations at the input, the selective activation of the commanding neurone through a pool of motoneurones brings about a reaction at the output, specific in its organization. The reflexogenic zone of the reaction is determined by the detectors which converge on the commanding neurone controlling the given reaction. The plasticity of the reaction results from a plastic convergence of the detectors on the commanding neurone which controls the reaction. This comprises selective switching off the detectors from the commanding neurone (habituation) and connecting the detectors to the commanding neurone (facilitation).

  18. Advanced Alignment of the ATLAS Tracking System

    CERN Document Server

    Butti, P; The ATLAS collaboration

    2014-01-01

    In order to reconstruct the trajectories of charged particles, the ATLAS experiment exploits a tracking system built using different technologies, planar silicon modules or microstrips (PIX and SCT detectors) and gaseous drift tubes (TRT), all embedded in a 2T solenoidal magnetic field. Misalignments and deformations of the active detector elements deteriorate the track reconstruction resolution and lead to systematic biases on the measured track parameters. The alignment procedures exploits various advanced tools and techniques in order to determine for module positions and correct for deformations. For the LHC Run II, the system is being upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL).

  19. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  20. The Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.

    2013-01-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10 35 cm −2 s −1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m 2 and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics

  1. WE-DE-BRA-07: Megavoltage Spectral Imaging with a Layered Detector

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Rottmann, J; Berbeco, R [Brigham and Women’s Hospital, Boston, MA (United States); Hu, Y [Dana Farber Cancer Institute, Boston, MA (United States); Wang, A; Shedlock, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D [Varian Medical Systems, Dattwil, Aargau (Switzerland)

    2016-06-15

    Purpose: The aim of the current work is to investigate the feasibility of megavoltage spectral imaging using a multiple layered detector for enhancement of low contrast detectability through material segmentation and discrimination (such as bone, markers and metal implants). Potentially the technique can be applied to improve detection and reduce dose in Megavoltage Cone Beam Computed Tomography (MV-CBCT). Methods: Experiments were performed with a prototype multi-layer imager (MLI) which has higher detective efficiency and lower noise characteristics than conventional Electronic Portal Imaging Devices (EPIDs). Images of a solid water phantom were acquired at 2.5 MV, 6MV and 6MV without flattening filter (FFF). The following materials were placed within a stack of solid water: aluminum, copper and gold. Material separation was assessed based on Contrast-to-Noise Ratio (CNR) of the weighted image, formed by a weighted subtraction of the images from two layers of the MLI. A range of weighting factors were investigated for material separation. Results: CNR can be minimized for each material by appropriate selection of the subtraction weighting factor. This is equivalent to a selective subtraction of specific materials from the image. Using multiple layers simultaneously also decreases the dose requirement and removes any registration errors. The minimum CNR for aluminum, copper and gold at the weighted image formed with 2.5MV was obtained at weighting factors equal to 0.92, 0.76 and 0.64 respectively. The corresponding values at 6MVFFF were 0.99, 0.92 and 0.78 respectively. Conclusion: In the current work, an MV spectral imaging feasibility study was attempted using a novel multi-layer prototype EPID imager. Initial results suggest that material separation based on spectral differences between different layers is possible. This spectral imaging technique has potential advantages in MV-CBCT for real-time target tracking, patient set-up imaging and adaptive radiotherapy

  2. submitter Development of the readout for the IBL upgrade project of the ATLAS Pixel Detector

    CERN Document Server

    Krieger, Nina

    The LHC luminosity is upgraded in several phases until 2022. The resulting higher occupancy degrades the detector performance of the current Pixel Detector. To provide a good performance during the LHC luminosity upgrade, a fourth pixel layer is inserted into the existing ATLAS Pixel Detector. A new FE-I4 readout chip and a new data acquisition chain are required to cope with the higher track rate and the resulting increased bandwidth. Among others, this includes a new readout board: the IBL ROD. One component of this board is the DSP which creates commands for the FE-I4 chip and has to be upgraded as well. In this thesis, the first tests of the IBL ROD prototype are presented. A correct communication of the DSP to its external memory is verified. Moreover, the implementations for an IBL DSP code are described and tested. This includes the first configuration of the FE-I4 with an IBL ROD. In addition, a working communication with the Histogrammer SDRAM and the Input FIFO on the IBL ROD are demonstrated.

  3. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  4. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  5. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  6. A study of B0- anti B0 mixing using the ARGUS Detector

    International Nuclear Information System (INIS)

    Tzamariudaki, E.

    1995-02-01

    Using the ARGUS detector at the e + e - storage ring DORIS II at DESY, a study of the decay anti B 0 →D *+ l - anti νhas been performed by exploiting a partial D *+ reconstruction technique. The branching ratio was determined to be (4.4±0.3±0.3)% for this mode, and for the higher excited D * (J) states Br( anti B 0 →D (J) *+ l - anti ν)=(2.5±0.6±0.5)%. Furthermore, the inclusive D *+ branching ratio in B decays was measured by fully reconstructing D *+ candidates. Using a tagged subset of this sample of B 0 meson decays in the mode anti B 0 →D *+ l - anti ν, B d 0 anti B d 0 oscillations have been studied. For this purpose two tagging techniques have been applied: the standard method of using fast leptons, and a new technique which makes use of kaons to tag the b flavour content. Combining the values obtained by these two methods, the B 0 anti B 0 mixing parameter χ d , used to denote the strength of the oscillations, was determined to be χ d =0.165±0.057. In addition, using fully reconstructed D *+ candidates, a third study of the B 0 anti B 0 mixing parameter was carried out by investigating D *+ K ± correlations. The mixing measurements obtained using kaons to tag the B meson flavour employ this technique for the first time. Future CP violation measurements at B Factories will place critical reliance on this method. Finally, using the extracted value for the mixing parameter χ d , the CKM matrix element V td was determined and the B s 0 anti B s 0 mixing parameter χ s was obtained. (orig.)

  7. TALENT final Conference - 23-25 November 2015 - IdeaSquare at CERN

    CERN Multimedia

    Marcelloni De Oliveira, Claudia

    2015-01-01

    TALENT is a Marie Curie Initial Training Network, funded by the European Commission Seventh Framework Programme. TALENT aims at career development of young researchers in the field of instrumentation for radiation detection. The project focuses on piloting new state-of-the-art technologies on the new precision pixel detector ATLAS Insertable B-Layer detector (IBL) and for future precision tracking detectors. The project will strengthen the co-operation between research and multidisciplinary industry in the fields of advanced radiation sensors, fast and low power consumption read-out and data acquisition electronics, new cooling technologies and ultra light mechanical support structures

  8. Harmonic ultrasound fields through layered liquid media.

    Science.gov (United States)

    Li, Yadong; Chen, Quan; Zagzebski, James

    2004-02-01

    Harmonic field generation through a layered liquid media is studied experimentally and theoretically. Lateral and axial beam profiles of the fundamental to the 4th harmonic component of the field from a focused, 19-mm diameter transducer were measured using a calibrated hydrophone in a water tank. Measurements were performed before and after the insertion of a cylindrical phantom containing vegetable oil. A frequency domain numerical solution to the "KZK" equation was used to calculate the beam profile, taking into account the acoustic properties of the medium and phantom. Effects of nonlinear propagation, diffraction, attenuation, and reflection are include in the calculation. Agreement within 5% was obtained between measurements and theoretical predictions throughout the mid- and far-field of the transducer for both the uniform path and the layered media. Measurements also were carried out using an unfocused transducer as a receiver. The shape of the axial beam profile using this receiver agreed very well with the theoretical prediction using the "KZK" equation, after accounting for phase variations over the finite-sized detector in the calculated field.

  9. The Instrumented Flux Return Detector of the SuperB Experiment: R&D Studies and First Results of the Fermilab Beam Test

    Science.gov (United States)

    Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cotta, A.; Cibinetto, G.; Evangelisti, F.; Luppi, E.; Malaguti, R.; Manzali, M.; Melchiorri, M.; Munerato, M.; Santoro, V.; Tommassetti, L.; Benettoni, M.; Dalcorso, F.; Feltresi, E.; Fanin, C.; Gagliardi, N.; Posocco, M.; Rotondo, M.; Stroili, R.

    SuperB is a super-flavor factory that will be built in Tor Vergata (Italy). The project, recently approved by the Italian Government, and classified as the flagship project of the Italian INFN, foresees the construction of a high intensity asymmetric electron-positron collider and of the related detector. The expected luminosity of 2x1036cm-2 s-1, a factor 100 higher than the last generation of B-factories, will allow the high statistic study of rare decays and, possibly, will allow a deeper insight in the field of new physics. Part of the SuperB apparatus is the Instrumented Flux Return (IFR). This detector exploits the flux return iron structure of the superconducting solenoid as absorber for the identification of muons and neutral hadrons. In more details, It consists of ≃ 92 cm of iron interleaved by 9 layers of highly segmented scintillators. The detection technique is based on relatively inexpensive extruded plastic scintillator bars produced at the FNAL-NICADD facility. The scintillation light is collected through Wave Length Shifting fibers and guided to recently developed devices called Silicon Photon Multipliers used as photodetectors. The use of plastic scintillator as active material ensures reliability, robustness and long term stability while the high granularity and the fast response guarantee a good space-time resolution, extremely important to cope with the expected high particles flux. The readout scheme under evaluation is this manuscript is the double coordinate readout ("BIRO readout") where two layers of orthogonal scintillator bars provide both, the polar and azimuthal coordinate. In order to deeply understand the performances and possible drawbacks of the above technique, a full depth prototype has been designed and built in Ferrara and Padova, and tested at the Fermilab Test Beam Facility (FBTF) in December 2010. In this paper a comprehensive description of the IFR related R&D studies will be presented. In particular, we will focus on the

  10. Measurement of B(B+→ J/Ψ π+)/B(B+ → J/Ψ K+) at the collider detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaison [Sungkyunkwan Univ., Suwon (Republic of Korea)

    2005-01-01

    This thesis reports on a measurement of the ratio of braching frac t ions, B(B+→ J/Ψ π+)/B(B+ → J/Ψ K+) , where J/Ψ → μ+μ- . The data were collected by the Collider Detector at Fermilab between February 2002 and August 2003 and corresponds to an integrated luminosity of 220 pb- 1 in p$\\bar{p}$ collisions at √s = l.96 TeV. We determine the ratio of branching fractions.

  11. Integration and installation of the CMS pixel barrel detector

    CERN Document Server

    Kastli, Hans-Christian

    2008-01-01

    A 66 million pixel detector has been installed in 2008 into the CMS experiment at CERN. The development and construction time took more than 10 years. In this paper the assembly of the barrel detector is described. A simple but effective method to accomplish a survey of the module positions during assembly is discussed. Furthermore the insertion and commissioning of the CMS pixel barrel detector which took place in July 2008 is illustrated.

  12. High field Nb/sub 3/Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.; Agarwal, K.L.; Bailey, R.E.; Burgeson, J.E.; Kim, I.K.; Magnuson, G.D.; Mallett, B.D.; Pickering, J.L.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.

  13. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  14. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  15. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  16. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  17. Particle detectors based on semiconducting InP epitaxial layers

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Žďánský, Karel

    2011-01-01

    Roč. 6, C01072 (2011), C010721-C010725 ISSN 1748-0221 R&D Projects: GA AV ČR KJB200670901; GA MŠk(CZ) OC10021; GA ČR(CZ) GP102/08/P617 Institutional research plan: CEZ:AV0Z20670512 Keywords : Solid state detectors * Gamma detectors * Radiation-hard detectors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  18. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  19. CERN’s got TALENT

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    TALENT is a Marie Curie Initial Training Network (ITN) project coordinated by CERN and funded under the European Commission’s Seventh Framework Programme. From 23 to 25 November, the project’s participants will present their achievements at the final event that will be held at IdeaSquare.   The IBL sub-detector during its insertion in the heart of the ATLAS detector (May 2014) (Image: Heinz Pernegger/CERN). TALENT’s acronym stands for “Training for cAreer deveLopment in high-radiation ENvironment Technologies”. Launched in 2012 by a collaboration of three research centres, seven universities and eight industrial partners and led by CERN, the project had the overall objective of building up the careers of young researchers in the field of instrumentation for future tracking detectors. The test bed for TALENT’s students has been the development of the Insertable B-Layer (IBL) sub-detector of ATLAS. The high-precision pixel detect...

  20. Neutron-sensitive ZnS/10B2O3 ceramic scintillator detector as an alternative to a 3He-gas-based detector for a plutonium canister assay system

    International Nuclear Information System (INIS)

    Nakamura, T.; Ohzu, A.; Toh, K.; Sakasai, K.; Suzuki, H.; Honda, K.; Birumachi, A.; Ebine, M.; Yamagishi, H.; Takase, M.; Haruyama, M.; Kureta, M.; Soyama, K.; Nakamura, H.; Seya, M.

    2014-01-01

    A neutron-sensitive ZnS/ 10 B 2 O 3 ceramic scintillator detector was developed as an alternative to a 3 He-gas-based detector for use in a plutonium canister assay system. The detector has a modular structure, with a flat ZnS/ 10 B 2 O 3 ceramic scintillator strip that is installed diagonally inside a light-reflecting aluminium case with a square cross-section, and where the scintillation light is detected using two photomultiplier tubes attached at both ends of the case. The prototype detectors, which have a neutron-sensitive area of 30 mm×250 mm, exhibited a sensitivity of 21.7–23.4±0.1 cps/nv (mean±SD) for thermal neutrons, a 137 Cs gamma-ray sensitivity of 1.1–1.9±0.2×10 −7 and a count variation of less than 6% over the detector length. A trial experiment revealed a temperature coefficient of less than −0.24±0.05%/°C over the temperature range of 20–50 °C. The detector design and the experimental results are presented

  1. Effect of SiO$_{2}$ passivating layer in segmented silicon planar detectors on the detector response

    CERN Document Server

    Verbitskaya, Elena; Eremin, Vladimir; Golubkov, S; Konkov, K; Roe, Shaun; Ruggiero, G; Sidorov, A; Weilhammer, Peter

    2004-01-01

    Silicon detectors with a fine segmentation (micropixel and microstrip) are the main type of detectors used in the inner trackers of LHC experiments. Due to the high luminosity of the LHC machines they are required to have a fast response to fit the short shaping time of 25 ns and to be radiation hard. Evaluation of silicon microstrip detectors developed for the ATLAS silicon tracker and carried out under collaboration of CERN and PTI has shown the reversal of the pulse polarity in the detector response to short- range radiation. Since the negative signal is of about 30% of the normal positive one, the effect strongly reduces the charge collection efficiency in irradiated detectors. The investigation presents the consideration on the origin of a negative response in Si microstrip detectors and the experimental proof of the model. The study of the effect has been carried out using "baby" strip detectors with a special design: each strip has a window in a metallization, which covers the p/sup +/ implant. The sca...

  2. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  3. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  4. Measurement of the partial decay width R$_{b}^{0}$ = $\\Gamma_{b\\overline{b}}$/$\\Gamma_{had}$ of the Z with the DELPHI detector at LEP

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1996-01-01

    The partial decay width of the Z to b\\overline{ b} quark pairs has been measured by the DELPHI detector at LEP. B-hadrons, containing b-quarks, were tagged by several methods using tracks with large impact parameters to the primary vertex complemented sometimes by event shape variables or using leptons with high transverse momentum relative to the hadron. In order to reduce the systematic uncertainties, in all methods the b-tagging efficiency has been extracted directly from the data. Combining all methods, the value: \\[ \\frac{\\Gamma_{b \\bar{b}}}{\\Gamma_{had}} = 0.2216 \\pm 0.0016(stat.) \\pm 0.0021 (syst.) \\] was found, where the c\\overline{c} production fraction was fixed to its Standard Model value.

  5. A PowerPC-based control system for the Read-Out-Driver module of the ATLAS IBL

    International Nuclear Information System (INIS)

    Balbi, G; Bruni, G; Bruschi, M; D'Antone, I; Polini, A; Rizzi, M; Travaglini, R; Dopke, J; Falchieri, D; Gabrielli, A; Zannoli, S; Flick, T; Heim, T; Neumann, M; Grosse-Knetter, J; Krieger, N; Joseph, J; Kugel, A; Schroer, N; Morettini, P

    2012-01-01

    The ATLAS experiment at LHC planned to upgrade the existing Pixel Detector with the insertion of an innermost silicon layer, called Insertable B-layer (IBL). A new front-end ASIC has been foreseen (named FE-I4) and it will be read out with improved off-detector electronics. In particular, the new Read-Out Driver card (ROD) is a VME-based board designed to process a four-fold data throughput. Moreover, the ROD hosts the electronics devoted to control operations whose main tasks are providing setup busses to access configuration registers on several FPGAs, receiving configuration data from external PCs, managing triggers and running calibration procedures. In parallel with a backward-compatible solution with a Digital Signal Processor (DSP), a new ROD control circuitry with a PowerPC embedded into an FPGA has been implemented. In this paper the status of the PowerPC-based control system will be outlined with major focus on firmware and software development strategies.

  6. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    KAUST Repository

    Shahid, Muhammad

    2014-10-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres. © 2014 Elsevier B.V. All rights reserved.

  7. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    KAUST Repository

    Shahid, Muhammad; Yesibolati, Nulati; Reuter, Mark C.; Ross, Frances M.; Alshareef, Husam N.

    2014-01-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres. © 2014 Elsevier B.V. All rights reserved.

  8. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone.

    Science.gov (United States)

    Wang, Tong-Mei; Lee, Ming-Shu; Wang, Juo-Song; Lin, Li-Deh

    2015-01-01

    This study investigated the effect of implant design and bone quality on insertion torque (IT), implant stability quotient (ISQ), and insertion energy (IE) by monitoring the continuous change in IT and ISQ while implants were inserted in artificial bone blocks that simulate bone of poor or poor-to-medium quality. Polyurethane foam blocks (Sawbones) of 0.16 g/cm³ and 0.32 g/cm³ were respectively used to simulate low density and low- to medium-density cancellous bone. In addition, some test blocks were laminated with a 1-mm 0.80 g/cm³ polyurethane layer to simulate cancellous bone with a thin cortical layer. Four different implants (Nobel Biocare Mk III-3.75, Mk III-4.0, Mk IV-4.0, and NobelActive-4.3) were placed into the different test blocks in accordance with the manufacturer's instructions. The IT and ISQ were recorded at every 0.5-mm of inserted length during implant insertion, and IE was calculated from the torque curve. The peak IT (PIT), final IT (FIT), IE, and final ISQ values were statistically analyzed. All implants showed increasing ISQ values when the implant was inserted more deeply. In contrast to the ISQ, implants with different designs showed dissimilar IT curve patterns during the insertion. All implants showed a significant increase in the PIT, FIT, IE, and ISQ when the test-block density increased or when the 1-mm laminated layer was present. Tapered implants showed FIT or PIT values of more than 40 Ncm for all of the laminated test blocks and for the nonlaminated test blocks of low to medium density. Parallel-wall implants did not exhibit PIT or FIT values of more than 40 Ncm for all of the test blocks. NobelActive-4.3 showed a significantly higher FIT, but a significantly lower IE, than Mk IV-4.0. While the existence of cortical bone or implant designs significantly affects the dynamic IT profiles during implant insertion, it does not affect the ISQ to a similar extent. Certain implant designs are more suitable than others if high IT is

  9. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Sven Reiche

    Full Text Available The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs originated from 26 and the kappa light chains (LCs from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4% in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses.

  10. Development of Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  11. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuechun [School of Materials Science and Engineering, Yunnan University, Kunming (China); Chen, Xiuhua, E-mail: chenxh@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming (China); Ma, Wenhui [National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming (China); Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei [School of Materials Science and Engineering, Yunnan University, Kunming (China)

    2017-02-28

    Highlights: • In this paper, the electroless deposited NiCrB thin film was mainly in the form of NiB, CrB{sub 2} compounds and elementary Ni. • The sheet resistance of NiCrB thin film was 3.043 Ω/□, it is smaller than that of the widely used Ta, TaN and TiN diffusion barrier layers. • Annealing experiments showed that the failure temperature of NiCrB thin film regarding Cu diffusion was 900 °C. • NiCrB barrier layer crystallized after 900 °C annealing, Cu grains arrived at Si-substrate through grain boundaries, resulting in the formation of Cu{sub 3}Si. • Eelectroless deposited NiCrB film also had good oxidation resistance, it is expected to become an anti-oxidant layer of copper interconnection. - Abstract: NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO{sub 2}/Si and NiCrB/Cu/NiCrB/SiO{sub 2}/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu{sub 3}Si.

  12. Two-dimensional position sensitive Si(Li) detector

    International Nuclear Information System (INIS)

    Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated

  13. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    Science.gov (United States)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  14. [Effects of slow twisting needle insertion and tubing needle insertion at Neiguan (PC 6) on cardiovascular function: a comparative study].

    Science.gov (United States)

    Ning, Shaoli; Zhao, Lihua; Xu, Lingjun; Huang, Yu; Pang, Yong; Huang, Dingjian

    2016-01-01

    To compare the effects between slow twisting needle insertion and tubing needle insertion. With cross-over design, 100 healthy young subjects (half male and half female) aged from 19 to 23 years were randomly divided into two groups by random digital table, 50 cases in each one. At the first stage, subjects in the group A were treated with slow twisting needle insertion while, subjects in,the group B were treated with tubing needle insertion. One week later, the procedure of second stage was performed alternately. The needle was inserted into Neiguan (PC 6) with two methods by one acupuncturist. The needle was retained for 5 min before removal. Five min before needle insertion as well as needle withdrawal and 30 min after needle withdrawal, ZXG-E automatic cardiovascular diagnostic apparatus was used to test cardiovascular function. At the tim of needle withdrawal, slow twisting needle insertion could improve effect work of kinetics (EWK), effective blood volume (BV) and reduce elastic expansion coefficient of blood vessel (FEK) and left ventricular spray blood impedance (VER), which was significantly different from tubing needle insertion (all P 0.05). The slow twisting needle insertion is significantly superior to tubing needle insertion on lowering vascular tension and VER, improving EWK and BV.

  15. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  16. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  17. B{sub 4}C thin films for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  18. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  19. In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J; Hultman, L; Höglund, C [Linköping University, Thin Film Physics Division, IFM, SE-581 83 Linköping (Sweden); Buffet, J-C; Clergeau, J-F; Correa, J; Van Esch, P; Ferraton, M; Guerard, B; Halbwachs, J; Khaplanov, A; Koza, M; Piscitelli, F; Zbiri, M [Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble (France); Hall-Wilton, R [European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund (Sweden)

    2014-07-24

    A neutron detector concept based on solid layers of boron carbide enriched in {sup 10}B has been in development for the last few years as an alternative for {sup 3}He by collaboration between the ILL, ESS and Linköping University. This Multi-Grid detector uses layers of aluminum substrates coated with {sup 10}B{sub 4}C on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the {sup 3}He detectors of IN6 at ILL. The {sup 10}B detector has an active area of 32 x 48cm{sup 2}. It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional {sup 3}He detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background.

  20. On the use of a moderation layer to improve the safety behavior in sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno, E-mail: b.merk@fzd.de [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Fridman, Emil; Weiss, Frank-Peter [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2011-05-15

    Research highlights: > Using a moderation layer can reduce the sodium void effect in a SFR. > Inserting the moderation layer improves the Doppler effect significantly. > The uniform layer distribution avoids effects on power and burnup distribution. > Hydride containing material like uranium-zirconium hydride is most efficient. - Abstract: This work shows the effect of the use of moderating layers on the sodium void effect in sodium cooled fast breeder reactors. The moderating layers consisting of either boron carbide B{sub 4}C or uranium-zirconium hydride UZrH cause a strong reduction of the sodium void effect. Additionally these layers improve the fuel temperature effect and the coolant effect of the system. The use of the UZrH is significantly more effective for the reduction of the sodium void effect as well as for the improvement of the fuel temperature and the coolant effect. All changes cause by the insertion of the UZrH layer cause a significantly increased stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides.

  1. A 128-channel event driven readout ASIC for the R3B tracker

    International Nuclear Information System (INIS)

    Jones, L.; Bell, S.; Morrissey, Q.; Prydderch, M.; Church, I.; Lazarus, I.; Kogimtzis, M.; Pucknell, V.; Labiche, M.; Thornhill, J.; Borri, M.

    2016-01-01

    R 3 B is a detector with high efficiency, acceptance, and resolution for kinematically complete measurements of reactions with high-energy radioactive beams. Detectors track and identify radioactive beams into and out of a reaction target. Three layers of double-sided stereoscopic silicon strips form the tracker detector which must provide precise tracking and vertex determination and in addition include energy and multiplicity measurements. The R 3 B ASIC has been manufactured and is intended for processing and digitising signals generated by ionising particles passing through the tracker. The ASIC processes signals and provides spatial, energy and time measurements

  2. Experience on 3D silicon sensors for ATLAS IBL

    International Nuclear Information System (INIS)

    Darbo, G.

    2015-01-01

    3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been developed for the Insertable B-Layer (IBL), an additional pixel layer that has been installed in ATLAS during the present shutdown of the LHC collider at CERN. It is presented here the experience in designing, testing and qualifying sensors and detector modules that have been used to equip part of the IBL. Based on the gained experience with 3D silicon sensors for the ATLAS IBL, we discuss possible new developments for the upgrade of ATLAS and CMS at the high-luminosity LHC (HL-LHC)

  3. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectorslayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  4. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Grinstein, S.; Paz, I. López

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10 15 n eq /cm 2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  5. Design and evaluation of the IBL BOC for the ATLAS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Nicolai

    2013-02-14

    In 2013 during a 20 month long shutdown of the LHC the Pixel Detector of the ATLAS Experiment at CERN will be upgraded by inserting a fourth innermost layer between the beam pipe and the current detector. This so called Insertable B-Layer (IBL) will be constructed with 448 of the new FE-I4 chips to handle the readout of the about 12 million pixels provided by the sensors of this layer. The improved architecture and increased bandwidth of these new readout chips requires new off-detector electronics which were decided to be also backwards compatible to the existing system. Hence the VME card pair establishing the optical interface to front-end and data acquisition (BOC) and managing the data processing and calibration (ROD) have been redesigned for the IBL. In this thesis the redesign of the BOC card is motivated and presented. At first the ATLAS Experiment is described and the need to upgrade the Pixel Detector with a new layer is explained. As the readout chip architecture of the current system has flaws preventing its use for the IBL the new FE-I4 is introduced, and with a look at the current off-detector electronics the need for a redesign of it is justified. Starting with the conceptual planning, the redesign process of the BOC card is presented from hard- and firmware development to testing of the first prototypes. The redesigned BOC is based on modern FPGA technology in conjunction with commercial off-the-shelf optical transceiver modules to provide an integration four times higher than the current system, including the flexibility to adjust to different use cases by simply changing the firmware.

  6. Design and evaluation of the IBL BOC for the ATLAS experiment at CERN

    International Nuclear Information System (INIS)

    Schroer, Nicolai

    2013-01-01

    In 2013 during a 20 month long shutdown of the LHC the Pixel Detector of the ATLAS Experiment at CERN will be upgraded by inserting a fourth innermost layer between the beam pipe and the current detector. This so called Insertable B-Layer (IBL) will be constructed with 448 of the new FE-I4 chips to handle the readout of the about 12 million pixels provided by the sensors of this layer. The improved architecture and increased bandwidth of these new readout chips requires new off-detector electronics which were decided to be also backwards compatible to the existing system. Hence the VME card pair establishing the optical interface to front-end and data acquisition (BOC) and managing the data processing and calibration (ROD) have been redesigned for the IBL. In this thesis the redesign of the BOC card is motivated and presented. At first the ATLAS Experiment is described and the need to upgrade the Pixel Detector with a new layer is explained. As the readout chip architecture of the current system has flaws preventing its use for the IBL the new FE-I4 is introduced, and with a look at the current off-detector electronics the need for a redesign of it is justified. Starting with the conceptual planning, the redesign process of the BOC card is presented from hard- and firmware development to testing of the first prototypes. The redesigned BOC is based on modern FPGA technology in conjunction with commercial off-the-shelf optical transceiver modules to provide an integration four times higher than the current system, including the flexibility to adjust to different use cases by simply changing the firmware.

  7. Neutron detector based on lithiated sol-gel glass

    CERN Document Server

    Wallace, S; Miller, L F; Dai, S

    2002-01-01

    A neutron detector technology is demonstrated based on sup 6 Li/ sup 1 sup 0 B doped sol-gel glass. The detector is a sol-gel glass film coated silicon surface barrier detector (SBD). The ionized charged particles from (n, alpha) reactions in the sol-gel film enter the SBD and are counted. Data showing that gamma-ray pulse amplitudes interfere with identifying charged particles that exit the film layer with energies below the gamma-ray energy is presented. Experiments were performed showing the effect of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co gamma rays on the SBD detector. The reaction product energies of the triton and alpha particles from sup 6 Li are significantly greater than the energies of the Compton electrons from high-energy gamma rays, allowing the measurement of neutrons in a high gamma background. The sol-gel radiation detection technology may be applicable to the characterization of transuranic waste, spent nuclear fuel and to the monitoring of stored plutonium.

  8. Status of the SLAC/LBL/LLNL B-Factory and the BaBar detector

    International Nuclear Information System (INIS)

    Oddone, P.

    1994-08-01

    The primary motivation of the Asymmetric B-Factory is the study of CP violation. The decay of B mesons and, in particular, the decay of neutral B mesons, offers the possibility of determining conclusively whether CP violation is part and parcel of the Standard Model with three generations of quarks and leptons. Alternatively, the authors may discover that CP violation lies outside the present framework. In this paper the authors briefly describe the physics reach of the SLAC/LBL/LLNL Asymmetric B-Factory, the progress on the machine design and construction, the progress on the detector design, and the schedule to complete both projects

  9. Study of oxide facing at silicone detectors of ionization detectors

    International Nuclear Information System (INIS)

    Kopestansky, J.; Tykva, R.

    1999-01-01

    Formation of oxide facing on silicone in discrete phases of technological preparation of detectors and interaction of gold (aluminium) steamed with SiO x layer were studied. The homogeneity of Au and Si) x layers and interface Au-SiO x and SiO x -Si were examined. The methods SIMS, and partially XPS, AES and RBS were used

  10. Low-Level Test of the New Read-Out-Driver (ROD) Module and Back-of-Crate (BOC) Module for ATLAS IBL Data Acquisition System Upgrade

    CERN Document Server

    Hanindhito, Bagus

    2014-01-01

    During first long shutdown of The Large Hadron Collider, most of experiment infrastructures at CERN will be upgraded for preparation to operate at higher energy thus can open new possibilities to discover the unknown in particle physics. ATLAS, which is the biggest particle detector at CERN, will also be upgraded by constructing new pixel sensor layer. This new pixel sensor layer is called ATLAS Insertable B-Layer (IBL). IBL will be installed between the existing pixel sensor and new, smaller radius beam pipe. The installation of IBL will introduce new level of radiation and pixel occupancy. Therefore, it requires development of new technologies to supports the ATLAS IBL upgrade and also improve the physics performance of the existing pixel sensor. One of the important key technologies that must be upgraded is data acquisition system. The development of new front-end ASIC, the FE-I4, to answer the challenge in data acquisition system will require new off-detector electronics. The new off-detector electronics ...

  11. Measurement of the radiation incident on ALS NdFeB permanent magnet insertion device structures and a determination of their lifetime

    International Nuclear Information System (INIS)

    Krebs, G.F.; Holmes, M.

    1997-05-01

    Measurements of the radiation incident on ALS insertion device NdFeB permanent magnet structures were carried out using thermoluminescence dosimeters. A plastic scintillator gamma telescope was utilized to unravel the various contributions to the integrated dose. Magnet lifetimes were calculated for various operational conditions

  12. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled

  13. NEULAND at R{sup 3}B: Multi-neutron response and resolution of the novel neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro; Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Boretzky, Konstanze; Bertini, Denis; Heil, Michael; Rossi, Dominic; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2012-07-01

    NEULAND (New Large Area Neutron Detector) will serve for the detection of fast neutrons (200 - 1000 MeV) in the R3B experiment at the future FAIR. A high detection efficiency (> 90%), a high resolution (down to 20 keV) and a large multi-neutron-hit resolving power ({>=}5 neutrons) are demanded. The detector concept foresees a fully active and highly granular design of plastic scintillators. We present the detector capabilities, based on simulations performed within the FairRoot framework. The relevance of calorimetric properties for the multi-hit recognition is discussed, and exemplarily the performance for specific physics cases is presented.

  14. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    International Nuclear Information System (INIS)

    Ozguner, O; Halliburton, S; Dhanantwari, A; Utrup, S; Wen, G; Jordan, D

    2016-01-01

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  15. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, OH (United States); Halliburton, S; Dhanantwari, A; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  16. (Li) detector characteristics on the accuracy in X-ray analysis using the

    African Journals Online (AJOL)

    A study has been carried out to show how variations in Si(Li) detector characteristics affect the accuracy of X-ray spectra evaluation. The detector characteristics investigated are Be window thickness, Au layer, Si dead layer and Si Detector Sensitive volume. For each of the detector parameters, different thickness values ...

  17. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  18. The IBL Readout System

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2010-01-01

    The first upgrade for the ATLAS pixel detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer having new electronics assembled an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth and also compatible with the existing system to be integrated into it. The talk will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  19. The IBL Readout System

    CERN Document Server

    Dopke, J; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, having new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  20. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  1. Silicon drift detectors, present and future prospects

    Science.gov (United States)

    Takahashi, J.; Bellwied, R.; Beuttenmuller, R.; Caines, H.; Chen, W.; Dyke, H.; Hoffmann, G. W.; Humanic, T.; Kotov, I.; Kuczewski, P.; Leonhardt, W.; Li, Z.; Lynn, D.; Minor, R.; Munhoz, M.; Ott, G.; Pandey, S. U.; Schambach, J.; Soja, R.; Sugarbaker, E.; Willson, R. M.

    2001-04-01

    Silicon drift detectors provide unambiguous two-dimensional position information for charged particle detection with a single detector layer. A large area silicon drift detector was developed for the inner tracking detector of the STAR experiment at RHIC. In this paper, we discuss the lessons learned and the future prospects of this technology.

  2. Alternative method for predicting optimal insertion depth of the laryngeal tube in children.

    Science.gov (United States)

    Kim, J T; Jeon, S Y; Kim, C S; Kim, S D; Kim, H S

    2007-11-01

    Little information is available about the accuracy of the teeth mark on the laryngeal tube (LT) as a guide to correct placement in children. The aim of this crossover study was to evaluate three methods for optimal insertion depth of the size (#) 2 tube in children weighing 12-25 kg. In 24 children, the LT #2 was consecutively inserted by three different methods: (A) until the thick teeth mark on the tube was aligned with the upper incisors, (B) until resistance was felt, and (C) by inserting to a depth, previously measured, of the curved distance between the cricoid cartilage and the upper incisor. In each case, the depth of insertion, the degree of effective ventilation, the presence of leakage, and the fibreoptic view were assessed. Insertion based on the teeth mark led to a shorter insertion depth and a greater incidence of inadequate ventilation compared with the other two methods. There was no difference in the adequacy of ventilation between methods B and C. The vocal cords were more easily identified with methods B (62.5%) and C (75%) than with method A (12.5%). Insertion of the LT #2 aligned with the teeth mark can result in a shallow insertion depth and inadequate ventilation. The measured distance from the cricoid cartilage to the upper incisor offers alternative guidance for correct LT insertion.

  3. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  4. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion.

    Science.gov (United States)

    Leprinc, A S; Grandbastien, M A; Christian, M

    2001-11-01

    Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate-resistant mutants selected from protoplast-derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tntl elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non-conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tntl subfamilies and that only one active Tntl subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

  5. Dosimetric characteristics of Li2B4O7:Cu,Ag,P solid TL detectors

    International Nuclear Information System (INIS)

    Proki, M.

    2002-01-01

    The main dosimetric characteristics are presented of newly prepared tissue-equivalent, highly sensitive thermoluminescent detector, Li 2 B 4 O 7 :Cu,Ag,P in the form of sintered pellets, developed at the Institute of Nuclear Sciences, Vin a . As a result of an advancement in the preparation procedure by the sensitising of basic copper activated lithium borate TL material, significant improvement in the TL sensitivity of Li 2 B 4 O 7 :Cu,Ag,P was gained. The glow curve of Li 2 B 4 O 7 :Cu,Ag,P consists of well defined main dosimetric peak situated at about 185-190 deg. C with the TL sensitivity which is about four to five times higher than that of LiF:Mg,Ti (TLD-100). From the experimental results a very wide linear dose response range, up to 10 3 Gy is evident. Dosimetric characteristics make sintered solid Li 2 B 4 O 7 :Cu,Ag,P TL detectors very promising for different dosimetry applications particularly in medical dosimetry and also for individual monitoring. (author)

  6. Testing and development of an OWC MRI compatible PET insert front-end

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinou, G.; Ali, W.; Chil, R.; Cossu, G.; Ciaramella, E.; Vaquero, J.J.

    2016-07-01

    We present the design and development of a positron emission tomography (PET) detector module that could be used inside magnetic resonance imager (MRI). Critical factors compromising this combination have been studied and different solutions have been offered. Our design divides the detector module in two sections: one is the insert front-end that is placed inside the MRI and that comprises of a scintillator, a silicon photomultiplier and minimum analog electronics. The analog pulses are sent to the second section, the back-end digitalization and reconstruction module. The analog link is implemented using optical wireless communication (OWC) techniques. In this work we study how such a setting retains all the necessary characteristics for the detection and characterization of gamma scintillation events, providing sufficient communication quality with low consumption and minimizing the need for space. Possible multiplexing schemes for achieving the necessary transmission with less communication channels are also proposed and studied. A series of tests and measurements on different settings demonstrate the viability of this technique. When fully developed, it can provide a cost effective alternative for the industrial production of a flexible and customizable modular PET detector insert that can be applied to pre-existing small animal or human MRI settings, only minimally affecting the size of the MRI bore, without compromising the PET signal quality. (Author)

  7. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

    2013-08-21

    {sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  8. Inflatable bag with sealing and protection layer

    International Nuclear Information System (INIS)

    Kocourek, L.; Dohnal, M.; Klinga, J.; Matal, O.; Holy, F.

    1989-01-01

    The inflatable bag consists of a textile casing in which a cylindrical pvc tyre with concave bottoms is inserted and glued to the casing. A sealing protective layer is provided on the outer periphery of the cylindrical part of the tyre. A tyre valve with flange and fixing ears and also a relief valve are provided in the concave bottom. The casing material, such as a layer of 0.5 to 5 mm silicone rubber bands is suitable for use in contact with austenitic materials. The bag completely seals spaces such as the mouths of steam generator tubes or collector branches in a nuclear power plant. Decontamination can easily be achieved by rinsing the surface with common means. (J.B.). 2 figs

  9. Evaluation the image obtained from X-ray flat-panel detectors utilizing a polycrystalline CdZnTe film as the conversion layer

    International Nuclear Information System (INIS)

    Tokuda, S.; Kishihara, H.; Kaino, M.; Sato, T.

    2006-01-01

    We can expect that fluoroscopic images with a high sensitivity and excellent detective efficiency can be obtained by using a semiconductor with a small W factor for the conversion layer of X-ray flat-panel detectors, which have experienced a rapid gain inpopularity for medical and non-destructive industrial inspection uses in recent years. We believe that polycrystalline CdZnTe film formed by the closed spaced sublimation (CSS) method is a promising conversion material for next-generation high efficiency X-ray flat-panel detectors, and have previously reported the results of feasibility studies. In this paper, we present an overview of X-ray flat-panel detectors and the features of CdZnTe film, then we describe the CSS method of deposition and evaluation of the physical characteristics of CdZnTe film, and finally we present the results of our fabrication and testing of proto-type detectors utilizing CdZnTe film. (author)

  10. A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.

  11. HgI{sub 2} detector fabrication; Construccion de detectores de HgI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Perez, J. M.

    1996-07-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicularly to the (001) crystallographic. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. then, the metal electrode deposition and the view connection has been explained. Finally, the technique followed to encapsulate the detector with a polymeric thin film deposition has been described. (Author) 10 refs.

  12. Firmware development and testing of the ATLAS IBL Back-Of-Crate card

    CERN Document Server

    Stramaglia, ME; The ATLAS collaboration

    2014-01-01

    ATLAS is one of the four big LHC experiments and currently its Pixel-Detector is being upgraded with a new innermost 4th layer, the Insertable B-Layer (IBL). The upgrade will result in better tracking efficiency and compensate radiation damages of the Pixel-Detector. Newly developed front-end electronics and the higher than originally planned LHC luminosity will require a complete re-design of the Off-Detector-Electronics consisting of the Back-Of-Crate card (BOC) and the Read-Out-Driver (ROD). The main purpose of the BOC card is the distribution of the LHC clock to all Pixel-Detector components as well as interfacing the detector and the higher-level-readout optically. It is equipped with three Xilinx Spartan-6 FPGAs, one BOC Control FPGA (BCF) and two BOC Main FPGAs (BMF). The BMF are responsible for the signal processing of all incoming and outgoing data. The data-path to the detector is running a 40 MHz bi-phase-mark encoded stream. This stream is delayed by a fine delay block using Spartan-6 IODELAY prim...

  13. Measuring the mutual effects between a CZT detector and MRI for the development of a simultaneous MBI/MRI insert

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Ashley [McMaster University (Canada); Farncombe, Troy [Hamilton Health Sciences (Canada); Noseworthy, Michael [McMaster University (Canada)

    2015-05-18

    While mammography is the gold standard for breast cancer screening, it suffers from poor sensitivity in women with dense breast tissue. Both breast MRI and molecular breast imaging (MBI) have been used as secondary imaging techniques. However, breast MRI suffers from low specificity and low sensitivity in MBI. A CZT based detector system has been developed with the goal of simultaneous MBI/MRI imaging to address the shortcomings of each modality. The performance of each modality needs to be addressed separately and together. The CZT system is comprised of four Redlen CZT modules tiled in a 2x2 array. Each module consists of 256 pixels and feature a builtin on-board ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a PC. MR images were acquired with a 3T GE Discovery MR750 and Hologic breast coils. A gradient echo imaging sequence was used for all image acquisitions. A tissue mimicking phantom with a plastic grid insert (1 cm spacing) was used to evaluate geometric accuracy with the CZT detectors in the MRI bore. The average distance between the grid markers was 1Å 0.2cm indicating negligible geometric distortion. Field maps were generated with a uniform phantom to quantify the effect on magnetic field homogeneity. Early results indicate a significant distortion (~10ppm) in the magnetic field closest to the coil. Further analysis of the MR images will determine the extent of image quality degradation. A flood map of Tc-99m was acquired to evaluate and implement an energy correction map and a uniformity map. In the absence of a magnetic field, the mean energy resolution at 140keV was 6.3%. After fully characterizing the uniformity, geometric accuracy and sensitivity, the same metrics will be evaluated in the MRI bore.

  14. Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite interfacial layer

    Science.gov (United States)

    Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine

    2017-06-01

    The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.

  15. Initial clinical experience with dual-layer detector spectral CT in patients with acute intracerebral haemorrhage: A single-centre pilot study.

    Directory of Open Access Journals (Sweden)

    Soo Buem Cho

    Full Text Available The purpose of this study was to investigate the clinical feasibility of spectral analyses using dual-layer detector spectral computed tomography (CT in acute intracerebral haemorrhage (ICH.We retrospectively reviewed patients with acute ICH who underwent CT angiography on a dual-layer detector spectral CT scanner. A spectral data analysis was performed to detect contrast enhancement in or adjacent to acute ICH by using spectral image reconstructions including monoenergetic (MonoE, virtual noncontrast (VNC, and iodine overlay fusion images. We also acquired a spectral plot to assess material differentiation within lesions.Among the 30 patients, the most common cause of acute ICH was chronic hypertension (18/30, 60% followed by trauma (5/30, 16.7%, brain tumour (3/30, 10%, Moyamoya disease (2/30, 6.7%, and haemorrhagic diathesis from anticoagulation therapy (2/30, 6.7%. Of 30 patients, 13 showed suboptimal iodine suppression in the subcalvarial spaces on VNC images compared with true noncontrast images. The CT angiographic spot sign within the acute ICH was detected in four patients (4/30, 13.3%. All three tumours were metastatic and included lung cancer (n = 2 and hepatocellular carcinoma (n = 1 which showed conspicuous delineation of an enhancing tumour portion in the spectral analysis. Spectral analyses allowed the discrimination of acute haemorrhage and iodine with enhanced lesion visualization on the MonoE images obtained at lower keVs (less than 70 keV and spectral plot.Even though the image quality of VNC is perceived to be inferior, it is feasible to evaluate acute ICH in clinical settings using dual-layer detector spectral CT. The MonoE images taken at lower keVs were useful for depicting contrast enhancing lesion, and spectral plot might be helpful for material differentiation in patients with acute ICH.

  16. Initial clinical experience with dual-layer detector spectral CT in patients with acute intracerebral haemorrhage: A single-centre pilot study.

    Science.gov (United States)

    Cho, Soo Buem; Baek, Hye Jin; Ryu, Kyeong Hwa; Moon, Jin Il; Choi, Bo Hwa; Park, Sung Eun; Bae, Kyungsoo; Jeon, Kyung Nyeo; Kim, Dong Wook

    2017-01-01

    The purpose of this study was to investigate the clinical feasibility of spectral analyses using dual-layer detector spectral computed tomography (CT) in acute intracerebral haemorrhage (ICH). We retrospectively reviewed patients with acute ICH who underwent CT angiography on a dual-layer detector spectral CT scanner. A spectral data analysis was performed to detect contrast enhancement in or adjacent to acute ICH by using spectral image reconstructions including monoenergetic (MonoE), virtual noncontrast (VNC), and iodine overlay fusion images. We also acquired a spectral plot to assess material differentiation within lesions. Among the 30 patients, the most common cause of acute ICH was chronic hypertension (18/30, 60%) followed by trauma (5/30, 16.7%), brain tumour (3/30, 10%), Moyamoya disease (2/30, 6.7%), and haemorrhagic diathesis from anticoagulation therapy (2/30, 6.7%). Of 30 patients, 13 showed suboptimal iodine suppression in the subcalvarial spaces on VNC images compared with true noncontrast images. The CT angiographic spot sign within the acute ICH was detected in four patients (4/30, 13.3%). All three tumours were metastatic and included lung cancer (n = 2) and hepatocellular carcinoma (n = 1) which showed conspicuous delineation of an enhancing tumour portion in the spectral analysis. Spectral analyses allowed the discrimination of acute haemorrhage and iodine with enhanced lesion visualization on the MonoE images obtained at lower keVs (less than 70 keV) and spectral plot. Even though the image quality of VNC is perceived to be inferior, it is feasible to evaluate acute ICH in clinical settings using dual-layer detector spectral CT. The MonoE images taken at lower keVs were useful for depicting contrast enhancing lesion, and spectral plot might be helpful for material differentiation in patients with acute ICH.

  17. Study of rare b decays with the DELPHI detector at LEP

    CERN Document Server

    Adam, W; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leser, G; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1996-01-01

    Rare decays of beauty particles were studied in several charmless modes using the data collected with the DELPHI detector at LEP from 1991 to 1994. These decays are mediated by both tree level $b \\rightarrow u$ and one-loop penguin $b \\rightarrow s$, $d$ transitions. Evidence for charmless $B$ decays was obtained in two body hadronic modes. The branching ratios of $B^{0}_{d,s}$ to $\\pi^+ \\pi^-$ or $K^+ \\pi^-$ and $B^{-}_{u}$ to $\\rho^0 \\pi^-$ or $K^{*0} \\pi^-$ were found to be $(2.8 ^{+1.5}_{-1.0} \\pm 0.2) \\times 10^{-5}$ and $(1.7 ^{+1.2}_{-0.8} \\pm 0.2) \\times 10^{-4}$ respectively. The fraction of these decays with a charged kaon in the final state that is not from the spectator $s$ quark, was measured to be $0.58 \\pm 0.18$. Upper limits were set at 90\\% confidence level on the branching ratios %for other two body modes including the $\\Lambda_b^0\\to pK^-$ decay and for three and four body charmless hadronic decays in the range of \\mbox{$(1 - 3)\\times10^{-4}$}, for inclusive radiative $b \\rightarrow s \\gamm...

  18. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    Science.gov (United States)

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  19. The silicon shower maximum detector for the STIC

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The structure of a shashlik calorimeter allows the insertion of tracking detectors within the longitudinal sampling to improve the accuracy in the determination of the direction of the showering particle and the e/π separation ability. The new forward calorimeter of the DELPHI detector has been equipped with two planes of silicon pad detectors respectively after 4 and 7.4 radiation lengths. The novelty of these silicon detectors is that to cope with the shashlik readout fibers, they had to incorporate 1.4 mm holes every cm 2 . The detector consists of circular strips with a radial pitch of 1.7 mm and an angular granularity of 22.5 , read out by means of the MX4 preamplifier. The preamplifier is located at 35 cm from the silicon detector and the signal is carried by Kapton cables bonded to the detector. The matching to the MX4 input pitch of 44 μm was made by a specially developed fanin hybrid. (orig.)

  20. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  1. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  2. The silicon vertex detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-01-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  3. B Physics at the HL-LHC with the upgraded CMS detector

    CERN Document Server

    Fiorendi, Sara

    2018-01-01

    The high luminosity LHC (HL-LHC) run, which is due to start in 2026, is expected to deliver an integrated luminosity of approximately 3000 fb$^-1$ at a pp center of mass value of 14 TeV. Significant upgrades of the CMS detector are foreseen to withstand the highly-demanding operating conditions and to fully exploit the delivered luminosity. More precise investigations of rare decays in the flavour sector will be possible thanks to the large collected data sample. The perspectives for the measurements of the $B^0_s \\to \\mu^+\\mu^-$ and $B^0 \\to \\mu^+\\mu^-$ branching fractions are reported, together with the projections for the exclusion limit on the $\\tau \\to 3\\mu$ branching fraction.

  4. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  5. Digital radiography: Present detectors and future developments

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs

  6. Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    CERN Document Server

    Albert, J; Alimonti, Gianluca; Allport, Phil; Altenheiner, Silke; Ancu, Lucian; Andreazza, Attilio; Arguin, Jean-Francois; Arutinov, David; Backhaus, Malte; Bagolini, Alvise; Ballansat, Jacques; Barbero, Marlon; Barbier, Gérard; Bates, Richard; Battistin, Michele; Baudin, Patrick; Beau, Tristan; Beccherle, Roberto; Beck, Hans Peter; Benoit, Mathieu; Bensinger, Jim; Bomben, Marco; Borri, Marcello; Boscardin, Maurizio; Botelho Direito, Jose Antonio; Bousson, Nicolas; Boyd, George Russell Jr; Breugnon, Patrick; Bruni, Graziano; Bruschi, Marco; Buchholz, Peter; Buttar, Craig; Cadoux, Franck; Calderini, Giovanni; Caminada, Leah; Capeans, Mar; Casse, Gianluigi; Catinaccio, Andrea; Cavalli-Sforza, Matteo; Chauveau, Jacques; Chu, Ming-Lee; Ciapetti, Marco; Cindro, Vladimir; Citterio, Mauro; Clark, Allan; Cobal, Marina; Coelli, Simone; Colijn, Auke-Pieter; Colin, Daly; Collot, Johann; Crespo-Lopez, Olivier; Dalla Betta, Gian-Franco; Darbo, Giovanni; DaVia, Cinzia; David, Pierre-Yves; Debieux, Stéphane; Delebecque, Pierre; Devetak, Erik; DeWilde, Burton; Di Girolamo, Beniamino; Dinu, Nicoleta; Dittus, Fridolin; Diyakov, Denis; Djama, Fares; Dobos, Daniel Adam; Doonan, Kate; Dopke, Jens; Dorholt, Ole; Dube, Sourabh; Dushkin, Andrey; Dzahini, Daniel; Egorov, Kirill; Ehrmann, Oswin; Elldge, David; Elles, Sabine; Elsing, Markus; Eraud, Ludovic; Ereditato, Antonio; Eyring, Andreas; Falchieri, Davide; Falou, Aboud; Fang, Xiaochao; Fausten, Camille; Favre, Yannick; Ferrere, Didier; Fleta, Celeste; Fleury, Julien; Flick, Tobias; Forshaw, Dean; Fougeron, Denis; Fritzsch, Thomas; Gabrielli, Alessandro; Gaglione, Renaud; Gallrapp, Christian; Gan, K; Garcia-Sciveres, Maurice; Gariano, Giuseppe; Gastaldi, Thibaut; Gemme, Claudia; Gensolen, Fabrice; George, Matthias; Ghislain, Patrick; Giacomini, Gabriele; Gibson, Stephen; Giordani, Mario Paolo; Giugni, Danilo; Gjersdal, Håvard; Glitza, Karl Walter; Gnani, Dario; Godlewski, Jan; Gonella, Laura; Gorelov, Igor; Gorišek, Andrej; Gössling, Claus; Grancagnolo, Sergio; Gray, Heather; Gregor, Ingrid-Maria; Grenier, Philippe; Grinstein, Sebastian; Gromov, Vladimir; Grondin, Denis; Grosse-Knetter, Jörn; Hansen, Thor-Erik; Hansson, Per; Harb, Ali; Hartman, Neal; Hasi, Jasmine; Hegner, Franziska; Heim, Timon; Heinemann, Beate; Hemperek, Tomasz; Hessey, Nigel; Hetmánek, Martin; Hoeferkamp, Martin; Hostachy, Jean-Yves; Hügging, Fabian; Husi, Coralie; Iacobucci, Giuseppe; Idarraga, John; Ikegami, Yoichi; Janoška, Zdenko; Jansen, Jens; Jansen, Luc; Jensen, Frank; Jentzsch, Jennifer; Joseph, John; Kagan, Harris; Karagounis, Michael; Kass, Richard; Kenney, Christopher J; Kersten, Susanne; Kind, Peter; Klingenberg, Reiner; Kluit, Ruud; Kocian, Martin; Koffeman, Els; Kok, Angela; Korchak, Oleksandr; Korolkov, Ilya; Kostyukhin, Vadim; Krieger, Nina; Krüger, Hans; Kruth, Andre; Kugel, Andreas; Kuykendall, William; La Rosa, Alessandro; Lai, Chung-Hang; Lantzsch, Kerstin; Laporte, Didier; Lapsien, Tobias; Lounis, abdenour; Lozano, Manuel; Lu, Yunpeng; Lubatti, Henry; Macchiolo, Anna; Mallik, Usha; Mandić, Igor; Marchand, Denis; Marchiori, Giovanni; Massol, Nicolas; Matthias, Wittgen; Mättig, Peter; Mekkaoui, Abderrazak; Menouni, Mohsine; Menu, Johann; Meroni, Chiara; Mesa, Javier; Micelli, Andrea; Michal, Sébastien; Miglioranzi, Silvia; Mikuž, Marko; Mitsui, Shingo; Monti, Mauro; Moore, J; Morettini, Paolo; Muenstermann, Daniel; Murray, Peyton; Nellist, Clara; Nelson, David J; Nessi, Marzio; Neumann, Manuel; Nisius, Richard; Nordberg, Markus; Nuiry, Francois-Xavier; Oppermann, Hermann; Oriunno, Marco; Padilla, Cristobal; Parker, Sherwood; Pellegrini, Giulio; Pelleriti, Gabriel; Pernegger, Heinz; Piacquadio, Nicola Giacinto; Picazio, Attilio; Pohl, David; Polini, Alessandro; Popule, Jiří; Portell Bueso, Xavier; Povoli, Marco; Puldon, David; Pylypchenko, Yuriy; Quadt, Arnulf; Quirion, David; Ragusa, Francesco; Rambure, Thibaut; Richards, Erik; Ristic, Branislav; Røhne, Ole; Rothermund, Mario; Rovani, Alessandro; Rozanov, Alexandre; Rubinskiy, Igor; Rudolph, Matthew Scott; Rummler, André; Ruscino, Ettore; Salek, David; Salzburger, Andreas; Sandaker, Heidi; Schipper, Jan-David; Schneider, Basil; Schorlemmer, Andre; Schroer, Nicolai; Schwemling, Philippe; Seidel, Sally; Seiden, Abraham; Šícho, Petr; Skubic, Patrick; Sloboda, Michal; Smith, D; Sood, Alex; Spencer, Edwin; Strang, Michael; Stugu, Bjarne; Stupak, John; Su, Dong; Takubo, Yosuke; Tassan, Jean; Teng, Ping-Kun; Terada, Susumu; Todorov, Theodore; Tomášek, Michal; Toms, Konstantin; Travaglini, Riccardo; Trischuk, William; Troncon, Clara; Troska, Georg; Tsiskaridze, Shota; Tsurin, Ilya; Tsybychev, Dmitri; Unno, Yoshinobu; Vacavant, Laurent; Verlaat, Bart; Vianello, Elisa; Vigeolas, Eric; von Kleist, Stephan; Vrba, Václav; Vuillermet, Raphaël; Wang, Rui; Watts, Stephen; Weber, Michele; Weber, Marteen; Weigell, Philipp; Weingarten, Jens; Welch, Steven David; Wenig, Siegfried; Wermes, Norbert; Wiese, Andreas; Wittig, Tobias; Yildizkaya, Tamer; Zeitnitz, Christian; Ziolkowski, Michal; Zivkovic, Vladimir; Zoccoli, Antonio; Zorzi, Nicola; Zwalinski, Lukasz

    2012-01-01

    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

  7. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  8. HgI2 detector fabrication

    International Nuclear Information System (INIS)

    Gonzalez, M.; Perez, J. M.

    1996-01-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicularly to the (001) crystallographic. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. then, the metal electrode deposition and the view connection has been explained. Finally, the technique followed to encapsulate the detector with a polymeric thin film deposition has been described. (Author) 10 refs

  9. HgI2 detector fabrication

    International Nuclear Information System (INIS)

    Gonzalez, M.; Perez, J.M.

    1996-01-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicullarly to the (001) crystallographyc. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. Then, the metal electrode deposition and the wire connection has been explained. Finally, the technique followed to encapsulate the detector with a polimeric thin film deposition has been described

  10. The first Inner Detector End-Cap is lowered into the cavern

    CERN Multimedia

    Heinz Pernegger

    The first Inner Detector End-Cap, containing both the SCT and TRT detectors, arriving down the access shaft on the A-side. . The Inner Detector End-Cap A approaching the installation platform. During the difficult phase of inserting the Inner Detector into the cryostat. On Thursday, May 24, the first Inner Detector end-cap, with both the TRT and SCT end-caps, was taken down to the pit. More pictures can be found on the transfer from SR1 to SX1 as well as the lowering into the cavern and reception on the platform which can also be seen as a slide show

  11. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    Science.gov (United States)

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  12. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  13. Increase in transmission loss of single panels by addition of mass inclusions to a poro-elastic layer: Experimental investigation

    Science.gov (United States)

    Kidner, M. R. F.; Fuller, C. R.; Gardner, B.

    2006-06-01

    The insertion loss of standard acoustic blankets can be significantly improved at low frequencies by the addition of randomly placed mass inclusions to the poro-elastic layers. The improvement is much greater than that due to the mass effect alone. The mass inclusions act as resonant systems and so increase the structure impedance. This paper reports the results of experimental investigations into this phenomenon. Increases in insertion loss of 15 dB in the 100 Hz third octave band are reported.

  14. Modeling the Efficiency of a Germanium Detector

    Science.gov (United States)

    Hayton, Keith; Prewitt, Michelle; Quarles, C. A.

    2006-10-01

    We are using the Monte Carlo Program PENELOPE and the cylindrical geometry program PENCYL to develop a model of the detector efficiency of a planar Ge detector. The detector is used for x-ray measurements in an ongoing experiment to measure electron bremsstrahlung. While we are mainly interested in the efficiency up to 60 keV, the model ranges from 10.1 keV (below the Ge absorption edge at 11.1 keV) to 800 keV. Measurements of the detector efficiency have been made in a well-defined geometry with calibrated radioactive sources: Co-57, Se-75, Ba-133, Am-241 and Bi-207. The model is compared with the experimental measurements and is expected to provide a better interpolation formula for the detector efficiency than simply using x-ray absorption coefficients for the major constituents of the detector. Using PENELOPE, we will discuss several factors, such as Ge dead layer, surface ice layer and angular divergence of the source, that influence the efficiency of the detector.

  15. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  16. Tracking, $b$-Tagging and Measurement of the $b$-Jet Production Cross Section with the ATLAS Detector

    CERN Document Server

    Fleckner, Johanna Elisabeth; Tapprogge, S

    2011-01-01

    The Standard Model of elementary particle physics was developed to describe the fundamental particles which constitute matter and the interactions between them. The Large Hadron Collider (LHC) at CERN in Geneva was built to solve some of the remaining open questions in the Standard Model and to explore physics beyond it, by colliding two proton beams at world-record centre-of-mass energies. The ATLAS experiment is designed to reconstruct particles and their decay products originating from these collisions. The precise reconstruction of particle trajectories plays an important role in the identification of particle jets which originate from bottom quarks (b-tagging). This thesis describes the step-wise commissioning of the ATLAS track reconstruction and b-tagging software and one of the first measurements of the b-jet production cross section in pp collisions at sqrt(s)=7 TeV with the ATLAS detector. The performance of the track reconstruction software was studied in great detail, first using data from cosmi...

  17. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  18. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  19. Design of Faraday cup ion detectors built by thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowski, G.A., E-mail: gszalkowski3@gatech.edu [Department of Nuclear Engineering, Georgia Institute of Technology, 770 State St., Atlanta, GA 30332 (United States); Darrow, D.S., E-mail: ddarrow@pppl.gov [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543 (United States); Cecil, F.E., E-mail: fcecil@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2017-03-11

    Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on the Joint European Torus (JET) and the National Spherical Torus Experiment-Upgrade (NSTX-U). The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.

  20. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    Science.gov (United States)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  1. Possible multigap type-I superconductivity in the layered boride RuB2

    Science.gov (United States)

    Singh, Jaskaran; Jayaraj, Anooja; Srivastava, D.; Gayen, S.; Thamizhavel, A.; Singh, Yogesh

    2018-02-01

    The structure of the layered transition-metal borides A B2 (A =Os,Ru ) is built up by alternating T and B layers with the B layers forming a puckered honeycomb. Here we report superconducting properties of RuB2 with a Tc≈1.5 K using measurements of the magnetic susceptibility versus temperature T , magnetization M versus magnetic field H , resistivity versus T , and heat capacity versus T at various H . We observe a reduced heat capacity anomaly at Tc given by Δ C /γ Tc≈1.1 suggesting multigap superconductivity. Strong support for this is obtained by the successful fitting of the electronic specific heat data to a two-gap model with gap values Δ1/kBTc≈1.88 and Δ2/kBTc≈1.13 . Additionally, M versus H measurements reveal a behavior consistent with type-I superconductivity. This is confirmed by comparing the experimental critical field ≈122 Oe obtained from extrapolation to T =0 of the H -T phase diagram, with an estimate of the T =0 thermodynamic critical field ≈114 Oe. Additionally, the Ginzburg-Landau parameter was estimated to be κ ≈0.1 -0.66 . These results strongly suggest multigap type-I superconductivity in RuB2. We also calculate the band structure and obtain the Fermi surface for RuB2. The Fermi surface consists of one quasi-two-dimensional sheet and two concentric ellipsoidal sheets very similar to OsB2. An additional small fourth sheet is also found for RuB2. RuB2 could thus be an example of a multigap type-I superconductor.

  2. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    Science.gov (United States)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  3. Experimental study on the aging process of the LR 115 cellulose nitrate radon detector

    International Nuclear Information System (INIS)

    Siems, M.; Freyer, K.; Treutler, H.-C.; Joensson, G.; Enge, W.

    2001-01-01

    An experimental determination of the aging process of cellulose nitrate detector material was based on the examination of special properties of the LR 115 solid state nuclear track detectors (SSNTDs) of various ages up to 18 years. The examined relevant parameters are the bulk etching rate v b and the track etching rate v t . These parameters are responsible for the appearance, the size and the registration efficiency of tracks of α-particles from radon gas in the detector. To find a correlation between these material parameters and the detector sensitivity an experimental calibration of indoor room and outdoor soil detector devices based on LR 115 took place at the Umweltforschungszentrum Leipzig-Halle (Germany). To avoid routine calibration work in external radon exposure facilities a correction of the age dependent calibration factors with the material parameters measured in one's own laboratory was targeted. In this study a general age dependence, however, was not found. The following statements for practical applications can be made. (i) the bulk etching rate v b for detectors of the same batch has a depth dependence and this dependence is constant over 2 years (LR 115 September 1994). (ii) detectors of different batches older than 5 years and stored at room temperature show an odd v b behaviour when v b is used for describing track shapes. (iii) the calibration factor of detectors of different batches that were stored at about +4 deg. C is constant over 5 years (LR 115 September 1994 and February 1999, Table 2). The conclusion is that LR 115 detectors not older than 5 years and stored in a refrigerator at about +4 deg. C should be preferred for radon measurements. Furthermore these detectors should be recalibrated every year and the microscope work of this calibrations should be performed by the same person who performs the measurements. In addition, a phenomenon related to fundamental track formation mechanisms was found, that the time straggling of the

  4. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  5. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  6. Diffusion processes in dyed detectors

    International Nuclear Information System (INIS)

    Lferde, M.; Seidel, J.-L.; Monnin, M.

    1982-01-01

    In order to get a better understanding of the dyed and fluorescent track detectors, the diffusion speed of the swelling agent, the sensitization molecules and the dye have been measured under various conditions. It is shown that the sensitization affects the entire detector while dyeing is restricted to the upper and lower layers of the detector. By combining the optimal values of the reactions parameters a higher contrast and sensitivity may be achieved. (author)

  7. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  8. Preparation and properties of [(NdFeB)x/(Nb)z]n multi-layer films

    International Nuclear Information System (INIS)

    Tsai, J.-L.; Chin, T.-S.; Yao, Y.-D.; Melsheimer, A.; Fisher, S.; Drogen, T.; Kelsch, M.; Kronmueller, H.

    2003-01-01

    Multi-layer [(NdFeB) x /(Nb) z ] n films with 200 nm≥x≥10 nm, 10 nm≥z≥0, 40≥n≥2, prepared by ion beam sputtering and subsequent annealing, show significantly enhanced coercivity due to the reduced grain size that enhances the anisotropy of individual grains. After annealing at 630 deg. C, some Nd 2 Fe 14 B grains were enriched with Nb and isolated as the thickness of the Nb spacer layer increases. For multi-layer (NdFeB x /Nb z ) n films with 100 nm ≥x≥25 nm, 5 nm≥z≥2 nm, their coercivity and remanence ratio are better than that of a single NdFeB film. Up to 17.8 kOe room temperature coercivity has been obtained for a sample with x=25 nm, z=5 nm and n=16

  9. Measurements of streaming neutrons on nuclear ship 'Mutsu' by a two-detector-method

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Yamazaki, Hiroshi; Ryufuku, Hiroshi.

    1976-01-01

    Streaming neutrons escaping through an air gap located between the pressure vessel and the primary shield of the Nuclear Ship ''Mutsu'' were measured by applying the two-detector-method. The two detectors consisted of a single BF 3 counter provided alternatively with different covering arrangements - (a) 3mm thick steel tube + layers of polyethylene sheeting with total thickness of 30mm + 1mm thick Cd plate and (b) same covering as (a) + polyethylene boxing 20mm thick. In order to derive from the count rates obtained with the detectors described above the absolute values of neutron flux and dose equivalent rate, the detectors were calibrated in laboratory by comparison with a reference detector system in neutron field created around a 252 Cf source and TCA, a light-water moderated critical assembly. The conversion from measured counts to neutron flux and neutron dose equivalent rate was estimated to incur errors of +-15 and +-40%, respectively. (auth.)

  10. Head of detector for multi-element analysis

    International Nuclear Information System (INIS)

    Frynta, Z.

    1983-01-01

    The detector head mounted on the scintillation counter consists of a hollow hexagonal rotary support axially arranged with the photomultiplier of the scintillation counter. In the walls of the hexagonal rotary support there are openings in which are inserted absorption filters. The mounting of the absorption filters on the rotary support allows the analysis of a greater number of elements without the dismantling of the head and the replacement of filters. The suitable geometry of the head is retained so that it is possible to insert the head into the hollows similarly as the scintillation counter. (J.P.)

  11. Recent progress in the development of a B-factory monolithic active pixel detector

    International Nuclear Information System (INIS)

    Stanic, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-01-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R and D towards a full Pixel Vertex Detector (PVD) are presented

  12. Design of the digitizing beam position limit detector

    International Nuclear Information System (INIS)

    Merl, R.

    1998-01-01

    The Digitizing Beam Position Limit Detector (DBPLD) is designed to identify and react to beam missteering conditions in the Advanced Photon Source (APS) storage ring. The high power of the insertion devices requires these missteering conditions to result in a beam abort in less than 2 milliseconds. Commercially available beam position monitors provide a voltage proportional to beam position immediately upstream and downstream of insertion devices. The DBPLD is a custom VME board that digitizes these voltages and interrupts the heartbeat of the APS machine protection system when the beam position exceeds its trip limits

  13. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    International Nuclear Information System (INIS)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection

  14. Digital signal processing for a thermal neutron detector using ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-11

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC{sup 4} filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC{sup 4} filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach. - Highlights: • Application of digital signal processing for a SiPM-based ZnS:6LiF neutron detector. • Optimisation of detector performances with 3 different digital filters. • Comparison with detector performances with a full analog signal processing.

  15. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  16. Reliability studies of high operating temperature MCT photoconductor detectors

    Science.gov (United States)

    Wang, Wei; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2010-10-01

    This paper concerns HgCdTe (MCT) infrared photoconductor detectors with high operating temperature. The near room temperature operation of detectors have advantages of light weight, less cost and convenient usage. Their performances are modest and they suffer from reliable problems. These detectors face with stability of the package, chip bonding area and passivation layers. It's important to evaluate and improve the reliability of such detectors. Defective detectors were studied with SEM(Scanning electron microscope) and microscopy. Statistically significant differences were observed between the influence of operating temperature and the influence of humidity. It was also found that humility has statistically significant influence upon the stability of the chip bonding and passivation layers, and the amount of humility isn't strongly correlated to the damage on the surface. Considering about the commonly found failures modes in detectors, special test structures were designed to improve the reliability of detectors. An accelerated life test was also implemented to estimate the lifetime of the high operating temperature MCT photoconductor detectors.

  17. MCNPX Simulation Study of STRAW Neutron Detectors - Summary Paper

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Mitchell, Stephen

    2010-01-01

    A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating (only 1 micron thick) of 10 B as a neutron converter inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2 mils thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with proportional counter gas (a mixture of 90%/10% of Ar/CO 2 ). The tubes operate in proportional counter mode and attract mobile charged particles (α's) created in the nuclear interaction 10 B(n, 4 He) 7 Li. However, a single tube has about 1/7th the sensitivity of a 3 He tube. Modeling is required to determine if enough such tubes could be placed in a neutron detection assembly of the current size to give comparable sensitivity to 3 He. Detectors lined with 10 B lie between 3 He and 10 BF 3 proportional counters and fission chambers in terms of neutron detection efficiency and gamma ray insensitivity. The mean free path of thermal neutrons in 10 B is about 18 (micro)m. It takes about 60 (micro)m of 10 B layer to completely stop thermal neutrons, but the energetic α-particles generated in the reaction have a range of only 3.3 (micro)m in 10 B environment - hence the thin layer of boron coating on the copper tube. The prototype design is shown in Figure 1. It consists of two panels of three staggered rows of 500-mm-long, 4-mm-diameter straws, with 20 in each row, embedded in 30-mm-thick high density polyethylene (HDPE). The project demonstrates a new application of thin neutron and gamma converter technique (1 micron thin 10 B coated copper tube). It exploits fast timing from multiple straw detectors to count multiplicity of both gamma and neutrons from fissioning materials. The objective is to find a near-term replacement of 3 He gas in neutron detection and measurement (with a very large neutron detection area). All the solid-state detectors developed thus far are small and inefficient. The thin size

  18. Operation of bare HPGe detectors in LAr/LN{sub 2} for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heider, M Barnabe; Chkvorets, O; Schoenert, S [MPI fuer Kernphysik, Heidelberg (Germany); Cattadori, C [INFN-Milano Bicocca, Milano (Italy); Vacri, A di [INFN-LNGS, L' Aquila (Italy); Gusev, K; Shirchenko, M [Russian Research Center Kurchatov Institute, Moscow, Russia and JINR, Dubna (Russian Federation)], E-mail: assunta.divacri@lngs.infn.it

    2008-11-01

    GERDA is designed to search for 0{nu}{beta}{beta}-decay of {sup 76}Ge using high purity germanium detectors (HPGe), enriched ({approx} 85%) in {sup 76}Ge, directly immersed in LAr which acts both as shield against {gamma} radiation and as cooling medium. The cryostat is located in a stainless steel water tank providing an additional shield against external background. The GERDA experiment aims at a background (b) {approx}<10{sup -3} cts/(kg-y-keV) and energy resolution (FWHM) {<=} 4 keV at Q{sub {beta}}{sub {beta}} = 2039 keV. GERDA experiment is foreseen to proceed in two phases. For Phase I, eight reprocessed enriched HPGe detectors from the past HdM [C Balysh et al., Phys. Rev. D 66 (1997) 54] and IGEX [C E Aalseth et al., Phys. of Atomic Nuclei 63 (2000) 1225] experiments ({approx} 18 kg) and six reprocessed natural HPGe detectors ({approx} 15 kg) from the Genius Test-Facility [H V Klapdor et al., HIM A 481 (2002) 149] will be deployed in strings. GERDA aims at b {approx}< 10{sup -2} cts/(kg{center_dot}keV{center_dot}y). With an exposure of {approx} 15 kg{center_dot}y of {sup 76}Ge and resolution {approx} 3.6 keV, the sensitivity on the half-life will be T{sup 0{nu}}{sub 1/2} 3 {center_dot} 10{sup 25} y (90 % C.L.) corresponding to m{sub ee} < 270 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. In Phase II, new diodes, able to discriminate between single- and multi-site events, will be added ({approx} 20 kg of {sup 76}Ge with intrinsic b {approx} 10{sup -2} cts/(kg{center_dot}keV{center_dot}y). With an exposure of {approx} 120 kg{center_dot}y, it is expected T{sup 0{nu}}{sub 1/2} > 1.5 {center_dot} 10{sup 26} y (90% C.L.) corresponding to m{sub ee} < 110 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. Three natural p-type HPGe prototypes (different passivation layer designs) are available in the GERDA underground facility at LNGS to investigate the effect of the detector assembly (low-mass low-activity holder), of the handling procedure and of the

  19. Planar edgeless silicon detectors for the TOTEM experiment

    CERN Document Server

    Ruggiero, G; Noschis, E

    2007-01-01

    Recently the first prototype of microstrip edgeless silicon detector for the TOTEM experiment has been successfully produced and tested. This detector is fabricated with standard planar technology, reach sensitivity 50 μm from the cut edge and can operate with high bias at room temperature. These almost edgeless detectors employ a newly conceived terminating structure, which, although being reduced with respect to the conventional ones, still controls the electric field at the device periphery and prevents leakage current breakdown for high bias. Detectors with the new terminating structure are being produced now and will be installed at LHC in the Roman Pots, a special beam insertion, to allow the TOTEM experiment to detect leading protons at 10 σ from the beam. This paper will describe this new terminating structure for planar silicon detectors, how it applies to big size devices and the experimental tests proving their functionality.

  20. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  1. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  2. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    International Nuclear Information System (INIS)

    Hitlin, D.

    1992-11-01

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory

  3. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    Energy Technology Data Exchange (ETDEWEB)

    Hitlin, D. (ed.) (California Inst. of Tech., Pasadena, CA (United States))

    1992-11-01

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory.

  4. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  5. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outer