WorldWideScience

Sample records for insect pollination services

  1. Pollination services mapping and economic valuation from insect communities: a case study in the Azores (Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Picanço

    2017-05-01

    Full Text Available Insect pollinators provide vital ecosystem services through its maintenance of plant biological diversity and its role in food production. Indeed, adequate pollination services can increase the production and quality of fruit and vegetable crops. This service is currently challenged by land use intensification and expanding human population growth. Hence, this study aims: (1 to assess the pollination services in different land uses with different levels of disturbance through GIS mapping technique using insect pollinators abundance and richness as indicators, and (2 estimate the economic value of pollination by insects in agricultural crops. Our study takes place in a small oceanic island, Terceira (Azores, Portugal. Our results showed, remarkably, that not only the pristine vegetation areas, but also the orchards and agricultural areas have relatively high values of pollination services, even though both land uses have opposite disturbance levels. For the economic valuation, we analyzed 24 crops in the island and found that 18 depend on pollinators with one-third of these crops having 65% or 95% dependence on pollinators. The economic contribution of pollinators totals 36.2% of the total mean annual agricultural income of the dependent crops, highlighting the importance of insect pollinators in agricultural production and consequent economic gain productions.

  2. Pollination Services of Mango Flower Pollinators

    Science.gov (United States)

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  3. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    Science.gov (United States)

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  4. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  5. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  6. Valuation of pollinator forage services provided by Eucalyptus Cladocalyx

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2013-08-01

    Full Text Available legislation does not allow the importation of bees for pollination services from outside the province, the risk of unsecured forage is increased. Pollination replacement option All insect pollinators Managed pollinators Wild pollinators US$ millions...). Furthermore, colony collapse disorder outbreaks along with increases in sightings of predatory Vespula Germanica (German wasp or “yellow jackets”) in the Western Cape not only add to the pressure on the beekeeping industry, but also the wild pollinator...

  7. Pollination ecosystem services in South African agricultural systems

    OpenAIRE

    Annalie Melin; Mathieu Rouget; Jeremy J. Midgley; John S. Donaldson

    2014-01-01

    Insect pollinators, both managed and wild, have become a focus of global scientific, political and media attention because of their apparent decline and the perceived impact of this decline on crop production. Crop pollination by insects is an essential ecosystem service that increases the yield and quality of approximately 35% of crops worldwide. Pollinator declines are a consequence of multiple environmental pressures, e.g. habitat transformation and fragmentation, loss of floral resources,...

  8. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value☆

    Science.gov (United States)

    Garratt, M.P.D.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G.

    2014-01-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  9. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value.

    Science.gov (United States)

    Garratt, M P D; Breeze, T D; Jenner, N; Polce, C; Biesmeijer, J C; Potts, S G

    2014-02-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  10. Diversity of Pollinator Insects in Relation to Seed Set of Mustard (Brassica rapa L.: Cruciferae

    Directory of Open Access Journals (Sweden)

    TRI ATMOWIDI

    2007-12-01

    Full Text Available Pollinators provide key services to both natural and agricultural ecosystems. Agricultural productivity depends, in part, on pollinator populations from adjacent seminatural habitats. Here we analysed the diversity of pollinator insects and its effect to seed set of mustard (Brassica rapa planted in agricultural ecosystem near the Gunung Halimun-Salak National Park, West Java. At least 19 species of insects pollinated the mustard, and three species, i.e. Apis cerana, Ceratina sp., and Apis dorsata showed a high abundance. The higher abundance and species richness of pollinators occurred at 08.30-10.30 am and the diversity was related to the number of flowering plants. Insect pollinations increased the number of pods, seeds per pod, seed weights per plant, and seed germination.

  11. Insect assemblage and the pollination system in cocoa ecosystems

    African Journals Online (AJOL)

    SARAH

    2013-02-27

    Feb 27, 2013 ... Key words: Cocoa, pollinators, insect assemblage, Forcipomyia spp, pollination system. INTRODUCTION ... that the ecological prediction of plant reproductive successes and ..... non-interaction between some resident insects and the cocoa plant might be as a result of evolution of floral structure of the ...

  12. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  13. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  14. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe

    NARCIS (Netherlands)

    Breeze, T.; Vaissiere, B.E.; Bommarco, R.; Petanidou, T.; Seraphides, N.; Kozak, L.; Scheper, J.A.; Biesmeijer, J.C.; Kleijn, D.; Gyldenkaerne, S.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from

  15. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  16. Insect pollination: commodity values, trade and policy considerations using coffee as an example

    Directory of Open Access Journals (Sweden)

    Vernon George Thomas

    2012-04-01

    Full Text Available Science has shown the importance of animal pollinators to human food security, economy, and biodiversity conservation. Science continues to identify various factors causing pollinator declines and their implications. However, translation of the understanding of pollinators’ roles into current policy and regulation is weak and requires attention, both in developed and developing nations. The national and international trade of commodities generated via insect pollination is large. Trade in those crops could be a means of influencing regulations to promote the local existence of pollinating species, apart from their contributions to biodiversity conservation. This paper, using the example of international coffee production, reviews the value of pollinating species, and relates them to simple economics of commodity production. Recommendations are made that could influence policy and decision-making to promote coffee production, trade, and pollinators’ existence. Assumptions and considerations are raised and addressed. Although the role of insect pollinators in promoting fruit set and quality is accepted, implementing pollination conservation in forest habitats may require assured higher prices for coffee, and direct subsidies for forest conservation to prevent conversion to other crop lands. Exporting and importing governments and trade organizations could establish policy that requires insect pollination in the coffee certification process. The European Parliament and the North American Free Trade Agreement could be instrumental in creating policy and regulation that promotes insect pollination services in coffee production. The reciprocity between the services of insect pollinators in certified coffee production and their services in forest biodiversity production should be implicit in future policy negotiations to enhance both systems.

  17. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    OpenAIRE

    Grazia Zulian; Joachim Maes; Maria Luisa Paracchini

    2013-01-01

    Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems t...

  18. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    Directory of Open Access Journals (Sweden)

    Nicholas W Calderone

    Full Text Available In the US, the cultivated area (hectares and production (tonnes of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc. increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc. was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination.

  19. Non-bee insects are important contributors to global crop pollination.

    Science.gov (United States)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  20. Pollination ecosystem services in South African agricultural systems

    Directory of Open Access Journals (Sweden)

    Annalie Melin

    2014-11-01

    Full Text Available Insect pollinators, both managed and wild, have become a focus of global scientific, political and media attention because of their apparent decline and the perceived impact of this decline on crop production. Crop pollination by insects is an essential ecosystem service that increases the yield and quality of approximately 35% of crops worldwide. Pollinator declines are a consequence of multiple environmental pressures, e.g. habitat transformation and fragmentation, loss of floral resources, pesticides, pests and diseases, and climate change. Similar environmental pressures are faced in South Africa where there is a high demand for pollination services. In this paper, we synthesise data on the importance of different pollinators as a basis for services to South African crops and on the status of managed honeybees. We also focus on insect pollination services for the Western Cape deciduous fruit industry, which is worth ZAR9800 million per year and is heavily reliant on pollination services from managed honeybees. We discuss landscape and regional level floral resources needed to maintain sufficient numbers of managed honeybee colonies. In summary, the available literature shows a lack of data on diversity and abundance of crop pollinators, and a lack of long-term data to assess declines. We highlight key areas that require research in South Africa and emphasise the critical role of floral resource availability at the landscape and regional scale to sustain pollinators. We conclude that understanding the dynamics of how floral resources are used will help inform how landscapes could be better managed in order to provide long-term sustainable pollination services.

  1. Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set.

    Science.gov (United States)

    Jacobs, Jennifer H; Clark, Suzanne J; Denholm, Ian; Goulson, Dave; Stoate, Chris; Osborne, Juliet L

    2009-12-01

    In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix). The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation. The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area. Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows.

  2. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  3. Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project

    NARCIS (Netherlands)

    Potts, S.G.; Biesmeijer, J.C.; Bommarco, R.; Felicioli, A.; Fischer, M.; Jokinen, P.; Kleijn, D.; Klein, A.M.; Kunin, W.E.; Neumann, P.; Penev, L.D.; Petanidou, T.; Rasmont, P.; Roberts, S.P.M.; Smith, H.G.; Sorensen, P.B.; Steffan-Dewenter, I.; Vaissiere, B.E.; Vila, M.; Vujic, A.; Woyciechowski, M.; Zobel, M.; Settele, J.; Schweiger, O.

    2011-01-01

    Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends

  4. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  5. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    Science.gov (United States)

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands

    NARCIS (Netherlands)

    Biesmeijer, J.S.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; Settele, J.; Kunin, W.E.

    2006-01-01

    Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both

  7. Environmental effects of fenitrothion use in forestry: impacts on insect pollinators, songbirds & aquatic organisms

    National Research Council Canada - National Science Library

    Ernst, W. R; Pearce, P. A; Pollock, T. L

    1989-01-01

    The Team focused on insect pollinators and pollination, forest songbirds, and aquatic organisms because of a judgement that most well documented negative effects of fenitrothion spraying are in those...

  8. When ecosystem services interact: crop pollination benefits depend on the level of pest control

    Science.gov (United States)

    Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo

    2013-01-01

    Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852

  9. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects.

    Science.gov (United States)

    Baldock, Katherine C R; Goddard, Mark A; Hicks, Damien M; Kunin, William E; Mitschunas, Nadine; Osgathorpe, Lynne M; Potts, Simon G; Robertson, Kirsty M; Scott, Anna V; Stone, Graham N; Vaughan, Ian P; Memmott, Jane

    2015-03-22

    Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km(2)) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

  10. Landscape effects on pollinator communities and pollination services in small-holder agroecosystems

    NARCIS (Netherlands)

    Zou, Yi; Bianchi, Felix J.J.A.; Jauker, Frank; Xiao, Haijun; Chen, Junhui; Cresswell, James; Luo, Shudong; Huang, Jikun; Deng, Xiangzheng; Hou, Lingling; Werf, van der Wopke

    2017-01-01

    Pollination by insects is key for the productivity of many fruit and non-graminous seed crops, but little is known about the response of pollinators to landscapes dominated by small-holder agriculture. Here we assess the relationships between landscape context, pollinator communities (density and

  11. The city as a refuge for insect pollinators.

    Science.gov (United States)

    Hall, Damon M; Camilo, Gerardo R; Tonietto, Rebecca K; Ollerton, Jeff; Ahrné, Karin; Arduser, Mike; Ascher, John S; Baldock, Katherine C R; Fowler, Robert; Frankie, Gordon; Goulson, Dave; Gunnarsson, Bengt; Hanley, Mick E; Jackson, Janet I; Langellotto, Gail; Lowenstein, David; Minor, Emily S; Philpott, Stacy M; Potts, Simon G; Sirohi, Muzafar H; Spevak, Edward M; Stone, Graham N; Threlfall, Caragh G

    2017-02-01

    Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  12. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    Directory of Open Access Journals (Sweden)

    Ignasi Bartomeus

    2014-03-01

    Full Text Available Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production.Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes.Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness.Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild

  13. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    Science.gov (United States)

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  14. Diversity and Abundance of Insect Pollinators in Different Agricultural Lands in Jambi, Sumatera

    Directory of Open Access Journals (Sweden)

    Elida Hafni Siregar

    2016-01-01

    Full Text Available Agricultural land use is an artificial ecosystem. Insect pollinators are important keys to success of the agroecosystem. Converting natural landscapes to agricultural land, such as oil palm and rubber plantations, affects the insects. The research aims to study diversity and abundance of insect pollinators in three different agricultural land uses, i.e. oil palm plantation, rubber plantation, and jungle-rubber. Scan sampling method was used to explore the diversity of insect pollinators. Observations of the insects were conducted from 08.00 to 10.00 AM and 02.00 to 04.00 PM in sunny days. There were 497 individuals of insect pollinators collected, which belong to 43 species in three orders (Hymenoptera, Diptera, and Lepidoptera. Number of species and individual of insect pollinators found in rubber plantations (31 species, 212 individuals and oil palm plantation (23 species, 188 individuals were higher than that in jungle rubber (7 species, 97 individuals. Insect pollinators in oil palm plantations were dominated by giant honey bee (Apis dorsata and stingless bee (Trigona sp. [=aff. T. planifrons], whereas in rubber plantation, they were dominated by small carpenter bees (Ceratina lieftincki and Ceratina simillima, and in jungle-rubbers were dominated by hoverfly (Syrphid sp. and Apis andreniformis. Higher foraging activities of insect pollinators occured in the morning.

  15. Native insect pollinators in Apple orchards under different management practices in the Kashmir Valley

    Directory of Open Access Journals (Sweden)

    Muzaffar Ahmad Ganie

    2013-12-01

    Full Text Available It is now clear that over use of pesticides and intensive management of orchards can lead to drastic declines in apple pollinator abundance and crop failures. During the period of study a grower’s survey was conducted to know about knowledge of farmers on native insect pollinators, pollinator management practices, their perceptions of the importance and utility of native pollinators, and their attitudes regarding pesticide application. Despite of having significant knowledge of managed pollination, only few farmers (2% adopted supplementary methods of pollination (renting honey bee colonies, hand pollination etc.. In Pulwama, 60% of farmers had knowledge about native insect pollinators and 40% did not have any idea of native pollinators and in case of Shopian, the figures were fifty-fifty i.e. 50% had knowledge about native insect pollinators and 50% were unaware. During the period of investigation, native insect pollinators were sampled from different apple orchards under different management systems in early spring during apple flowering. A total of 17 species of insect pollinators belonging to 11 families and 3 orders_ Hymenoptera, Diptera and Lepidoptera registered their occurrence at all the studied apple orchards of the Kashmir Valley. At all the study sites i.e. apple orchards under different management systems, family Halictidae and Empididae registered their presence as dominant groups. The % family contribution of the former at different orchard types decreased with increase in the intensity of the management system and the % family contribution of the later however, showed a direct relationship with the management system found, i.e. the more intense the system, the more abundant was the group. Other groups in general did not show any greater differences in abundances at different sites studied.

  16. Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae)

    Science.gov (United States)

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees. PMID:24915450

  17. Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).

    Science.gov (United States)

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.

  18. Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae.

    Directory of Open Access Journals (Sweden)

    Laurent Somme

    Full Text Available Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape. For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre. We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.

  19. Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia.

    Science.gov (United States)

    Ortega-Olivencia, Ana; Rodríguez-Riaño, Tomás; Pérez-Bote, José L; López, Josefa; Mayo, Carlos; Valtueña, Francisco J; Navarro-Pérez, Marisa

    2012-01-01

    It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds. Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out. Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha. The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).

  20. Milkweed: A resource for increasing stink bug parasitism and aiding insect pollinator and monarch butterfly conservation

    Science.gov (United States)

    The flowers of milkweed species can produce a rich supply of nectar, and therefore, planting an insecticide-free milkweed habitat in agricultural farmscapes could possibly conserve monarch butterflies, bees and other insect pollinators, as well as enhance parasitism of insect pests. In peanut-cotton...

  1. Floral advertisement and the competition for pollination services.

    Science.gov (United States)

    Fishman, Michael A; Hadany, Lilach

    2015-06-01

    Flowering plants are a major component of terrestrial ecosystems, and most of them depend on animal pollinators for reproduction. Thus, the mutualism between flowering plants and their pollinators is a keystone ecological relationship in both natural and agricultural ecosystems. Though plant-pollinator interactions have received considerable amount of attention, there are still many unanswered questions. In this paper, we use methods of evolutionary game theory to investigate the co-evolution of floral advertisement and pollinator preferences Our results indicate that competition for pollination services among plant species can in some cases lead to specialization of the pollinator population to a single plant species (oligolecty). However, collecting pollen from multiple plants - at least at the population level - is evolutionarily stable under a wider parameter range. Finally, we show that, in the presence of pollinators, plants that optimize their investment in attracting vs. rewarding visiting pollinators outcompete plants that do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    OpenAIRE

    Godfray, H.Charles J.; Blacquiere, Tjeerd; Field, Linda M.; Hails, Rosemary S.; Petrokofsky, Gillian; Potts, Simon G.; Raine, Nigel E.; Vanbergen, Adam J.; McLean, Angela R.

    2014-01-01

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as pol...

  3. Floral Stimulation and Behavior of Insect Pollinators Affected by Pyraclostrobin on Arabica Coffee

    OpenAIRE

    Tarno, Hagus; Wicaksono, Karuniawan Puji; Begliomini, Edson

    2018-01-01

    Coffee is the most valuable traded commodity after oil. On coffee, bees act to support a pollination that is shown by the number of harvested berries. This research aimed to evaluate the use of pyraclostrobin on flowering stage and insect pollinators on Arabica Coffee. Experiment was conducted in Kalisat Coffee Farm, Jampit, Bondowoso, ca. 1600 meters after sea level from October 2013 to April 2014. Randomized Block Design was adopted in this experiment. Three doses of pyraclostrobin and cont...

  4. Dynamics of insect pollinators as influenced by cocoa production systems in Ghana

    Directory of Open Access Journals (Sweden)

    Gordon, Ian

    2011-07-01

    Full Text Available Cocoa is strictly entomophilous but studies on the influence of the ecosystem on insect pollinators in cocoa production systems are limited. The abundance of cocoa pollinators and pod-set of cocoa as influenced by a gradient of farm distances from natural forest and proportion of plantain/banana clusters in or adjacent to cocoa farms were therefore investigated. Cocoa pollinators trapped were predominantly ceratopogonid midges hence, analyses were based on their population. Variation in farm distance to forest did neither influence ceratopogonid midge abundance nor cocoa pod-set. However, we found a positive relationship between pollinator abundance and fruit set and the proportion of plantain/banana intercropped with cocoa. The results suggest appropriate cocoa intercrop can enhance cocoa pollination, and the current farming system in Ghana can conveniently accommodate such interventions without significant changes in farm practices.

  5. Wild pollinators enhance oilseed rape yield in small-holder farming systems in China

    NARCIS (Netherlands)

    Zou, Yi; Xiao, Haijun; Bianchi, Felix J.J.A.; Jauker, Frank; Luo, Shudong; Werf, van der Wopke

    2017-01-01

    Background: Insect pollinators play an important role in crop pollination, but the relative contribution of wild pollinators and honey bees to pollination is currently under debate. There is virtually no information available on the strength of pollination services and the identity of pollination

  6. Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.

    Science.gov (United States)

    Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S

    2017-08-01

    Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and

  7. The role of birds and insects in pollination shifts of Scrophularia (Scrophulariaceae).

    Science.gov (United States)

    Navarro-Pérez, María L; López, Josefa; Fernández-Mazuecos, Mario; Rodríguez-Riaño, Tomás; Vargas, Pablo; Ortega-Olivencia, Ana

    2013-10-01

    The mixed vertebrate-insect pollination system is rare in Holarctic plants. Phylogenetic relationships of 116 Scrophularia taxa were investigated based on two plastid (ndhF and trnL-trnF) and one nuclear (ITS) DNA regions. A wider time-calibrated analysis of ndhF sequences of the Lamiales revealed that Scrophularia diverged as early as in the Miocene (<22 Ma). Results of maximum-likelihood optimizations supported wasp pollination as the ancestral pollination system from which other systems derived (hoverfly, mixed vertebrate-insect and bird systems). Four origins for a mixed vertebrate-insect (MVI) pollination system were inferred, in which two western Mediterranean species (S. sambucifolia and S. grandiflora) and two island species (the Tirrenian S. trifoliata and the Canarian S. calliantha) were involved. S. calliantha is the only species in which a more complex MVI system, including pollination by the lizard Gallotia stehlini, has evolved. In addition, bird (hummingbird) floral traits found in the New Mexican S. macrantha appear to have been independently acquired. In contrast, we failed to find evidence for an ancient role of hummingbirds in the evolution of European Scrophularia. Indeed, paleontological data revealed that extinction of European hummingbirds (30-32 Ma) occurred earlier than the divergence of European MVI lineages of Scrophularia. In conclusion, our results showed that a role of birds in pollination of Scrophularia may not have been effective in the Miocene-Pliocene, but bird pollination that shows its origin in the Pliocene-Pleistocene is still operating independently in different islands and continents. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. How well do we understand landscape effects on pollinators and pollination services?

    Directory of Open Access Journals (Sweden)

    Blandina Felipe Viana

    2012-06-01

    Full Text Available Many studies in the past decade, mostly in temperate countries, have documented the effects of habitat loss and fragmentation on species richness, composition, and abundance and the behaviour of pollinators. Changes in landscape structure are considered to be the primary causes of the limitation of pollination services in agricultural systems. Here, we review evidence of general patterns as well as gaps in knowledge that could be used to support the development of policies for pollinator conservation and the restoration of degraded landscapes. Our results indicate a recent increase in the number of studies on the relationships between pollination processes and landscape patterns, with some key trends already being established. Many authors indicate, for example, that the spatial organization of a landscape has a great influence on the survival and dispersal capacity of many pollinators, as spatial organization affects resource availability and determines the functional connectivity of the landscape. Additionally, the shape, size and spatial arrangement of the patches of each type of natural environment, as well as the occurrence of different types of land use, can create sites with different degrees of connectivity or even barriers to movement between patches, which can deeply modify pollinator flows through the landscape and consequently the success of cross-pollination. However, there are still some gaps, such as in the knowledge of which critical values of habitat loss can lead to drastic increases in pollinator extinction rates, information that is needed to evaluate at what point plant-pollinator interactions may collapse. We also need to concentrate research effort on improving a landscape’s capacity to facilitate pollinator flow (connectivity between crops and nesting/foraging areas.

  9. The most common insect pollinator species on sesame crop (Sesamum indicum L. in Ismailia Governorate, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Kamel

    2013-06-01

    Full Text Available A survey of insect pollinators associated with sesame, Sesamun indicum L. (Pedaliaceae was conducted at the Agriculture Research Farm, Faculty of Agriculture, University of Suez Canal during the growing seasons of 2011 and 2012. All different insect pollinators which found on the experimental site were collected for identification. Sampling was done once a week and three times a day. Three methods were used to collect and identify insects from the sesame plants (a sweep net, pitfall traps, digital camera and eye observation. A total of 29 insect species were collected and properly identified during the survey. Insect pollinators which recorded on the plants were divided into four groups, 18 belonged to Hymenoptera, 7 to Diptera, 3 to Lepidoptera and one to Coleoptera. Results revealed that Honybee, Apis mellifera was the most dominant species in the 2011 season and the second one in the 2012 season. Whereas small carpenter bee, Ceratina tarsata was the most dominant species in the 2012 season and the second one in the 2011 season. The percentage of Hymenoptera was higher in the two studied seasons by 90.94% and 89.59%, followed by Diptera by 3.93% and 5.38%, then Lepidoptera by 3.58% and 3.62, and in the last Coleoptera by 1.53% and 1.39%, respectively.

  10. Flight of the bumble bee: Buzzes predict pollination services.

    Directory of Open Access Journals (Sweden)

    Nicole E Miller-Struttmann

    Full Text Available Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi. We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97, indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and

  11. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    Science.gov (United States)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  12. Biodiversity and pollination : Flowering plants and flower-visiting insects in agricultural and semi-natural landscapes

    NARCIS (Netherlands)

    Hoffmann, Frank

    2005-01-01

    The dissertation describes the effects of plant and insect diversity on pollination of wild plant species. As biodiversity is decreasing due to human activities, it is important to know the effects of lower species richness on ecosystem functioning. One such ecosystem function is pollination by

  13. Habitat and forage associations of a naturally colonising insect pollinator, the Tree Bumblebee Bombus hypnorum

    OpenAIRE

    Crowther, Liam P.; Hein, Pierre-Louis; Bourke, Andrew F. G.

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. ...

  14. Fire promotes pollinator visitation: implications for ameliorating declines of pollination services.

    Directory of Open Access Journals (Sweden)

    Michael E Van Nuland

    Full Text Available Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.

  15. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    Science.gov (United States)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on

  16. Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services.

    Science.gov (United States)

    Borges, Renee M

    2018-03-01

    The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO 2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.

  17. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    Science.gov (United States)

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  18. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators.

    Science.gov (United States)

    Godfray, H Charles J; Blacquière, Tjeerd; Field, Linda M; Hails, Rosemary S; Petrokofsky, Gillian; Potts, Simon G; Raine, Nigel E; Vanbergen, Adam J; McLean, Angela R

    2014-07-07

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.

  19. Spring foraging resources and the behaviour of pollinating insects in fixed dune ecosystems

    Directory of Open Access Journals (Sweden)

    Aoife T. O'Rourke

    2014-08-01

    Full Text Available In temperate climates, foraging resources for pollinating insects are especially important in early spring when animals emerge from hibernation and initiate annual life cycles. One habitat, protected under EU law, which provides resources for a range of pollinating insects, but has received little research attention, is fixed (grey dunes. Fixed dunes often contain creeping willow (Salix repens, Salicaceae, which may be an important early season resource for obligate flower visitors. We examined the springtime activity of flower visitors in fixed dune ecosystems in relation to sugar concentration and composition in nectar, composition of essential amino acids in pollen, and floral abundance. We also investigated whether the presence or absence of S. repens influenced the abundance and species richness of three obligate flower visiting guilds (solitary bees, bumblebees and hoverflies in eight sites along the eastern and southern coasts of Ireland. Higher insect visitation rates were observed to species whose nectar contained greater concentrations of glucose and fructose. Solitary bee visitation rates were related to % Essential Amino Acid (EAA in pollen and floral species richness. Ulex europeaus, and S. repens were the most abundant flowering species, but visitation rates were not related to floral abundance. Higher abundances of bumblebees and hoverflies were discovered at sites where S. repens was present. This study raises further questions about the nutritional requirements and preferences of obligate flower visitors in fixed dune ecosystems in spring time.

  20. Diagnosis of directed pollination services in apple orchards in Brazil

    Directory of Open Access Journals (Sweden)

    Joatan Machado da Rosa

    2018-04-01

    Full Text Available Abstract The pollination services performed by Apis mellifera are essential for the high-quality apple production. The aim of this study was to obtain information about the pollination services used in the municipalities of Vacaria-RS e São Joaquim-SC, the main apple-producing regions in Brazil. Semi-structured interviews were conducted with apple growers and technicians responsible for the orchards during 2013 and 2015. The obtained information was: a cropping systems; b use of pollination services; c number of hives per hectare during flowering; d renting value of hives; e mortality of colonies; f agrochemicals used on flowering; g presence of native bees on flowering. In Vacaria and São Joaquim, respectively, 70% and 68.6% of the apple growers use the integrated apple production as their production model. The directed pollination is used by 100% and 90.0% of respondents respectively, from which, 80% and 47.1% opt for the hive rent. On average, three hives were used per hectare in both regions. The average cost is U$ 17.52 and U$ 17.74 per hive, respectively. During the flowering period, insecticides and fungicides are used by 100% and 97.2% of the apple growers. The highest mean percentage of mortality of colonies during flowering was reported in Vacaria, 11.8%. Native bees are often found in apple flowers. The development of management strategies for the conservation of domestic and wild pollinators is essential.

  1. Floral Stimulation and Behavior of Insect Pollinators Affected by Pyraclostrobin on Arabica Coffee

    Directory of Open Access Journals (Sweden)

    Hagus Tarno

    2018-02-01

    Full Text Available Coffee is the most valuable traded commodity after oil. On coffee, bees act to support a pollination that is shown by the number of harvested berries. This research aimed to evaluate the use of pyraclostrobin on flowering stage and insect pollinators on Arabica Coffee. Experiment was conducted in Kalisat Coffee Farm, Jampit, Bondowoso, ca. 1600 meters after sea level from October 2013 to April 2014. Randomized Block Design was adopted in this experiment. Three doses of pyraclostrobin and control were used as treatments such as 1.0, 1.5 and 2.0 cc L-1 of pyraclostrobin, and repeated three times. Percentage of fallen flower, fruiting stage, fruit production, frequency of bee`s visitation, and bee`s behavior was observed as variables in this experiment. Results showed that 1 percentage of fallen flowers was reduced by applying pyraclostrobin at 1.5 and 2.0 cc L-1 up to 50 % compared to control, 2 flowering rate was faster than control at 1.5 and 2.0 cc L-1 of pyraclostrobin, 3 application of 1.5 – 2.0 cc L-1 of pyraclostrobin increased the number of young fruits and pinheads, and 4 pollinators preferred to visit flowers of coffee trees which sprayed by pyraclostrobin than control treatment especially Apis mellifera.

  2. The Economic Value of the Pollination Service, a Review Across Scales

    NARCIS (Netherlands)

    Hein, L.G.

    2009-01-01

    Pollination is an ecosystem service that is essential to support the production of a wide range of crops. The service is increasingly under threat, as a consequence of among others habitat loss of pollinators and increasing use of pesticides. In order to support maintaining the pollination service

  3. Pollination

    OpenAIRE

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; henc...

  4. Pollination

    Science.gov (United States)

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved. PMID:22301957

  5. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union

    NARCIS (Netherlands)

    Schulp, C.J.E.; Lautenbach, S.; Verburg, P.H.

    2014-01-01

    Biotic pollination is an important ecosystem service for the production of many food crops. The supply of pollination is mostly studied at the landscape scale while recent studies on the demand for pollination services provide a global-scale picture based on aggregate national-level data. This paper

  6. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    NARCIS (Netherlands)

    Godfray, H.C.J.; Blacquière, Tjeerd; Field, L.M.; Hails, R.S.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R.

    2015-01-01

    Asummary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ‘restatement’) intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been

  7. Interactions between insect pollinators and the ornamental tree, Tecoma stans (L.

    Directory of Open Access Journals (Sweden)

    K.H. Jonathan

    2009-02-01

    Full Text Available Tecoma stans (Bignoniaceae is a native of Central America but occurs throughout tropical latitudes due to cultivation as an ornamental; in India it is also normally cultivated as an ornamental tree. The plant has two anthesis schedules in a day - one during 0500-0800hrs and another during 1500-1700hrs. Different species of bees and wasps collect pollen and nectar from the flowers during daylight hours, while hawk moths collect nectar during the 0530-0700hrs and 1630-1830hrs periods. The flowers are an important source of pollen and/or nectar for these insects, and all facilitate pollination. The nectar contains three common sugars: hexoses, glucose and fructose, and it is also a source of three essential amino acids: lysine, histidine and threonine, and eight non-essential amino acids: glycine, serine, proline, arginine, glutamic acid, cystine, cysteine and alanine. With these floral rewards, T. stans sustains pollinator populations in areas where it is cultivated.

  8. Chapter 1: Assessing pollinator habitat services to optimize conservation programs

    Science.gov (United States)

    Iovanna, Richard; Ando , Amy W.; Swinton, Scott; Hellerstein, Daniel; Kagan, Jimmy; Mushet, David M.; Otto, Clint R.; Rewa, Charles A.

    2017-01-01

    Pollination services have received increased attention over the past several years, and protecting foraging area is beginning to be reflected in conservation policy. This case study considers the prospects for doing so in a more analytically rigorous manner, by quantifying the pollination services for sites being considered for ecological restoration. The specific policy context is the Conservation Reserve Program (CRP), which offers financial and technical assistance to landowners seeking to convert sensitive cropland back to some semblance of the prairie (or, to a lesser extent, forest or wetland) ecosystem that preceded it. Depending on the mix of grasses and wildflowers that are established, CRP enrollments can provide pollinator habitat. Further, depending on their location, they will generate related services, such as biological control of crop pests, recreation, and aesthetics. While offers to enroll in CRP compete based on cost and some anticipated benefits, the eligibility and ranking criteria do not reflect these services to a meaningful degree. Therefore, we develop a conceptual value diagram to identify the sequence of steps and associated models and data necessary to quantify the full range of services, and find that critical data gaps, some of which are artifacts of policy, preclude the application of benefit-relevant indicators (BRIs) or monetization. However, we also find that there is considerable research activity underway to fill these gaps. In addition, a modeling framework has been developed that can estimate field-level effects on services as a function of landscape context. The approach is inherently scalable and not limited in geographic scope, which is essential for a program with a national footprint. The parameters in this framework are sufficiently straightforward that expert judgment could be applied as a stopgap approach until empirically derived estimates are available. While monetization of benefit-relevant indicators of yield

  9. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    Directory of Open Access Journals (Sweden)

    Liam P Crowther

    Full Text Available Bumblebees (Bombus species are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m. We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m, B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest

  10. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    Science.gov (United States)

    Crowther, Liam P; Hein, Pierre-Louis; Bourke, Andrew F G

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management

  11. Landscape alteration and habitat modification: impacts on plant-pollinator systems

    OpenAIRE

    Vanbergen, Adam J.

    2014-01-01

    Insect pollinators provide an important ecosystem service to many crop species and underpin the reproductive assurance of many wild plant species. Multiple, anthropogenic pressures threaten insect pollinators. Land-use change and intensification alters the habitats and landscapes that provide food and nesting resources for pollinators. These impacts vary according to species traits, producing winners and losers, while the intrinsic robustness of plant-pollinator networks may provide stability...

  12. Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Chytrý, M.; Danihelka, Jiří; Kuhn, D.; Pergl, Jan; Tichý, L.; Biesmeijer, J. C.; Ellis, W. N.; Kunin, W. E.; Settele, J.

    2011-01-01

    Roč. 81, č. 2 (2011), s. 277-293 ISSN 0012-9615 R&D Projects: GA MŠk LC06073; GA ČR GA206/09/0563 Grant - others:European Comission(XE) GOCE-CT-2003-506675 Institutional research plan: CEZ:AV0Z60050516 Keywords : pollination * residence time * plant invasion Subject RIV: EF - Botanics Impact factor: 7.433, year: 2011

  13. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity.

    Directory of Open Access Journals (Sweden)

    M P D Garratt

    Full Text Available Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness, orchard field surveys (flower visitation rate and pollinator dependence manipulations (pollinator exclusion experiments to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M, honeybees (£21.4M, bumblebees (£18.6M and hoverflies (£0.7M. This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

  14. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    Science.gov (United States)

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  15. Biodiversity Economics: The Value of Pollination Services to Egypt ...

    African Journals Online (AJOL)

    Francis

    of wild and crop plants are fully or partially dependent on pollinators for their ... Agricultural intensification leads to loss and fragmentation of natural pollinator ..... 0.4, pollination 3.1, pest control of native herbivores 4.5, and 'recreation' [food for ... Ehrlich PR & Michener CD (2004) Economic value of tropical forest to coffee.

  16. Firm efficiency and returns-to-scale in the honey bee pollination services industry

    Science.gov (United States)

    Honeybees are well-known for producing honey, but they also provide critical ecosystem services through pollination (Goulson, 2003; Potts et al., 2010; Ványi et al., 2012). This pollination service is vital to the production of many cash crops, on which the U.S. agricultural sector depends (Aizen an...

  17. Identifying pollination service hotspots and coldspots using citizen science data from the Great Sunflower Project

    Science.gov (United States)

    LeBuhn, G.; Schmucki, R.

    2016-12-01

    Identifying the spatial patterns of pollinator visitation rates is key to identifying the drivers of differences in pollination service and the areas where pollinator conservation will provide the highest return on investment. However, gathering pollinator abundance data at the appropriate regional and national scales is untenable. As a surrogate, habitat models have been developed to identify areas of pollinator losses but these models have been developed using expert opinion based on foraging and nesting requirements. Thousands of citizen scientists across the United States participating in The Great Sunflower Project (www.GreatSunflower.org) contribute timed counts of pollinator visits to a focal sunflower variety planted in local gardens and green spaces. While these data provide a more direct measure of pollination service to a standardized plant and include a measure of effort, the data are complicated. Each location is sampled at different dates, times and frequencies as well as different points across the local flight season. To overcome this complication, we have used a generalized additive model to generate regional flight curves to calibrate each individual data point and to attain better estimates of pollination service at each site. Using these flight season corrected data, we identify hotspots and cold spots in pollinator service across the United States, evaluate the drivers shaping the spatial patterns and observe how these data align with the results obtained from predictive models that are based on expert knowledge on foraging and nesting habitats.

  18. Aromas florales y su interacción con los insectos polinizadores Floral scents and their interaction with insect pollinators

    Directory of Open Access Journals (Sweden)

    Julieta Grajales-Conesa

    2011-12-01

    Full Text Available Las plantas emplean diversas señales visuales y olfativas con la finalidad de atraer a los polinizadores que en su mayoría son insectos. Algunas plantas han desarrollado mecanismos, basándose en mensajes olfativos que los hacen únicos para sus polinizadores específicos. Estos mecanismos, así como las variaciones intra- e interespecíficas en el perfil de los aromas florales han evolucionado para determinadas especies. Los aromas florales son un conjunto de compuestos volátiles orgánicos y para su estudio hay varios métodos que requieren de técnicas que cada vez son más eficientes. El uso de estos aromas podría ser una opción en determinados sistemas de polinización, utilizándolos como atrayente de polinizadores o de depredadores y/o herbívoro para incrementar la producción y disminuir los daños por plagas. En este trabajo se revisan las distintas interacciones de los insectos y los aromas florales, los sistemas específicos planta-polinizador, los métodos de análisis, así como algunos patrones o tendencias de estas interacciones y su aplicación e importancia.Plants use visual and olfactory cues to attract pollinators and to allow them to detect the presence of flowers, which most of them are insects. Some plants have evolved with their pollinators, based on the olfactory messages, which make them unique for their specific pollinators. These mechanisms have evolved in certain plants in relation to their pollinators, and there are also inter and intra-specific variation in fragrance cues which show specific chemical profile for each plant species, so insects attracted are specific to them. Most of the floral scents are organic compounds identified with techniques and methodologies which become more specific and efficient along the time. The application of floral scent could be used as a tool in pollination and pest management. In these studies, insect interaction with floral scent is reviewed and specificity of plant-pollinator

  19. Non-bee insects are important contributors to global crop pollination

    NARCIS (Netherlands)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A.; Kleijn, David; Scheper, Jeroen

    2016-01-01

    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change.

  20. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators.

    Science.gov (United States)

    Godfray, H Charles J; Blacquière, Tjeerd; Field, Linda M; Hails, Rosemary S; Potts, Simon G; Raine, Nigel E; Vanbergen, Adam J; McLean, Angela R

    2015-11-07

    A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a 'restatement') intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281, 20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance. © 2015 The Authors.

  1. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    OpenAIRE

    Godfray, H.C.J.; Blacquière, Tjeerd; Field, L.M.; Hails, R.S.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R.

    2015-01-01

    Asummary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a ‘restatement’) intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281, 20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and h...

  2. Enhancing legume ecosystem services through an understanding of plant-pollinator interplay

    Directory of Open Access Journals (Sweden)

    Maria Jose eSuso

    2016-03-01

    Full Text Available Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI, in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: 1 optimal productivity, based on an efficient use of pollinators, and 2 biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the pest control service and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: a Farming with Alternative Pollinators (FAP and b Crop Design System (CDS.

  3. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    Science.gov (United States)

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  4. Identification of Insect-Plant Pollination Networks for a Midwest Installation: Fort McCoy, WI

    Science.gov (United States)

    2016-04-01

    species are dependent on animal pollinators, including many agricultural plants (Ollerton et al. 2011). The recent declines of polli- nator species...pollinator fauna be- cause these species were absent from the Fort McCoy Integrated Natural Resources Management Plan. For general application of these...Conservation Status Ranks were used to classify species according to their vulnerability to extinction . Only species with Global Ranks of G1 (critically

  5. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay

    Science.gov (United States)

    Suso, María J.; Bebeli, Penelope J.; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A. A.; Torricelli, Renzo; Veloso, Maria M.

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant–pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System. PMID:27047514

  6. Exploring the relationships between landscape complexity, wild bee species richness and reproduction, and pollination services along a complexity gradient in the Netherlands

    NARCIS (Netherlands)

    Bukovinszki, Tibor; Verheijen, Joke; Zwerver, S.; Klop, Esther; Biesmeijer, Jacobus C.; Wäckers, Felix L.; Prins, Herbert H.T.; Kleijn, David

    2017-01-01

    Pollinator communities exhibit variable responses to changing landscape composition. A general expectation is that a decreasing cover of semi-natural habitats negatively affects pollinator reproduction, population size and pollination services, but few studies have investigated the simultaneous

  7. Insect pollination and self-incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity.

    Science.gov (United States)

    Ren, Zong-Xin; Wang, Hong; Bernhardt, Peter; Li, De-Zhu

    2014-10-01

    An increasing global demand for food, coupled with the widespread decline of pollinator diversity, remains an international concern in agriculture and genetic conservation. In particular, there are large gaps in the study of the pollination of economically important and traditionally grown species in China. Many plant species grown in China are both edible and used medicinally. The country retains extensive written records of agricultural and apicultural practices, facilitating contemporary studies of some important taxa. Here, we focus on Yunnan in southwestern China, a mega-biodiversity hotspot for medicinal/food plants. We used plant and insect taxa as model systems to understand the patterns and consequences of pollinator deficit to crops. We identified several gaps and limitations in research on the pollination ecology and breeding systems of domesticated taxa and their wild relatives in Yunnan and asked the following questions: (1) What is known about pollination systems of edible and medicinal plants in Yunnan? (2) What are the most important pollinators of Codonopsis subglobosa (Campanulaceae)? (3) How important are native pollinator species for maximizing yield in Chinese crops compared with the introduced Apis mellifera? We found that some crops that require cross-pollination now depend exclusively on hand pollination. Three domesticated crops are dependent primarily on the native but semidomesticated Apis cerana and the introduced A. mellifera. Other species of wild pollinators often play important roles for certain specialty crops (e.g., Vespa velutina pollinates Codonopsis subglobosa). We propose a more systematic and comprehensive approach to applied research in the future. © 2014 Botanical Society of America, Inc.

  8. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators

    NARCIS (Netherlands)

    Godfray, H.C.J.; Blacquiere, T.; Field, L.M.; Hails, R.S.; Petrokofsky, G.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R.

    2014-01-01

    There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments

  9. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae).

    Science.gov (United States)

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-06-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.

  10. Economic Evaluation of Pollination Services Comparing Coffee Landscapes in Ecuador and Indonesia

    Directory of Open Access Journals (Sweden)

    Roland Olschewski

    2006-06-01

    Full Text Available Biodiversity conservation through land-use systems on private land is becoming a pressing environmental policy issue. Agroforestry, such as shade-coffee production, contributes to biodiversity conservation. However, falling coffee prices force many coffee growers to convert their sites into economically more attractive land uses. We performed an economic evaluation of coffee pollination by bees in two distinct tropical regions: an area of low human impact with forests neighboring agroforestry in Indonesia and an area of high human impact with little remaining forest in Ecuador. We evaluated bee pollination for different forest-destruction scenarios, where coffee yields depend on forests to provide nesting sites for bees. We used two novel approaches. First, we examined how coffee net revenues depend on the pollination services of adjacent forests by considering berry weight in addition to fruit set, thereby providing a comprehensive evaluation. Second, we determined the net welfare effects of land-use changes, including the fact that former forestland is normally used for alternative crops. In both regions, crop revenues exceeded coffee pollination values, generating incentives to convert forests, even if owners would be compensated for pollination services. The promotion of certified "biodiversity-friendly" coffee is a feasible option to maintain shade-coffee systems. This is of special importance in high-impact areas where only small forest fragments remain. We conclude that a comprehensive economic analysis is necessary to adequately evaluate rainforest preservation for the enhancement of ecosystem services, such as pollination.

  11. Biological impacts of alcohol fuel emission on selected pollinator, predatory and nutrient-cycling insects and arachnids

    Energy Technology Data Exchange (ETDEWEB)

    D' Eliscu, P.N.

    1981-01-01

    Physiological and behavioral effects of methanol, ethanol, indolene, and formaldehyde emissions on selected arthropods are related to different relative organismic activities, metabolic rates, and respiratory demands. Various species of important pollinators, predators, and nutrient-cycling insects and arachnids respond differently to tailpipe and elevated levels of emissions. A gradient of responses is related to metabolism and trophic niche. Orders tested included various Hymenoptera, Diptera, Lepidoptera, Odonata, Orthoptera, Coleoptera, Collembola, Thysanura, Araneae, Acarina, and Opiliones. Responses included narcosis, spatial disorientation, cardiac arrhythmia, flight muscle and walking leg dysfunction, decreased feeding efficiency and prey capture success ratios, and increased positive thigmotaxis. Tolerance appears to be inversely related to oxygen demand of the arthropods tested, with active fliers most susceptible, weak fliers midscale, and non-fliers most tolerant. Electronic monitoring of heart, brain, and muscle characteristics suggests neuronal and neurosynaps disruptions from alcohols and formaldehyde, and neuromuscular effects from indolene in most arthropods tested.

  12. Pollination deficits in UK apple orchards

    Directory of Open Access Journals (Sweden)

    Michael Paul Douglas Garratt

    2014-02-01

    Full Text Available Apple production in the UK is worth over £100 million per annum and this production is heavily dependent on insect pollination. Despite its importance, it is not clear which insect pollinators carry out the majority of this pollination. Furthermore, it is unknown whether current UK apple production, in terms of both yield and quality, suffers pollination deficits and whether production value could be increased through effective management of pollination services. The present study set out to address some of these unknowns and showed that solitary bee activity is high in orchards and that they could be making a valuable contribution to pollination. Furthermore, fruit set and apple seed number were found to be suffering potential pollination deficits although these were not reflected in apple quality. Deficits could be addressed through orchard management practices to improve the abundance and diversity of wild pollinators. Such practices include provision of additional floral resources and nesting habitats as well as preservation of semi-natural areas. The cost effectiveness of such strategies would need to be understood taking into account the potential gains to the apple industry.

  13. Pollination deficits in UK apple orchards

    Directory of Open Access Journals (Sweden)

    Simon Potts

    2013-10-01

    Full Text Available Apple production in the UK is worth over £100 million per annum and this production is heavily dependent on insect pollination. Despite its importance, it is not clear which insect pollinators carry out the majority of this pollination. Furthermore, it is unknown whether current UK apple production, in terms of both yield and quality, suffers pollination deficits and whether production value could be increased through effective management of pollination services. The present study set out to address some of these unknowns and showed that solitary bee activity is high in orchards and that they could be making a valuable contribution to pollination. Furthermore, fruit set and apple seed number were found to be suffering potential pollination deficits although these were not reflected in apple quality. Deficits could be addressed through orchard management practices to improve the abundance and diversity of wild pollinators. Such practices include provision of additional floral resources and nesting habitats as well as preservation of semi-natural areas. The cost effectiveness of such strategies would need to be understood taking into account the potential gains to the apple industry.

  14. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Jenny Y. Y. Lau

    2017-06-01

    Full Text Available Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here. Non-trapping species with anthesis of standard duration (c. 48 h cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems.

  15. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    NARCIS (Netherlands)

    Kleijn, D.; Winfree, R.; Bartomeus, D.; Carvalheiro, L.G.; Bommarco, R.; Scheper, J.; Tscharntke, T.; Verhulst, J.; Potts, S.G.

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we

  16. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness

    OpenAIRE

    Heimbach, Fred; Russ, Anja; Schimmer, Maren; Born, Katrin

    2016-01-01

    Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of ...

  17. Degradation of soil fertility can cancel pollination benefits in sunflower.

    Science.gov (United States)

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  18. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    OpenAIRE

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring futu...

  19. Experimental evidence that wildflower strips increase pollinator visits to crops.

    Science.gov (United States)

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-08-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.

  20. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Directory of Open Access Journals (Sweden)

    Charlotte L. R. Payne

    2017-02-01

    Full Text Available Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  1. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Science.gov (United States)

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  2. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    Science.gov (United States)

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  3. Why Care About Aquatic Insects: Uses, Benefits, and Services

    Science.gov (United States)

    Mayflies and other aquatic insects are common subjects of ecological research, and environmental monitoring and assessment. However, their important role in protecting and restoring aquatic ecosystems is often challenged, because their benefits and services to humans are not obv...

  4. Diversity and pollination value of insects visiting the flowers of a rare buckwheat (Eriogonum pelinophilum: Polygonaceae in disturbed and “natural” areas

    Directory of Open Access Journals (Sweden)

    Griswold, T. L.

    2011-06-01

    Full Text Available We compared flower-visitors of the endangered plant Eriogonum pelinophilum, at relatively undisturbed and highly disturbed sites. We found no difference between sites in flower visitation rate or species richness of flower-visitors; species diversity of flower-visitors was higher at disturbed than at undisturbed sites but there was no difference in equitability. We found significant differences in total E. pelinophilum pollen carried on the body among 14 abundant bee species; eight abundant wasp species; and 12 abundant fly species. Both bee and wasp species carried significantly more pollen on the ventral compared to dorsal segments of the body; pollen on the body of fly species was more equally distributed across body surfaces. Total pollen carried on flower-visitor bodies was significantly related to visitor length, suggesting that larger visitors were more effective pollinators. Total Pollination Value, a measure combining both visitor abundance and body pollen was greater at the disturbed site than the undisturbed site, further suggesting that pollination in fragments of this rare species is not a major concern. We conclude that the high diversity of insect flower-visitors and the generalized nature of E. pelinophilum flowers make a special management programme to conserve pollinators unnecessary. Conservation of this buckwheat is best achieved by simple habitat preservation, together with a program to enlist private citizens to include buckwheat plants in their backyard gardens.

  5. Orchid pollination by sexual deception: pollinator perspectives.

    Science.gov (United States)

    Gaskett, A C

    2011-02-01

    The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre-copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is

  6. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal

    Science.gov (United States)

    Francis, Clinton D.; Kleist, Nathan J.; Ortega, Catherine P.; Cruz, Alexander

    2012-01-01

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide. PMID:22438504

  7. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal.

    Science.gov (United States)

    Francis, Clinton D; Kleist, Nathan J; Ortega, Catherine P; Cruz, Alexander

    2012-07-22

    Noise pollution is a novel, widespread environmental force that has recently been shown to alter the behaviour and distribution of birds and other vertebrates, yet whether noise has cumulative, community-level consequences by changing critical ecological services is unknown. Herein, we examined the effects of noise pollution on pollination and seed dispersal and seedling establishment within a study system that isolated the effects of noise from confounding stimuli common to human-altered landscapes. Using observations, vegetation surveys and pollen transfer and seed removal experiments, we found that effects of noise pollution can reverberate through communities by disrupting or enhancing these ecological services. Specifically, noise pollution indirectly increased artificial flower pollination by hummingbirds, but altered the community of animals that prey upon and disperse Pinus edulis seeds, potentially explaining reduced P. edulis seedling recruitment in noisy areas. Despite evidence that some ecological services, such as pollination, may benefit indirectly owing to noise, declines in seedling recruitment for key-dominant species such as P. edulis may have dramatic long-term effects on ecosystem structure and diversity. Because the extent of noise pollution is growing, this study emphasizes that investigators should evaluate the ecological consequences of noise alongside other human-induced environmental changes that are reshaping human-altered landscapes worldwide.

  8. Milkweed (Gentianales: Apocynaceae): a farmscape resource for increasing parasitism of stink bugs (Hemiptera: Pentatomidae) and providing nectar to insect pollinators and monarch butterflies.

    Science.gov (United States)

    Tillman, P G; Carpenter, J E

    2014-04-01

    In peanut-cotton farmscapes in Georgia, the stink bugs Nezara viridula (L.) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and the leaffooted bug, Leptoglossus phyllopus (L.) (Hemiptera: Coreidae), disperse at crop-to-crop interfaces to feed on bolls in cotton. The main objective of this study was to determine whether insecticide-free tropical milkweed (Asclepias curassavica L.), a nectar-producing plant, can increase parasitism of these bugs by Trichopoda pennipes (F.) (Diptera: Tachinidae) and provide nectar to monarch butterflies and insect pollinators in these farmscapes. Peanut-cotton plots with and without flowering milkweed plants were established in 2009 and 2010. Adult T. pennipes, monarch butterflies, honey bees, and native insect pollinators readily fed on floral nectar of milkweed. Monarch larvae feeding on milkweed vegetation successfully developed into pupae. In 2009, N. viridula was the primary host of T. pennipes in cotton, and parasitism of this pest by the parasitoid was significantly higher in milkweed cotton (61.6%) than in control cotton (13.3%). In 2010, parasitism of N. viridula, C. hilaris, and L. phyllopus by T. pennipes was significantly higher in milkweed cotton (24.0%) than in control cotton (1.1%). For both years of the study, these treatment differences were not owing to a response by the parasitoid to differences in host density, because density of hosts was not significantly different between treatments. In conclusion, incorporation of milkweed in peanut-cotton plots increased stink bug parasitism in cotton and provided nectar to insect pollinators and monarch butterflies.

  9. Are ecosystem services stabilized by differences among species? A test using crop pollination.

    Science.gov (United States)

    Winfree, Rachael; Kremen, Claire

    2009-01-22

    Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.

  10. Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health

    Science.gov (United States)

    Brittain, Claire; Kremen, Claire; Garber, Andrea; Klein, Alexandra-Maria

    2014-01-01

    Insect-pollinated crops provide important nutrients for human health. Pollination, water and nutrients available to crops can influence yield, but it is not known if the nutritional value of the crop is also influenced. Almonds are an important source of critical nutrients for human health such as unsaturated fat and vitamin E. We manipulated the pollination of almond trees and the resources available to the trees, to investigate the impact on the nutritional composition of the crop. The pollination treatments were: (a) exclusion of pollinators to initiate self-pollination and (b) hand cross-pollination; the plant resource treatments were: (c) reduced water and (d) no fertilizer. In an orchard in northern California, trees were exposed to a single treatment or a combination of two (one pollination and one resource). Both the fat and vitamin E composition of the nuts were highly influenced by pollination. Lower proportions of oleic to linoleic acid, which are less desirable from both a health and commercial perspective, were produced by the self-pollinated trees. However, higher levels of vitamin E were found in the self-pollinated nuts. In some cases, combined changes in pollination and plant resources sharpened the pollination effects, even when plant resources were not influencing the nutrients as an individual treatment. This study highlights the importance of insects as providers of cross-pollination for fruit quality that can affect human health, and, for the first time, shows that other environmental factors can sharpen the effect of pollination. This contributes to an emerging field of research investigating the complexity of interactions of ecosystem services affecting the nutritional value and commercial quality of crops. PMID:24587215

  11. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States.

    Science.gov (United States)

    Walston, Leroy; Mishra, Shruti Khadka; Hartmann, Heidi M; Hlohowskyj, Ihor; McCall, James; Macknick, Jordan

    2018-05-28

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step towards understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S, and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.

  12. Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries.

    NARCIS (Netherlands)

    Kohler, F.; Verhulst, J.; Knop, E.; Herzog, F.; Kleijn, D.

    2007-01-01

    Flower-visiting insects play a crucial role in ecosystem processes by providing essential services such as pollination. During the last decades, agricultural intensification has caused a widespread decline of insect diversity. Agri-environment schemes (AES) have been implemented in many European

  13. Using Pollination Deficits to Infer Pollinator Declines: Can Theory Guide Us?

    Directory of Open Access Journals (Sweden)

    James D. Thomson

    2001-06-01

    Full Text Available Authors examining pollinator declines frequently discuss pollination deficits, either as contemporary evidence that declines have occurred or as a possible negative consequence of future declines. Because pollination deficits can be measured in short-term studies, it would be useful if such studies could somehow replace painstaking documentation of insect population trends. I examine the legitimacy of this type of substitution with reference to evolutionary theory and natural plant populations. Operationally, pollination deficits are detected through pollen supplementation experiments. Although simple, these experiments are subject to subtleties of interpretation because of biases and nonlinear responses, which I discuss. Although it has been found that, in 62% of the natural populations studied, fruit or seed sets are at least sometimes limited by insufficient pollen, other research suggests that intact natural systems ought to arrive at an evolutionary equilibrium in which reproduction is limited equally by pollination and by maternal resources. Therefore, chronic severe pollination deficits may indicate that the pollinator service of a plant population has declined from some higher level in the past. However, there is no evidence of widespread declines, and, because of stochastic factors in nature, occasional shortfalls of pollination should be expected even at equilibrium. Although the effects of pollination deficits on plant population dynamics have been little studied, moderate declines in seed production may have relatively little effect on population growth rates because resources not expended on fruits and seeds may be reallocated to vegetative persistence or spread. It is therefore premature to conclude that pollinator declines are having strong effects on natural plant populations, but this mostly reflects a lack of data and is no cause for complacency. Theory must be supplemented by case studies; I give one example and

  14. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry.

    Science.gov (United States)

    Jones Ritten, Chian; Peck, Dannele; Ehmke, Mariah; Patalee, M A Buddhika

    2018-04-03

    While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than those in Utah or Montana. Further, engagement in off-farm employment increases an apiary's technical efficiency. The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in part, the historical decline in honey bee numbers.

  15. Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production.

    Science.gov (United States)

    Gillespie, Sandra; Long, Rachael; Williams, Neal

    2015-12-01

    Pollination in crops, as in native ecosystems, is a stepwise process that can be disrupted at any stage. Healthy pollinator populations are critical for adequate visitation, but pollination still might fail if crop management interferes with the attraction and retention of pollinators. Farmers must balance the direct benefits of applying insecticide and managing irrigation rates against their potential to indirectly interfere with the pollination process. We investigated these issues in hybrid onion seed production, where previous research has shown that high insecticide use reduces pollinator attraction. We conducted field surveys of soil moisture, nectar production, pollinator visitation, pollen-stigma interactions, and seed set at multiple commercial fields across 2 yr. We then examined how management actions, such as irrigation rate (approximated by soil moisture), or insecticide use could affect the pollination process. Onions produced maximum nectar at intermediate soil moisture, and high nectar production attracted more pollinators. Insecticide use weakly affected pollinator visitation, but when applied close to bloom reduced pollen germination and pollen tube growth. Ultimately, neither soil moisture nor insecticide use directly affected seed set, but the high correlation between pollinator visitation and seed set suggests that crop management will ultimately affect yields via indirect effects on the pollination process. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  17. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness.

    Science.gov (United States)

    Heimbach, Fred; Russ, Anja; Schimmer, Maren; Born, Katrin

    2016-11-01

    Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of clothianidin seed-treated winter oilseed rape on three species of pollinating insects (Apis mellifera, Bombus terrestris and Osmia bicornis) and present how these requirements were implemented. Two circular study sites were delineated next to each other in northeast Germany and comprised almost 65 km 2 each. At the reference site, study fields were drilled with clothianidin-free OSR seeds while at the test site the oilseed rape seeds contained a coating with 10 g clothianidin and 2 g beta-cyfluthrin per kg seeds (Elado®). The comparison of environmental conditions at the study sites indicated that they are as similar as possible in terms of climate, soil, land use, history and current practice of agriculture as well as in availability of oilseed rape and non-crop bee forage. Accordingly, local environmental conditions were considered not to have had any confounding effect on the results of the monitoring of the bee species. Furthermore, the study area was found to be representative for other oilseed rape cultivation regions in Europe.

  18. Growing and marketing woody species to support pollinators: An emerging opportunity for forest, conservation, and native plant nurseries in the Northeastern United States

    Science.gov (United States)

    Kas Dumroese; Tara Luna

    2016-01-01

    The decline of insects that pollinate flowers is garnering more attention by land managers, policymakers, and the general public. Nursery managers who grow native trees, shrubs, and woody vines have a promising opportunity to showcase these species, marketing their contributions to pollinator health and other ecosystem services in urban and wild landscapes....

  19. A New Manufacturing Service Selection and Composition Method Using Improved Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    2016-01-01

    Full Text Available With an increasing number of manufacturing services, the means by which to select and compose these manufacturing services have become a challenging problem. It can be regarded as a multiobjective optimization problem that involves a variety of conflicting quality of service (QoS attributes. In this study, a multiobjective optimization model of manufacturing service composition is presented that is based on QoS and an environmental index. Next, the skyline operator is applied to reduce the solution space. And then a new method called improved Flower Pollination Algorithm (FPA is proposed for solving the problem of manufacturing service selection and composition. The improved FPA enhances the performance of basic FPA by combining the latter with crossover and mutation operators of the Differential Evolution (DE algorithm. Finally, a case study is conducted to compare the proposed method with other evolutionary algorithms, including the Genetic Algorithm, DE, basic FPA, and extended FPA. The experimental results reveal that the proposed method performs best at solving the problem of manufacturing service selection and composition.

  20. Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees

    Science.gov (United States)

    Buri, Pierrick; Humbert, Jean-Yves; Arlettaz, Raphaël

    2014-01-01

    Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services. PMID:24416434

  1. Promoting pollinating insects in intensive agricultural matrices: field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees.

    Science.gov (United States)

    Buri, Pierrick; Humbert, Jean-Yves; Arlettaz, Raphaël

    2014-01-01

    Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.

  2. Promoting pollinating insects in intensive agricultural matrices: field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees.

    Directory of Open Access Journals (Sweden)

    Pierrick Buri

    Full Text Available Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES. We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1 first cut not before 15 June (conventional regime for meadows within Swiss AES; 2 first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3 first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing. Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year and cumulative (from one year to the following positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.

  3. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    Science.gov (United States)

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  4. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    Directory of Open Access Journals (Sweden)

    Jessica D Petersen

    Full Text Available Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L. are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L. fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say, B. impatiens and A. mellifera and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  5. Pollinator declines: reconciling scales and implications for ecosystem services [v1; ref status: indexed, http://f1000r.es/14f

    Directory of Open Access Journals (Sweden)

    Ignasi Bartomeus

    2013-07-01

    Full Text Available Despite the widespread concern about the fate of pollinators and the ecosystem services they deliver, we still have surprisingly scarce scientific data on the magnitude of pollinator declines and its actual contribution to crop pollination and food security. We use recently published data from northeastern North America to show that studies at both the local and regional scales are needed to understand pollinator declines, and that species-specific responses to global change are broadly consistent across scales. Second, we show that bee species that are currently delivering most of the ecosystem services (i.e. crop pollination are not among the species showing declining trends, but rather appear to thrive in human-dominated landscapes.

  6. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  7. Flowering biology of three taxa of the genus Scilla L. (Hyacinthaceae and flower visitation by pollinating insects

    Directory of Open Access Journals (Sweden)

    Beata Żuraw

    2012-12-01

    Full Text Available Squill of the family Hyacinthaceae is a small bulb perennial. The present study on flowering and pollination of Scilla sibirica Andr., S. sibirica 'Alba', and S. bifolia L. was conducted in the years 1995, 1997, and 1999 in the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The plants flowered from the end of March until the middle of May. The duration of flowering of individual taxa was similar and it averaged 20 days (Scilla sibirica, 21 days (S. sibirica 'Alba', and 23 days (S. bifolia. The opening of flower buds always started around 9.00 am and lasted, depending on the taxon, until 3.00 pm (Scilla sibirica 'Alba', 4.00 pm (S. bifolia, and 5.00 pm (S. sibirica. The flowers were visited by bees (Apoidea, primarily the honey bee (Apis mellifera L., bumblebee (Bombus L., and solitary bees. Numerous honey bee foragers were observed; they bit through the anther walls and even attempted to open still closed flower buds in order to reach the pollen.

  8. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis).

    Science.gov (United States)

    Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado® (10 g clothianidin & 2 g beta-cyfluthrin/kg seed)-dressed oilseed rape on the development and reproduction of mason bees (Osmia bicornis) as part of a large-scale monitoring field study in Northern Germany, where oilseed rape is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km 2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and three nesting shelters were placed at each location. Of these locations, three locations were directly adjacent to oilseed rape fields, while the other three locations were situated 100 m distant from the nearest oilseed rape field. At each location, 1500 cocoons of O. bicornis were placed into the central nesting shelter. During the exposure phase, nest building activities and foraging behaviour were assessed repeatedly. Cocoons were harvested in autumn to assess parasitization and reproduction including larval development. The following spring, the emergence of the next generation of adults from cocoons was monitored. High reproductive output and low parasitization rates indicated that Elado ® -dressed oilseed rape did not cause any detrimental effects on the development or reproduction of mason bees.

  9. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators

    Science.gov (United States)

    Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.

    2017-01-01

    Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863

  10. Courgette Production: Pollination Demand, Supply, and Value.

    Science.gov (United States)

    Knapp, Jessica L; Osborne, Juliet L

    2017-10-01

    Courgette (Cucurbita pepo L.) production in the United Kingdom is estimated to be worth £6.7 million. However, little is known about this crop's requirement for insect-mediated pollination (pollinator dependence) and if pollinator populations in a landscape are able to fulfil its pollination needs (pollination deficit). Consequently, pollination experiments were conducted over 2 yr to explore pollinator dependence and pollination deficit in field-grown courgette in the United Kingdom. Results showed that pollination increased yield by 39% and there was no evidence of pollination limitation on crop yield. This was evidenced by a surprisingly low pollination deficit (of just 3%) and no statistical difference in yield (length grown, circumference, and weight) between open- and hand-pollinated crops. Nonetheless, the high economic value of courgettes means that reducing even the small pollination deficit could still increase profit by ∼£166/ha. Interestingly, 56% of fruit was able to reach marketable size and shape without any pollination. Understanding a crop's requirement for pollinators can aid growers in their decision-making about what varieties and sites should be used. In doing so, they may increase their agricultural resilience and further their economic advantage. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  11. A new three-dimensional manufacturing service composition method under various structures using improved Flower Pollination Algorithm

    Science.gov (United States)

    Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong

    2018-05-01

    With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.

  12. How much is a bee worth? Economic aspects of pollination of selected crops in Poland

    Directory of Open Access Journals (Sweden)

    Marcin Zych

    2012-12-01

    Full Text Available Scientific studies state that a considerable part of the economic value of crop plant production should be attributed to the free services of pollinating insects. Such calculations are available for several EU and North American countries, and the present paper evaluates the value of pollination services to 19 important Polish crop plants. It is estimated that the market value of 19 entomogamous crops reaches the sum of approx. 7.5 billion PLN (thousand million (approx. 1.8 billion EUR, 39% of this may be attributed to the insect activities, the most important being bees (the service value of approx. 2.5 billion PLN/0.6 billion EUR and dipterans (almost 0.3 billion PLN/ 74 billion EUR. The paper discusses also the challenges and pitfalls of similar estimations and the need for conservation actions directed on crop plant pollinators.

  13. How to efficiently obtain accurate estimates of flower visitation rates by pollinators

    NARCIS (Netherlands)

    Fijen, Thijs P.M.; Kleijn, David

    2017-01-01

    Regional declines in insect pollinators have raised concerns about crop pollination. Many pollinator studies use visitation rate (pollinators/time) as a proxy for the quality of crop pollination. Visitation rate estimates are based on observation durations that vary significantly between studies.

  14. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland.

    Directory of Open Access Journals (Sweden)

    John Cussans

    2010-07-01

    Full Text Available Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1 pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2 pollination success could be enhanced because of increased pollinator abundance in the vicinity.We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L. or next to a cereal crop (wheat, Triticum spp.. Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season. We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.

  15. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments

    Directory of Open Access Journals (Sweden)

    Thomas O. Crist

    2014-07-01

    Full Text Available The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services.

  16. Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris).

    Science.gov (United States)

    Sterk, Guido; Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado ® -dressed winter oilseed rape (OSR, 10 g clothianidin & 2 g beta-cyfluthrin/kg seed) on the development, reproduction and behaviour of large earth bumble bees (Bombus terrestris) as part of a large-scale monitoring field study in Northern Germany, where OSR is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km 2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and 10 bumble bee hives were placed at each location. At each site, three locations were directly adjacent to OSR fields and three locations were situated 400 m distant from the nearest OSR field. The development of colonies was monitored from the beginning of OSR flowering in April until June 2014. Pollen from returning foragers was analysed for its composition. An average of 44 % of OSR pollen was found in pollen loads of bumble bees indicating that OSR was a major resource for the colonies. At the end of OSR flowering, hives were transferred to a nature reserve until the end of the study. Colony development in terms of hive weight and the number of workers showed a typical course with no statistically significant differences between the sites. Reproductive output was comparatively high and not negatively affected by the exposure to treated OSR. In summary, Elado ® -dressed OSR did not cause any detrimental effects on the development or reproduction of bumble bee colonies.

  17. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    Science.gov (United States)

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  18. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

    OpenAIRE

    Venturini, E. M.; Drummond, F. A.; Hoshide, A. K.; Dibble, A. C.; Stack, L. B.

    2017-01-01

    Abstract Pollinator-dependent agriculture heavily relies upon a single pollinator?the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter ?PRs?) may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast b...

  19. Rain forest provides pollinating beetles for atemoya crops.

    Science.gov (United States)

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.

  20. Diptera, fly pollination, flower visit, mutualism, ecological interaction, alternative pollinators

    Directory of Open Access Journals (Sweden)

    Barbara Gemmill-Herren

    2014-02-01

    Full Text Available While it is well recognised that pollination is an ecosystem service of vital importance to human well-being through its role in food production, it is still remarkable how little is known, on a crop-by-crop basis, about this role, and the extent and causes of declines in the service. Without better documentation of the specific contribution of pollination to crop yields, there have been mounting - and justified - questions about how relevant pollination may be to agricultural development and food security. In addition, the vast majority of studies of pollination services to crops have been carried out in Europe and North America; and certainly the problems we know to impact pollinators most severely – a high dependence on agricultural chemicals and monocropped landscapes offering little diet diversity to pollinators – are typical features of industrialised, Northern hemisphere agriculture.

  1. Seasonal and annual variations in the pollination efficiency of a pollinator community of Dictamnus albus L.

    Science.gov (United States)

    Fisogni, A; Rossi, M; Sgolastra, F; Bortolotti, L; Bogo, G; de Manincor, N; Quaranta, M; Galloni, M

    2016-05-01

    The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra- and inter-annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra-plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large-sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross-pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    Science.gov (United States)

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  3. Economic Evaluation of Pollination Services Comparing Coffee Landscapes in Ecuador and Indonesia

    OpenAIRE

    Roland Olschewski; Teja Tscharntke; Pablo C. Benítez; Stefan Schwarze; Alexandra-Maria Klein

    2006-01-01

    Biodiversity conservation through land-use systems on private land is becoming a pressing environmental policy issue. Agroforestry, such as shade-coffee production, contributes to biodiversity conservation. However, falling coffee prices force many coffee growers to convert their sites into economically more attractive land uses. We performed an economic evaluation of coffee pollination by bees in two distinct tropical regions: an area of low human impact with forests neighboring agroforestry...

  4. Benefits of Biotic Pollination for Non-Timber Forest Products and Cultivated Plants

    Directory of Open Access Journals (Sweden)

    Rehel Shiny

    2009-01-01

    Full Text Available Biodiversity supplies multiple goods and services to society and is critical for the support of livelihoods across the globe. Many indigenous people depend upon non-timber forest products (NTFP and crops for a range of goods including food, medicine, fibre and construction materials. However, the dependency of these products on biotic pollination services is poorly understood. We used the biologically and culturally diverse Nilgiri Biosphere Reserve in India to characterise the types of NTFP and crop products of 213 plant species and asses their degree of dependency on animal pollination. We found that 80 per cent of all species benefited from animal pollination in their reproduction, and that 62 per cent of crop products and 40 per cent of NTFP benefited from biotic pollination in their production. Further we identified the likely pollinating taxa documented as responsible for the production of these products, mainly bees and other insects. A lower proportion of indigenous plant products (39 per cent benefited from biotic pollination than products from introduced plants (61 per cent. We conclude that pollinators play an important role in the livelihoods of people in this region.

  5. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  6. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  7. Pollination Research Methods with Apis mellifera

    Science.gov (United States)

    This chapter describes field and lab procedures for doing experiments on honey bee pollination. Most of the methods apply to any insect for whom pollen vectoring capacity is the question. What makes honey bee pollination distinctive is its historic emphasis on agricultural applications; hence one fi...

  8. Economic impact of ecosystem services provided by ecologically sustainable roadside right of way vegetation management practices.

    Science.gov (United States)

    2014-03-01

    The economic value of runoff prevention, carbon sequestration, pollination and other insect services, air quality, : invasive species resistance, and aesthetics was estimated for Floridas State Highway System roadside right-of-way (ROW) ecosystem ...

  9. Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum?

    Science.gov (United States)

    Bloch, Daniel; Werdenberg, Niels; Erhardt, Andreas

    2006-01-01

    Knowledge of pollination services provided by flower visitors is a prerequisite for understanding (co)evolutionary processes between plants and their pollinators, for evaluating the degree of specialization in the pollination system, and for assessing threats from a potential pollination crisis. This study examined pollination efficiency and visitation frequency of pollinators--key traits of pollinator-mediated fecundity--in a natural population of the wild carnation Dianthus carthusianorum. The five lepidopteran pollinator species observed differed in pollination efficiency and visitation frequency. Pollinator importance, the product of pollination efficiency and visitation frequency, was determined by the pollinator's visitation frequency. Pollination of D. carthusianorum depended essentially on only two of the five recorded pollinator species. Seed set was pollen-limited and followed a saturating dose-response function with a threshold of c. 50 deposited pollen grains for fruit development. Our results confirm that D. carthusianorum is specialized to lepidopteran pollinators, but is not particularly adapted to the two main pollinator species identified. The local persistence of D. carthusianorum is likely to be at risk as its reproduction depends essentially on only two of the locally abundant, but generally vulnerable, butterfly species.

  10. Pollination ecology of the New Zealand alpine flora

    OpenAIRE

    Bischoff, Mascha

    2008-01-01

    The interactions between flowers and the insects that pollinate them have fascinated scientists for more than 200 years. The last century saw the establishment of the fundamental concept of pollination syndromes which allows classification of flowers according to the agents that pollinate them demonstrating specialisation and co-evolution of plants and pollinators. This concept has recently been questioned and the contrary, ubiquitous generalisation and chance have been proposed to be the dri...

  11. Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain

    NARCIS (Netherlands)

    Polce, C.; Termansen, M.; Aguirre-Gutiérrez, J.; Boatman, N.D.; Budge, G.E.; Crowe, A.; Garratt, M.P.; Pietravalle, S.; Potts, S.G.; Ramirez, J. A.; Somerwill, K.E.; Biesmeijer, J.C.

    2013-01-01

    Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their

  12. Efeito da polinização por abelhas e outros insetos na produção de sementes de cebola Effect of pollination by bees and other insects on the production of onion seeds

    Directory of Open Access Journals (Sweden)

    Sidia Witter

    2003-12-01

    Full Text Available A deficiência de polinização tem sido apontada como uma das causas da baixa produção de sementes na cultura da cebola. O objetivo deste trabalho foi avaliar a relação da presença de abelhas e outros insetos em flores de duas cultivares de cebola, Allium cepa L. (Alliaceae, com a produção de sementes. Foram registradas a diversidade e a freqüência de insetos nas flores de cebola e o efeito polinizador foi testado. O comportamento de Apis mellifera foi observado diretamente nas flores e a fidelidade verificada a partir do pólen nas corbículas. Representantes de Hymenoptera e Diptera foram os visitantes florais mais abundantes. Houve correlação entre a freqüência de A. mellifera com número de umbelas com flores, em ambas cultivares, e de outros insetos em Crioula Alto Vale. A produção de sementes com livre visitação de insetos apresentou acréscimo superior a 20% em relação às parcelas sem insetos e com visita de uma abelha. A. mellifera transportou mais de 70% de pólen de cebola. A presença de A. mellifera é indispensável para a produção comercial de sementes de cebola.Pollination's deficit has been pointed as one of the causes of the low onion seed production. The objective of this work was to evaluate the relationship of the presence of bees and other insects in flowers of two cultivars of onion, Allium cepa L. (Alliaceae, with seed production. The diversity and frequency of insects in flowers of onion was registered and their pollinizing effect was tested. The behavior of Apis mellifera was directly observed in the flowers and the fidelity was testified from the presence of pollen in the corbiculas. Representatives of Hymenoptera and Diptera were the most abundant flower visitors. There was a correlation between frequency of A. mellifera and the number of umbels with flowers in both cultivars and of other insects in Crioula Alto Vale. The production of seeds with free insect visitation had an increase of more

  13. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Darren C. J. Wong

    2017-11-01

    Full Text Available Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  14. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects.

    Science.gov (United States)

    Wong, Darren C J; Pichersky, Eran; Peakall, Rod

    2017-01-01

    Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  15. Superorganism resilience: Eusociality and susceptibility of ecosystem service providing insects to stressors

    Science.gov (United States)

    Insects provide crucial ecosystem services for human food security and maintenance of biodiversity. Therefore, major declines in wild species combined with losses of managed bees have raised concern over the sustainability of their ecosystem services. Recent data suggest that honey bees appear to be...

  16. Spatial and Temporal Trends of Global Pollination Benefit

    Science.gov (United States)

    Lautenbach, Sven; Seppelt, Ralf; Liebscher, Juliane; Dormann, Carsten F.

    2012-01-01

    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services. PMID:22563427

  17. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Science.gov (United States)

    Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr

    2014-01-01

    Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  18. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Dawid Moroń

    Full Text Available Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (seminatural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  19. A New Manufacturing Service Selection and Composition Method Using Improved Flower Pollination Algorithm

    OpenAIRE

    Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Xu, Yangbing

    2016-01-01

    With an increasing number of manufacturing services, the means by which to select and compose these manufacturing services have become a challenging problem. It can be regarded as a multiobjective optimization problem that involves a variety of conflicting quality of service (QoS) attributes. In this study, a multiobjective optimization model of manufacturing service composition is presented that is based on QoS and an environmental index. Next, the skyline operator is applied to reduce the s...

  20. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae).

    Science.gov (United States)

    Ivey, Christopher T; Martinez, Pocholo; Wyatt, Robert

    2003-02-01

    The contribution of a pollinator toward plant fitness (i.e., its "effectiveness") can determine its importance for the plant's evolutionary ecology. We compared pollinators in a population of Asclepias incarnata (Apocynaceae) for several components of pollinator effectiveness over two flowering seasons to evaluate their importance to plant reproduction. Insects of the order Hymenoptera predominate in A. incarnata pollination, but there appears to be no specialization for pollination within this order. Pollinators varied significantly in nearly every component of effectiveness that we measured, including pollen load, removal and deposition of pollen, pollination efficiency (deposition/removal), flower-handling time, and potential for geitonogamy (fractional pollen deposition). The visitation rate of pollinators also varied significantly between years and through time within years. Pollination success and percentage fruit-set of unmanipulated plants in the population also varied significantly between years, and pollination success varied among sample times within years. Most components of effectiveness were weakly correlated, suggesting that the contributions of visitor species toward pollination varied among effectiveness components. Mean flower-handling time, however, was strongly correlated with several components, including pollen removal and deposition, pollination efficiency, and fractional pollen deposition. These findings highlight the significance of pollination variability for plant reproduction and suggest that time-dependent foraging behaviors may play an important role in determining pollinator effectiveness.

  1. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey

    OpenAIRE

    Rolke, Daniel; Persigehl, Markus; Peters, Britta; Sterk, Guido; Blenau, Wolfgang

    2016-01-01

    This study was part of a large-scale monitoring project to assess the possible effects of Elado® (10 g clothianidin & 2 g β-cyfluthrin/kg seed)-dressed oilseed rape seeds on different pollinators in Northern Germany. Firstly, residues of clothianidin and its active metabolites thiazolylnitroguanidine and thiazolylmethylurea were measured in nectar and pollen from Elado®-dressed (test site, T) and undressed (reference site, R) oilseed rape collected by honey bees confined within tunnel tents. ...

  2. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    Science.gov (United States)

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  3. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    Science.gov (United States)

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio

  4. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    Directory of Open Access Journals (Sweden)

    Jeroen Everaars

    Full Text Available Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness, number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study, for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1 Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2 Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3 Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response

  5. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    Science.gov (United States)

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  6. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  7. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services

    Science.gov (United States)

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  8. Asynchronous diversification in a specialized plant-pollinator mutualism.

    Science.gov (United States)

    Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E

    2011-09-23

    Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.

  9. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Colgan Thomas J

    2011-12-01

    Full Text Available Abstract Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers and a total of 1,610,742 expressed sequence tags (ESTs were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while

  10. Polyphenism in social insects: Insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    LENUS (Irish Health Repository)

    Colgan, Thomas J

    2011-12-20

    Abstract Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory

  11. A preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  12. Preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  13. Indirect effects of mutualism: ant-treehopper associations deter pollinators and reduce reproduction in a tropical shrub.

    Science.gov (United States)

    Ibarra-Isassi, Javier; Oliveira, Paulo S

    2018-03-01

    Animal-pollinated plants can be susceptible to changes in pollinator availability. Honeydew-producing treehoppers frequently occur on inflorescences, potentially enhancing ant-mediated negative effects on pollination services. However, the effect of ant-attended, honeydew-producing insects on plant reproduction remains uncertain. We recorded the abundance of treehoppers and ants on Byrsonima intermedia (Malpighiaceae), and monitored floral visitors in a Brazilian cerrado savanna. We manipulated the presence of ants and ant-treehopper associations on inflorescences to assess their effect on pollination and fruit formation. We used dried ants pinned to inflorescences to evaluate the effect of ant presence and ant identity on potential pollinators. Results show that the presence of treehoppers increases ant abundance on flowers and disrupts pollination by oil-collecting bees, decreasing the frequency and duration of floral visits and reducing fruit and seed set. Treehopper herbivory has no direct effect on fruit or seed production, which are independent of treehopper density. Pinned ants promote avoidance by floral visitors, reducing the number of visits. Ant identity mediates visitation decisions, with Ectatomma brunneum causing greater avoidance by floral visitors than Camponotus rufipes. Field videos show that pollinating bees are harassed by ants near flowers, prompting avoidance behavior by the bees. This is the first demonstration of indirect effects by honeydew-gathering ants, via disrupted pollination, on plant reproduction in tropical cerrado savanna. Our results highlight the importance of studying other interactions near flowers, in addition to just observing pollinators, for a proper understanding of plant reproduction.

  14. Insect venom hypersensitivity: experience in a clinical immunology/allergy service in Singapore.

    Science.gov (United States)

    Thong, B Y H; Leong, K P; Chng, H H

    2005-10-01

    To study the profile of patients with allergy to the venom of insect stings. 31 consecutive cases referred to our clinical immunology/allergy outpatient service from June 1, 1998 to June 30, 2002 were reviewed. These patients comprised 3.5 percent of 889 cases referred during the study period. Their mean age was 28.8 +/- 10.5 (range 19-57) years and the majority were males (90.3 percent). Of these, 20 (64.5 percent) were Chinese, four (12.9 percent) were Malays and seven (22.6 percent) were of other races. 19 patients (61.3 percent) were men from the uniformed services including 12 (63.2 percent) full-time National Servicemen. 71 percent (22 patients) were stung for the first time. Urticaria (22 cases, 71.0 percent), dyspnoea (13, 41.9 percent), angioedema (12, 38.7 percent) and syncope (ten, 32.3 percent) were the most common manifestations of insect allergy. Anaphylaxis occurred in 22 (71.0 percent) cases, constituting 30.1 percent of all cases of anaphylaxis referred to our service during the study period. Although the causative insect was identified as honeybee (12, 38.7 percent), ant (four, 12.9 percent), wasp (three, 9.7 percent), and fire ant (two, 6.5 percent) by the majority of patients, ten (32.2 percent) patients were unable to identify the causative insect. The two patients stung by fire ants were Americans working in Singapore who had been stung while in the United States. Among those with anaphylaxis, honeybee, wasp and fire ant venom, for which specific immunotherapy is available, were identified as the cause in 40.9 percent, 4.5 percent, and 4.5 percent, respectively. Insect venom hypersensitivity made up 3.5 percent of allergy/immunology referrals and 32.8 percent of cases of anaphylaxis referred to our institution. The majority were military servicemen who developed allergic reactions during the course of duty. The inability to identify the causative insect in 50 percent with sting anaphylaxis limits the role of specific immunotherapy in our

  15. Blueberry pollination in southern Brazil and their influence on fruit quality

    Directory of Open Access Journals (Sweden)

    Tiago Madruga Telesca da Silveira

    2011-03-01

    Full Text Available Blueberry (Vaccinium ashei is a relatively new crop in cultivation under Southern Brazil conditions. The first collection introduced in the area was formed by rabbiteye cultivars which need insect pollinators and also pollinizers. The aim of this work was to observe if there were differences between pollinizers on fruit quality of the commercial cultivar and also to observe the most effective and frequent insect pollinators, under natural conditions. It was concluded that pollen source has an effect on quality of blueberry fruits. Bumblebees are the most efficient pollinators; however the species found in southern Brazil are different from the ones mentioned in the U.S. literature.

  16. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey.

    Science.gov (United States)

    Rolke, Daniel; Persigehl, Markus; Peters, Britta; Sterk, Guido; Blenau, Wolfgang

    2016-11-01

    This study was part of a large-scale monitoring project to assess the possible effects of Elado ® (10 g clothianidin & 2 g β-cyfluthrin/kg seed)-dressed oilseed rape seeds on different pollinators in Northern Germany. Firstly, residues of clothianidin and its active metabolites thiazolylnitroguanidine and thiazolylmethylurea were measured in nectar and pollen from Elado ® -dressed (test site, T) and undressed (reference site, R) oilseed rape collected by honey bees confined within tunnel tents. Clothianidin and its metabolites could not be detected or quantified in samples from R fields. Clothianidin concentrations in samples from T fields were 1.3 ± 0.9 μg/kg and 1.7 ± 0.9 μg/kg in nectar and pollen, respectively. Secondly, pollen and nectar for residue analyses were sampled from free flying honey bees, bumble bees and mason bees, placed at six study locations each in the R and T sites at the start of oilseed rape flowering. Honey samples were analysed from all honey bee colonies at the end of oilseed rape flowering. Neither clothianidin nor its metabolites were detectable or quantifiable in R site samples. Clothianidin concentrations in samples from the T site were below the limit of quantification (LOQ, 1.0 µg/kg) in most pollen and nectar samples collected by bees and 1.4 ± 0.5 µg/kg in honey taken from honey bee colonies. In summary, the study provides reliable semi-field and field data of clothianidin residues in nectar and pollen collected by different bee species in oilseed rape fields under common agricultural conditions.

  17. Bimodal pollination system of the bromeliad Aechmea nudicaulis involving hummingbirds and bees.

    Science.gov (United States)

    Schmid, S; Schmid, V S; Zillikens, A; Harter-Marques, B; Steiner, J

    2011-01-01

    In order to compare the effectiveness of birds and insects as pollinators, we studied the floral biology of the bromeliad Aechmea nudicaulis (L.) Grisebach in the biome of the Atlantic rain forest, southern Brazil. On Santa Catarina Island, flowering extends from mid-September to the end of December, with diurnal anthesis. The reproductive system is obligatory xenogamy, thus pollinator-dependent. Flowers secrete 31.84 μl of nectar per day, with a mean sugar concentration of 23.2%. Highest nectar volume and sugar concentration occur at the beginning of anthesis. Most floral traits are characteristic for ornithophily, and nectar production appears to be adapted to the energy demand of hummingbirds. Continued secretion of the sucrose-dominated nectar attracts and binds visitors to inflorescences, strengthening trapline foraging behaviour. Experiments assessing seed set after single flower visits were performed with the most frequent visitors, revealing the hummingbird Thalurania glaucopis as the most effective pollen vector. In addition, bees are also functional pollinators, as substantiated by their high visitation frequency. We conclude that this pollination system is bimodal. Thus, there is redundancy in the pollination service provided by birds and bees, granting a high probability of successful reproduction in Ae. nudicaulis. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Forest habitat conservation in Africa using commercially important insects.

    Science.gov (United States)

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  19. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae).

    Science.gov (United States)

    Venturini, E M; Drummond, F A; Hoshide, A K; Dibble, A C; Stack, L B

    2017-04-01

    Pollinator-dependent agriculture heavily relies upon a single pollinator-the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter "PRs") may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. A Study of Insect Pollinators Associated with DoD TER-S Flowering Plants, Including Identification of Habitat Types Where They Co-Occur by Military Installation in the Western United States

    Science.gov (United States)

    2010-04-01

    environmental stewardship division chiefs can interact with contractors and partner land managers and biologists with plant and pollinator information in hand...1979. Pollination of Southwestern Opuntias. Plant Systematics and Evolution 133: 15-28. Keywords: Opuntia sp. Agapostemon angelicus...Parrish, J.A.D and F.A. Bazzaz. 1979. Difference in pollination niche relationships in early and late successional plant communities. Ecology 60

  1. Microclimate and Individual Variation in Pollinators: Flowering Plants are More than Their Flowers

    OpenAIRE

    Herrera, Carlos M.

    1995-01-01

    Variation in pollinator composition at the individual plant level is an important prerequisite for plant specialization on pollinators that does not seem to have been investigated previously. I studied variation in pollinator composition in a southeastern Spanish population of the insect-pollinated shrub Lavandula latifolia (Labiatae) and examined its correlates, with particular reference to the distinction between factors intrinsic (flower morphology, nectar standing crop, size of floral dis...

  2. A horizon scan of future threats and opportunities for pollinators and pollination

    Directory of Open Access Journals (Sweden)

    Mark J.F. Brown

    2016-08-01

    Full Text Available Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1 corporate control of global agriculture, (2 novel systemic pesticides, (3 novel RNA viruses, (4 the development of new managed pollinators, (5 more frequent heatwaves and drought under climate change, and (6 the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  3. Efeito da exclusão dos insetos polinizadores na produção do café Bourbon The effect of the exclusion of pollinating insects on the yield of the bourbon coffee

    Directory of Open Access Journals (Sweden)

    Paulo Nogueira - Neto

    1959-01-01

    oriundos de Coffea Dewevrei, que são maiores do que as do café Bourbon e têm perfume mais intenso. Apesar da ocorrência dos insetos colhendo néctar e pólen, os dados de produção de café cereja não mostraram diferenças significativas entre as plantas protegidas e sem proteção. Notou-se apenas uma tendência, em cinco dos seis anos analisados, de serem maiores as produções das plantas sem proteção e, portanto, visitadas por insetos. Os dados de frutificação obtidos indicaram, também, melhor pegamento dos frutos nas plantas sem proteção. Nestes cafeeiros as porcentagens de sementes moca mostraram-se significativamente maiores, enquanto as porcentagens de sementes concha, embora também maiores, não se mostraram significativas. A quantidade de frutos com lojas sem sementes e o tamanho das sementes não diferiram nos dois tratamentos. A influência das abelhas na polinização do cafeeiro deve, pois, ser pràticamente limitada às espécies autoestéreis de Coffea. Os dados aqui obtidos indicam que o papel desempenhado pelos insetos em promover maior polinização e aumento de produção dos cafeeiros da var. bourbon, é de importância secundária.The diploid species of Coffea so far investigated, are self sterile, while tetraploid C. arabica, besides being self-fertile, is an almost completely autogamous species. Natural crossing in this species is promoted either by wind or by insects while gravity probably only plays a limited role. The trial here discussed was established to study the effect of certain native and also of the European honey bee in the promotion of the pollination in C. arabica var. bourbon, and also to test their influence on the yield of coffee. As it was difficult to specifically determine the effects of only this group of insects, the data represent the total effect on coffee yield and seed characteristics, of the exclusion of all pollinating insects. A group of 135 coffee "hills", each with four seedlings, and planted in 15 rows

  4. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae).

    Science.gov (United States)

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Stěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  5. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae.

    Directory of Open Access Journals (Sweden)

    Eliška Padyšáková

    Full Text Available Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  6. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids.

    Science.gov (United States)

    Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R

    2017-09-01

    The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae in Rio de Janeiro state, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Maria Cristina Gaglianone

    2013-10-01

    Full Text Available More than 70% of world’s crops benefit from biotic pollination, and bees are their main pollinators. Despite the fact that some of these insects have been broadly studied, understanding the interactions between plant crops and their pollinators with a local scale approach is necessary when aiming to apply proper protective and management measures to pollinators and their respective crops. In this context, we analyzed the pollination status of open-field tomato crops (Solanum lycopersicum L., regarding fruit-set, visitation rate and the quality of fruits. We recorded the formation of fruits through spontaneous self-pollination and open-pollination, and the occurrence of pollinators in 24 areas of open-field tomato crops. We performed experiments of apomixis, spontaneous self-pollination, manual cross pollination and supplemental cross pollination (simulating the pollinator behavior in a greenhouse. The fruit quality was evaluated according to circumference, weight, volume and number of seeds. Higher production of fruits after open-pollination compared to spontaneous self-pollination indicates the importance of pollinators to increment productivity of S. lycopersicum in the study area. The circumference and the number of seeds from tomatoes of the greenhouse plantation did not differ between spontaneous self-pollination and the manual cross pollination. In the open-field crops the number of seeds was higher for fruits resulting from open-pollination. Our results indicate that the importance of bees is mainly related to the increase in fruit production, thus incrementing the productivity of tomato crops.

  8. Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae in Rio de Janeiro state, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Scaramussa Deprá

    2014-02-01

    Full Text Available More than 70% of world’s crops benefit from biotic pollination, and bees are their main pollinators. Despite the fact that some of these insects have been broadly studied, understanding the interactions between plant crops and their pollinators with a local scale approach is necessary when aiming to apply proper protective and management measures to pollinators and their respective crops. In this context, we analyzed the pollination status of open-field tomato crops (Solanum lycopersicum L., regarding fruit-set, visitation rate and the quality of fruits. We recorded the formation of fruits through spontaneous self-pollination and open-pollination, and the occurrence of pollinators in 24 areas of open-field tomato crops. We performed experiments of apomixis, spontaneous self-pollination, manual cross pollination and supplemental cross pollination (simulating the pollinator behavior in a greenhouse. The fruit quality was evaluated according to circumference, weight, volume and number of seeds. Higher production of fruits after open-pollination compared to spontaneous self-pollination indicates the importance of pollinators to increment productivity of S. lycopersicum in the study area. The circumference and the number of seeds from tomatoes of the greenhouse plantation did not differ between spontaneous self-pollination and the manual cross pollination. In the open-field crops the number of seeds was higher for fruits resulting from open-pollination. Our results indicate that the importance of bees is mainly related to the increase in fruit production, thus incrementing the productivity of tomato crops.

  9. Importance of pollinators in changing landscapes for world crops.

    Science.gov (United States)

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  10. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo agroecosystems

    Directory of Open Access Journals (Sweden)

    Benjamin W. Phillips

    2015-11-01

    Full Text Available Pumpkin (Cucurbita pepo production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600–1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600–0800 h of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600–1200 h. Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers.

  11. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems.

    Science.gov (United States)

    Phillips, Benjamin W; Gardiner, Mary M

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600-1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600-0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600-1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers.

  12. Effects of pollination timing and distance on seed production in a dioecious weed Silene latifolia

    Science.gov (United States)

    Anderson, Jay F.; Duddu, Hema S. N.; Shirtliffe, Steven J.; Benaragama, Dilshan; Syrovy, Lena D.; Stanley, Katherine A.; Haile, Teketel A.

    2015-11-01

    Silene latifolia Poir. (white cockle or white campion) is an important invasive weed in North American agriculture. It exhibits dioecy, therefore, both male and female plants are required in order for seed production to occur. However, dioecious species being invasive is not common because of their limitations in pollination and subsequent seed production. The objective of this study is to determine the effect of pollination timing and distance on seed production of Silene latifolia. A series of experiments including pollination exclusion, timing and pollination distance were conducted in 2009 and 2010 at or around Saskatoon, Saskatchewan. For pollination exclusion, exclosures were built around the natural female plants for exclosure, sham-exclosure, and male and female combined treatments. Pollination timing was studied by applying exclosure, non-exclosure, night-exclosure, and day-exclosure treatments to individual female plants. Female plants were transplanted along a linear interval at six different distances from the pollen source to study the effect of pollination distance. S. latifolia was exclusively insect-pollinated and pollination occurred both day and night; however, in one year, pollination occurred mainly at night. Female plants that were in the range of 0-4 m from a compatible pollen source experienced no limitation to pollination. However, when the distance was increased further up to 128 m, pollination levels and subsequent seed production were declined. Moreover, there were differences in seed production between years suggesting that pollination was affected by the environmental conditions during pollination and the crop that white cockle was grown in. These experiments indicate that seed production in S. latifolia is limited by insect-pollination. Although there was pollination limitation for seed production at greater distances from a pollen source, the high fecundity rate (3000-18000 seeds per plant) resulted in a large seed output. Thus, we

  13. Ecology and evolution of gall-forming insects. Forest Service general technical report

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.W.; Mattson, W.J.; Baranchikov, Y.N.

    1994-09-21

    ;Partial Contents: Ecology and Population Dynamics; Effects of the Physical Environment on the Ecology of Gall Insects; Biodiversity and Distribution; Genetic Variation in Host Plant Resistance; Evolutionary Perspectives on Gall Insects.

  14. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae.

    Science.gov (United States)

    Serrano-Serrano, Martha Liliana; Rolland, Jonathan; Clark, John L; Salamin, Nicolas; Perret, Mathieu

    2017-04-12

    The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant-hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. © 2017 The Author(s).

  15. A novel method for assessing risks to pollinators from plant protection products using honeybees as a model species.

    Science.gov (United States)

    Barmaz, Stefania; Potts, Simon G; Vighi, Marco

    2010-10-01

    Pollination is one of the most important ecosystem services in agroecosystems and supports food production. Pollinators are potentially at risk being exposed to pesticides and the main route of exposure is direct contact, in some cases ingestion, of contaminated materials such as pollen, nectar, flowers and foliage. To date there are no suitable methods for predicting pesticide exposure for pollinators, therefore official procedures to assess pesticide risk are based on a Hazard Quotient. Here we develop a procedure to assess exposure and risk for pollinators based on the foraging behaviour of honeybees (Apis mellifera) and using this species as indicator representative of pollinating insects. The method was applied in 13 European field sites with different climatic, landscape and land use characteristics. The level of risk during the crop growing season was evaluated as a function of the active ingredients used and application regime. Risk levels were primarily determined by the agronomic practices employed (i.e. crop type, pest control method, pesticide use), and there was a clear temporal partitioning of risks through time. Generally the risk was higher in sites cultivated with permanent crops, such as vineyard and olive, than in annual crops, such as cereals and oil seed rape. The greatest level of risk is generally found at the beginning of the growing season for annual crops and later in June-July for permanent crops.

  16. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    Science.gov (United States)

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  17. Contrasting Pollination Efficiency and Effectiveness among Flower Visitors of Malva Sylvestris, Borago Officinalis and Onobrychis Viciifolia

    OpenAIRE

    Gorenflo, Anna; Diekötter, Tim; van Kleunen, Mark; Wolters, Volkmar; Jauker, Frank

    2017-01-01

    Biotic pollination is an important factor for ecosystem functioning and provides a substantial ecosystem service to human food security. Not all flower visitors are pollinators, however, and pollinators differ in their pollination performances. In this study, we determined the efficiencies of flower visitors to the plant species Malva sylvestris, Borago officinalis and Onobrychis viciifolia by analysing stigmatic pollen deposition. We further calculated pollinator effectiveness by scaling up ...

  18. 40 CFR 161.590 - Nontarget insect data requirements.

    Science.gov (United States)

    2010-07-01

    ... pollinators (4) CR CR CR CR CR CR TEP TEP 141-5 Nontarget insect testing—aquatic insects Acute toxicity to aquatic insects (5) 142-1 Aquatic insect life-cycle study (5) 142-1 Simulated or actual field testing for aquatic insects (5) 142-3 Nontarget insect testing—predators and parasites (5) 143-1thru 143-3 Key: CR...

  19. Evaluating Pollination Deficits in Pumpkin Production in New York

    OpenAIRE

    Petersen, J. D.; Huseth, A. S.; Nault, B. A.

    2017-01-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the c...

  20. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  1. Pollinator-Driven Speciation in Sexually Deceptive Orchids

    Directory of Open Access Journals (Sweden)

    Shuqing Xu

    2012-01-01

    Full Text Available Pollinator-mediated selection has been suggested to play a major role for the origin and maintenance of the species diversity in orchids. Sexually deceptive orchids are one of the prime examples for rapid, pollinator-mediated plant radiations, with many species showing little genetic differentiation, lack of postzygotic barriers, but strong prezygotic reproductive isolation. These orchids mimic mating signals of female insects and employ male insects as pollinators. This kind of sexual mimicry leads to highly specialised pollination and provides a good system for investigating the process of pollinator-driven speciation. Here, we summarise the knowledge of key processes of speciation in this group of orchids and conduct a meta-analysis on traits that contribute to species differentiation, and thus potentially to speciation. Our study suggests that pollinator shift through changes in floral scent is predominant among closely related species in sexually deceptive orchids. Such shifts can provide a mechanism for pollinator-driven speciation in plants, if the resulting floral isolation is strong. Furthermore, changes in floral scent in these orchids are likely controlled by few genes. Together these factors suggest speciation in sexually deceptive orchids may happen rapidly and even in sympatry, which may explain the remarkable species diversity observed in this plant group.

  2. western honey bee management for crop pollination abstract résumé

    African Journals Online (AJOL)

    ACSS

    2018-02-09

    Feb 9, 2018 ... of Western honey bee for pollination services is reported mainly in developed countries. Because ... plants, or accumulating in nectar and pollen that affect ..... Ecology and Evolution .... Pollinator interactions in the Neotropics.

  3. A conceptual framework that links pollinator foraging behavior to gene flow

    Science.gov (United States)

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  4. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  5. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator

    Science.gov (United States)

    The microbiome of the phyllosphere and anthosphere plays an important role in many plant-plant, plant-insect, and plant-microbe interactions. A particularly essential interaction is that of the plant pollinator, which is important for ensuring high crop yields, pollinator health and successful plant...

  6. Pollination systems and floral traits in cerrado woody species of the Upper Taquari region (central Brazil

    Directory of Open Access Journals (Sweden)

    F. Q. Martins

    Full Text Available Plant species present flowers with varied morphological and functional features, which may be associated to pollination systems, including species pollinated by wind, beetles, moths, bees, small insects, birds, or bats. We calculated the frequencies of the pollination systems among woody species in five cerrado fragments in central-western Brazil and tested whether the pollination systems were indeed related to floral traits. We sampled 2,280 individuals, belonging to 121 species, ninety-nine of which were described in relation to all floral traits. Most species had diurnal anthesis, pale colors, and open flowers. The most frequent groups were those composed by the species pollinated by bees, small insects, and moths. A Principal Component Analysis of the species and floral traits showed that there was a grouping among species with some pollination systems, such as those pollinated mainly by beetles, moths, birds, and bats, for which inferences based on the floral traits are recommended in cerrado sites. For the species pollinated mainly by bees or small insects, inferences based on the floral traits are not recommended, due to the large dispersion of the species scores and overlapping between these two groups, which probably occurred due to the specificity absence in plant-pollinator relationships.

  7. Competitive impacts of an invasive nectar thief on plant-pollinator mutualisms

    Science.gov (United States)

    Hanna, Cause; Foote, David; Kremen, Claire

    2014-01-01

    Plant–pollinator mutualisms are disrupted by a variety of competitive interactions between introduced and native floral visitors. The invasive western yellowjacket wasp, Vespula pensylvanica, is an aggressive nectar thief of the dominant endemic Hawaiian tree species, Metrosideros polymorpha. We conducted a large-scale, multiyear manipulative experiment to investigate the impacts of V. pensylvanica on the structure and behavior of the M. polymorpha pollinator community, including competitive mechanisms related to resource availability. Our results demonstrate that V. pensylvanica, through both superior exploitative and interference competition, influences resource partitioning and displaces native and nonnative M. polymorpha pollinators. Furthermore, the restructuring of the pollinator community due to V. pensylvanica competition and predation results in a significant decrease in the overall pollinator effectiveness and fruit set of M. polymorpha. This research highlights both the competitive mechanisms and contrasting effects of social insect invaders on plant–pollinator mutualisms and the role of competition in pollinator community structure.

  8. The pollination ecology of an assemblage of grassland asclepiads in South Africa.

    Science.gov (United States)

    Ollerton, Jeff; Johnson, Steven D; Cranmer, Louise; Kellie, Sam

    2003-12-01

    The KwaZulu-Natal region of South Africa hosts a large diversity of asclepiads (Apocynaceae: Asclepiadoideae), many of which are endemic to the area. The asclepiads are of particular interest because of their characteristically highly evolved floral morphology. During 3 months of fieldwork (November 2000 to January 2001) the flower visitors and pollinators to an assemblage of nine asclepiads at an upland grassland site were studied. These observations were augmented by laboratory studies of flower morphology (including scanning electron microscopy) and flower colour (using a spectrometer). Two of the specialized pollination systems that were documented are new to the asclepiads: fruit chafer pollination and pompilid wasp pollination. The latter is almost unique in the angiosperms. Taxa possessing these specific pollination systems cluster together in multidimensional phenotype space, suggesting that there has been convergent evolution in response to similar selection to attract identical pollinators. Pollination niche breadth varied from the very specialized species, with only one pollinator, to the more generalized, with up to ten pollinators. Pollinator sharing by the specialized taxa does not appear to have resulted in niche differentiation in terms of the temporal or spatial dimensions, or with regards to placement of pollinaria. Nestedness analysis of the data set showed that there was predictability and structure to the pattern of plant-pollinator interactions, with generalist insects visiting specialized plants and vice versa. The research has shown that there is still much to be learned about plant-pollinator interactions in areas of high plant diversity such as South Africa.

  9. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies

    DEFF Research Database (Denmark)

    Wan, Nian Feng; Ji, Xiang Yun; Deng, Jian Yu

    2018-01-01

    Ecological niche indicators have been scarcely adopted to assess the biological control of insect herbivores by their natural enemies. We hypothesize that plant diversification promotes the biocontrol services by narrowing the niches of herbivores and broadening the niches of natural enemies....... Our study reveals that plant diversification promotes the biocontrol services by shaping the niche of herbivores and natural enemies, and provides a new assessment method to understand the biodiversity-niche-ecosystem management interactions........ In a large-scale experiment, we found that the abundance of natural enemies was increased by 38.1%, and the abundance of insect herbivores was decreased by 16.9% in peach orchards with plant diversification (treatment) compared to ones with monoculture (control). Stratified sampling indicated...

  10. Ecology and evolution of plant–pollinator interactions

    Science.gov (United States)

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  11. Ecology and evolution of plant-pollinator interactions.

    Science.gov (United States)

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  12. Diversity of sunflower pollinators and their effect on seed yield in Makueni District, Eastern Kenya

    OpenAIRE

    Nderitu, J.; Nyamasyo, G.; Kasina, M.; Oronje, M. L.

    2008-01-01

    A field experiment was carried out in 2004 and 2005 to identify the diversity of sunflower (Helianthus annuus L.) pollinators and their influence on seed yield in Makueni district, a semi-arid area in Eastern Kenya. Insect flower visitors were recorded, pollen counted from their body and pollination efficiency index for each visitor determined. Seed yield from plots where insect visitors had access to and where they were denied access was compared. The proportional difference of yield from th...

  13. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Directory of Open Access Journals (Sweden)

    Jason Gibbs

    Full Text Available Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in

  14. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Science.gov (United States)

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  15. Pollen loads and specificity of native pollinators of lowbush blueberry.

    Science.gov (United States)

    Moisan-Deserres, J; Girard, M; Chagnon, M; Fournier, V

    2014-06-01

    The reproduction of lowbush blueberry (Vaccinium angustifolium Aiton) is closely tied to insect pollination, owing to self-incompatibility. Many species are known to have greater pollination efficiency than the introduced Apis mellifera L., commonly used for commercial purposes. In this study, we measured the pollen loads of several antophilous insect species, mostly Apoidea and Syrphidae, present in four lowbush blueberry fields in Lac-St-Jean, Québec. To measure pollen loads and species specificity toward V. angustifolium, we net-collected 627 specimens of pollinators, retrieved their pollen loads, identified pollen taxa, and counted pollen grains. We found that the sizes of pollen loads were highly variable among species, ranging from a few hundred to more than 118,000 pollen grains per individual. Bombus and Andrena species in particular carried large amounts of Vaccinium pollen and thus may have greater pollination efficiency. Also, two species (Andrena bradleyi Viereck and Andrena carolina Viereck) showed nearly monolectic behavior toward lowbush blueberry. Finally, we identified alternative forage plants visited by native pollinators, notably species of Acer, Rubus, Ilex mucronata, Ledum groenlandicum, and Taraxacum. Protecting these flowering plants should be part of management practices to maintain healthy pollinator communities in a lowbush blueberry agroecosystem.

  16. Western honey bee management for crop pollination | Toni | African ...

    African Journals Online (AJOL)

    Because of the low application of this technology in Africa, research must be conducted in order to access the need of pollination service and then the profitability of this technology in the current African entomological fauna context. Despite its benefits, the use of managed Western honey bees can affect native pollinators ...

  17. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Klaus Felix

    2015-01-01

    Full Text Available Agricultural intensification and the subsequent fragmentation of semi-natural habitats severely restrict pollinator and pollen movement threatening both pollinator and plant species. Linear landscape elements such as hedgerows are planted for agricultural and conservation purposes to increase the resource availability and habitat connectivity supporting populations of beneficial organisms such as pollinators. However, hedgerows may have unexpected effects on plant and pollinator persistence by not just channeling pollinators and pollen along, but also restricting movement across the strip of habitat. Here, we tested how hedgerows influence pollinator movement and pollen flow. We used fluorescent dye particles as pollen analogues to track pollinator movement between potted cornflowers Centaurea cyanus along and across a hedgerow separating two meadows. The deposition of fluorescent dye was significantly higher along the hedgerow than across the hedgerow and into the meadow, despite comparable pollinator abundances. The differences in pollen transfer suggest that hedgerows can affect pollinator and pollen dispersal by channeling their movement and acting as a permeable barrier. We conclude that hedgerows in agricultural landscapes can increase the connectivity between otherwise isolated plant and pollinator populations (corridor function, but can have additional, and so far unknown barrier effects on pollination services. Functioning as a barrier, linear landscape elements can impede pollinator movement and dispersal, even for highly mobile species such as bees. These results should be considered in future management plans aiming to enhance the persistence of threatened pollinator and plant populations by restoring functional connectivity and to ensure sufficient crop pollination in the agricultural landscape.

  18. Wind pollination and propagule formation in Rhizophora mangle L. (Rhizophoraceae: resource or pollination limitation?

    Directory of Open Access Journals (Sweden)

    TARCILA L. NADIA

    2014-03-01

    Full Text Available Rhizophora mangle is considered as a self-compatible mangrove, and is pollinated by wind and insects. However, there is no information about fruit production by autogamy and agamospermy and on the foraging behavior of its flower visitors. Hence, the present study analyzed the pollination and reproductive systems of R. mangle in a mangrove community in northern Pernambuco, Brazil. Floral morphology, sequence of anthesis, and behavior of flower visitors were described; the proportion of flowers that resulted in mature propagules was also recorded. Autogamy, agamospermy, and wind pollination tests were performed, and a new anemophily index is proposed. The flowers of R. mangle are hermaphrodite, protandric, and have high P/O rate. Flies were observed on flowers only during the male phase, probably feeding on mites that consume pollen. Rhizophora mangle is not agamospermic and its fruit production rate by spontaneous self-pollination is low (2.56% compared to wind pollination (19.44%. The anemophily index was high 0.98, and thus it was considered as a good indicator. Only 13.79% of the flowers formed mature propagules. The early stages of fruit development are the most critical and susceptible to predation. Rhizophora mangle is, therefore, exclusively anemophilous in the study area and the propagule dispersal seems to be limited by herbivory.

  19. Minute pollinators: The role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae)

    OpenAIRE

    Eliyahu, Dorit; McCall, Andrew C.; Lauck, Marina; Trakhtenbrot, Ana; Bronstein, Judith L.

    2015-01-01

    The feeding habits of thrips on plant tissue, and their ability to transmit viral diseases to their host plants, have usually placed these insects in the general category of pests. However, the characteristics that make them economically important, their high abundance and short- and long-distance movement capability, may also make them effective pollinators. We investigated this lesser-known role of thrips in pointleaf manzanita (Arctostaphylos pungens), a Southwestern US shrub. We measured ...

  20. Habitat choice of multiple pollinators in almond trees and its potential effect on pollen movement and productivity: A theoretical approach using the Shigesada-Kawasaki-Teramoto model.

    Science.gov (United States)

    Yong, Kamuela E; Li, Yi; Hendrix, Stephen D

    2012-07-21

    California's almond industry, valued at $2.3 billion per year, depends on the pollinator services of honey bees, although pollination by other insects, mainly solitary wild bees, is being investigated as an alternative because of recent declines in the number of honey bee colonies. Our objective is to model the movements of honey bees and determine the conditions under which they will forage in less favorable areas of a tree and its surroundings when other pollinators are present. We hypothesize that foraging in less favorable areas leads to increased movement between trees and increased cross pollination between varieties which is required for successful nut production. We use the Shigesada-Kawasaki-Teramoto model (1979) which describes the density of two species in a two-dimensional environment of variable favorableness with respect to intrinsic diffusions and intra and interspecific interactions of species. The model is applied to almond pollination by honey bees and other pollinators with environmental favorableness based on the distribution of flowers in trees. Using the spectral-Galerkin method in a rectangular domain, we numerically approximated the two-dimensional nonlinear parabolic partial differential system arising in the model. When cross-diffusion or interspecific effects of other pollinators was high, honey bees foraged in less favorable areas of the tree. In the model, high cross-diffusion also resulted in increased activity in honey bees which manifested itself in the field in terms of accelerations, decelerations, and changes in direction, indicating rapid redistribution of densities to an equilibrium state. Empirical analysis of the number of honey bees and other visitors in 2-min intervals to almond trees shows a negative relationship, indicating cross-diffusion effects in nature with the potential to increase movement to a different tree with a more favorable environment, potentially increasing nut production. Copyright © 2012 Elsevier Ltd

  1. Pollination decays in biodiversity hotspots.

    Science.gov (United States)

    Vamosi, Jana C; Knight, Tiffany M; Steets, Janette A; Mazer, Susan J; Burd, Martin; Ashman, Tia-Lynn

    2006-01-24

    As pollinators decline globally, competition for their services is expected to intensify, and this antagonism may be most severe where the number of plant species is the greatest. Using meta-analysis and comparative phylogenetic analysis, we provide a global-scale test of whether reproduction becomes more limited by pollen receipt (pollen limitation) as the number of coexisting plant species increases. As predicted, we find a significant positive relationship between pollen limitation and species richness. In addition, this pattern is particularly strong for species that are obligately outcrossing and for trees relative to herbs or shrubs. We suggest that plants occurring in species-rich communities may be more prone to pollen limitation because of interspecific competition for pollinators. As a consequence, plants in biodiversity hotspots may have a higher risk of extinction and/or experience increased selection pressure to specialize on certain pollinators or diversify into different phenological niches. The combination of higher pollen limitation and habitat destruction represents a dual risk to tropical plant species that has not been previously identified.

  2. Kin discrimination allows plants to modify investment towards pollinator attraction.

    Science.gov (United States)

    Torices, Rubén; Gómez, José M; Pannell, John R

    2018-05-22

    Pollinators tend to be preferentially attracted to large floral displays that may comprise more than one plant in a patch. Attracting pollinators thus not only benefits individuals investing in advertising, but also other plants in a patch through a 'magnet' effect. Accordingly, there could be an indirect fitness advantage to greater investment in costly floral displays by plants in kin-structured groups than when in groups of unrelated individuals. Here, we seek evidence for this strategy by manipulating relatedness in groups of the plant Moricandia moricandioides, an insect-pollinated herb that typically grows in patches. As predicted, individuals growing with kin, particularly at high density, produced larger floral displays than those growing with non-kin. Investment in attracting pollinators was thus moulded by the presence and relatedness of neighbours, exemplifying the importance of kin recognition in the evolution of plant reproductive strategies.

  3. Pollinator diversity (Hymenoptera and Diptera in semi-natural habitats in Serbia during summer

    Directory of Open Access Journals (Sweden)

    Mudri-Stojnić Sonja

    2012-01-01

    Full Text Available The aim of this study was to assess species diversity and population abundance of the two main orders of pollinating insects, Hymenoptera and Diptera. The survey was conducted in 16 grassland fragments within agro-ecosystems in Vojvodina, as well as in surrounding fields with mass-flowering crops. Pollinators were identified and the Shannon-Wiener Diversity Index was used to measure their diversity. Five families, 7 subfamilies, 26 genera and 63 species of insects were recorded. All four big pollinator groups investigated were recorded; hoverflies were the most abundant with 32% of the total number of individuals, followed by wild bees - 29%, honeybees - 23% and bumblebees with 16%.

  4. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  5. Plant diversity increases spatio?temporal niche complementarity in plant?pollinator interactions

    OpenAIRE

    Venjakob, Christine; Klein, Alexandra?Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-01-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four...

  6. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success

    OpenAIRE

    Sobral, Mar; Losada, Mar?a; Veiga, Tania; Guiti?n, Javier; Guiti?n, Jos?; Guiti?n, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (p...

  7. Pollinator Protection Strategic Plan

    Science.gov (United States)

    Developed by EPA, this ensures that pesticide risk assessments and risk management decisions use best available information and scientific methods, and full evaluation of pollinator protection when making registration decisions.

  8. Pollination biology of Heracleum sphondylium L. (Apiaceae: the advantages of being white and compact

    Directory of Open Access Journals (Sweden)

    Marcin Zych

    2014-01-01

    Full Text Available Two questions were addressed in the present study: (1 What are the main pollinators of the two subspecies of H. sphondylium?, and (2 Do the studied plants share the pollinators' set or are they attractive for different groups of insects? The survey showed that among 40 insect taxa visiting both subspecies of H. sphondylium approx. only 53% carried significant pollen loads. However, the Pollinator Importance Coefficient (IC calculated for each insect group, and based on observation of insects' abundance, within-umbel activity and pollen load revealed that only two taxa in case of H. s. ssp. sibiricum (Thricops nigrifrons, Eriozona syrphoides and four in case of H. s. ssp. sphondylium (T. nigrifrons,E. syrphoides, Meliscaeva cinctella and Arge ustulata were truly important pollinators. Although both subspecies were visited by similar insects, H. s. ssp. sphondylium, with its characteristic compact and white umbels, was visited more frequently by Diptera and Hymenoptera, while yellow-greenish loose umbels of H. s. ssp. sibiricum were preferred by Coleoptera. This paper indicates that the concept of faithful pollinators may also apply to a broader spectrum of Apiaceae, usually considered primitive in terms of pollination strategies, and suggests possible ways of differentiation in two closely related taxa.

  9. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    insect communities respond positively and negatively to weather and local vegetation more than to long-term climate. Given increasing variability in weather and high probability of extreme weather events, insect communities in sagebrush steppe also may experience considerable fluctuations in composition and abundance, as well as phenology. These findings have implications for many ecosystem services, including pollination, decomposition, and food resources for predatory birds and other vertebrates.

  10. [Importance of competition for pollination in formation of the entomophylous plants complex structure].

    Science.gov (United States)

    Dlusskiĭ, G M

    2013-01-01

    Many species of entomophylous plants have a wide range of pollinators, and the same insects visit flowers of many plants. The competition for pollination leads to decreasing in seed production of competing species. However, there exists a variety of adaptations that allow plants to reduce the intensity of competition. A comparative analysis of pollinators spectra has allowed to designate groups (subcomplexes) of plants with regard to dominance of various groups of pollinators: myiophylous (flies from the superfamily Muscomorha dominate), syphidophylous (flies from the family Syrphidae dominate), psychophylous (butterflies dominate), cantharophylous (beetles dominate), nonspecialized and specialized melittophylous (Apidae, mainly bumblebees, dominate). The belonging of plants to a specific subcomplex is defined mainly by the structure of flowers and inflorescences. Modes of mechanical and attractive isolation are discussed that lead to restriction of pollinators composition. Competition abatement between species with similar spectra of pollinators and belonging to the same subcomplex is achieved mainly by spatial (ecological) and temporal (different timing of flowering) isolation.

  11. Pest Control and Pollination Cost-Benefit Analysis of Hedgerow Restoration in a Simplified Agricultural Landscape.

    Science.gov (United States)

    Morandin, L A; Long, R F; Kremen, C

    2016-05-11

    Field edge habitat in homogeneous agricultural landscapes can serve multiple purposes including enhanced biodiversity, water quality protection, and habitat for beneficial insects, such as native bees and natural enemies. Despite this ecosystem service value, adoption of field border plantings, such as hedgerows, on large-scale mono-cropped farms is minimal. With profits primarily driving agricultural production, a major challenge affecting hedgerow plantings is linked to establishment costs and the lack of clear economic benefits on the restoration investment. Our study documented that hedgerows are economically viable to growers by enhancing beneficial insects and natural pest control and pollination on farms. With pest control alone, our model shows that it would take 16 yr to break even from insecticide savings on the US$4,000 cost of a typical 300-m hedgerow field edge planting. By adding in pollination benefits by native bees, where honey bees (Apis mellifera L.) may be limiting, the return time is reduced to 7 yr. USDA cost share programs allow for a quicker return on a hedgerow investment. Our study shows that over time, small-scale restoration can be profitable, helping to overcome the barrier of cost associated with field edge habitat restoration on farms. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  12. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.

    Science.gov (United States)

    Fang, Qiang; Huang, Shuang-Quan

    2012-01-01

    Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.

  13. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    Science.gov (United States)

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  14. Nectar production in oilseeds: Food for pollinators in an agriculture dominated landscape

    Science.gov (United States)

    Simplified agroecosystems have degraded habitats for beneficial insects throughout the Midwest and Northern Great Plains of the USA. Beneficial insects include pollinators and natural enemies of crop pests, and both rely heavily on floral resources and habitat diversity to maintain healthy populatio...

  15. Wild bees enhance honey bees’ pollination of hybrid sunflower

    Science.gov (United States)

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  16. Wild bees enhance honey bees' pollination of hybrid sunflower.

    Science.gov (United States)

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  17. Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest

    Science.gov (United States)

    Varassin, Isabela Galarda; Sazima, Marlies

    2012-08-01

    Interactions between plants and their pollinators are influenced by environmental heterogeneity, resulting in small-scale variations in interactions. This may influence pollinator co-existence and plant reproductive success. This study, conducted at the Estação Biológica de Santa Lúcia (EBSL), a remnant of the Atlantic Forest in southeastern Brazil, investigated the effect of small-scale spatial variations on the interactions between bromeliads and their pollinators. Overall, hummingbirds pollinated 19 of 23 bromeliad species, of which 11 were also pollinated by bees and/or butterflies. However, spatial heterogeneity unrelated to the spatial location of plots or bromeliad species abundance influenced the presence of pollinators. Hummingbirds were the most ubiquitous pollinators at the high-elevation transect, with insect participation clearly declining as transect elevation increased. In the redundancy analysis, the presence of the hummingbird species Phaethornis eurynome, Phaethornis squalidus, Ramphodon naevius, and Thalurania glaucopis, and the butterfly species Heliconius erato and Heliconius nattereri in each plot was correlated with environmental factors such as bromeliad and tree abundance, and was also correlated with horizontal diversity. Since plant-pollinator interactions varied within the environmental mosaics at the study site, this small-scale environmental heterogeneity may relax competition among pollinators, and may explain the high diversity of bromeliads and pollinators generally found in the Atlantic Forest.

  18. Large Carpenter Bees as Agricultural Pollinators

    Directory of Open Access Journals (Sweden)

    Tamar Keasar

    2010-01-01

    Full Text Available Large carpenter bees (genus Xylocopa are wood-nesting generalist pollinators of broad geographical distribution that exhibit varying levels of sociality. Their foraging is characterized by a wide range of food plants, long season of activity, tolerance of high temperatures, and activity under low illumination levels. These traits make them attractive candidates for agricultural pollination in hot climates, particularly in greenhouses, and of night-blooming crops. Carpenter bees have demonstrated efficient pollination service in passionflower, blueberries, greenhouse tomatoes and greenhouse melons. Current challenges to the commercialization of these attempts lie in the difficulties of mass-rearing Xylocopa, and in the high levels of nectar robbing exhibited by the bees.

  19. Simple landscape modifications for pollinator and arthropod natural enemy enhancement

    Science.gov (United States)

    Beneficial arthropods which play an important role in providing ecosystem services (pollination and pest control) have come under threat as a result of intensive agricultural practices and simplification of habitats. Ecological intensification in agricultural landscapes by diversifying the habitat r...

  20. Pollination syndromes ignored

    DEFF Research Database (Denmark)

    Maruyama, P. K.; Oliveira, G. M.; Ferreira, Célia Maria Dias

    2013-01-01

    Generalization prevails in flower-animal interactions, and although animal visitors are not equally effective pollinators, most interactions likely represent an important energy intake for the animal visitor. Hummingbirds are nectar-feeding specialists, and many tropical plants are specialized...... to increase the overall nectar availability. We showed that mean nectar offer, at the transect scale, was the only parameter related to hummingbird visitation frequency, more so than nectar offer at single flowers and at the plant scale, or pollination syndrome. Centrality indices, calculated using...... energy provided by non-ornithophilous plants may facilitate reproduction of truly ornithophilous flowers by attracting and maintaining hummingbirds in the area. This may promote asymmetric hummingbird-plant associations, i.e., pollination depends on floral traits adapted to hummingbird morphology...

  1. Pollination ecology in the 21st Century: Key questions for future research

    Directory of Open Access Journals (Sweden)

    Jane C. Stout

    2011-03-01

    Full Text Available To inspire new ideas in research on pollination ecology, we list the most important unanswered questions in the field. This list was drawn up by contacting 170 scientists from different areas of pollination ecology and asking them to contribute their opinion on the greatest knowledge gaps that need to be addressed. Almost 40% of them took part in our email poll and we received more than 650 questions and comments, which we classified into different categories representing various aspects of pollination research. The original questions were merged and synthesised, and a final vote and ranking led to the resultant list. The categories cover plant sexual reproduction, pollen and stigma biology, abiotic pollination, evolution of animal-mediated pollination, interactions of pollinators and floral antagonists, pollinator behaviour, taxonomy, plant-pollinator assemblages, geographical trends in diversity, drivers of pollinator loss, ecosystem services, management of pollination, and conservation issues such as the implementation of pollinator conservation. We focused on questions that were of a broad scope rather than case-specific; thus, addressing some questions may not be feasible within single research projects but constitute a general guide for future directions. With this compilation we hope to raise awareness of pollination-related topics not only among researchers but also among non-specialists including policy makers, funding agencies and the public at large.

  2. Can alternative sugar sources buffer pollinators from nectar shortages?

    Science.gov (United States)

    Gardner-Gee, Robin; Dhami, Manpreet K; Paulin, Katherine J; Beggs, Jacqueline R

    2014-12-01

    Honeydew is abundant in many ecosystems and may provide an alternative food source (a buffer) for pollinators during periods of food shortage, but the impact of honeydew on pollination systems has received little attention to date. In New Zealand, kānuka trees (Myrtaceae: Kunzea ericoides (A. Rich) Joy Thompson) are often heavily infested by the endemic honeydew-producing scale insect Coelostomidia wairoensis (Maskell) (Hemiptera: Coelostomidiidae) and the period of high honeydew production can overlap with kānuka flowering. In this study, we quantified the sugar resources (honeydew and nectar) available on kānuka and recorded nocturnal insect activity on infested and uninfested kānuka during the flowering period. Insects were abundant on infested trees, but flowers on infested trees received fewer insect visitors than flowers on uninfested trees. There was little evidence that insects had switched directly from nectar-feeding to honeydew-feeding, but it is possible that some omnivores (e.g., cockroaches) were distracted by the other honeydew-associated resources on infested branches (e.g., sooty molds, prey). Additional sampling was carried out after kānuka flowering had finished to determine honeydew usage in the absence of adjacent nectar resources. Moths, which had fed almost exclusively on nectar earlier, were recorded feeding extensively on honeydew after flowering had ceased; hence, honeydew may provide an additional food source for potential pollinators. Our results show that honeydew resources can impact floral visitation patterns and suggest that future pollinator studies should consider the full range of sugar resources present in the study environment.

  3. Do abundance and proximity of the alien Impatiens glandulifera affect pollination and reproductive success of two sympatric co-flowering native species?

    Directory of Open Access Journals (Sweden)

    Anne-Laure Jacquemart

    2012-12-01

    Full Text Available In invasion ecology, potential impacts of aliens on native flora are still under debate. Our aim was to determine the pollinator mediated effects of both proximity and abundance of an alien species on the reproductive success of natives. We chose the highly invasive Impatiens glandulifera and two native species: Epilobium angustifolium and Aconitum napellus ssp. lusitanicum. These species share characteristics allowing for pollination interactions: similar biotopes, overlapping flowering periods and same main pollinators. The effects of abundance (5, 25 and 100 individuals and proximity (0 and 15 m of the alien on visitation rate, insect behaviour, pollen deposition and reproductive success of both natives were investigated during 2 flowering seasons. We used centred visitation rates as they can be directly interpreted as a positive or negative effect of the invasive.Both abundance and proximity of the alien increased bumblebee visitation rates to both natives. On the other hand, abundance of the exotic species had a slight negative effect on honeybee visits to natives while its proximity had no effect. The behaviour of bumblebees changed as visitors left significantly more often the native plants for I. glandulifera when its abundance increased. As a consequence of this “inconstancy”, bees deposited considerable quantities of alien pollen on native stigmas. Nevertheless, this interspecific pollen transfer did not decrease seed set in natives. Self-compatibility and high attractiveness of both native species probably alleviate the risk of altered pollinator services and reproductive success due to the invader in natural populations.

  4. Evaluating pollination deficits in pumpkin production in New York.

    Science.gov (United States)

    Petersen, J D; Huseth, A S; Nault, B A

    2014-10-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.

  5. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location

    OpenAIRE

    Sardiï as, HS; Tom, K; Ponisio, LC; Rominger, A; Kremen, C

    2016-01-01

    � 2016 by the Ecological Society of America. The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination cove...

  6. Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot.

    Science.gov (United States)

    Phillips, Ryan D; Hopper, Stephen D; Dixon, Kingsley W

    2010-02-12

    The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour.

  7. Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments.

    Science.gov (United States)

    Henselek, Yuki; Eilers, Elisabeth J; Kremen, Claire; Hendrix, Stephen D; Klein, Alexandra-Maria

    2018-03-08

    Almond (Prunus dulcis (Mill.) D. A. Webb; Rosales: Rosaceae) is a cash crop with an estimated global value of over seven billion U.S. dollars annually and commercial varieties are highly dependent on insect pollination. Therefore, the understanding of basic pollination requirements of the main varieties including pollination efficiency of honey bees (Apis mellifera, Linnaeus, Hymenoptera: Apidae) and wild pollinators is essential for almond production. We first conducted two lab experiments to examine the threshold number of pollen grains needed for successful pollination and to determine if varietal identity or diversity promotes fruit set and weight. Further, we examined stigma and ovules of flowers visited by Apis and non-Apis pollinators in the field to study the proportion of almond to non-almond pollen grains deposited, visitation time per flower visit, and tube set. Results indicate that the threshold for successful fertilization is around 60 pollen grains, but pollen can be from any compatible variety as neither pollen varietal identity nor diversity enhanced fruit set or weight. Andrena cerasifolii Cockerell (Hymenoptera: Andrenidae) was a more effective pollinator on a per single visit basis than Apis and syrphid flies. Nevertheless, Apis was more efficient than A. cerasifolii and syrphid flies as they spent less time on a flower during a single visit. Hence, planting with two compatible varieties and managing for both Apis and non-Apis pollinators is likely to be an optimal strategy for farmers to secure high and stable pollination success.

  8. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Science.gov (United States)

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  9. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success

    Science.gov (United States)

    Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock. PMID:27014509

  10. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success

    Directory of Open Access Journals (Sweden)

    Mar Sobral

    2016-03-01

    Full Text Available Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii Do mutualists (pollinators and antagonists (seed predators, insect herbivores and livestock jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.

  11. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success.

    Science.gov (United States)

    Sobral, Mar; Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.

  12. Environmental policies to protect pollinators: attributes and actions needed to avert climate borne crisis of oil seed agriculture in Pakistan

    Directory of Open Access Journals (Sweden)

    A. Burhan

    2017-07-01

    Full Text Available The impact of climate change on oil seed crop is getting more and more pronounced with each passing day, resulting in reduced crop yields in Pakistan. Agriculture is the mainstay of Pakistan’s economy, however it is subjected to severe climatic vulnerabilities like floods, droughts, and changing rainfall patterns. Climate change has a marked influence on the population and distribution of pollinators. Extreme weather events can further aggravate the situation by causing high overwintering losses. Less roving pollinators, such as small beetles and ground nesting bees, may be among the most severely affected by flooding and gusts. Extreme conditions not only can disrupt the livelihoods of individual insects, but can also negatively impact entire colonies or local populations. It is recommended to take offensive measures to address these issues, otherwise the area under oil seed crops may decrease resulting in poor market stability index. Moreover, in this regard, there is desperate need to aggressively explore opportunities of capacity building and institutional strengthening to address the climate change issues in Pakistan. Through this review, it is hoped that a proactive risk assessment approach to climate change can assist the Government in making strategies against the losses of pollinator services in Pakistan.

  13. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs.

    Science.gov (United States)

    Grison-Pigé, Laure; Bessière, Jean-Marie; Hossaert-McKey, Martine

    2002-02-01

    Floral scents often act as pollinator attractants. In the case of obligate and specific plant-pollinator relationships, the role of floral signals may be crucial in allowing the encounter of the partners. About 750 Ficus species (Moraceae) are involved in such interactions, each with a distinct species of pollinating wasp (Chalcidoidea, Agaonidae). Several species have been shown to release volatile compounds, but their role in pollinator attraction has rarely been simultaneously tested. We investigated the floral scents of four tropical fig species and combined chemical analysis with biological tests of stimulation of insects. Pollinators of three species were stimulated by the odor of their associated fig species and generally not by the odor of another species. The fourth actually comprised two distinct varieties. The main compound was often a different one in each species. Floral blends of different species always shared compounds, but ratios of these compounds varied among species.

  14. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  15. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    Science.gov (United States)

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  16. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    Science.gov (United States)

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  17. Oil collecting bees and Byrsonima cydoniifolia A. Juss. (Malpighiaceae interactions: the prevalence of long-distance cross pollination driving reproductive success

    Directory of Open Access Journals (Sweden)

    MORGANA S. SAZAN

    2014-03-01

    Full Text Available Oil-collecting bees are the natural pollinators of oil-flower plants, but little is known about the pollination process and the effectiveness of their pollination service to the reproductive success of their host plants. In species of Byrsonima the reproductive system have been described as auto-compatible or self-incompatible. We studied the reproductive system of Byrsonima cydoniifolia, the fructification by means of short, medium and long-distance cross pollinations, the morphology and floral biology and the pollination interactions with species of oil-collecting bees. By means of controlled pollinations we found self-incompatibility caused by abortion of most self-pollinated flowers and demonstrated that the prevailing cross pollination ensuring the reproductive success of B. cydoniifolia is the long-distance cross pollination and Centridini bees; Epicharis nigrita, particularly, are the pollinators promoting the gene flow between genetically distinct populations.

  18. Pollination success of Lotus corniculatus (L.) in an urban context

    Science.gov (United States)

    Pellissier, Vincent; Muratet, Audrey; Verfaillie, Fabien; Machon, Nathalie

    2012-02-01

    Most anthropogenic activities are known to have deleterious effects on pollinator communities. However, little is known about the influence of urbanization on pollination ecosystem services. Here, we assessed the pollination service on Lotus corniculatus (L.), a self-sterile, strictly entogamous Fabaceae commonly observed in urban and suburban areas. We assessed the pollination success of artificial Lotus corniculatus populations at three levels: at large scale, along an urbanization gradient; at intermediate scale, based on landscape fragmentation within a 250 m radius and at local scale based on floral resource abundance and local habitat type. The main findings were that the pollination success, when assessed with the number of fruit produced per inflorescence, was lower in urban areas than in suburban ones, and was negatively affected by the number of impervious spaces in the neighborhood. The relationship between the number of fruits and the distance to the nearest impervious space was either positive or negative, depending on the gray/green ratio (low vs. high). Finally, on a local scale, floral resource abundance had a negative effect on pollination success when L. corniculatus populations were located in paved courtyards, and a positive one when they were located in parks. Pollination success seems to be explained by two intertwined gradients: landscape fragmentation estimated by the number of impervious spaces in a 250 m radius around L. corniculatus populations, and the behavior of bumblebees toward birdsfoot trefoil and floral displays, which appears to differ depending on whether a neighborhood is densely or sparsely urbanized. An abundance of attracting floral resources seems to enhance pollination success for L. corniculatus if it is not too isolated from other green spaces. These results have important implications for the sustainability of pollination success in towns by identifying local and landscape factors that influence reproductive success of

  19. Different pollinator assemblages ensure reproductive success of Cleisostoma linearilobatum (Orchidaceae) in fragmented holy hill forest and traditional tea garden.

    Science.gov (United States)

    Zhou, Xiang; Liu, Qiang; Han, Jessie Yc; Gao, JiangYun

    2016-02-24

    Orchids are generally recognized to have specialist pollination systems and low fruit set is often thought to be characteristic of the family. In this study, we investigated the reproductive ecology of Cleisostoma linearilobatum, an epiphytic tropical orchid, in a holy hill forest fragment and a traditional tea garden in SW China using comparable methods. C. linearilobatum is self-compatible and dependent on insects for pollination. Fruit production in natural conditions was both pollinator- and resource-limited. However, the natural fruit set remained stable over multiple years at both sites. Pollination observations showed that C. linearilobatum has a generalized pollination system and seven insect species were observed as legitimate pollinators. Although the visit frequencies of different pollinators were different in the two sites, the pollinator assemblages ensured reproductive success of C. linearilobatum in both study sites over multiple years. The results partly explain why C. linearilobatum is so successful in the area, and also suggest that holy hill forest fragments and traditional tea gardens in Xishuangbanna are important in preserving orchids, especially those with generalist pollination.

  20. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate.

    Science.gov (United States)

    Broussard, Melissa Ann; Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.

  1. Melittofauna and Other Potential Pollinators in Wetland and Uplands in South Central Nebraska (Insecta: Apoidea).

    Science.gov (United States)

    Park, Cynthia N; Overall, Lisa M; Smith, Loren M; Lagrange, Ted; McMurry, Scott

    2017-03-10

    Our objective was to document potential wild pollinating insects in south central Nebraska. This intensively cultivated region is known as the Rainwater Basin and contains some of the most endangered wetland systems in North America. We used blue vane traps to passively collect insects and insect nets to actively collect on flowering plants from April through October in 2014 and 2015. Habitat types included playa wetlands, adjacent mixed and tallgrass prairies, and agricultural fields. Over 112,000 insects were collected; Hymenoptera represented 78% of the total, and the families Apidae and Halictidae comprised 99% of the total melittofauna. Insects from 13 orders were collected, but Hymenoptera, Diptera, and Coleoptera were the most abundant potential pollinators.

  2. Morphofunctional Traits and Pollination Mechanisms of Coronilla emerus L. Flowers (Fabaceae)

    Science.gov (United States)

    Aronne, Giovanna; Giovanetti, Manuela; De Micco, Veronica

    2012-01-01

    It is accepted that the papilionaceous corolla of the Fabaceae evolved under the selective pressure of bee pollinators. Morphology and function of different parts of Coronilla emerus L. flowers were related to their role in the pollination mechanism. The corolla has a vexillum with red nectar lines, a keel hiding stamens and pistil, and two wing petals fasten to the keel with two notched folds. Pollinators land on the complex of keel and wings, trigger the protrusion of pollen and finally of the stigma from the keel tip. Data on pollen viability and stigma receptivity prove that flowers are proterandrous. The results of hand-pollination experiments confirmed that insects are fundamental to set seed. Interaction with pollinators allows not only the transport of pollen but also the rupture of the stigmatic cuticle, necessary to achieve both allogamy and autogamy. Field observations showed that Hymenoptera, Lepidoptera, and Diptera visited the flowers. Only some of the Hymenoptera landed on the flowers from the front and elicited pollination mechanisms. Most of the insects sucked the nectar from the back without any pollen transfer. Finally, morphological and functional characteristics of C. emerus flowers are discussed in terms of floral larceny and reduction in pollination efficiency. PMID:22666114

  3. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  4. The Effect of Different Pollination Methods on Seed Yield and Germination Features in Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Yaşar ÖZYİĞİT

    2015-09-01

    Full Text Available Pollination is a prerequisite system for reproductive of many plants and it is more important in self-compatible plants. Since, these plants need other flowers pollen for flower fertilization and seed production. In this study, the effects of different pollination methods (open/cross pollination, self-pollination with hand and control on some features associated with seed production in Stevia rebaudiana were investigated. Stevia which belongs to the Asteraceae family and is used as sweetener has a self-incompatibility problem. In the experiment, ten plants which were planted in a row were covered with net in the field condition and five of them were selfed with hand pollination and remaining 5 plants were left as it is. Furthermore, five uncovered plants were left to cross-pollination by insects. At the end of the experiment, seed yield per plant, 1000 seed weight, black/filled seed rate, number of day to first germination and germination rate were determined in harvested seeds. According to the results, cross-pollination was more superior in respect to all features in Stevia. This status shows that insect population (especially bee must be present in Stevia fields for successful seed production.

  5. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy.

    Science.gov (United States)

    Coté, Gary G; Gibernau, Marc

    2012-07-01

    Many flowers are pollinated by potentially hungry insects, yet flowers also contain gametes and embryos which must be protected from predation. Microscopic calcium oxalate crystals in plant tissues have been proposed to protect against herbivory. Aroids, which have an unusual diversity of such crystals, also exhibit diverse pollination strategies. Many species have pollinators that do not feed while visiting the flowers, while other species, especially those pollinated by beetles, offer sterile staminodia as food rewards. We examined flowers of 21 aroid species with various pollination strategies to test the hypothesis that crystals protect vital gametes and embryos while allowing consumption of food bribes. Aroid inflorescences collected from the field or from greenhouse material were sectioned, cleared, and examined by bright field and polarization microscopy. All species examined, regardless of pollination strategy, arrayed crystals around unshed pollen and ovules. Less vital tissues, such as odoriferous appendages, had few crystals. Staminodia offered as food to beetle pollinators, however, differed greatly between species in their crystal contents. Some had minimal crystals; some had crystals in patterns suggesting they limit beetle feeding; still others had abundant crystals in no obvious pattern. The results are consistent with crystals protecting against insect predation of gametes and embryos. However, the role of crystals in food-bribe staminodia is unclear. They may limit and direct feeding by beetles in some species, while in others they might have no protective role.

  6. Forest Service R&D — Invasive Insects: Visions for the Future

    Science.gov (United States)

    Kier D. Klepzig; Therese M. Poland; Nancy E. Gillette; Robert A. Haack; Melody A. Keena; Daniel R. Miller; Michael E. Montgomery; Steven J. Seybold; Patrick C. Tobin

    2009-01-01

    The Forest Service has identified invasive species as one of four significant threats to our Nation’s forest and rangeland ecosystems and likened the problem to a “catastrophic wildfire in slow motion.” Forest Service Research and Development (R&D) has a crucial role in providing insight and options to protect trees, forests, and ecosystems from the threat of...

  7. Hotspots of human nutrition: Micronutrient supply, demand, and pollinator dependence

    Science.gov (United States)

    Dombeck, E.; Chaplin-Kramer, R.; Mueller, M.; Mueller, N. D.; Foley, J. A.

    2012-12-01

    While our caloric needs can mostly be met by wind-pollinated crops such as cereals, a recent analysis of USDA data shows that animal-pollinated crops contain the vast majority of many essential nutrients, including vitamins A and C, calcium, fluoride, and folic acid. In this work we combined global crop yield data with data on nutritional content in each crop to map nutrient production around the world, and to illustrate the value of pollination services to human nutrition. Spatially explicit crop yields (at 5 min resolution) were multiplied by crop nutrient content and by crop dependence on pollination to map where reductions in total nutrient production would occur if pollination services were removed. Nutrient demand maps (human nutrient requirements multiplied by population density) were generated to identify regions where local reduction in pollination services could threaten nutritional security. Nutrient deficiency maps (nutrient supply minus nutrient demand) were also created to identify hotspots where local crop production is not adequate to meet local nutritional needs.

  8. Macroecology of pollination networks

    DEFF Research Database (Denmark)

    Nielsen, Kristian Trøjelsgaard; Olesen, Jens Mogens

    2013-01-01

    towards the tropics, and that network topology would be affected by current climate. Location Global. Methods Each network was organized as a presence/absence matrix, consisting of P plant species, A pollinator species and their links. From these matrices, network parameters were estimated. Additionally...... with either latitude or elevation. However, network modularity decreased significantly with latitude whereas mean number of links per plant species (Lp) and A/P ratio peaked at mid-latitude. Above 500 m a.s.l., A/P ratio decreased and mean number of links per pollinator species (La) increased with elevation......Aim Interacting communities of species are organized into complex networks, and network analysis is reckoned to be a strong tool for describing their architecture. Many species assemblies show strong macroecological patterns, e.g. increasing species richness with decreasing latitude, but whether...

  9. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil.

    Science.gov (United States)

    Novais, Samuel M A; Nunes, Cássio A; Santos, Natália B; D Amico, Ana R; Fernandes, G Wilson; Quesada, Maurício; Braga, Rodrigo F; Neves, Ana Carolina O

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil-one of the world's agriculture leaders-by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55-51 million tons, which would amount to 4.86-14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%- 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service.

  10. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae: a perennial herb with a mixed pollination system?

    Directory of Open Access Journals (Sweden)

    Lucía Salas-Arcos

    2017-08-01

    Full Text Available Background In many plant species, pollination syndromes predict the most effective pollinator. However, other floral visitors may also offer effective pollination services and promote mixed pollination systems. Several species of the species-rich Penstemon (Plantaginaceae exhibit a suite of floral traits that suggest adaptation for pollination by both hymenopterans and hummingbirds. Transitions from the ancestral hymenopteran pollination syndrome to more derived hummingbird pollination syndrome may be promoted if the quantity or quality of visits by hummingbirds is increased and if the ancestral pollinator group performs less efficiently. The quantification of such shifts in pollination systems in the group is still limited. We aimed to investigate floral traits linked to this pollination syndrome in Penstemon gentianoides with flowers visited by bumblebees and hummingbirds. Methods We investigated the floral biology, pollinator assemblages, breeding system and nectar production patterns ofP. gentianoides inhabiting a temperate montane forest in central Mexico. Pollination experiments were also conducted to assess the pollinator effectiveness of bumblebees and hummingbirds. Results P. gentianoides flowers are protandrous, with 8-d male phase (staminate flowers, followed by the ∼1–7 d female phase (pistillate phase. Flowers display traits associated with hymenopteran pollination, including purple flowers abruptly ampliate-ventricose to a broad throat with anthers and stigmas included, and long lifespans. However, the nectar available in the morning hours was abundant and dilute, traits linked to flowers with a hummingbird pollination syndrome. Two hummingbird species made most of the visits to flowers, Selasphorus platycercus (30.3% of all visits, followed by Archilochus colubris (11.3%. Bumblebees (Bombus ephippiatus, B. huntii and B. weisi accounted for 51.8% of all recorded visits, but their foraging activity was restricted to the warmer

  11. POLLINATOR-MEDIATED COMPETITION, REPRODUCTIVE CHARACTER DISPLACEMENT, AND THE EVOLUTION OF SELFING IN ARENARIA UNIFLORA (CARYOPHYLLACEAE).

    Science.gov (United States)

    Fishman, Lila; Wyatt, Robert

    1999-12-01

    Ecological factors that reduce the effectiveness of cross-pollination are likely to play a role in the frequent evolution of routine self-fertilization in flowering plants. However, we lack empirical evidence linking the reproductive assurance value of selfing in poor pollination environments to evolutionary shifts in mating system. Here, we investigated the adaptive significance of prior selfing in the polymorphic annual plant Arenaria uniflora (Caryophyllaceae), in which selfer populations occur only in areas of range overlap with congener A. glabra. To examine the hypothesis that secondary contact between the two species contributed to the evolution and maintenance of selfing, we used field competition experiments and controlled hand-pollinations to measure the female fitness consequences of pollinator-mediated interspecific interactions. Uniformly high fruit set by selfers in the naturally pollinated field arrays confirmed the reproductive assurance value of selfing, whereas substantial reductions in outcrosser fruit set (15%) and total seed production (20-35%) in the presence of A. glabra demonstrated that pollinator-mediated interactions can provide strong selection for self-pollination. Heterospecific pollen transfer, rather than competition for pollinator service, appears to be the primary mechanism of pollinator-mediated competition in Arenaria. Premating barriers to hybridization between outcrossers and A. glabra are extremely weak. The production of a few inviable hybrid seeds after heterospecific pollination and intermediate seed set after mixed pollinations indicates that A. glabra pollen can usurp A. uniflora ovules. Thus, any visit to A. uniflora by shared pollinators carries a potential female fitness cost. Moreover, patterns of fruit set and seed set in the competition arrays relative to controls were consistent with the receipt of mixed pollen loads, rather than a lack of pollinator visits. Competition through pollen transfer favors preemptive

  12. Minute pollinators: The role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae).

    Science.gov (United States)

    Eliyahu, Dorit; McCall, Andrew C; Lauck, Marina; Trakhtenbrot, Ana; Bronstein, Judith L

    The feeding habits of thrips on plant tissue, and their ability to transmit viral diseases to their host plants, have usually placed these insects in the general category of pests. However, the characteristics that make them economically important, their high abundance and short- and long-distance movement capability, may also make them effective pollinators. We investigated this lesser-known role of thrips in pointleaf manzanita ( Arctostaphylos pungens ), a Southwestern US shrub. We measured the abundance of three species of thrips ( Orothrips kelloggii, Oligothrips oreios , and Frankliniella occidentalis ), examined their pollen-carrying capability, and conducted an exclusion experiment in order to determine whether thrips are able to pollinate this species, and if they do, whether they actually contribute to the reproductive success of the plant. Our data suggest that indeed thrips pollinate and do contribute significantly to reproductive success. Flowers exposed to thrips only produced significantly more fruit than did flowers from which all visitors were excluded. The roles of thrips as antagonists/mutualists are examined in the context of the numerous other floral visitors to the plant.

  13. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    Science.gov (United States)

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  14. Pollen Foraging Differences Among Three Managed Pollinators in the Highbush Blueberry (Vaccinium corymbosum) Agroecosystem.

    Science.gov (United States)

    Bobiwash, Kyle; Uriel, Yonathan; Elle, Elizabeth

    2018-02-09

    Highbush blueberry, Vaccinium corymbosum (Gray), production in British Columbia is dependent upon insect pollination for fruit yield with particular cultivars demonstrating low yields due to poor pollination. New managed species of pollinators are being developed to provide farmers with managed pollinator options beyond Apis mellifera (Linnaeus). Pollinators in highbush blueberry agricultural systems encounter a variety of nontarget floral resources that may affect the pollination received by the crop. Our study analyzed the differences in pollen foraging of honey bees and two species of managed bumblebees across nine farm sites. Corbicular pollen loads from pollen foraging workers were removed and identified to the lowest taxonomic level possible. Of the three managed pollinators, the corbicular pollen loads of Bombus huntii (Greene) contained the most blueberry pollen (52.1%), three times as much as the two other managed bee species. Fifteen morphotypes of pollen were identified from all foraging workers with Rosaceae being the most frequently gathered overall pollen type (n = 74). The noncrop pollen identified in our samples derived from plant species not common as weedy species in the agroecosystem suggesting that floral resource diversity outside of the farm boundaries is important to pollinators. The three managed species in our blueberry fields utilized floral resources differentially underscoring the importance of pollinator species' characteristics and large-scale floral resource landscape in developing new managed pollinators and pollination strategies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Hymenoptera of Afghanistan and the central command area of operations: assessing the threat to deployed U.S. service members with insect venom hypersensitivity.

    Science.gov (United States)

    Turbyville, Joseph C; Dunford, James C; Nelson, Michael R

    2013-01-01

    Insect venom hypersensitivity can pose a threat to personnel deployed to a combat zone but the exposure risk in Afghanistan is currently unknown. This study was designed to assess the threat of Hymenoptera stings and associated allergic reactions in Afghanistan. Hymenoptera species were collected during a deployment to southern Afghanistan from June 2010 through January 2011. The literature was also reviewed to determine species of medically important Hymenoptera recorded in the region. The U.S. Army theater electronic medical data system was mined for ICD-9 codes associated with insect stings to determine the number of theater medical clinic encounters addressing insect sting reactions. Three species of flying hymenoptera were commonly encountered during the study period: Vespa orientalis L., Polistes wattii Cameron, and Vespula germanica (F.). A literature review also confirms the presence of honeybees (Apidae), numerous velvet ant (Mutillidae) species, and various ant (Formicidae) species all capable of stinging. No evidence was identified to suggest that fire ants (Solenopsis ssp.) are a threat in the region. Based on electronic medical records from the U.S. Central Command area of operations over a 2-year period, roughly 1 in 500 clinic visits involved a patient with a diagnosis of insect bite or sting. Cross-reactive members of all five flying Hymenoptera species commonly assessed for in Hymenoptera allergy evaluations are present in Afghanistan. The review of in-theater medical records confirms that insect stings pose an environmental threat to deployed service members.

  16. [Pollination ecology of three sympatric species of Oenocarpus (Arecaceae) in the Colombian Amazon].

    Science.gov (United States)

    Núñez A, Luis Alberto; Isaza, Carolina; Galeano, Gloria

    2015-03-01

    The understanding of pollination mechanisms is vital for developing management and conservation actions of economically important species. In order to understand the pollination mechanisms of the promising palms in the genus Oenocarpus (Arecaceae), we studied floral morphology and biology, of three sympatric species in the Colombian Amazon: O. bataua, O. balickii and O. minor. During the period 2010-2012 we made direct and continuous observations of inflorescences (visitors, pollinators, and reproductive success) of the three species in every development phase. We determined the association of the palms with their floral visitors through a complex or interaction network, whereas specificity or preference of the insects for each individual palm was assessed through paired similarity analysis, similarity analysis (ANOSIM), and ordering analysis based on nonmetric multidimensional scaling (NMSD). The three species flowered throughout the year; their inflorescences have long rachillae that hang close to each other from a short rachis, and they bear flowers in dyads or triads. Inflorescences are protandrous, thermogenic; anthesis takes place during daytime but pollination is nocturnal. We recorded 79 species of insects, mainly beetles, 33 of which visited O. balickii, 63 visited O. bataua, and 33 visited 0. minor. Although they shared some visitors, their abundance during the pistillate phase, as well as their pollen loads showed that only a few species of Curculionidae and Nitidulidae are the principal pollinators of the three studied species. Differences in network structure between staminate and pistillate phases, as well as difference in abundance found with the ANOSIM and NMSD similarity tests, suggest a high specificity of pollinators, leading to reproductive isolation among.the three species. Because all pollinating beetles were found to develop their life cycles within the inflorescences, we hypothesize the occurrence of a specialized system of mutual dependence

  17. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity.

    Science.gov (United States)

    Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies

    2017-07-01

    Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in

  18. Plant pollinator networks along a gradient of urbanisation.

    Science.gov (United States)

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies

  19. Consecuencias de las variaciones microclimáticas sobre la visita de insectos polinizadores en dos especies de Chaetanthera (Asteraceae en los Andes de Chile central Consequences of microclimate variation on insect pollinator visitation in two species of Chaetanthera (Asteraceae in the central Chilean Andes

    Directory of Open Access Journals (Sweden)

    CRISTIAN TORRES-DÍAZ

    2007-12-01

    ás variación en las tasas de visitas a flores que la densidad de capítulos florales en los parches. Nuestros resultados aportan valiosa información sobre las potenciales consecuencias del cambio climático global en la polinizaciónInsect pollinator activity can be influenced by biotic (e.g., patch floral density and floral display or by abiotic factors (e.g., temperature, wind velocity, cloudiness. In spite of microsite, seasonal and interannual variation in temperature in the alpine zone, the consequences of local microclimatic variation on pollinator activity has been rarely studied in high mountain ecosystems. In this study we compared flower visitation rates on a north-facing slope and a west-facing slope in Chaetanthera apiculata (3,100 m of altitude and on an east-facing slope and a west-facing slope in Chaetanthera lycopodioides (3,300 m of altitude. We studied the breeding system in each species in order to determine level of dependence on external pollinators. While the north-facing slope inhabited by C. apiculata was warmer (1.8 °C and visited (7.8-fold more frequently than the west-facing slope, in C. lycopodioides the east-facing slope was warmer (3 °C and visited more frequently (4-fold than the west-facing slope. In C. apiculata only Faunula leucoglene (Lepidóptera: Satyridae showed higher activity in the warmer population. In C. lycopodioides, F. leucoglene and Liphantus sp. (Himenóptera:Andrenidae showed higher activity rates in the warmer population. Flower visitation rate in Faunula leucoglene was correlated with temperature in C. apiculata and C. lycopodioides. Both C. apiculata and C. lycopodioides are partially self-compatible, and thus require exogenous pollen for maximum seed set. Our results show that in high elevation environments flower visitation rates can be highly variable and that microclimatic conditions can be more important for pollinator variation among populations than head density. Our results offer valuable insights on the

  20. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    Science.gov (United States)

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes

  1. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  2. Pervasiveness of parasites in pollinators.

    Directory of Open Access Journals (Sweden)

    Sophie E F Evison

    Full Text Available Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris and a third of wasps (Vespula vulgaris, as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  3. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  4. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  5. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations.

    Directory of Open Access Journals (Sweden)

    Amy H Easton

    Full Text Available Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 µg L(-1, with Diptera avoiding concentrations as low as 0.01 µg L(-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 µg L(-1, but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination.

  6. High species richness of native pollinators in Brazilian tomato crops

    Directory of Open Access Journals (Sweden)

    C. M. Silva-Neto

    Full Text Available Abstract Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp. are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the

  7. High species richness of native pollinators in Brazilian tomato crops.

    Science.gov (United States)

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  8. Disentangling multiple drivers of pollination in a landscape-scale experiment.

    Science.gov (United States)

    Schüepp, Christof; Herzog, Felix; Entling, Martin H

    2014-01-07

    Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators' habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.

  9. Pollination in Jacaranda rugosa (Bignoniaceae): euglossine pollinators, nectar robbers and low fruit set.

    Science.gov (United States)

    Milet-Pinheiro, P; Schlindwein, C

    2009-03-01

    Nectar robbers access floral nectar in illegitimate flower visits without, in general, performing a pollination service. Nevertheless, their effect on fruit set can be indirectly positive if the nectar removal causes an incremental increase in the frequency of legitimate flower visits of effective pollinators, especially in obligate outcrossers. We studied pollination and the effect of nectar robbers on the reproductive fitness of Jacaranda rugosa, an endemic shrub of the National Park of Catimbau, in the Caatinga of Pernambuco, Brazil. Xenogamous J. rugosa flowers continuously produced nectar during the day at a rate of 1 mul.h(-1). Female and male Euglossa melanotricha were the main pollinators. Early morning flower visits substantially contributed to fruit set because stigmas with open lobes were almost absent in the afternoon. Ninety-nine per cent of the flowers showed damage caused by nectar robbers. Artificial addition of sugar water prolonged the duration of flower visits of legitimate flower visitors. Removal of nectar, simulating the impact of nectar robbers, resulted in shorter flower visits of euglossine bees. While flower visits of nectar-robbing carpenter bees (Xylocopa frontalis, X. grisescens, X. ordinaria) produced only a longitudinal slit in the corolla tube in the region of the nectar chamber, worker bees of Trigona spinipes damaged the gynoecium in 92% of the flowers. This explains the outstandingly low fruit set (1.5%) of J. rugosa in the National Park of Catimbau.

  10. The role of native flower visitors in pollinating Opuntia ficus-indica (L.) Mill., naturalized in Sicily

    Science.gov (United States)

    Lo Verde, Gabriella; La Mantia, Tommaso

    2011-09-01

    The role of insects in pollination and consequently in fruit set and quality was assessed in two commercial orchards of the cactus pear, Opuntia ficus-indica (L.) Mill., in Agrigento Province, Sicily. In 1997, insects visiting flowers were sampled during May-June (the first bloom) and July (the second bloom, induced by the "scozzolatura" practise). More than 50 insect species belonging to 10 orders were collected in May-June, while only five species of Hymenoptera Apoidea were collected in July. The quality of fruits arising from the second bloom showed that Hymenoptera alone were able to guarantee effective pollination. To verify the role of insects in pollination in 1996 (during only the second bloom), and in 1997 and 2009 (during both blooms), 60 single flowers were marked during each bloom; 30 of them covered with paper sleeves (which prevented natural pollination), while the others were not covered. After withering, fruits produced by marked flowers were analyzed in laboratory: in all years and blooms, the total number of seeds, the number of developed seeds, and the weight and the percentage of pulp were significantly lower for covered flowers than for non-covered flowers. The results are consistent with the hypothesis that native insects effectively carry out the pollination of cactus pear flowers.

  11. Flowering Dynamics and Pollinator Visitation of Oilseed Echium (Echium plantagineum)

    Science.gov (United States)

    Eberle, Carrie A.; Forcella, Frank; Gesch, Russ; Weyers, Sharon; Peterson, Dean; Eklund, James

    2014-01-01

    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. Seeds were sown in field plots over three years in western Minnesota in spring (early-sown) or early summer (late-sown), and flower abundance, pollinator visitation, and seed yields were studied. Initial flowering commenced 41 to 55 d after sowing, and anthesis duration (first flowering to harvest) was 34 to 70 d. Late sowing dates delayed anthesis, but increased the intensity of visitation by pollinators. Cumulative flower densities ranged from 1 to 4.5 billion ha−1. Flowers attracted numerous honey bees (Apis mellifera L.), as many as 35 per minute of observation, which represented about 50% of all insect visitors. Early-sown echium produced seed yields up to 750 kg ha−1, which were 2–29 times higher than those of late-sown echium. Early sowing of echium in Minnesota provides abundant floral resources for pollinators for up to two months and simultaneously produces seed yields whose profits rival those of corn (Zea mays L.). PMID:25427071

  12. Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum.

    Directory of Open Access Journals (Sweden)

    Carrie A Eberle

    Full Text Available Echium (Echium plantagineum L. is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. Seeds were sown in field plots over three years in western Minnesota in spring (early-sown or early summer (late-sown, and flower abundance, pollinator visitation, and seed yields were studied. Initial flowering commenced 41 to 55 d after sowing, and anthesis duration (first flowering to harvest was 34 to 70 d. Late sowing dates delayed anthesis, but increased the intensity of visitation by pollinators. Cumulative flower densities ranged from 1 to 4.5 billion ha-1. Flowers attracted numerous honey bees (Apis mellifera L., as many as 35 per minute of observation, which represented about 50% of all insect visitors. Early-sown echium produced seed yields up to 750 kg ha-1, which were 2-29 times higher than those of late-sown echium. Early sowing of echium in Minnesota provides abundant floral resources for pollinators for up to two months and simultaneously produces seed yields whose profits rival those of corn (Zea mays L..

  13. Bee Pollination in Syagrus orinocensis (ARECACEAE in the Colombian Orinoquia

    Directory of Open Access Journals (Sweden)

    Luis Alberto Nuñez Avellaneda

    2017-05-01

    Full Text Available The pollination ecology of the Syagrus orinocensis was studied in the course of three consecutive yearly flowering seasons in a foothill forest in Casanare, Colombian Orinoco region. Syagrus orinocensis palms grow up to 10 m high and produce one to four bisexual, occasionally unisexual, inflorescences. The bisexual inflorescences bear staminate and pistillate flowers arranged in triads, whereas the unisexual inflorescences carry only staminate flowers in dyads. The inflorescences are protandric and open during daytime, remaining active for 26 days. The male phase extends for the first 15 days, which are followed by 8 days of an inactive phase; the pistillate phase lasts up to three days. The inflorescences of S. orinocencis were visited by 43 species of insects belonging to the orders Coleoptera, Hymenoptera and Diptera. The presence of anthophilous insects was primarily restricted to the male phase of anthesis, during which the visitors searched for pollen and breeding sites; those which visited inflorescences during the female phase seeked out nectar. The most effective pollinators of S. orinocencis were stingless bees (Apidae, Meliponini, as they transferred in average 83% of the pollen that reached receptive inflorescences. The presence, constancy and efficiency of stingless bees during this study constitute solid evidence of melittophily in S. orinocensis and allows us to propose criteria to redefine this pollination syndrome in Neotropical wild palms.

  14. Floral phenology, secondary pollen presentation and pollination mechanism in Inula racemosa (Angiosperms: Asteraceae

    Directory of Open Access Journals (Sweden)

    P.A. Shabir

    2013-06-01

    Full Text Available Inula racemosa Hook. f. is protandrous, discharges pollen grains inside the anther tube and presents pollen secondarily onto the sweeping hairs of the style. The style and stigmatic branches present the yellow clumped pollen grains for pollination. This study describes floral functional morphology and phenology, anther dehiscence and pollen presentation, growth and behaviour of style during anthesis and pollination mechanism of I. racemosa. The species is entomophilous and is characterized by a highly asynchronous sexual phase. A large degree of asynchrony from floret to floret in a capitulum, and capitulum to capitulum in a plant, keeps the pollen dispersed for a longer duration. Two insect families were represented in the pollinator survey: Hymenoptera and Diptera. A significant correlation was observed between the number of capitula visited per bout and foraging time. We discuss morphological features of the ?owers which may enhance the pollen removal rate per bee visit and consequently cause a high visitation and pollination rate.

  15. Invaders of pollination networks in the Galápagos Islands: emergence of novel communities

    DEFF Research Database (Denmark)

    Travset, A.; Heleno, R.; Chamorro, S.

    2013-01-01

    The unique biodiversity of most oceanic archipelagos is currently threatened by the introduction of alien species that can displace native biota, disrupt native ecological interactions, and profoundly affect community structure and stability. We investigated the threat of aliens on pollination...... networks in the species-rich lowlands of five Gala´pagos Islands. Twenty per cent of all species (60 plants and 220 pollinators) in the pooled network were aliens, being involved in 38 per cent of the interactions. Most aliens were insects, especially dipterans (36%), hymenopterans (30%) and lepidopterans...... (14%). These alien insects had more links than either endemic pollinators or non-endemic natives, some even acting as island hubs. Aliens linked mostly to generalized species, increasing nestedness and thus network stability. Moreover, they infiltrated all seven connected modules (determined...

  16. Structure and Stability of Cocoa Flowers and Their Response to Pollination

    Directory of Open Access Journals (Sweden)

    Kofi Frimpong-Anin

    2014-01-01

    Full Text Available This study investigated the position of staminodes around the style of cocoa flowers and the stability of cocoa flowers relative to pollination and seasonality. Cocoa flowers were categorized into converging, ≤1.20 mm; parallel, 1.21–2.40 mm, and splay ≥2.41 mm, depending on the distance between the staminode and style. Some flowers were hand pollinated while others were not and were excluded from insect visitors. Proportions of flowers of converging (56.0%, parallel (37.5%, and splay (6.5% remained similar along the vertical plane of cocoa trees. Although pollination rates of flowers with splay staminodes were the lowest, the overall pollination success of cocoa trees was not significantly affected because of the small proportion of splay flowers.The stability of the cocoa flowers depended on both the season and pollination. During the dry season, unpollinated flowers of cocoa trees showed a flower-stability ratio of 72% on the second day, while the flower-stability ratio was 94% in the wet season. Pollinated (senescent flowers had a stability ratio of 95% after 5 days during the wet season, but all pollinated flowers dropped after 5 days in the dry season, indicating that seasonal factors, such as water stress, can have dramatic effects on cocoa yields.

  17. Cockroaches as pollinators of Clusia aff. sellowiana (Clusiaceae) on inselbergs in French Guiana

    Czech Academy of Sciences Publication Activity Database

    Vlasáková, B.; Kalinová, Blanka; Gustafsson, M. H. G.; Teichert, H.

    2008-01-01

    Roč. 102, č. 3 (2008), s. 295-304 ISSN 0305-7364 Grant - others:GA ČR(CZ) GD206/03/H137 Program:GD Institutional research plan: CEZ:AV0Z40550506 Keywords : insect-plant pollination * plant volatiles * cochroach sex pheromones Subject RIV: EF - Botanics Impact factor: 2.755, year: 2008

  18. Nectar production in oilseeds: Food for pollinators in an agricultural landscape

    Science.gov (United States)

    Pollinating insects are in decline throughout the world, driven by a combination of factors including the loss of forage resources. The corn- and soybean-dominated agriculture of the Central and Midwestern US produces a landscape relatively devoid of nectar and pollen resources. Introducing specialt...

  19. High specialisation in the pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators.

    Science.gov (United States)

    de Araújo, L D A; Quirino, Z G M; Machado, I C

    2014-09-01

    Butterfly pollination in the tropics is considered somewhat effective or solely effective in a few plant species. In the present study, we tested the hypothesis that Mandevilla tenuifolia (Apocynaceae), which has floral attributes associated with psychophily, has strategies adapted to pollination by butterflies, restricting other floral visitors and making these insects act as efficient pollinators. We analysed the floral and reproductive biology of M. tenuifolia, as well as the frequency and efficiency of its flower visitors. M. tenuifolia is an herb whose flowers have strong herkogamy and secondary pollen presentation on the style head, which corresponds to 60.4% of pollen on the anthers. Flower longevity and the long period of receptivity of the stigmatic region associated with the large amount of pollen removed in the first visits suggest that flowers remain functionally female during part of anthesis. Butterflies, mainly of the families Nymphalidae and Pieridae, are the only pollinators of M. tenuifolia. Despite being self-compatible, M. tenuifolia depends on biotic vectors for fruit production. A non-significant difference in fruit set between controlled treatments and natural conditions suggests that the pollinators are efficient. The inclination resulting from the landing of butterflies on flowers, together with flower morphology, guiding the insect proboscis inside the floral tube, as well as the frequency and efficiency of butterfly visits, are evidence of the close relationship between butterflies and M. tenuifolia, and also of the efficiency of these insects as pollinators. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Ecosystems effects 25 years after Chernobyl: pollinators, fruit set and recruitment.

    Science.gov (United States)

    Møller, Anders Pape; Barnier, Florian; Mousseau, Timothy A

    2012-12-01

    Animals are assumed to play a key role in ecosystem functioning through their effects on seed set, seed consumption, seed dispersal, and maintenance of plant communities. However, there are no studies investigating the consequences of animal scarcity on seed set, seed consumption and seed dispersal at large geographical scales. We exploited the unprecedented scarcity of pollinating bumblebees and butterflies in the vicinity of Chernobyl, Ukraine, linked to the effects of radiation on pollinator abundance, to test for effects of pollinator abundance on the ecosystem. There were considerably fewer pollinating insects in areas with high levels of radiation. Fruit trees and bushes (apple Malus domestica, pear Pyrus communis, rowan Sorbus aucuparia, wild rose Rosa rugosa, twistingwood Viburnum lantana, and European cranberry bush Viburnum opulus) that are all pollinated by insects produced fewer fruit in highly radioactively contaminated areas, partly linked to the local reduction in abundance of pollinators. This was the case even when controlling for the fact that fruit trees were generally smaller in more contaminated areas. Fruit-eating birds like thrushes and warblers that are known seed dispersers were less numerous in areas with lower fruit abundance, even after controlling for the effects of radiation, providing a direct link between radiation, pollinator abundance, fruit abundance and abundance of frugivores. Given that the Chernobyl disaster happened 25 years ago, one would predict reduced local recruitment of fruit trees if fruit set has been persistently depressed during that period; indeed, local recruitment was negatively related to the level of radiation and positively to the local level of fruit set. The patterns at the level of trees were replicated at the level of villages across the study site. This study provides the first large-scale study of the effects of a suppressed pollinator community on ecosystem functioning.

  1. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    Science.gov (United States)

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R (2) of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  2. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence.

    Science.gov (United States)

    Hadley, Adam S; Betts, Matthew G

    2012-08-01

    Animal-mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape-scale disturbance results in two often inter-related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of 'fragmentation' owes much to artifacts of the sampling regimes adopted, particularly (1

  3. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators

    Science.gov (United States)

    Queiroz, Joel A.; Quirino, Zelma G. M.; Machado, Isabel C.

    2015-01-01

    Floral attributes evolve in response to frequent and efficient pollinators, which are potentially important drivers of floral diversification and reproductive isolation. In this context, we asked, how do flowers evolve in a bat–hummingbird pollination system? Hence, we investigated the pollination ecology of two co-flowering Ipomoea taxa (I. marcellia and I. aff. marcellia) pollinated by bats and hummingbirds, and factors favouring reproductive isolation and pollinator sharing in these plants. To identify the most important drivers of reproductive isolation, we compared the flowers of the two Ipomoea taxa in terms of morphometry, anthesis and nectar production. Pollinator services were assessed using frequency of visits, fruit set and the number of seeds per fruit after visits. The studied Ipomoea taxa differed in corolla size and width, beginning and duration of anthesis, and nectar attributes. However, they shared the same diurnal and nocturnal visitors. The hummingbird Heliomaster squamosus was more frequent in I. marcellia (1.90 visits h−1) than in I. aff. marcellia (0.57 visits h−1), whereas glossophagine bats showed similar visit rates in both taxa (I. marcellia: 0.57 visits h−1 and I. aff. marcellia: 0.64 visits h−1). Bat pollination was more efficient in I. aff. marcellia, whereas pollination by hummingbirds was more efficient in I. marcellia. Differences in floral attributes between Ipomoea taxa, especially related to the anthesis period, length of floral parts and floral arrangement in the inflorescence, favour reproductive isolation from congeners through differential pollen placement on pollinators. This bat–hummingbird pollination system seems to be advantageous in the study area, where the availability of pollinators and floral resources changes considerably throughout the year, mainly as a result of rainfall seasonality. This interaction is beneficial for both sides, as it maximizes the number of potential pollen vectors for plants and

  4. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation.

    Science.gov (United States)

    Glenny, William R; Runyon, Justin B; Burkle, Laura A

    2018-03-25

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were measured from individuals of four forb species subjected to drought or normal water availability, and elevated or ambient concentrations of CO 2 in a factorial design. Pollinator visitation rates and community composition were observed in single-species and multi-species forb assemblages. Drought decreased floral visual traits and pollinator visitation rates but increased volatile organic compound (VOC) emissions, whereas elevated CO 2 positively affected floral visual traits, VOC emissions and pollinator visitation rates. There was little evidence of interactive effects of drought and CO 2 on floral traits and pollinator visitation. Interestingly, the effects of climate treatments on pollinator visitation depended on whether plants were in single- or multi-species assemblages. Components of climate change altered floral traits and pollinator visitation, but effects were modulated by plant community context. Investigating the response of floral traits, including VOCs, and context-dependency of pollinator attraction provides additional insights and may aid in understanding the overall effects of climate change on plant-pollinator interactions. © No claim to US Government works New Phytologist Trust © 2018 New Phytologist Trust.

  5. Experimental assessment of ecosystem services in agriculture

    DEFF Research Database (Denmark)

    Sandhu, Harpinder; Porter, John Roy; Wratten, Steve

    2013-01-01

    Ecosystem services are the resources and processes supplied by natural ecosystems which benefit humankind (for example, pollination of crops by insects, or water filtration by wetlands). They underpin life on earth, provide major inputs to many economic sectors and support our lifestyles. Agricul......Ecosystem services are the resources and processes supplied by natural ecosystems which benefit humankind (for example, pollination of crops by insects, or water filtration by wetlands). They underpin life on earth, provide major inputs to many economic sectors and support our lifestyles....... Agricultural and urban areas are by far the largest users of ecosystems and their services and (for the first time) this book explores the role that ecosystem services play in these managed environments. The book also explores methods of evaluating ecosystem services, and discusses how these services can...... be maintained and enhanced in our farmlands and cities. This book will be useful to students and researchers from a variety of fields, including applied ecology, environmental economics, agriculture and forestry, and also to local and regional planners and policy makers....

  6. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae).

    Science.gov (United States)

    Aranguren, Y; Płachno, B J; Stpiczyńska, M; Miranda, V F O

    2018-05-01

    Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea. We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers. The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40-45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee-like flies of the Syrphidae family may also be additional pollinators. Genlisea violacea is an allogamous and self-compatible species. The differences in flower-visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  7. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Science.gov (United States)

    Tur, Cristina; Castro-Urgal, Rocío; Traveset, Anna

    2013-01-01

    Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled) can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them). Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i) linkage level (number of interactions), (ii) diversity of interactions, and (iii) closeness centrality (a measure of how much a species is connected to other plants via shared pollinators). Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  8. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Directory of Open Access Journals (Sweden)

    Cristina Tur

    Full Text Available Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them. Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i linkage level (number of interactions, (ii diversity of interactions, and (iii closeness centrality (a measure of how much a species is connected to other plants via shared pollinators. Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  9. An extreme case of plant-insect codiversification

    DEFF Research Database (Denmark)

    Cruaud, Astrid; Rønsted, Nina; Chanterasuwan, Bhanumas

    2012-01-01

    It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores...... and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical...... for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups...

  10. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  11. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  12. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  13. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  14. The efficiency of bees in pollinating ephemeral flowers of Jacquemontia bracteosa (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Sílvia K. D. Santos

    Full Text Available ABSTRACT The family Convolvulaceae is widely distributed in tropical regions, mainly in open areas. Convolvulaceae flowers are characterized mainly by being beautiful and ephemeral, attracting many flower visitors that belong to different taxonomic groups. This work aimed to investigate the interactions between insects and flowers of Jacquemontia bracteosa (Convolvulaceae, focusing on the pollination efficiency, in an area in the Brazilian semiarid. From November 2011 to October 2012, floral biology of J. bracteosa was investigated as well as the flower visit frequency, behavior, and morphology of floral visitors. The flowers of J. bracteosa are white, showy and open early in the morning, lasting less than 12 hours, with fruiting occurring both by selfing and outcrossing fecundation. A total of 337 specimens insects were collected on J. bracteosa flowers during the field observations. The Neotropical bee, Ancyloscelis apiformis, was considered the most efficient pollinator of J. bracteosa. This bee showed appropriate behavior, high frequency (64% of the total sample, and was constant on the flowers. Furthermore, they arrived soon when the flowers began to open and presented 90% of efficiency in tests of flower pollination of J. bracteosa. Other native bee species also visited the flowers of J. bracteosa and may be considered potential pollinators because they presented behavior and morphology compatible with the flowers. This study suggests that maintenance of weeds or ruderal plants, especially those that also have ornamental potential in anthropic area, may be an option for the preservation of local native pollinators, which are threatened by environmental degradation.

  15. Population density of oil palm pollinator weevil Elaeidobius kamerunicus based on seasonal effect and age of oil palm

    Science.gov (United States)

    Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.

    2016-11-01

    The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, poil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.

  16. Plant-mediated Interactions Among Insects within a Community Ecological Perspective

    NARCIS (Netherlands)

    Poelman, E.H.; Dicke, M.

    2014-01-01

    Plants may be visited by many species of insects during their life-time. These insects include harmful herbivores above and belowground as well as beneficial natural enemies of herbivores and pollinators. Moreover, these interactions may take place sequentially or simultaneously. Responses of plants

  17. Floral scents and their interaction with insect pollinators

    OpenAIRE

    Grajales-Conesa, Julieta; Meléndez-Ramírez, Virginia; Cruz-López, Leopoldo

    2011-01-01

    Las plantas emplean diversas señales visuales y olfativas con la finalidad de atraer a los polinizadores que en su mayoría son insectos. Algunas plantas han desarrollado mecanismos, basándose en mensajes olfativos que los hacen únicos para sus polinizadores específicos. Estos mecanismos, así como las variaciones intra- e interespecíficas en el perfil de los aromas florales han evolucionado para determinadas especies. Los aromas florales son un conjunto de compuestos volátiles orgánicos y para...

  18. Mechanical vs. Beetle-mediated Self-pollination in (Malvaceae, an Endangered Shrub

    Directory of Open Access Journals (Sweden)

    Kyra N. Krakos

    2010-01-01

    Full Text Available Experimental hand pollinations of the endangered, Hawaiian, endemic, Gossypium tomentosum Nutt. Ex. (Malvaceae showed that it was self-compatible, but self-pollination resulted in reduced reproductive output. Field observations and pollen tube analyses using fluorescence microscopy showed that mechanical self-pollination in this species included a mechanism known as bending stigmas. A receptive stigma bent backwards and contacted dehiscent anthers in 7% of flowers found on 17 G. tomentosum plants. The yellow flowers were nectarless and were not visited by most anthophilous insects in situ except for the introduced, nitidulid beetle, Aethina concolor Macleay. Collections and insect GI-tract dissections showed that A. concolor carried and ate the pollen of the host flower. Field observations recorded regular contact between beetles and stigma lobes as these insects exited the flowers effecting self-pollination. Behavioral experiments showed that the beetles responded positively to a yellow visual cue. Under some circumstances, an introduced pollen vector may help maintain a low level of reproductive success in an insular endemic.

  19. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    Science.gov (United States)

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation. © 2012 Blackwell Publishing Ltd/CNRS.

  20. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination.

    Science.gov (United States)

    Brodmann, Jennifer; Twele, Robert; Francke, Wittko; Hölzler, Gerald; Zhang, Qing-He; Ayasse, Manfred

    2008-05-20

    An outstanding feature of orchids is the diversity of their pollination systems [1]. Most remarkable are those species that employ chemical deceit for the attraction of pollinators [2]. The orchid Epipactis helleborine is a typical wasp flower, exhibiting physiological and morphological adaptations for the attraction of pollinating social wasps [3]. As noted by Darwin [1], this species is almost entirely overlooked by other potential pollinators, despite a large nectar reward. Therefore, the mechanism for the attraction of pollinating social wasps was something of a mystery. By using a combination of behavioral experiments, electrophysiological investigations, and chemical analyses, we demonstrate for the first time that the flowers of E. helleborine and E. purpurata emit green-leaf volatiles (GLVs), which are attractive to foragers of the social wasps Vespula germanica and V. vulgaris. GLVs, emitted by damaged plant tissues, are known to guide parasitic wasps to their hosts [4]. Several E. helleborine GLVs that induced response in the antennae of wasps were also emitted by cabbage leaves infested with caterpillars (Pieris brassicae), which are common prey items for wasps [5]. This is the first example in which GLVs have been implicated in chemical mimicry for the attraction of pollinating insects.

  1. Codivergence and multiple host species use by fig wasp populations of the Ficus pollination mutualism

    Directory of Open Access Journals (Sweden)

    McLeish Michael J

    2012-01-01

    Full Text Available Abstract Background The interaction between insects and plants takes myriad forms in the generation of spectacular diversity. In this association a species host range is fundamental and often measured using an estimate of phylogenetic concordance between species. Pollinating fig wasps display extreme host species specificity, but the intraspecific variation in empirical accounts of host affiliation has previously been underestimated. In this investigation, lineage delimitation and codiversification tests are used to generate and discuss hypotheses elucidating on pollinating fig wasp associations with Ficus. Results Statistical parsimony and AMOVA revealed deep divergences at the COI locus within several pollinating fig wasp species that persist on the same host Ficus species. Changes in branching patterns estimated using the generalized mixed Yule coalescent test indicated lineage duplication on the same Ficus species. Conversely, Elisabethiella and Alfonsiella fig wasp species are able to reproduce on multiple, but closely related host fig species. Tree reconciliation tests indicate significant codiversification as well as significant incongruence between fig wasp and Ficus phylogenies. Conclusions The findings demonstrate more relaxed pollinating fig wasp host specificity than previously appreciated. Evolutionarily conservative host associations have been tempered by horizontal transfer and lineage duplication among closely related Ficus species. Independent and asynchronistic diversification of pollinating fig wasps is best explained by a combination of both sympatric and allopatric models of speciation. Pollinator host preference constraints permit reproduction on closely related Ficus species, but uncertainty of the frequency and duration of these associations requires better resolution.

  2. Evolution of polyploidy and the diversification of plant-pollinator interactions.

    Science.gov (United States)

    Thompson, John N; Merg, Kurt F

    2008-08-01

    One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.

  3. Marketing insects

    DEFF Research Database (Denmark)

    Schiemer, Carolin; Halloran, Afton Marina Szasz; Jespersen, Kristjan

    2018-01-01

    In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood is a mar......In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood...... is a marketing term for nutrient-packed foods, which are successfully promoted to Western consumers with the promises of health, well-being and beauty. However, the increase in the demand in the West is argued to cause negative social, environmental, economic and cultural consequences – externalities – felt...

  4. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  5. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... He writes popular science articles in ... science, English poetry is his area of ... A fascinating branch of insect science (ento- ... Methods in Forensic Entomology .... bullet wound to the right temple, and a substantial pooling of.

  6. Eating insects

    OpenAIRE

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating creatures that are not regarded as food. The low consumer acceptance of this culturally inappropriate food is currently considered to be one of the key barriers to attaining the benefits of this po...

  7. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae, a Species with Bilobed Stigma

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Jin

    2017-05-01

    Full Text Available A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae, a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination

  8. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    Science.gov (United States)

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Field margins, foraging distances and their impacts on nesting pollinator success.

    Directory of Open Access Journals (Sweden)

    Sean A Rands

    Full Text Available The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower. Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m, a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees.

  10. Insects diversity in lima bean (Phaseolus lunatus

    Directory of Open Access Journals (Sweden)

    WIWIN SETIAWATI

    2005-10-01

    Full Text Available Lima bean (Phaseolus lunatus is a vegetable which usually made as a home yard plant for Indonesian people to fulfill their daily needs. This plant has not been produced in the large number by the farmer. So it is hard to find in the market. Lima bean is light by many kind of insect. Inventory, identification and the study of insect taxon to this plant is being done to collect some information about the insect who life in the plant. The research was done in Balitsa experiment garden in the district of Lembang in Bandung regency on November 2003-February 2004, the experiment start at 4 weeks age, at the height of 1260 m over the sea level. The observation was made systematically by absolute method (D-vac macine and relative method (sweeping net. The research so that there were 26 species of phytofagous insect, 9 species of predator insect, 6 species of parasitoid insect, 4 species of pollinator and 14 species of scavenger insect. According to the research the highest species number was got in the 8th week (3rd sampling, which had 27 variety of species, so the highest diversity was also got in this with 2,113 point. Aphididae and Cicadellidae was the most insect found in roay plant. The research also had high number of species insect so the diversity of insect and evenness become high. A community will have the high stability if it is a long with the high diversity. High evenness in community that has low species dominance and high species number of insect so the high of species richness.

  11. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?

    Directory of Open Access Journals (Sweden)

    Michael C Otterstatter

    Full Text Available The conservation of insect pollinators is drawing attention because of reported declines in bee species and the 'ecosystem services' they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, 'Colony Collapse Disorder'; yet, we still have little understanding of the cause(s of bee declines. Wild bumble bees (Bombus spp. have also suffered serious declines and circumstantial evidence suggests that pathogen 'spillover' from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35-100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even

  12. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator.

    Science.gov (United States)

    Balao, Francisco; Herrera, Javier; Talavera, Salvador; Dötterl, Stefan

    2011-05-01

    Scent emission is important in nocturnal pollination systems, and plant species pollinated by nocturnal insects often present characteristic odor compositions and temporal patterns of emission. We investigated the temporal (day/night; flower lifetime) and spatial (different flower parts, nectar) pattern of flower scent emission in nocturnally pollinated Dianthusinoxianus, and determined which compounds elicit physiological responses on the antennae of the sphingid pollinator Hyles livornica. The scent of D.inoxianus comprises 68 volatile compounds, but is dominated by aliphatic 2-ketones and sesquiterpenoids, which altogether make up 82% of collected volatiles. Several major and minor compounds elicit electrophysiological responses in the antennae of H. livornica. Total odor emission does not vary along day and night hours, and neither does along the life of the flower. However, the proportion of compounds eliciting physiological responses varies between day and night. All flower parts as well as nectar release volatiles. The scent of isolated flower parts is dominated by fatty acid derivatives, whereas nectar is dominated by benzenoids. Dissection (= damage) of flowers induced a ca. 20-fold increase in the rate of emission of EAD-active volatiles, especially aliphatic 2-ketones. We suggest that aliphatic 2-ketones might contribute to pollinator attraction in D. inoxianus, even though they have been attributed an insect repellent function in other plant species. We also hypothesize that the benzenoids in nectar may act as an honest signal ('nectar guide') for pollinators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  14. Flower and fruit production and insect pollination of the endangered Chilean tree, Gomortega keule in native forest, exotic pine plantation and agricultural environments Producción de flores y frutas y polinización por insectos de Gomortega keule en bosque nativo y en terrenos agrícolas, un árbol chileno en peligro de extinción

    Directory of Open Access Journals (Sweden)

    TONYA A LANDER

    2009-01-01

    Full Text Available This study was undertaken to discover whether patterns of flower and fruit production for Gomortega keule, an endangered Chilean tree, differ between exotic pine plantation, agricultural and native forest environments. A pilot study was also undertaken to identify the primary pollinators of G. keule. Although similar proportions of G. keule trees flowered in the agricultural and native forest áreas, more trees in the agricultural sites produced fruit compared to trees in the native forest sites. Flowering and fruiting of G. keule was extremely rare in the exotic pine plantations. Our data show that G. keule flowers are predominantly visited by syrphid flies in March-April, and that syrphids carry a greater proportion of G. keule pollen than the other insects collected. Native forest and low intensity agricultural systems appear to provide habitat in which syrphids forage and G. keule is able to produce fruit successfully, but exotic pine plantation does not; suggesting that a landscape made up of a mosaic of different landuse types is not necessarily inimical to the continued reproduction of G. keule, but that the combination and types of landuses and intensity of management must be carefully considered.El presente estudio fue realizado con el objetivo de establecer si los patrones de producción de flores y frutos de Gomortega keule (Gomortegaceae, un árbol chileno en peligro de extinción, son diferentes entre áreas de plantaciones de pinos exóticos, terrenos agrícolas y áreas de bosque nativo. También fue llevado a cabo un estudio piloto para identificar los principales polinizadores de G. keule. A pesar de que en tierras agrícolas y en áreas de bosque nativo floreció una proporción similar de árboles de G. keule, en zonas agrícolas fructificó una mayor proporción en comparación con los árboles de áreas de bosque nativo. La floración y fructificación de G. keule fue extremadamente rara en las áreas de plantaciones de

  15. Population Genetic Aspects of Pollinator Decline

    Directory of Open Access Journals (Sweden)

    Laurence Packer

    2001-06-01

    Full Text Available We reviewed the theory of conservation genetics, with special emphasis on the influence of haplodiploidy and other aspects of bee biology upon conservation genetic parameters. We then investigated the possibility that pollinator decline can be addressed in this way, using two meta-analytical approaches on genetic data from the Hymenoptera and the Lepidoptera. First, we compared levels of heterozygosity between the orders. As has been found previously, the haplodiploid Hymenoptera had markedly lower levels of genetic variation than the Lepidoptera. Bees had even lower levels, and bumble bees, in particular, often seemed almost monomorphic genetically. However, the statistically confounding effects of phylogeny render detailed interpretation of such data difficult. Second, we investigated patterns of gene flow among populations of these insects. Hymenoptera were far more likely to show genetic effects of population fragmentation than are Lepidoptera, even at similar geographic distances between populations. The reduced effective population sizes resulting from haplodiploidy probably contributed to this result. The proportion of species with low levels of gene flow did not vary among the different taxonomic groups within the Hymenoptera.

  16. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    Science.gov (United States)

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  17. Reproductive biology and pollination ecology of Triplaris gardneriana (Polygonaceae): a case of ambophily in the Brazilian Chaco.

    Science.gov (United States)

    Custodio, T; Comtois, P; Araujo, A C

    2017-07-01

    Triplaris gardneriana (Polygonaceae) is a dioecious pioneer tree reported as insect-pollinated, despite possessing traits related to anemophily. Here, we analyse the possible roles of insects and wind on the pollination of this species to establish whether the species is ambophilous. We carried out observations of floral biology, as well as on the frequency and behaviour of pollinators visiting flowers in a population of T. gardneriana in the Chaco vegetation of Brazil. We conducted experimental pollinations to determine the maternal fertility of female plants and whether they were pollen-limited, and we also conducted aerobiological experiments to provide evidence of how environmental factors influence atmospheric pollen dispersal. The population comprised an area of approximately 152.000 m 2 and was composed of 603 female and 426 male plants (sex ratio = 0.59:0.41). We observed 48 species of insects visiting flowers of T. gardneriana, of which the bees Scaptotrigona depilis and Apis mellifera scutellata were the most effective pollinators. We recorded pollen grains dispersed by wind on 74% of the glass slides placed on females, located at different distances (1-10 m) from male plants. Airborne pollen concentration was negatively correlated with relative humidity and positively correlated with temperature. Our observations and experimental results provide the first evidence that T. gardneriana is an ambophilous species, with pollen dispersal resulting from both animal and wind pollination. This mixed pollination strategy may be adaptive in T. gardneriana providing reproductive assurance during colonisation of sites with different biotic and abiotic conditions. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination.

    Science.gov (United States)

    Walker, M K; Howlett, B G; Wallace, A R; McCallum, J A; Teulon, D A J

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width arthropods were highly abundant among all except one field. Insects belonging to the orders Diptera and Thysanoptera were the most abundant and Hymenoptera, Collembola, Psocoptera, Hemiptera, and Coleoptera were also present. To test whether small arthropods might contribute to pollination, seed sets from umbels caged within 3 mm diameter mesh cages were compared with similarly caged, hand-pollinated umbels and uncaged umbels. Caged umbels that were not hand-pollinated set significantly fewer seeds (average eight seeds/umbel, n = 10) than caged hand-pollinated umbels (average 146 seeds/umbel) and uncaged umbels (average 481 seeds/umbel). Moreover, sticky traps placed on umbels within cages captured similar numbers of small arthropods as sticky traps placed on uncaged umbels, suggesting cages did not inhibit the movement of small arthropods to umbels. Therefore, despite the high abundance of small arthropods within fields, evidence to support their role as significant pollinators of commercial A. cepa seed crops was not found.

  19. Pollination in the oil palms Elaeis guineensis, E. oleifera and their hybrids (OxG, in tropical America

    Directory of Open Access Journals (Sweden)

    María Raquel Meléndez

    2016-03-01

    Full Text Available Oil palm (Elaeis guineensis is very important in the Central and South American economies. Plants suffer from a devastating fungal disease known as "lethal decay" or "pudrición del cogollo", in Spanish. Producer countries in Africa, Asia and tropical America have developed breeding programs that seek the tolerance of this disease by plants. The hybrids Elaeis guineensis x Elaeis oleifera (OxG are resistant, but show physiological problems that affect commercial productivity. Natural pollination in these hybrids is low and manual pollination has high labor costs. The Coleoptera order is the most numerous and diverse natural pollinator, and the Elaeidobius genus has high efficiency and specificity to oil palm species. Elaeidobius kameronicus, Elaeidobius subvittatus and Mystrops costaricensis are the insects most commonly associated with oil palm inflorescences. Dynamics in insect populations change according to palm species and weather conditions. It is necessary to understand the insect behavior and population dynamics in OxG hybrids. Thus, recent studies on oil palm pollination, insect diversity and distribution in Latin America are discussed in this study.

  20. The bumblebee Bombus hortorum is the main pollinating visitor to Digitalis purpurea (Common Foxglove in a U.K. population

    Directory of Open Access Journals (Sweden)

    Arthur Broadbent

    2012-06-01

    Full Text Available Specialization in plant-pollinator systems represents an important issue for both the ecological understanding and conservation of these systems. We investigated the extent to which the bumblebee Bombus hortorum (Linnaeus is the main potential pollinator of Common Foxglove, Digitalis purpurea L. Twenty D. purpurea patches were selected in North Yorkshire, U.K., ten each in woodland and garden or park habitat. All insects visiting D. purpurea within the patches were recorded over seventy 30-min bouts. The relative frequency of insect visitors to other flowering plant species within 15 m of each patch was also determined. B. hortorum and B. pascuorum were the two most frequent visitors to D. purpurea, accounting for 82 - 92% and 3 -17%, respectively, of all insect visits (n = 1682, depending on habitat. B. hortorum showed a significant preference for visiting D. purpurea relative to its frequency of visits to other available plant species. The relationship of D. purpurea with B. hortorum, which pollinates several plant species with long corollas, therefore represents a potential case of asymmetric specialization, albeit one that may vary spatially. Because D. purpurea reproduction appears dependent on insect pollination, B. hortorum and B. pascuorum may help underpin the viability of D. purpurea populations.

  1. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species....... The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims....

  2. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  3. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    Science.gov (United States)

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  4. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    Science.gov (United States)

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services

  5. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review.

    Science.gov (United States)

    MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M

    2015-06-01

    1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.

  6. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae).

    Science.gov (United States)

    Rodríguez-Rodríguez, María C; Valido, Alfredo

    2008-11-01

    Insular floras, characterized by simple pollination networks, sometimes include novel mutualistic agents such as nonspecialist nectarivores. In this study we confirmed the effective pollination of Isoplexis canariensis by opportunistic nectar-feeding birds in Tenerife, Canary Islands, Spain. This plant is among the ornithophilous species of the Canarian flora that lack past and present specialist nectarivorous birds. Experimental hand pollinations revealed self-compatibility, but cross-pollinated flowers produced a greater percentage of viable seeds than self-pollinated ones. Flowers were visited by five species of birds (Phylloscopus canariensis, Parus caeruleus, Sylvia melanocephala, Serinus canarius, and Fringilla coelebs) and by the endemic lizard (Gallotia galloti, Lacertidae). Insect pollination was absent, and the few insect visitors acted as nectar thieves or secondary nectar robbers. Birds represented 93.1% of total visits, with the Canarian Chiffchaff, Ph. canariensis, being the most frequent visitor. Flowers visited by birds set more, larger, and heavier fruit than flowers from which birds were excluded. Bird visitation also enhanced seed viability. These results demonstrate the active role of these opportunistic birds as effective pollinators of this Canarian bird-flower species. Further, the results reveal the need to consider the effect of these birds on the evolution of ornithophilous floral traits in absence of specialist nectarivores.

  7. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  8. Differential pollinator effectiveness and importance in a milkweed (Asclepias, Apocynaceae) hybrid zone.

    Science.gov (United States)

    Stoepler, Teresa M; Edge, Andrea; Steel, Anna; O'Quinn, Robin L; Fishbein, Mark

    2012-03-01

    Exceptions to the ideal of complete reproductive isolation between species are commonly encountered in diverse plant, animal, and fungal groups, but often the causative ecological processes are poorly understood. In flowering plants, the outcome of hybridization depends in part on the effectiveness of pollinators in interspecific pollen transport. In the Asclepias exaltata and A. syriaca (Apocynaceae) hybrid zone in Shenandoah National Park, Virginia, extensive introgression has been documented. The objectives of this study were to (1) determine the extent of pollinator overlap among A. exaltata, A. syriaca, and their hybrids and (2) identify the insect taxa responsible for hybridization and introgression. We observed focal plants of parental species and hybrids to measure visitation rate, visit duration, and per-visit pollinia removal and deposition, and we calculated pollinator effectiveness and importance. Visitation rates varied significantly between the 2 yr of the study. Overall, Apis mellifera, Bombus sp., and Epargyreus clarus were the most important pollinators. However, Bombus sp. was the only visitor that was observed to both remove and insert pollinia for both parent species as well as hybrids. We conclude that Bombus may be a key agent of hybridization and introgression in these sympatric milkweed populations, and hybrids are neither preferred nor selected against by pollinators. Thus, we have identified a potential mechanism for how hybrids act as bridges to gene flow between A. exaltata and A. syriaca. These results provide insights into the breakdown of prezygotic isolating mechanisms.

  9. Pollination ecology of Syagrus smithii (Arecaceae, a palm with cantharophily from Colombian Amazon

    Directory of Open Access Journals (Sweden)

    Nilson Y. Guerrero-Olaya

    2017-04-01

    Full Text Available From the evaluation floral morphology, reproductive phenology, floral biology, floral visitors and pollinator’s definition, the reproduction strategy of a Syagrus smithii (Arecaeae in a Colombian Amazonia region was described. Syagrus smithii palms grow up to 10 m high and produce one to three bisexual inflorescences. The bisexual inflorescences bear staminate and pistillate flowers arranged in triads with a female central flower and two male sides. The inflorescences are protandric and open during daytime, remaining active for 28 days. The male phase extends for the first 14 days, which are followed by 10 days of an inactive phase; the pistillate phase lasts up to four days. The inflorescences of S. smithii were visited by 37 species of insects belonging to the orders Coleoptera, Hymenoptera and Diptera. All visitors get to the flowers in searching of abundant pollen, floral tissues that feed them and as sites of reproduction. The most effective pollinators of S. smithii were Mystrops sp nov. 2 and Mystrops sp nov. 3 (Nitudiladae: Coleoptera, and Microstates sp.2 and Sibinia sp. 1 (Curculionidae: Coleoptera were secondary pollinators. Since all species of major pollinators have developed their life cycles into inflorescences, we suggest the existence of a specialized system and mutual dependence between pollinators and the palm, which ensures the presence of pollinators throughout the year and individuals with viable seeds.

  10. Spatial variation in pollinator communities and reproductive performance of Prosopis juliflora (Fabaceae

    Directory of Open Access Journals (Sweden)

    Asif Sajjad

    2012-06-01

    Full Text Available This study was conducted in an effort to understand the effects of spatial variations in pollinator assemblage due to habitat isolation on the reproductive performance of perennial plant species. Variations in pollinator assemblage structure (abundance, diversity and Shannon-Wiener index were studied at three widely isolated (100 to 200 km apart nature reserves of Southern Punjab, Pakistan, in order to explore its effects on reproductive performance of Prosopis juliflora. Species richness and abundance were highest in Pirowal Sanctuary followed by Chichawatni Sanctuary and Chak Katora forest reserve. The pollination system of P. juliflora was highly generalized with 77 insect visitor species in four orders among all the three sites. However, pollinator assemblage varied significantly in composition among the sites. Out of the four reproductive parameters considered, the number of pods per raceme and germination varied significantly among the three locations. The reproductive performance of P. juliflora in terms of number of pods per raceme and germination improved with abundance of pollinators.

  11. The modularity of pollination networks

    DEFF Research Database (Denmark)

    Olesen, Jens Mogens; Bascompte, J.; Dupont, Yoko

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally...... consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including...... almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with

  12. Asymmetrical nature of the Trollius-Chiastocheta interaction: insights into the evolution of nursery pollination systems.

    Science.gov (United States)

    Suchan, Tomasz; Beauverd, Mélanie; Trim, Naïké; Alvarez, Nadir

    2015-11-01

    The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system - the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T. europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T. europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T. europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T. europaeus flowers. We propose that the interaction could have evolved through maximization of by-product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.

  13. Reproductive biology of pointleaf manzanita (Arctostaphylos pungens) and the pollinator-nectar robber spectrum

    OpenAIRE

    Leif Richardson; Judith L. Bronstein

    2012-01-01

    Floral visitor species are often assumed to act either mutualistically towards plants (as pollinators) or to exploit them (as nectar-robbers or as nectar or pollen thieves). We investigated the reproductive biology of pointleaf manzanita (Arctostaphylos pungens K. Kunth), a regionally abundant North American shrub, in relation to the wide spectrum of behaviours displayed by its flower-visiting insects. We recorded A. pungens population-level flowering phenology and nectar standing crop, and c...

  14. The evolution of plant-insect mutualisms.

    Science.gov (United States)

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  15. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  16. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient.

    Directory of Open Access Journals (Sweden)

    Adam J Bates

    Full Text Available The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city.Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers, and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants.Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in

  17. Causes and Extent of Declines among Native North American Invertebrate Pollinators: Detection, Evidence, and Consequences

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Ecosystem health and agricultural wealth in North America depend on a particular invertebrate fauna to deliver pollination services. Extensive losses in pollinator guilds and communities can disrupt ecosystem integrity, a circumstance that today forces most farmers to rely on honey bees for much fruit and seed production. Are North America's invertebrate pollinator faunas already widely diminished or currently threatened by human activities? How would we know, what are the spatiotemporal scales for detection, and which anthropogenic factors are responsible? Answers to these questions were considered by participants in a workshop sponsored by the National Center for Ecological Analysis and Synthesis in October of 1999, and these questions form the nucleus for the papers in this special issue. Several contributors critically interpret the evidence for declines of bee and fly pollinators, the pollination deficits that should ensue, and their economic costs. Spatiotemporal unruliness in pollinator numbers, particularly bees, is shown to hinder our current insights, highlighting the need for refined survey and sampling designs. At the same time, two remarkable studies clearly show the long-term persistence of members of complex bee communities. Other authors offer new perspectives on habitat fragmentation and global warming as drivers of pollinator declines. Bees and lepidopterans are contrasted in terms of their natural genetic variation and their consequent resilience in the face of population declines. Overall, many ecologists and conservation biologists have not fully appreciated the daunting challenges that accompany sampling designs, taxonomy, and the natural history of bees, flies, and other invertebrate pollinators, a circumstance that must be remedied if we are to reliably monitor invertebrate pollinator populations and respond to their declines with effective conservation measures.

  18. Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?

    Science.gov (United States)

    Gibbs, Jason; Joshi, Neelendra K; Wilson, Julianna K; Rothwell, Nikki L; Powers, Karen; Haas, Mike; Gut, Larry; Biddinger, David J; Isaacs, Rufus

    2017-06-01

    During bloom of spring orchard crops, bees are the primary providers of pollination service. Monitoring these insects for research projects is often done by timed observations or by direct aerial netting, but there has been increasing interest in blue vane traps as an efficient passive approach to collecting bees. Over multiple spring seasons in Michigan and Pennsylvania, orchards were monitored for wild bees using timed netting from crop flowers and blue vane traps. This revealed a distinctly different community of wild bees captured using the two methods, suggesting that blue vane traps can complement but cannot replace direct aerial netting. The bee community in blue vane traps was generally composed of nonpollinating species, which can be of interest for broader biodiversity studies. In particular, blue vane traps caught Eucera atriventris (Smith), Eucera hamata (Bradley), Bombus fervidus (F.), and Agapostemon virescens (F.) that were never collected from the orchard crop flowers during the study period. Captures of bee species in nets was generally stable across the 3 yr, whereas we observed significant declines in the abundance of Lasioglossum pilosum (Smith) and Eucera spp. trapped using blue vane traps during the project, suggesting local overtrapping of reproductive individuals. We conclude that blue vane traps are a useful tool for expanding insights into bee communities within orchard crop systems, but they should be used with great caution to avoid local extirpation of these important insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture.

    Science.gov (United States)

    Li, P; Luo, Y; Bernhardt, P; Kou, Y; Perner, H

    2008-03-01

    The pollination of Cypripedium plectrochilum Franch. was studied in the Huanglong Nature Reserve, Sichuan, China. Although large bees (Bombus, Apis), small bees (Ceratina, Lasioglossum), ants (Formica sp.), true flies (Diptera) and a butterfly were all found to visit the flowers, only small bees, including three Lasioglossum spp. (L. viridiclaucum, L. sichuanense and L. sp.; Halictidae) and one Ceratina sp., carried the flower's pollen and contacted the receptive stigma. Measurements of floral architecture showed that interior floral dimensions best fit the exterior dimensions of Lasioglossum spp., leading to the consistent deposition and stigmatic reception of dorsally-placed, pollen smears. The floral fragrance was dominated by one ketone, 3-methyl-Decen-2-one. The conversion rate of flowers into capsules in open (insect) pollinated flowers at the site was more than 38%. We conclude that, while pigmentation patterns and floral fragrance attracted a wide variety of insect foragers, canalization of interior floral dimensions ultimately determined the spectrum of potential pollinators in this generalist, food-mimic flower. A review of the literature showed that the specialised mode of pollination-by-deceit in C. plectrochilum, limiting pollinators to a narrow and closely related guild of 'dupes' is typical for other members of this genus.

  20. Pollinator interactions with yellow starthistle (Centaurea solstitialis across urban, agricultural, and natural landscapes.

    Directory of Open Access Journals (Sweden)

    Misha Leong

    Full Text Available Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis, a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1 rates of bee visitation, 2 viable seed set, and 3 the efficiency of pollination (relationship between bee visitation and seed set. We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.

  1. Flower Constancy, Insect Psychology, and Plant Evolution

    Science.gov (United States)

    Chittka, Lars; Thomson, James D.; Waser, Nickolas M.

    Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.

  2. Pollination networks of oil-flowers: a tiny world within the smallest of all worlds.

    Science.gov (United States)

    Bezerra, Elisângela L S; Machado, Isabel C; Mello, Marco A R

    2009-09-01

    1. In the Neotropics, most plants depend on animals for pollination. Solitary bees are the most important vectors, and among them members of the tribe Centridini depend on oil from flowers (mainly Malpighiaceae) to feed their larvae. This specialized relationship within 'the smallest of all worlds' (a whole pollination network) could result in a 'tiny world' different from the whole system. This 'tiny world' would have higher nestedness, shorter path lengths, lower modularity and higher resilience if compared with the whole pollination network. 2. In the present study, we contrasted a network of oil-flowers and their visitors from a Brazilian steppe ('caatinga') to whole pollination networks from all over the world. 3. A network approach was used to measure network structure and, finally, to test fragility. The oil-flower network studied was more nested (NODF = 0.84, N = 0.96) than all of the whole pollination networks studied. Average path lengths in the two-mode network were shorter (one node, both for bee and plant one-mode network projections) and modularity was lower (M = 0.22 and four modules) than in all of the whole pollination networks. Extinctions had no or small effects on the network structure, with an average change in nestedness smaller than 2% in most of the cases studied; and only two species caused coextinctions. The higher the degree of the removed species, the stronger the effect and the higher the probability of a decrease in nestedness. 4. We conclude that the oil-flower subweb is more cohesive and resilient than whole pollination networks. Therefore, the Malpighiaceae have a robust pollination service in the Neotropics. Our findings reinforce the hypothesis that each ecological service is in fact a mosaic of different subservices with a hierarchical structure ('webs within webs').

  3. Pollination ecology and floral function of Brown’s peony (Paeonia brownii in the Blue Mountains of northeastern Oregon

    Directory of Open Access Journals (Sweden)

    Nan Vance

    2013-03-01

    Full Text Available Brown’s peony, Paeonia brownii (Paeoniaceae, is one of only two peony species native to the Western Hemisphere, yet its pollination ecology and breeding system have never been documented. Using flowering individuals of an endemic colony in the Blue Mountains of Oregon, U.S., we investigated the peony’s pollination system and floral function. We also examined pollen/carpel interactions through experimental pollinations aided by fluorescence microscopy. Paeonia brownii appears to be self compatible and mostly protogynous with floral traits of a generalist pollination system. The flowers appear to attract insects by producing abundant floral nectar secreted from lobes of a perigynous disc throughout their 9-15-days of anthesis. The most common pollen vectors were wasp queens (Vespidae, the large flower fly Criorhina caudata (Syrphidae, and females of Lasioglossum spp. (Halictidae, all of which foraged exclusively for nectar. Whether collected from foraging wasps and flies, anthers, or stigmas, about half the pollen grains appeared fertile. The number of ovules per carpel was about 19. Seed set (seeds/ovule of naturally pollinated flowers was about 20% with about 4 viable seeds per follicle. The number of fertile pollen grains transferred to the stigma under natural conditions was highly variable but generally low, which may have contributed in part to the low rate of seed set. This study raises further questions about the role of pollen sterility, floral nectar and vespid wasps in shaping a pollinator system that is unusual in Paeonia.

  4. The biology of flowering and pollination in umbellate vegetables. Part III. (Apium graveolens L. var. rapaceum Gaud.

    Directory of Open Access Journals (Sweden)

    Zofia Warakomska

    2013-12-01

    Full Text Available Investigations were carried-out on turnip root celery (Apium graveolens L. var. rapaceum Gaud.. Aim of the study was to examine the biology of flowering and the degree of flower atractiveness, as well as the insect influence on their pollination. The research was conducted during 1979 and 1981 vegetation seasons. Observations were made near Lublin on the loessy brown soil. Seeds were the most abundant in IV and V umbel rows. The isolated flowers did not produce less fertile seeds than the non-isolated ones. Recorded pollen production ranged to 100 kg per ha. The Syrphidae which pollinated celery, fed on their pollen.

  5. Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming.

    Science.gov (United States)

    Johnson, Christopher Michael; Pauw, Anton

    2014-05-01

    Plants are adapted for rodent pollination in diverse and intricate ways. This study explores an extraordinary example of these adaptations in the pincushion Leucospermum arenarium (Proteaceae) from South Africa. Live trapping and differential exclusion experiments were used to test the role of rodents versus birds and insects as pollinators. To explore the adaptive significance of geoflory, inflorescences were raised above ground level and seed production was compared. Captive rodents and flowers with artificial stigmas were used to test the effect of grooming on the rate of pollen loss. Microscopy, nectar composition analysis and manipulative experiments were used to investigate the bizarre nectar production and transport system. Differential exclusion of rodents, birds and insects demonstrated the importance of rodents in promoting seed production. Live trapping revealed that hairy-footed gerbils, Gerbillurus paeba, and striped field mice, Rhabdomys pumilio, both carried L. arenarium pollen on their forehead and rostrum, but much larger quantities ended up in faeces as a result of grooming. Terrarium experiments showed that grooming exponentially diminished the pollen loads that they carried. The nectar of L. arenarium was found to be unusually viscous and to be presented in a novel location on the petal tips, where rodents could access it without destroying the flowers. Nectar was produced inside the perianth, but was translocated to the petal tips via capillary ducts. In common with many other rodent-pollinated plants, the flowers are presented at ground level, but when raised to higher positions seed production was not reduced, indicating that selection through female function does not drive the evolution of geoflory. Despite the apparent cost of pollen lost to grooming, L. arenarium has evolved remarkable adaptations for rodent pollination and provides the first case of this pollination system in the genus.

  6. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    Science.gov (United States)

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  7. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis in Washington State, USA

    Directory of Open Access Journals (Sweden)

    David G. James

    2016-06-01

    Full Text Available Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp. are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus; however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  8. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA.

    Science.gov (United States)

    James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2016-06-29

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  9. Private channels in plant-pollinator mutualisms

    Science.gov (United States)

    Chen, Chun; Hossaert-McKey, Martine

    2010-01-01

    Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975

  10. An evolutionary basis for pollination ecology

    NARCIS (Netherlands)

    Willemstein, S.C.

    1987-01-01

    In the introduction and chapter 2 the incentives and way of reasoning are given for the description of an evolutionary basis of pollination ecology. Starting from the until recently rather anecdotical character of the study of pollination ecology as a whole, and in the absence of large-scale

  11. Pollinator specialization and pollination syndromes of three related North American Silene.

    Science.gov (United States)

    Reynolds, Richard J; Westbrook, M Jody; Rohde, Alexandra S; Cridland, Julie M; Fenster, Charles B; Dudash, Michele R

    2009-08-01

    Community and biogeographic surveys often conclude that plant-pollinator interactions are highly generalized. Thus, a central implication of the pollination syndrome concept, that floral trait evolution occurs primarily via specialized interactions of plants with their pollinators, has been questioned. However, broad surveys may not distinguish whether flower visitors are actual pollen vectors and hence lack power to assess the relationship between syndrome traits and the pollinators responsible for their evolution. Here we address whether the floral traits of three closely related hermaphroditic Silene spp. native to eastern North America (S. caroliniana, S. virginica, and S. stellata) correspond to predicted specialized pollination based on floral differences among the three species and the congruence of these floral features with recognized pollination syndromes. A nocturnal/diurnal pollinator exclusion experiment demonstrated that all three Silene spp. have diurnal pollinators, and only S. stellata has nocturnal pollinators. Multiyear studies of visitation rates demonstrated that large bees, hummingbirds, and nocturnal moths were the most frequent pollinators of S. caroliniana, S. virginica, and S. stellata, respectively. Estimates of pollen grains deposited and removed per visit generally corroborated the visitation rate results for all three species. However, the relatively infrequent diurnal hawkmoth pollinators of S. caroliniana were equally effective and more efficient than the most frequent large bee visitors. Pollinator importance (visitation X deposition) of each of the animal visitors to each species was estimated and demonstrated that in most years large bees and nocturnal moths were the most important pollinators of S. caroliniana and S. stellata, respectively. By quantifying comprehensive aspects of the pollination process we determined that S. virginica and S. stellata were specialized on hummingbirds and nocturnal moths, respectively, and S

  12. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  13. Determining the Pollinizer for Pecan Cultivars

    Directory of Open Access Journals (Sweden)

    Fereidoon Ajamgard

    2017-05-01

    Full Text Available This study was conducted to determine the best pollinizer for five selected pecan cultivars in southwest of Iran at Safiabad Agricultural Research Center in 2014-2015. The cultivars included: 'GraTex', '10J', 'Wichita 6J', 'GraKing', 'Choctaw' as pollinated cultivars (♀ and 'GraTex', 'Peruque', 'Comanche 4M', '10J', 'Wichita 6J', 'Mohawk', 'Mahan', 'Stuart 2J', '3J', 'Stuart 4J', 'GraKing', 'Choctaw', 'Apache', '6M', 'Wichita 7J' and 'Comanche 5M.' as pollinizer cultivars (♂. In the first step, a pollination chart of cultivars was determined in two years. The pollination chart of cultivars showed that all the cultivars investigated during this study were dichogamous and also protogynous except for the 'Peruque'. ‘GraKing’ had the longest duration of shedding pollen. Pollination chart showed that 'Peruque', ‘GraKing’, and 'Stuart 2J' had flowering overlap with the selected cultivars. Pollen germination test showed that the germination ability was different among the cultivars. It was 45% for 'GraKing' and 35% for 'Peruque', which were both recommended as pollinizers in this study. '6M', 'GraTex' and 'Stuart 4J' cultivars had the highest pollen germination percentage of 65%, 60% and 60%, respectively. The results of controlled pollinationtest showed that different pollen sources had no significant effect on nuts per cluster but self-pollinated all of the cultivars significantly reduced fruit set in first and second years. Based on the present research, pollination in pecan orchard was necessary for adequate yield. Also, 'Peruque', 'GraKing' and 'Stuart 2J' were the best pollinizers for five selected cultivars in southwest of Iran.

  14. Buzz in Paris: flower production and plant-pollinator interactions in plants from contrasted urban and rural origins.

    Science.gov (United States)

    Desaegher, James; Nadot, Sophie; Dajoz, Isabelle; Colas, Bruno

    2017-12-01

    Urbanisation, associated with habitat fragmentation, affects pollinator communities and insect foraging behaviour. These biotic changes are likely to select for modified traits in insect-pollinated plants from urban populations compared to rural populations. To test this hypothesis, we conducted an experiment involving four plant species commonly found in both urban and rural landscapes of the Île-de-France region (France): Cymbalaria muralis, Geranium robertianum, Geum urbanum and Prunella vulgaris. The four species were grown in four urban and four rural experimental sites in 2015. For each species and each experimental site, plants were grown from seeds collected in five urban and five rural locations. During flowering, we observed flower production and insect-flower interactions during 14 weeks and tested for the effects of experimental site location and plant origin on flower production and on the number of floral visits. The study species had various flower morphology and hence were visited by different floral visitors. The effect of experimental sites and seed origin also varied among study species. We found that (1) insect visits on P. vulgaris were more frequent in rural than in urban sites; (2) for C. muralis, the slope relating the number of pollinator visits to the number of flowers per individual was steeper in urban versus rural sites, suggesting a greater benefit in allocating resources to flower production in urban conditions; (3) as a likely consequence, C. muralis tended to produce more flowers in plants from urban versus rural origin.

  15. DNA barcoding implicates 23 species and four orders as potential pollinators of Chinese knotweed (Persicaria chinensis) in Peninsular Malaysia.

    Science.gov (United States)

    Wong, M-M; Lim, C-L; Wilson, J-J

    2015-08-01

    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.

  16. Impacts of urbanization process on insect diversity

    OpenAIRE

    Shuisong Ye; Yan Fang; Kai Li

    2013-01-01

    Rapid worldwide urbanization during the last century has led to more than half the world’s population living in urban regions. Studies of how urbanization affects insect diversity have focused on the following: insect abundance, distribution, extinction, food habits and ecosystem services. Native insect populations have declined greatly in urban areas, where studies of their spatial distribution have revealed that abundance decreases along what is termed the rural–city center gradient (RCG), ...

  17. Pollination in the Chilean Mediterranean-type ecosystem: a review of current advances and pending tasks.

    Science.gov (United States)

    Medel, R; González-Browne, C; Fontúrbel, F E

    2018-01-01

    plant demographic parameters and conservation, and to conduct studies that estimate the ecological service provided by Chilean native pollinators for crop yield and sustainable agriculture. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. Insects and Scorpions

    Science.gov (United States)

    ... insects or scorpions can be hazardous to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects of stinging or biting insects or scorpions range ...

  19. Effects of honeybee ( Apis mellifera ) pollination on seed set in ...

    African Journals Online (AJOL)

    This study was carried out to determine the efficiency of pollination with honeybee (Apis mellifera) on sunflower hybrid seed production under different types of pollination during 2005 and 2006 in Mustafakemalpasa-Bursa, Turkey. Three pollination types (1) in cages with honeybees, (2) hand pollination (in cages) and (3) in ...

  20. Persistence of pollination mutualisms in the presence of ants.

    Science.gov (United States)

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  1. Managed bumble bees (Bombus impatiens) (Hymenoptera: Apidae) caged with blueberry bushes at high density did not increase fruit set or fruit weight compared to open pollination

    Science.gov (United States)

    J. W. Campbell; J. O' Brien; J. H. Irvin; C. B. Kimmel; J. C. Daniels; J. D. Ellis

    2017-01-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of...

  2. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    OpenAIRE

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review d...

  3. The contribution of honey bees, flies and wasps to avocado (Persea americana pollination in southern Mexico

    Directory of Open Access Journals (Sweden)

    Jesica Perez-Balam

    2012-06-01

    Full Text Available Although avocado is native to Mexico, there are no comparative measures in this country on the performance of its flower visitors as pollinators. The contribution of honey bees, flies and wasps to the pollination of avocado from tropical Mexico was assessed by comparing abundance, speed of flower visitation, quantity of pollen carried per individual and pollen deposited on virgin flowers after single visits. The values of abundance and frequency of flower visitation with pollen deposition were combined to obtain a measure of pollinator performance (PP. The most abundant insects on avocado were flies (mean ± SE: 15. 2 ± 6.2, followed by honey bees (9.4 ± 6.3 and wasps (4.2 ± 3.1 (ANOVA F = 91.71, d.f. = 2,78; P P P = 0.001, the number of pollen grains deposited on a stigma after a single visit was similar for the three taxa (2-5. There was evidence for a significant and similarly positive PP of both honey bees and flies as avocado pollinators over wasps, given their abundance, potential for pollen transport and deposition of pollen on stigmas.

  4. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  5. Dynamical transitions in a pollination-herbivory interaction: a conflict between mutualism and antagonism.

    Directory of Open Access Journals (Sweden)

    Tomás A Revilla

    Full Text Available Plant-pollinator associations are often seen as purely mutualistic, while in reality they can be more complex. Indeed they may also display a diverse array of antagonistic interactions, such as competition and victim-exploiter interactions. In some cases mutualistic and antagonistic interactions are carried-out by the same species but at different life-stages. As a consequence, population structure affects the balance of inter-specific associations, a topic that is receiving increased attention. In this paper, we developed a model that captures the basic features of the interaction between a flowering plant and an insect with a larval stage that feeds on the plant's vegetative tissues (e.g. leaves and an adult pollinator stage. Our model is able to display a rich set of dynamics, the most remarkable of which involves victim-exploiter oscillations that allow plants to attain abundances above their carrying capacities and the periodic alternation between states dominated by mutualism or antagonism. Our study indicates that changes in the insect's life cycle can modify the balance between mutualism and antagonism, causing important qualitative changes in the interaction dynamics. These changes in the life cycle could be caused by a variety of external drivers, such as temperature, plant nutrients, pesticides and changes in the diet of adult pollinators.

  6. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    Science.gov (United States)

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  7. Large pollen loads of a South African asclepiad do not interfere with the foraging behaviour or efficiency of pollinating honey bees

    Science.gov (United States)

    Coombs, G.; Dold, A. P.; Brassine, E. I.; Peter, C. I.

    2012-07-01

    The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.

  8. Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches.

    Science.gov (United States)

    Schmucki, Reto; de Blois, Sylvie

    2009-07-01

    Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant-pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant-pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions.

  9. Distance from forest edge affects bee pollinators in oilseed rape fields.

    Science.gov (United States)

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  10. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages

    OpenAIRE

    Wu, Yun; Li, Qing‐Jun

    2017-01-01

    Abstract Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand ...

  11. Generalist versus specialist pollination systems in 26 Oenothera (Onagraceae

    Directory of Open Access Journals (Sweden)

    Kyra Neipp Krakos

    2014-09-01

    Full Text Available Although generalized and specialized plants are often discussed as alternative states, the biological reality may better be viewed as a continuum. However, estimations of pollinator specificity have been confounded in some studies by the assumption that all floral visitors are pollinators. Failure to account for pollen load can lead to inaccurate conclusions regarding the number of pollinators with which a species actually interacts. The aim of this study was to clarify the distribution of pollination-system specialization within one clade, using a more rigorous assessment of pollen flow. The genus Oenothera has long been used as a model system for studying reproductive biology, and it provides a diversity of pollination systems and a wealth of historical data. Both floral visitation rate and pollen-load analysis of sampled pollinators, combined into a metric of pollen flow, were used to quantify the pollination systems of 26 Oenothera taxa. Metric of pollinator specialization were calculated as functions of both total pollinator taxa, and as pollinator functional groups. We found that for Oenothera, the number of floral visitors highly overestimates the number of pollinators, and is inadequate for determining or predicting pollination system specialization. We found that that pollination systems were distributed on a gradient from generalized to specialized, with more pollinator-specialized plant taxa, especially when estimated using pollinator functional groups. These results are in conflict with previous studies that depict most plant species as generalists, and this finding may be related to how prior studies have estimated specialization.

  12. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  13. Find Best Management Practices to Protect Pollinators

    Science.gov (United States)

    Resources and ways to reduce potential pesticide exposure to honey bees and other pollinators include new pesticide labels, neonicotinoid insecticide information, reducing dust from treated seed, and state-level efforts.

  14. The importance of bee pollination of the sour cherry (Prunus cerasus Cultivar ‘Stevnsbaer’ in Denmark

    Directory of Open Access Journals (Sweden)

    Lise Hansted

    2012-12-01

    Full Text Available Low fruit set, despite normally-developed flowers, is often a significant contributor to poor yield of the self-fertile sour cherry (Prunus cerasus cultivar ‘Stevnsbaer’ in Denmark. The aim of this study was to investigate the effect of insect, and particularly, bee pollination on the fruit set of this cultivar, in order to provide orchard management information for both Danish ‘Stevnsbaer’ growers and beekeepers. Visits to cherry flowers by honey bees (Apis mellifera, Bombus species and solitary bees, were recorded during the flowering of ‘Stevnsbaer’ in five separate Danish orchards. The results indicate that there is a significantly higher fruit set on open pollinated branches when compared to caged branches, where bees and other pollinating insects where excluded. The results were qualitatively consistent over three different seasons (2007, 2009 and 2010. A period of prolonged cold, humid weather before and during early flowering probably reduced fruit set significantly in 2010 compared to 2009. Regarding the apparent benefits of bee pollination on fruit set and subsequent implications for yield, we recommend placing honeybees in ‘Stevnsbaer’ orchards during flowering to sustain commercially viable production. Another valuable management strategy would be to improve foraging and nesting conditions to support both honey and wild bees in and around the orchards.

  15. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    Science.gov (United States)

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  16. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii).

    Science.gov (United States)

    Sun, Shi-Guo; Huang, Zhi-Huan; Chen, Zhi-Bao; Huang, Shuang-Quan

    2017-03-01

    Properties of floral nectar have been used to predict if a plant species is pollinated by birds. To see whether winter-flowering plants evolve nectar properties corresponding to bird pollinators, nectar properties of several Camellia species (including the golden-flowered tea), as well as the role of floral visitors as effective pollinators, were examined. Potential pollinators of Camellia petelotii were identified at different times of day and under various weather conditions. A bird exclusion experiment was used to compare the pollination effectiveness of birds and insects. Nectar sugar components (fructose, glucose, and sucrose) from C. petelotii growing wild and another seven Camellia species and 22 additional cultivars (all in cultivation) were examined by high-performance liquid chromatography (HPLC). The sunbird Aethopyga siparaja and honeybees were the most frequent floral visitors to C. petelotii . Honeybee visits were significantly reduced in cloudy/rainy weather. The fruit and seed set of flowers with birds excluded were reduced by 64%, indicating that bird pollination is significant. For the wild populations of C. petelotii , a bagged flower could secrete 157 μL nectar; this nectar has a low sugar concentration (19%) and is sucrose-dominant (87%). The eight Camellia species and 22 cultivars had an average sugar concentration of around 30% and a sucrose concentration of 80%, demonstrating sucrose-dominant nectar in Camellia species. The nectar sugar composition of Camellia species was characterized by sucrose dominance. In addition, the large reduction in seed set when birds are excluded in the golden-flowered tea also supports the suggestion that these winter-flowering plants may have evolved with birds as significant pollinators. © 2017 Botanical Society of America.

  17. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    Science.gov (United States)

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  18. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  19. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.

    Science.gov (United States)

    Gezon, Zachariah J; Inouye, David W; Irwin, Rebecca E

    2016-05-01

    Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the

  20. Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia.

    Science.gov (United States)

    Rodriguez, Lillian Jennifer; Bain, Anthony; Chou, Lien-Siang; Conchou, Lucie; Cruaud, Astrid; Gonzales, Regielene; Hossaert-McKey, Martine; Rasplus, Jean-Yves; Tzeng, Hsy-Yu; Kjellberg, Finn

    2017-08-29

    allows specificity in the interaction, this variation does not necessarily lead to coevolutionary plant-insect diversification. Globally, our results evidence evolutionary plasticity in the fig-fig wasp mutualism. This is the first documentation of the presence of two distinct processes in pollinating fig wasp diversification on a host species: the formation of vicariant species and the co-occurrence of other species over large parts of their ranges probably made possible by character displacement.

  1. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.

    Science.gov (United States)

    Klahre, Ulrich; Gurba, Alexandre; Hermann, Katrin; Saxenhofer, Moritz; Bossolini, Eligio; Guerin, Patrick M; Kuhlemeier, Cris

    2011-05-10

    Differences in floral traits, such as petal color, scent, morphology, or nectar quality and quantity, can lead to specific interactions with pollinators and may thereby cause reproductive isolation. Petunia provides an attractive model system to study the role of floral characters in reproductive isolation and speciation. The night-active hawkmoth pollinator Manduca sexta relies on olfactory cues provided by Petunia axillaris. In contrast, Petunia exserta, which displays a typical hummingbird pollination syndrome, is devoid of scent. The two species can easily be crossed in the laboratory, which makes it possible to study the genetic basis of the evolution of scent production and the importance of scent for pollinator behavior. In an F2 population derived from an interspecific cross between P. axillaris and P. exserta, we identified two quantitative trait loci (QTL) that define the difference between the two species' ability to produce benzenoid volatiles. One of these loci was identified as the MYB transcription factor ODORANT1. Reciprocal introgressions of scent QTL were used for choice experiments under controlled conditions. These experiments demonstrated that the hawkmoth M. sexta prefers scented plants and that scent determines choice at a short distance. When exposed to conflicting cues of color versus scent, the insects display no preference, indicating that color and scent are equivalent cues. Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 78 FR 10167 - Pollinator Summit: Status of Ongoing Collaborative Efforts To Protect Pollinators; Notice of...

    Science.gov (United States)

    2013-02-13

    ... exposure to pollinators. Pollinators are an important component of agricultural production, critical to food and ecosystems, and must be protected so that they can continue to play this important role. The... may be of particular interest to, but is not limited to the following entities: Agricultural workers...

  3. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Science.gov (United States)

    James H. Cane; Rick. Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  4. Status and trends of European pollinators. Key findings of the STEP project

    NARCIS (Netherlands)

    Potts, S.; Biesmeijer, K.; Bommarco, R.; Kleijn, D.; Scheper, J.A.

    2015-01-01

    Natural Capital, and the ecosystem services derived from it, are essential to human well-be-
    ing and economic prosperity. Indeed, nature inspires and provides many solutions that can
    help us tackle some of the most pressing challenges of our time. For example, pollinators
    matter

  5. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.

    Science.gov (United States)

    Burkle, Laura A; Marlin, John C; Knight, Tiffany M

    2013-03-29

    Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.

  6. Selenium toxicity to honey bee (Apis mellifera L. pollinators: effects on behaviors and survival.

    Directory of Open Access Journals (Sweden)

    Kristen R Hladun

    Full Text Available We know very little about how soil-borne pollutants such as selenium (Se can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae foragers. Antennae and proboscises were stimulated with both organic (selenomethionine and inorganic (selenate forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate, reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other

  7. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Science.gov (United States)

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  8. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D.; Barber, G.; DeBarr, G.; Thornton, M.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the latter insects to control kudzu.

  9. Experimental evidence that honeybees depress wild insect densities in a flowering crop.

    Science.gov (United States)

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G

    2016-11-30

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). © 2016 The Author(s).

  10. A nuclear insect appears

    International Nuclear Information System (INIS)

    Shin, Gi Hwal

    1989-06-01

    This book is dairy of a nuclear insect in A. F. era. It consists of 6 parts, which have fun pictures and titles. The contents are the letter that is sent the Homo sapiens by insect, exodus of nuclear insect F 100 years latter. The time that a nuclear insect is attacked in F 101, the time that a nuclear dinosaur is beat in AF 102, the time that a nuclear insect struggles in AF 104 and the time that a nuclear insect drifts in AF 104.

  11. Food for honeybees? Pollinators and seed set of Anthyllis barba-jovis L. (Fabaceae in arid coastal areas of the Mediterranean basin

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2017-07-01

    Full Text Available Abundance and diversity of insect pollinators are declining in many ecosystems worldwide. The abundance and diversity of wild and managed bees are related to the availability of continuous floral resources. In particular, in Mediterranean basin countries, the presence of wildflower spots enhances the establishment of social Apoidea, since coastal regions are usually characterized by pollen and nectar shortage in early spring and late summer. Anthyllis barba-jovis produces both nectar and pollen as important food source for bees helping them to overcome early spring period food shortage. We investigated flowering, seed set, and pollinator diversity of A. barba-jovis in arid coastal environments of the Mediterranean basin. Pollinator abundance reached a maximum in early April. Honeybees were the most common pollinators followed by bumblebees and solitary bees. Plants prevented from entomophilous pollination showed inbreeding depression with a strong decrease in seed-set. To the best of our knowledge, this is the first report on pollination ecology of A. barba-jovis.

  12. Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana.

    Science.gov (United States)

    Reynolds, Richard J; Fenster, Charles B

    2008-05-01

    Pollinator importance, the product of visitation rate and pollinator effectiveness, is a descriptive parameter of the ecology and evolution of plant-pollinator interactions. Naturally, sources of its variation should be investigated, but the SE of pollinator importance has never been properly reported. Here, a Monte Carlo simulation study and a result from mathematical statistics on the variance of the product of two random variables are used to estimate the mean and confidence limits of pollinator importance for three visitor species of the wildflower, Silene caroliniana. Both methods provided similar estimates of mean pollinator importance and its interval if the sample size of the visitation and effectiveness datasets were comparatively large. These approaches allowed us to determine that bumblebee importance was significantly greater than clearwing hawkmoth, which was significantly greater than beefly. The methods could be used to statistically quantify temporal and spatial variation in pollinator importance of particular visitor species. The approaches may be extended for estimating the variance of more than two random variables. However, unless the distribution function of the resulting statistic is known, the simulation approach is preferable for calculating the parameter's confidence limits.

  13. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science.

    Directory of Open Access Journals (Sweden)

    Helen E Roy

    Full Text Available Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science.The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups visiting focal plants of lavender (Lavendula spp. were carried out by about 13 000 primary school children (7-11 years old from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant. However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high.Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs would allow this to be tested and for records to be verified.

  14. Why so many flowers? A preliminary assessment of mixed pollination strategy enhancing sexual reproduction of the invasive Acacia longifolia in Portugal

    Directory of Open Access Journals (Sweden)

    M. Giovanetti

    2018-03-01

    Full Text Available Acacia longifolia, a native legume from Australia, has been introduced in many European countries and elsewhere, thus becoming one of the most important global invasive species. In Europe, its flowering occurs in a period unsuitable for insect activity: nonetheless it is considered entomophilous. Floral traits of this species are puzzling: brightly coloured and scented as liked by insects, but with abundant staminate small-sized flowers and relatively small pollen grains, as it is common in anemophilous species. Invasion processes are especially favoured when reshaping local ecological networks, thus the interest in understanding pollination syndromes associated with invasive plant species that may facilitate invasiveness. Moreover, a striking difference exists between its massive flowering and relatively poor seed set. We introduced a novel approach: first, we consider the possibility that a part of the pollination success is carried on by wind and, second, we weighted the ethological perspective of the main pollinator. During the flowering season of A. longifolia (February–April 2016, we carried on exclusion experiments to detect the relative contribution of insects and wind. While the exclusion experiments corroborated the need for pollen vectors, we actually recorded a low abundance of insects. The honeybee, known pollinator of acacias, was relatively rare and not always productive in terms of successful visits. While wind contributed to seed set, focal observations confirmed that honeybees transfer pollen when visiting both the inflorescences to collect pollen and the extrafloral nectaries to collect nectar. The mixed pollination strategy of A. longifolia may then be the basis of its success in invading Portugal's windy coasts.

  15. The Impact of Environmental Mn Exposure on Insect Biology

    Directory of Open Access Journals (Sweden)

    Yehuda Ben-Shahar

    2018-03-01

    Full Text Available Manganese (Mn is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.

  16. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  17. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  18. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  19. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  20. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  1. Potential pollinators of tomato, Lycopersicon esculentum (Solanaceae), in open crops and the effect of a solitary bee in fruit set and quality.

    Science.gov (United States)

    Santos, A O R; Bartelli, B F; Nogueira-Ferreira, F H

    2014-06-01

    We identified native bees that are floral visitors and potential pollinators of tomato in Cerrado areas, described the foraging behavior of these species, and verified the influence of the visitation of a solitary bee on the quantity and quality of fruits. Three areas of tomato crops, located in Minas Gerais, Brazil, were sampled between March and November 2012. We collected 185 bees belonging to 13 species. Exomalopsis (Exomalopsis) analis Spinola, 1853 (Hymenoptera: Apidae) was the most abundant. Ten species performed buzz pollination. Apis mellifera L. 1758 (Hymenoptera: Apidae) and Paratrigona lineata (Lepeletier, 1836) (Hymenoptera: Apidae) could also act as pollinators. The fruit set and number of seeds obtained from the pollination treatment by E. analis were higher than those in the control group. Our results allowed the identification of potential tomato pollinators in Cerrado areas and also contributed information regarding the impact of a single species (E. analis) on fruit set and quality. Although most of the visiting bees show the ability for tomato pollination, there is an absence of adequate management techniques, and its usage is difficult with the aim of increasing the crop production, which is the case for E. analis. Species such as Melipona quinquefasciata, P. lineata, and A. mellifera, which are easy to handle, are not used for pollination services. Finally, it is suggested that a combination of different bee species that are able to pollinate the tomato is necessary to prevent the super-exploitation of only a single species for pollination services and to guarantee the occurrence of potential pollinators in the crop area.

  2. Controlled mass pollination in loblolly pine to increase genetic gains

    Science.gov (United States)

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  3. The hymenopterous pollinators of Himalayan foot hills of Pakistan ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... flowers (Bohart, 1972). Pollinators ... and crops. The inadequacies have arisen from habitat fragmentation ... Pollen colour. Availability ... due to its geographical importance. ... of pollinators varies with the topographic change. ..... G.F.J. Eagles & S.D. Price (Eds). ... pollinator in Vegetable Seed Production.

  4. The pollination of Canavalia virosa by Xylocopid and Magachilid bees

    Directory of Open Access Journals (Sweden)

    C. H. Stirton

    1977-11-01

    Full Text Available The floral morphology of Canavalia virosa (Roxb. Wight & Arn. is discussed in relation to pollination by Xylocopa flavorufa De Greer and  Megachile combusta Sm. It was found that the relationship between size of flower and bee influenced the type of pollinating strategy and its success. Bees smaller than M. combusta proved ineffective pollinators.

  5. Generalised pollination systems for three invasive milkweeds in Australia.

    Science.gov (United States)

    Ward, M; Johnson, S D

    2013-05-01

    Because most plants require pollinator visits for seed production, the ability of an introduced plant species to establish pollinator relationships in a new ecosystem may have a central role in determining its success or failure as an invader. We investigated the pollination ecology of three milkweed species - Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus - in their invaded range in southeast Queensland, Australia. The complex floral morphology of milkweeds has often been interpreted as a general trend towards specialised pollination requirements. Based on this interpretation, invasion by milkweeds contradicts the expectation than plant species with specialised pollination systems are less likely to become invasive that those with more generalised pollination requirements. However, observations of flower visitors in natural populations of the three study species revealed that their pollination systems are essentially specialised at the taxonomic level of the order, but generalised at the species level. Specifically, pollinators of the two Gomphocarpus species included various species of Hymenoptera (particularly vespid wasps), while pollinators of A. curassavica were primarily Lepidoptera (particularly nymphalid butterflies). Pollinators of all three species are rewarded with copious amounts of highly concentrated nectar. It is likely that successful invasion by these three milkweed species is attributable, at least in part, to their generalised pollinator requirements. The results of this study are discussed in terms of how data from the native range may be useful in predicting pollination success of species in a new environment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  7. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  8. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    Science.gov (United States)

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  9. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo.

    Science.gov (United States)

    Hoe, Y C; Gibernau, M; Maia, A C D; Wong, S Y

    2016-07-01

    In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co

  10. Diet overlap of mammalian herbivores and native bees: implications for managing co-occurring grazers and pollinators

    Science.gov (United States)

    Sandra J. DeBano; Samantha M. Roof; Mary M. Rowland; Lauren A. Smith

    2016-01-01

    Many federal, state, and tribal agencies, as well as nonprofit organizations, have recently increased efforts to understand how natural areas can be managed to enhance native pollinators and the ecosystem services they provide. However, managing this important group must be balanced with other services that natural areas provide including hunting, timber production,...

  11. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Directory of Open Access Journals (Sweden)

    Eduardo Freitas Moreira

    Full Text Available Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for

  12. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  13. Using Publicly Available Data to Quantify Plant-Pollinator Interactions and Evaluate Conservation Seeding Mixes in the Northern Great Plains.

    Science.gov (United States)

    Otto, C R V; O'Dell, S; Bryant, R B; Euliss, N H; Bush, R M; Smart, M D

    2017-06-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant-pollinator interaction data collected from 2012-2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant-pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera-Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  15. Generalist bees pollinate red-flowered Penstemon eatonii: duality in the hummingbird pollination syndrome

    Science.gov (United States)

    The red tubular flowers of Penstemon eatonii (Plantaginaceae, formerly Scrophulariaceae) conform to the classic pollination syndrome for hummingbirds. This could be problematic when farming this wildflower for rangeland restoration seed. By some models and experiments with nectaring bumblebees at ...

  16. Insect barcode information system.

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  17. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination

    OpenAIRE

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J.; Settele, Josef; Kremen, Claire; Dicks, Lynn V.

    2017-01-01

    Worldwide, human appropriation of ecosystems is disrupting plant–pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of population...

  18. Exploring Nectar Biology To Learn about Pollinators.

    Science.gov (United States)

    LaBare, Kelly M.; Broyles, Steven B.; Klotz, R. Lawrence

    2000-01-01

    Discusses the importance of studying nectar biology. Describes how to extract nectar from various flowers, measure nectar volume, determine sugar concentration, and determine caloric value per nectar sample. These data are then related to hummingbird energetics to determine how many flowers are required to supply the pollinator with its caloric…

  19. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers.

    Science.gov (United States)

    Gaines-Day, Hannah R; Gratton, Claudio

    2017-08-01

    The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250) regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees.

  20. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA Cranberry Growers

    Directory of Open Access Journals (Sweden)

    Hannah R. Gaines-Day

    2017-08-01

    Full Text Available The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250 regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees.

  1. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    Science.gov (United States)

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  2. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  3. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    Directory of Open Access Journals (Sweden)

    Jerry J. Bromenshenk

    2015-10-01

    Full Text Available This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  4. Busy Bees: Variation in Insect Flower-Visiting Rates across Multiple Plant Species

    Directory of Open Access Journals (Sweden)

    Margaret J. Couvillon

    2015-01-01

    Full Text Available We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy growing in Sussex, United Kingdom, by following individual insects (n=2987 from nine functional groups (honey bees (Apis mellifera, bumble bees (Bombus spp., hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths. Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16, with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp. than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genus Osmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute compared to the other non-Apidae bees (4.3 flowers/minute. Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%. Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.

  5. Honey bee contribution to canola pollination in Southern Brazil Abelhas melíferas na polinização de canola no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Annelise de Souza Rosa

    2011-04-01

    Full Text Available Although canola, (Brassica napus L., is considered a self-pollinating crop, researchers have indicated that crop productivity increases as a result of honey bee Apis mellifera L. pollination. Given this crop's growing importance in Rio Grande do Sul State, Brazil, this work evaluated the increase in pod and seed productivity with respect to interactions with anthophilous insects and manual pollination tests. The visiting frequency of A. mellifera was correlated with the crop's blooming progression, and productivity comparisons were made between plants visited by insects, manually pollinated plants (geitonogamy and xenogamy and plants without pollination induction. Pod set and seed production per plant were determined for each treatment. Among the 8,624 recorded flower-visiting insects, Hymenoptera representatives were the most prevalent (92.3%, among which 99.8% were A. mellifera. The correlation between these bees and blooming progression was positive (r = 0.87; p = 0.002. Pollination induction increased seed productivity from 28.4% (autogamy to 50.4% with insect visitations, as well as to 48.7 (geitonogamy and to 55.1% (xenogamy through manual pollination.A canola (Brassica napus L. é considerada autocompatível, embora pesquisadores indiquem aumento na produtividade da cultura resultante da polinização efetuada por Apis mellifera L.. Considerando-se a crescente importância dessa cultura no Rio Grande do Sul, avaliou-se o incremento da produtividade de síliquas e sementes a partir de interações com insetos antófilos e com testes de polinização manual. A freqüência de visitas de A. mellifera foi relacionada com o desenvolvimento da floração da cultura e a produtividade foi comparada entre plantas visitadas por insetos, polinizadas manualmente (geitonogamia e xenogamia e com ausência de indução de polinização. Em cada tratamento avaliou-se a produtividade de síliquas e de sementes formadas por planta. Dentre os 8.624 insetos

  6. Plant Secondary Metabolites Modulate Insect Behavior-Steps Toward Addiction?

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2018-04-01

    Full Text Available Plants produce a diversity of secondary metabolites (PSMs that serve as defense compounds against herbivores and microorganisms. In addition, some PSMs attract animals for pollination and seed dispersal. In case of pollinating insects, PSMs with colors or terpenoids with fragrant odors attract pollinators in the first place, but when they arrive at a flower, they are rewarded with nectar, so that the pollinators do not feed on flowers. In order to be effective as defense chemicals, PSMs evolved as bioactive substances, that can interfere with a large number of molecular targets in cells, tissues and organs of animals or of microbes. The known functions of PSMs are summarized in this review. A number of PSMs evolved as agonists or antagonists of neuronal signal transduction. Many of these PSMs are alkaloids. Several of them share structural similarities to neurotransmitters. Evidence for neuroactive and psychoactive PSMs in animals will be reviewed. Some of the neuroactive PSMs can cause addiction in humans and other vertrebrates. Why should a defense compound be addictive and thus attract more herbivores? Some insects are food specialists that can feed on plants that are normally toxic to other herbivores. These specialists can tolerate the toxins and many are stored in the insect body as acquired defense chemicals against predators. A special case are pyrrolizidine alkaloids (PAs that are neurotoxic and mutagenic in vertebrates. PAs are actively sequestered by moths of the family Arctiidae and a few other groups of arthropods. In arctiids, PAs are not only used for defense, but also serve as morphogens for the induction of male coremata and as precursors for male pheromones. Caterpillars even feed on filter paper impregnated with pure PAs (that modulate serotonin receptors in vertebrates and maybe even in insects and thus show of behavior with has similarities to addiction in vertebrates. Not only PA specialists, but also many monophagous

  7. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    Directory of Open Access Journals (Sweden)

    Tony J Popic

    Full Text Available Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  8. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    Science.gov (United States)

    Popic, Tony J; Davila, Yvonne C; Wardle, Glenda M

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2) area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  9. Dynamics of an ant-plant-pollinator model

    Science.gov (United States)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  10. Pollinator effectiveness varies with experimental shifts in flowering time.

    Science.gov (United States)

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  11. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  12. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines

    Directory of Open Access Journals (Sweden)

    Norman Ratcliffe

    2014-01-01

    Full Text Available Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.

  13. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  14. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    Science.gov (United States)

    Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  15. A comparison of controlled self-pollination and open pollination results based on maize grain quality

    Directory of Open Access Journals (Sweden)

    Hanna Sulewska

    2014-05-01

    Full Text Available Maize (Zea mays L. grain endosperm is triploid (3n, of which 2n come from the male (transferred by pollen and only 1n from the female plant, thus a major impact of the male form can be expected on grain quality parameters. A good example of this relationship is the phenomenon of xenia. The aim of this study was to determine the effect of pollen on grain quality. The field experiment was conducted in 2011; seeds were harvested from eight cultivars: Bosman, Blask, Tur, Kozak, Bielik, Smok, SMH 220 and Kresowiak, derived from free pollination and controlled self-pollination of maize. Analyses of nutrient contents and starch content in the grain were conducted in the laboratory. In addition, 1000 grain weight and the hectoliter weight of all grain samples were recorded. The results confirmed differences in grain quality of maize hybrids obtained by self-pollination and by open pollination. Grain of maize plants obtained by open-pollination was characterised by higher contents of N-free extract and starch, and lower protein content. Undertaking further studies on this subject may indicate specific recommendations for agricultural practice, such as mixtures of hybrids with good combining abilities, which will contribute to improved grain quality without additional costs.

  16. Forest remnants enhance wild pollinator visits to cashew flowers and mitigate pollination deficit in NE Brazil

    Directory of Open Access Journals (Sweden)

    Breno Magalhães Freitas

    2014-02-01

    Full Text Available Pollination deficit could cause low yields in cashew (Anacardium occidentale and it is possible that deforestation surrounding cashew plantations may prevent effective pollinators from visiting cashew flowers and contribute to this deficit. In the present work, we investigated the proximity effect of small and large forest fragments on the abundance and flower visits by feral Apis mellifera and wild native pollinators to cashew flowers and their interactions with yield in cashew plantations. Cashew nut yield was highest when plantations bordered a small forest fragment and were close to the large forest fragment. Yield from plantations that did not border small forest fragments but were close to the large forest fragment did not differ to yield from plantations at a greater distance to the large forest fragment. Flower visits by wild native pollinators, mainly Trigona spinipes, were negatively affected by distance to the large forest remnant and their numbers were directly correlated to nut yield. The number of A. mellifera visiting cashew flowers did not change significantly with distance to forest fragments, nor was it correlated with yield. We conclude that increasing the number of wild pollinator visits may increase yield, and proximity to large forest fragments are important for this.

  17. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  18. Pollination Biology and Spatio-Temporal Structuring of Some Major Acacia Species (Leguminosae) of the Arabian Peninsula

    International Nuclear Information System (INIS)

    Adgaba, N.; Alghamidi, A.; Tadesse, Y.; Getachew, A.; Ansari, M. J.

    2016-01-01

    Acacias are the dominant woody plant species distributed over the vast tracts of land throughout the Arabian Peninsula. However, information on spatio-temporal structuring and pollination biology of the species is not precisely available. To determine whether any variations exist among the Acacia species in their temporal distribution, their flowering period was determined through monitoring the commencing, peaking and ending of flowering of each species. Moreover, if any variations exist in release of floral rewards among the different co-existing and co-flowering species as mechanisms of partitioning of pollinators, to minimize competition for pollination, the progress of their anthesis over time was recorded by scoring polyads to anthers ratio at different hours of a day. In addition, the amount and dynamics of nectar sugar per inflorescence (N =225/species) was determined following flower nectar sugar washing technique. Types and frequencies of flower visitors and their preferences were determined by recording the visitors 6 times a day. The current study revealed that the Acacia species of the Arabian Peninsula are spatio-temporally structured: some species co-exist yet have different flowering seasons, whereas others co-exist, flowering concurrently yet exhibit a shift in their time of peak flowering and in the time at which the peak pollen is released during the day. This study demonstrates that all Acacia species examined secrete a considerable amount of nectar (2.24+-1.72 -10.02+-4.0mg/inflorescence) which serves as a floral reward for pollinators. Insects of the Order Hymenoptera are the most prevalent visitors to Acacia species in the region. The variations in spatio-temporal structuring of the Acaciaspecies could be due to their adaptation of reducing competition for pollinators and minimizing hetero-specific pollen transfer. (author)

  19. Insects and diseases

    Science.gov (United States)

    John W. Couston

    2009-01-01

    Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...

  20. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  1. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  2. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards.

    Science.gov (United States)

    Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-09-20

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.

  3. Physico-Chemical Characteristics of Pollinated and Non Pollinated Date Fruit of District Khairpur, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Wahid Bux Jatoi

    2012-12-01

    Full Text Available Elemental patterns are often used for the classification or identification of date fruit varieties. Five ripening stages of six date varieties were collected and studied from the pre ripening to the post ripening stage. Pollinated and non-pollinated date fruit of the same varieties were compared for their physical and chemical parameters. Physical parameters such as size, mass, colour, moisture, and pH were measured. In case of chemical characteristics the mineral composition of six different varieties of district Khairpur dates palm (Phoenix dactylifera L. fruit (Gorho, Asul Khurmo, Nur Aseel, Ghuray Wari, Toto, and Allah Wari were analysed using Atomic Absorption Spectroscopy (AAS. Generally, size, moisture and mineral content of the pollinated fruit increased up to 3rd and 4th stage then declined.

  4. Importance of pollinators in changing landscapes for world crops

    OpenAIRE

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, glo...

  5. Managed Bumble Bees (Bombus impatiens) (Hymenoptera: Apidae) Caged With Blueberry Bushes at High Density Did Not Increase Fruit Set or Fruit Weight Compared to Open Pollination.

    Science.gov (United States)

    Campbell, J W; O'Brien, J; Irvin, J H; Kimmel, C B; Daniels, J C; Ellis, J D

    2017-04-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of bumble bees to the pollination of commercial highbush blueberries in Florida is unknown. Herein, we determined if managed bumble bees could contribute to highbush blueberry pollination. There were four treatments in this study: two treatments of caged commercial bumble bee (Bombus impatiens Cresson) colonies (low and high weight hives), a treatment excluding all pollinators, and a final treatment which allowed all pollinators (managed and wild pollinators) in the area have access to the plot. All treatments were located within a highbush blueberry field containing two cultivars of blooming plants, 'Emerald' and 'Millennia', with each cage containing 16 mature blueberry plants. We gathered data on fruit set, berry weight, and number of seeds produced per berry. When pollinators were excluded, fruit set was significantly lower in both cultivars (58%). Berry weight was not significantly different among the treatments, and the number of seeds per berry did not show a clear response. This study emphasizes the importance of bumble bees as an effective pollinator of blueberries and the potential beneficial implications of the addition of bumble bees in commercial blueberry greenhouses or high tunnels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation

    International Nuclear Information System (INIS)

    Ram, J. Prasanth; Babu, T. Sudhakar; Dragicevic, Tomislav; Rajasekar, N.

    2017-01-01

    Highlights: • A new Bee Pollinator Flower Pollination Algorithm (BPFPA) is proposed for Solar PV Parameter extraction. • Standard RTC France data is used for the experimentation of BPFPA algorithm. • Four different PV modules are successfully tested via double diode model. • The BPFPA method is highly convincing in accuracy to convergence at faster rate. • The proposed BPFPA provides the best performance among the other recent techniques. - Abstract: The inaccurate I-V curve generation in solar PV modeling introduces less efficiency and on the other hand, accurate simulation of PV characteristics becomes a mandatory obligation before experimental validation. Although many optimization methods in literature have attempted to extract accurate PV parameters, all of these methods do not guarantee their convergence to the global optimum. Hence, the authors of this paper have proposed a new hybrid Bee pollinator Flower Pollination Algorithm (BPFPA) for the PV parameter extraction problem. The PV parameters for both single diode and double diode are extracted and tested under different environmental conditions. For brevity, the I_0_1, I_0_2, I_p_v for double diode and I_0_,I_p_v for single diode models are calculated analytically where the remaining parameters ‘R_s, R_p, a_1, a_2’ are optimized using BPFPA method. It is found that, the proposed Bee Pollinator method has all the scope to create exploration and exploitation in the control variable to yield a less RMSE value even under lower irradiated conditions. Further for performance validation, the parameters arrived via BPFPA method is compared with Genetic Algorithm (GA), Pattern Search (PS), Harmony Search (HS), Flower Pollination Algorithm (FPA) and Artificial Bee Swarm Optimization (ABSO). In addition, various outcomes of PV modeling and different parameters influencing the accurate PV modeling are critically analyzed.

  7. Aquatic Plant Control Research Program. Large-Scale Operations Management Test (LSOMT) of Insects and Pathogens for Control of Waterhyacinth in Louisiana. Volume 1. Results for 1979-1981.

    Science.gov (United States)

    1985-01-01

    and cucumber produced no evidence of disease symptoms. Cercospora rodmanii produced disease symptoms on only two varieties of lettuce in field tests...1978). He concluded that waterhyacinth is successful in eliminating water- lettuce because the larger leaves of waterhyacinth give it a competitive...adapted for 40 entomophily, pollination by insects has rarely been observed and self- pollination is the general rule (Penfound and Earle 1948). 32

  8. Pollination patterns and plant breeding systems in the Galapagos: a review.

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M; McMullen, Conley K; Traveset, Anna

    2012-11-01

    Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower-visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination

  9. Pollination patterns and plant breeding systems in the Galápagos: a review

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M.; McMullen, Conley K.; Traveset, Anna

    2012-01-01

    Background Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. Scope As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower–visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Conclusions Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase

  10. The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive succes in nearby intensively managed farmland

    NARCIS (Netherlands)

    Albrecht, M.; Duelli, P.; Müller, C.; Kleijn, D.; Schmid, B.

    2007-01-01

    1. Agri-environment schemes attempt to counteract the loss of biodiversity and associated ecosystem services such as pollination and natural pest control in agro-ecosystems. However, only a few studies have evaluated whether these attempts are successful. 2. We studied the effects of managing

  11. Collapse of a pollination web in small conservation areas.

    Science.gov (United States)

    Pauw, Anton

    2007-07-01

    A suspected global decline in pollinators has heightened interest in their ecological significance. In a worst-case scenario, the decline of generalist pollinators is predicted to trigger cascades of linked declines among the multiple specialist plant species to which they are linked, but this has not been documented. I studied a portion of a pollination web involving a generalist pollinator, the oil-collecting bee Rediviva peringueyi, and a community of oil-secreting plants. Across 27 established conservation areas located in the Cape Floral Region, I found substantial variation in the bees' occurrence in relation to soil type and the successional stage of the vegetation. Anthropogenic declines were detectable against this background of naturally occurring variation: R. peringueyi was absent from small conservation areas (urban matrix. In the absence of the bee, seed set failed in six specialist plant species that are pollinated only by R. peringueyi but remained high in a pollination generalist, which had replacement pollinators. The findings are consistent with theoretical predictions of the importance of generalist pollinators in maintaining the structure of pollination webs.

  12. Breeding system and pollination biology of the semidomesticated ...

    African Journals Online (AJOL)

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae ): Implications for fruit production, selective breeding, and conservation of genetic resources.

  13. Pollinators' mating rendezvous and the evolution of floral advertisement.

    Science.gov (United States)

    Fishman, Michael A; Hadany, Lilach

    2013-01-07

    Successful cross-fertilization in plant species that rely on animal pollinators depends not just on