WorldWideScience

Sample records for insect flight muscle

  1. Insect flight muscle metabolism

    NARCIS (Netherlands)

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is

  2. How Insect Flight Steering Muscles Work

    OpenAIRE

    Walker, Simon M.; Schwyn, Daniel A.; Mokso, Rajmund; Wicklein, Martina; Müller, Tonya; Doube, Michael; Stampanoni, Marco; Krapp, Holger G.; Taylor, Graham K.

    2014-01-01

    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for

  3. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  4. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  5. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    Science.gov (United States)

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model

  6. Flight Muscle Development in the Males of Glossina Pallidipes Reared for the Sterile Insect Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ciampor, F Jr; Palosova, Z; Mancosova, L; Takac, P [Institute of Zoology, Slovak Academy of Sciences, Bratislava, SK-845 06 (Slovakia)

    2012-07-15

    The project's main goal was to study the influence of laboratory conditions on the development of flight muscles and the ability to fly in males of Glossina pallidipes Austen. Flight muscles can serve as an important criterion in the quality control of mass reared tsetse flies. All experiments were performed in the research and training facility in Bratislava which provided the flies. The experiments were generally performed by comparing different age groups and groups with different flight activity. To acquire data, several approaches were employed, i.e. classical measurements (residual dry weight, thoracic surface) as well as other alternatives - flight mill, electron microscopy and immunohistochemistry - to visualize and analyse muscle development. The results clearly identified differences in age groups. Slight changes in the development of flight muscles regarding different chances to fly were also detected, but these were not sufficiently significant to decrease the quality of males produced in mass rearing facilities. No distinct trends (rising or declining of amount of metabolites) in the groups studied were detected. The differences were in the amount of analysed metabolic components and the structure of the flight muscles. Our results suggest that, similar to other Glossina species, in G. pallidipes males the first days after emergence are crucial for successful muscle development. On the other hand, rearing in cages does not negatively influence the quality of males with respect to their ability to fly and actively search for females in the wild after release. We also compared the mating behaviour of irradiated and non-irradiated males. We initiated the development of a functional walk-in field cage in which to rear a small colony of G. pallidipes under semi-natural conditions. Our work suggested that outside climatic conditions and suitable cage components, e.g. food source, limit the successful realization of using such a cage for rearing tsetse flies

  7. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  8. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  9. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  10. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2009-10-01

    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  11. Remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  12. Insect Flight: From Newton's Law to Neurons

    Science.gov (United States)

    Wang, Z. Jane

    2016-03-01

    Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton's law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall. Here I discuss recent developments along this line of inquiry in the case of insect flight. Asking how often a fly must sense its orientation in order to balance in air has shed new light on the role of motor neurons and steering muscles responsible for flight stability.

  13. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (cyborg insects or biobots.

  14. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  15. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  16. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    International Nuclear Information System (INIS)

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-01-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process

  17. Nocturnal insects use optic flow for flight control

    OpenAIRE

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  18. Recent developments in the remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Maharbiz, Michel M

    2010-01-01

    The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  19. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  20. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    Science.gov (United States)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  1. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  2. Transforming insect electromyograms into pneumatic muscle control

    Science.gov (United States)

    Rutter, Brandon; Mu, Laiyong; Ritzmann, Roy; Quinn, Roger

    2006-05-01

    Robots can serve as hardware models for testing biological hypotheses. Both for this reason and to improve the state of the art of robotics, we strive to incorporate biological principles of insect locomotion into robotic designs. Previous research has resulted in a line of robots with leg designs based on walking and climbing movements of the cockroach Blaberus discoidalis. The current version, Robot V, uses muscle-like Braided Pneumatic Actuators (BPAs). In this paper, we use recorded electromyograms (EMGs) to drive robot joint motion. A muscle activation model was developed that transforms EMGs recorded from behaving cockroaches into appropriate commands for the robot. The transform is implemented by multiplying the EMG by an input gain thus generating an input pressure signal, which is used to drive a one-way closed loop pressure controller. The actuator then can be modeled as a capacitance with input rectification. The actuator exhaust valve is given a leak rate, making the transform a leaky integrator for air pressure, which drives the output force of the actuator. We find parameters of this transform by minimizing the difference between the robot motion produced and that observed in the cockroach. Although we have not reproduced full-amplitude cockroach motion using this robot, results from evaluation on reduced-amplitude cockroach angle data strongly suggest that braided pneumatic actuators can be used as part of a physical model of a biological system.

  3. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  4. Predicting forest insect flight activity: A Bayesian network approach.

    Directory of Open Access Journals (Sweden)

    Stephen M Pawson

    Full Text Available Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model's predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

  5. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  6. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    Science.gov (United States)

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  7. Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.

    Science.gov (United States)

    Faruque, Imraan; Sean Humbert, J

    2010-05-21

    This paper presents a reduced-order model of longitudinal hovering flight dynamics for dipteran insects. The quasi-steady wing aerodynamics model is extended by including perturbation states from equilibrium and paired with rigid body equations of motion to create a nonlinear simulation of a Drosophila-like insect. Frequency-based system identification tools are used to identify the transfer functions from biologically inspired control inputs to rigid body states. Stability derivatives and a state space linear system describing the dynamics are also identified. The vehicle control requirements are quantified with respect to traditional human pilot handling qualities specification. The heave dynamics are found to be decoupled from the pitch/fore/aft dynamics. The haltere-on system revealed a stabilized system with a slow (heave) and fast subsidence mode, and a stable oscillatory mode. The haltere-off (bare airframe) system revealed a slow (heave) and fast subsidence mode and an unstable oscillatory mode, a modal structure in agreement with CFD studies. The analysis indicates that passive aerodynamic mechanisms contribute to stability, which may help explain how insects are able to achieve stable locomotion on a very small computational budget. Copyright (c) 2010. Published by Elsevier Ltd.

  8. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  9. Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities

    Science.gov (United States)

    Rauhamäki, Virve; Wolfram, Joy; Jokitalo, Eija; Hanski, Ilkka; Dahlhoff, Elizabeth P.

    2014-01-01

    Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary. PMID:24416122

  10. Insect neuropeptides regulating substrate mobilisation

    African Journals Online (AJOL)

    1997-09-25

    Sep 25, 1997 ... Insect flight muscles perform their work completely aerobically, and working flight musdes are ... locusts where they are involved in the control of carbohydrate ... the vertebrate hypothalamo/hypophyseal system, and it can.

  11. Flight Muscle Dimorphism and Heterogeneity in Flight Initiation of Field-Collected Triatoma infestans (Hemiptera: Reduviidae)

    OpenAIRE

    Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2007-01-01

    Recent experiments demonstrated that most field-collected Triatoma infestans (Klug) (Hemiptera: Reduviidae) adults from northern Argentina either never initiated flight or did so repeatedly in both sexes. This pattern could not be explained by sex, adult age, weight, weight-to-length ratio (W/L), or chance. We examined whether bugs that never initiated flight possessed developed flight muscles, and whether flight muscle mass relative to total body mass (FMR) was related to the probability of ...

  12. How Insects Initiate Flight: Computational Analysis of a Damselfly in Takeoff Flight

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo; Flow Simulation Research Group Team

    2017-11-01

    Flight initiation is essential for survival in biological fliers and can be classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of interest to understand how non-jumping takeoffs occur and what strategies insects use to generate the required forces. Using a high fidelity computational fluid dynamics simulation, we identify the flow features and compute the wing aerodynamic forces to elucidate how flight forces are generated by a damselfly performing a non-jumping takeoff. Our results show that a damselfly generates about three times its bodyweight during the first half-stroke for liftoff while flapping through a steeply inclined stroke plane and slicing the air at high angles of attack. Consequently, a Leading Edge Vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. This work was supported by National Science Foundation [CBET-1313217] and Air Force Research Laboratory [FA9550-12-1-007].

  13. Involvement of cyclic nucleotides in locust flight muscle metabolism

    NARCIS (Netherlands)

    Worm, R.A.A.

    1980-01-01

    1. Flight had no significant effect on the levels of c-AMP of c-GMP in the flight muscles of Locusta migratoria. 2. Injections of 0.01 or 0.1 corpus cardiacum equivalents into the abdominal cavity did not elicit any effect on cyclic nucleotide levels either. 3. Injection of A23187 resulted in

  14. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  15. Effect of the Insecticide Dinotefuran on the Ultrastructure of the Flight Muscle of Female Sogatella furcifera (Hemiptera: Delphacidae).

    Science.gov (United States)

    Liu, M G; Jiang, C X; Mao, M; Liu, C; Li, Q; Wang, X G; Yang, Q F; Wang, H J

    2017-04-01

    Sogatella furcifera Horváth (Hemiptera: Delphacidae), is a major migratory pest of rice crops in Asia. The ultrastructure of the flight muscle directly affects the flight ability of insects. The ultrastructure of the flight muscle of some insects can be affected by insecticides. However, the ultrastructure of the flight muscle of S. furcifera and the effect of insecticides on the flight muscle of S. furcifera are not well understood. The present study was conducted to determine the effect of the insecticide dinotefuran on the ultrastructure of the flight muscle of S. furcifera females. In this study, the cross-sectional area and the diameter of the myofibril cross-sections of dinotefuran-treated S. furcifera females increased with the number of days after emergence (DAE), and they were higher than in untreated females. The sarcomere length of myofibrils increased with the number of DAE, and it differed from that of the untreated females. On the first day after emergence, the higher the concentration of dinotefuran, the smaller was the extent of decrease. On the third day after emergence, the higher the concentration of dinotefuran, the larger was the extent of enhancement. For the percentage of mitochondria, those of LC10 and LC20 dinotefuran-treated S. furcifera females increased with the number of DAE and were higher than in untreated females. LC10 dinotefuran-treated S. furcifera females exhibited the largest increase. Thus, our results suggest that the flight ability of S. furcifera increased with time. Some concentrations of dinotefuran can enhance the flight capacity of S. furcifera. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle.

    Directory of Open Access Journals (Sweden)

    Ferdinandus

    Full Text Available This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing. A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.

  17. Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle.

    Science.gov (United States)

    Ferdinandus; Arai, Satoshi; Ishiwata, Shin'ichi; Suzuki, Madoka; Sato, Hirotaka

    2015-01-01

    This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.

  18. Limitations of rotational manoeuvrability in insects and hummingbirds: evaluating the effects of neuro-biomechanical delays and muscle mechanical power.

    Science.gov (United States)

    Liu, Pan; Cheng, Bo

    2017-07-01

    Flying animals ranging in size from fruit flies to hummingbirds are nimble fliers with remarkable rotational manoeuvrability. The degrees of manoeuvrability among these animals, however, are noticeably diverse and do not simply follow scaling rules of flight dynamics or muscle power capacity. As all manoeuvres emerge from the complex interactions of neural, physiological and biomechanical processes of an animal's flight control system, these processes give rise to multiple limiting factors that dictate the maximal manoeuvrability attainable by an animal. Here using functional models of an animal's flight control system, we investigate the effects of three such limiting factors, including neural and biomechanical (from limited flapping frequency) delays and muscle mechanical power, for two insect species and two hummingbird species, undergoing roll, pitch and yaw rotations. The results show that for animals with similar degree of manoeuvrability, for example, fruit flies and hummingbirds, the underlying limiting factors are different, as the manoeuvrability of fruit flies is only limited by neural delays and that of hummingbirds could be limited by all three factors. In addition, the manoeuvrability also appears to be the highest about the roll axis as it requires the least muscle mechanical power and can tolerate the largest neural delays. © 2017 The Author(s).

  19. The Role of Vision and Mechanosensation in Insect Flight Control

    Science.gov (United States)

    2012-01-01

    domestica) and the nocturnal bee ( Megalopta genalis) as our model animals. Megalopta are interesting model animals because they fly in the complex...controlling flight in the complex environment of a dark rainforest. The relatively low ground speed of Megalopta suggests that these bees use temporal...the centre of holes). Megalopta , rather surprisingly, has developed a different strategy for avoiding nearby obstacles. This novel and so far unknown

  20. Morphology and histochemistry of primary flight muscles in ...

    African Journals Online (AJOL)

    preincubation staining protocol for myosin ATPase. The primary flight muscles, serratus ventralis included type I, type IIa and type IIb fibers. Type I fibers were highly oxidative, as stained dark for NADHTR. Type IIa fibers exhibited relatively weak staining properties for NADH-TR and SDH, indicating an intermediate oxidative ...

  1. Effects of flight speed upon muscle activity in hummingbirds.

    Science.gov (United States)

    Tobalske, Bret W; Biewener, Andrew A; Warrick, Douglas R; Hedrick, Tyson L; Powers, Donald R

    2010-07-15

    Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0-10 m s(-1)). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s(-1)). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9+/-0.8 spikes per contraction in the PECT and 3.8+/-0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8+/-0.5%, the lowest reported for a flying bird, and average strain rate was 7.4+/-0.2 muscle

  2. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  3. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  4. History dependence in insect flight decisions during odor tracking.

    Science.gov (United States)

    Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne

    2018-02-01

    Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in

  5. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    Science.gov (United States)

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    Science.gov (United States)

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  7. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.

    Science.gov (United States)

    Reynolds, D R; Smith, A D; Chapman, J W

    2008-02-01

    Radar observations have consistently shown that high-altitude migratory flight in insects generally occurs after mass take-off at dusk or after take-off over a more extended period during the day (in association with the growth of atmospheric convection). In this paper, we focus on a less-studied third category of emigration - the 'dawn take-off' - as recorded by insect-monitoring radars during the summer months in southern England. In particular, we describe occasions when dawn emigrants formed notable layer concentrations centred at altitudes ranging from ca. 240 m to 700 m above ground, very probably due to the insects responding to local temperature maxima in the atmosphere, such as the tops of inversions. After persisting for several hours through the early morning, the layers eventually merged into the insect activity building up later in the morning (from 06.00-08.00 h onwards) in conjunction with the development of daytime convection. The species forming the dawn layers have not been positively identified, but their masses lay predominantly in the 16-32 mg range, and they evidently formed a fauna quite distinct from that in flight during the previous night. The displacement and common orientation (mutual alignment) characteristics of the migrants are described.

  8. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O. (IIT); (Vermont)

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  9. Crepuscular flight activity of an invasive insect governed by interacting abiotic factors.

    Directory of Open Access Journals (Sweden)

    Yigen Chen

    Full Text Available Seasonal and diurnal flight patterns of the invasive walnut twig beetle, Pityophthorus juglandis, were assessed between 2011 and 2014 in northern California, USA in the context of the effects of ambient temperature, light intensity, wind speed, and barometric pressure. Pityophthorus juglandis generally initiated flight in late January and continued until late November. This seasonal flight could be divided approximately into three phases (emergence: January-March; primary flight: May-July; and secondary flight: September-October. The seasonal flight response to the male-produced aggregation pheromone was consistently female-biased (mean of 58.9% females. Diurnal flight followed a bimodal pattern with a minor peak in mid-morning and a major peak at dusk (76.4% caught between 1800 and 2200 h. The primarily crepuscular flight activity had a Gaussian relationship with ambient temperature and barometric pressure but a negative exponential relationship with increasing light intensity and wind speed. A model selection procedure indicated that the four abiotic factors collectively and interactively governed P. juglandis diurnal flight. For both sexes, flight peaked under the following second-order interactions among the factors when: 1 temperature between was 25 and 30 °C and light intensity was less than 2000 lux; 2 temperature was between 25 and 35 °C and barometric pressure was between 752 and 762 mba (and declined otherwise; 3 barometric pressure was between 755 and 761 mba and light intensity was less than 2000 lux (and declined otherwise; and 4 temperature was ca. 30 °C and wind speed was ca. 2 km/h. Thus, crepuscular flight activity of this insect can be best explained by the coincidence of moderately high temperature, low light intensity, moderate wind speed, and low to moderate barometric pressure. The new knowledge provides physical and temporal guidelines for the application of semiochemical-based control techniques as part of an IPM

  10. Functional anatomy of vagina muscles in the blood-feeding insect, Rhodnius prolixus.

    Science.gov (United States)

    Chiang, R G; O'Donnell, M J

    2009-11-01

    The physiology of the muscles associated with the vagina in the blood-feeding insect, Rhodnius prolixus Stal, was investigated with the use of Methylene Blue staining to visualize the anatomy, and a micro force transducer to record spontaneous and neurally-evoked contractions. The vagina is associated with a dorsal muscle and a set of paired lateral muscles. The dorsal muscle extends from the base of the common oviduct to apodemes located laterally on sternite VIII, the first genital segment. The lateral muscles extend from a medially-located apodeme on the posterior edge of sternite VI around each side of the common oviduct to travel posteriorly along the side of the vagina before inserting laterally on apodemes on sternite VIII. The vagina muscles display spontaneous and neurally-evoked contractions that are prolonged but transient. The response to evoked contractions shows that the muscles are innervated by both excitatory and inhibitory motor axons. The degree of tension generated by evoked contractions is dependent on the frequency of stimulation with maximal tension being generated at 20-30Hz. This tension, which often exceeds 400mg, is transient and returns to a baseline within 1 to 2min during continuous stimulation. These results, which are the first to describe this chamber in this well-studied insect, are discussed with respect to the act of egg laying.

  11. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  12. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.

    Directory of Open Access Journals (Sweden)

    Mostafa R A Nabawy

    Full Text Available A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values.

  13. Control for small-speed lateral flight in a model insect

    International Nuclear Information System (INIS)

    Zhang Yanlai; Sun Mao

    2011-01-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  14. Control for small-speed lateral flight in a model insect.

    Science.gov (United States)

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  15. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

    Science.gov (United States)

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  16. Adjustment of muscle function to flight in bats; Komori no kinkino no hiko eno tekio

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, M. [Institute of the Space and Astronautical Science,Tokyo (Japan); Choi, I.H.

    1999-12-05

    This paper outlines the muscle of bats that generates a motive force for flight. The weight of the muscle is less compared with that of birds. The energy required for flight is twice as much as that for running. Conversely, in view of metabolic cost (transporting cost) for moving a unit mass for a unit distance, the transporting cost of bats for flying is one fifth. The acquisition of this flight ability through evolution can be inferred from the fossils of reptiles. Bats, having a stream-lined body shape and a small body mass, are capable of efficient flight. A fast durable flight is possible by having the pectoral muscle constituted of speed muscles of oxidation/glycolysis muscle fiber, a well-developed oxygen transporting system, the arrangement around the capillary of mitochondria and fat grains that are cell organs for producing energy, and a high-density contact between the capillary and the muscle fiber. The muscle functions at low body temperature and imparts adaptability to hibernation with the body temperature lowered. The flight is controlled by the cycle and synchronized with this biological clock, optical cycle and change in temperature. (NEDO)

  17. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...

  18. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  19. Why do insects enter chill coma? Low temperature and high extracellular potassium compromises muscle function in Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    and a frequency of 60 Hz. To explore to what extent loss of force during cold exposure reflects loss of muscle function, all experiments were performed both in the presence and absence of TTX, which selectively inhibits motor nerve function in insects. Maximum tetanic force decreased approximately 75% when...

  20. The scalable design of flapping micro air vehicles inspired by insect flight

    NARCIS (Netherlands)

    Lentink, D.; Jongerius, S.R.; Bradshaw, N.L.

    2009-01-01

    Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit

  1. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  2. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    Science.gov (United States)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  3. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  4. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed ...

  5. Energetic Metabolism and Biochemical Adaptation: A Bird Flight Muscle Model

    Science.gov (United States)

    Rioux, Pierre; Blier, Pierre U.

    2006-01-01

    The main objective of this class experiment is to measure the activity of two metabolic enzymes in crude extract from bird pectoral muscle and to relate the differences to their mode of locomotion and ecology. The laboratory is adapted to stimulate the interest of wildlife management students to biochemistry. The enzymatic activities of cytochrome…

  6. Physical workload on neck and shoulder muscles during military helicopter flight - a need for exercise training?

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir

    /shoulder muscles to assess possible overload that may call for exercise training to improve capacity and prevent neck pain. Methods Nine pilots and nine crew members from the Royal Danish Air Force participated in a standardized representative flight sortie encompassing: Patient transportation (A-B flight...... with the flexed and/or rotated positioning of the head may play a role for the high prevalence of neck/shoulder pain among this occupational group. The present exposure-assessment suggests that strengthening exercises for the UNE, lowering the relative load during flights, could potentially alleviate neck pain....

  7. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men

    Directory of Open Access Journals (Sweden)

    Mathias T. Vangsoe

    2018-03-01

    Full Text Available During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM improved significantly in both groups (Mean (95% confidence interval (CI, control group (Con: (2.5 kg (1.5, 3.5 p < 0.01, protein group (Pro: (2.7 kg (1.6, 3.8 p < 0.01 from pre- to post-. Leg and bench press one repetition maximum (1 RM improved by Con: (42.0 kg (32.0, 52.0 p < 0.01 and (13.8 kg (10.3, 17.2 p < 0.01, Pro: (36.6 kg (27.3, 45.8 p < 0.01 and (8.1 kg (4.5, 11.8 p < 0.01, respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

  8. Lipolytic activity in the flight muscles of Locusta migratoria measured with haemolymph lipoproteins as substrates

    NARCIS (Netherlands)

    Horst, D.J. van der; Wheeler, C.H.; Beenakkers, A.M.Th.

    1984-01-01

    A radiochemical assay is described in which neutral lipids presented as part of authentic haemolymph lipoproteins have been used as substrates to measure the lipolytic activity in the flight muscles of Locusta migratoria. The radiolabel in the substrate was located almost exclusively in the glycerol

  9. Ultrastructural changes in the flight muscle mitochondria of adult male mosquito Culex Pipiens L I

    International Nuclear Information System (INIS)

    Abd Elmeguid, A.; Elmoursy, A.A.; Rouchdy, H.; Elzahraa, F.

    1995-01-01

    Ultrastructural differences between differentiating myoblasts of 1-day old pupae and 2-day old pupae and between well developed flight muscles in newly emerged 1-day old and 2-day old and ageing 21-day old adult male Culex Pipiens were studied. Ageing mosquitoes showed various signs of deterioration, vocalization, fusion and disorientation of cristae. 6 figs

  10. Combined effect of space flight and radiation on skeletal muscles of rats

    International Nuclear Information System (INIS)

    Ilyina-Kakueva, E.I.; Portugalov, V.V.

    1977-01-01

    Skeletal muscles of rats flown for 20.5 d aboard the biosatellite Cosmos-690 and irradiated with a dose of 800 rads on the 10th flight day were studied. The radiation exposure aggravated the severity of atrophic and dystrophic processes in m. soleus and atrophic process in m. gastrocnemius that developed under the conditions of weightlessness and hypokinesia. At the same time, an exposure to penetrating radiation did not affect the muscles where no flight-induced pathologies occurred. The radiation affected the pattern of reparation in those regions of the soleus muscle that developed pathology inflight, slowed down resorption of the connective tissue formed during the pathological process, and inhibited the course of the reparative process

  11. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  12. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    International Nuclear Information System (INIS)

    Rai, Mamta; Nongthomba, Upendra

    2013-01-01

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization

  13. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  14. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids

    OpenAIRE

    Canavoso, Lilián E; Stariolo, Raúl; Rubiolo, Edilberto R

    2003-01-01

    The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-...

  15. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Sacktor, B

    1984-08-25

    Free Ca2+ was shown to inhibit the NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria. Inhibition by free Ca2+ concentrations of 40 microM or greater was found in the absence or presence of ADP and citrate, two known activators of the enzyme. Calcium decreased the affinity of the enzyme for its substrate, the magnesium DL-isocitrate chelate; no change in the apparent V of the reaction was observed. Calcium was inhibitory when activity was measured in the presence of fixed concentrations of magnesium DL-isocitrate chelate in the presence of several fixed concentrations of either free isocitrate3-, an activator, or free Mg2+, an inhibitor of the enzyme. That NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria was not activated by micromolar free Ca2+ is consistent with the view that calcium does not play a role in regulating the flux through the tricarboxylate cycle in this species.

  16. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Science.gov (United States)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  17. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: further evidence of convergence with hummingbirds.

    Science.gov (United States)

    Suarez, R K; Welch, K C; Hanna, S K; Herrera M, L G

    2009-06-01

    Given their high metabolic rates, nectarivorous diet, and ability to directly fuel their energetically-expensive flight using recently-ingested sugar, we tested the hypothesis that Pallas long tongued nectar bats (Glossophaga soricina) possess flight muscles similar to those of hummingbirds with respect to enzymatic flux capacities in bioenergetic pathways. In addition, we compared these biochemical capacities with flux rates achieved in vivo during hovering flight. Rates of oxygen consumption (V(O(2))) were measured during hover-feeding and used to estimate rates of ATP turnover, glucose and long-chain fatty acid oxidation per unit mass of flight muscle. Enzyme V(max) values at key steps in glucose and fatty acid oxidation obtained in vitro from pectoralis muscle samples exceed those found in the locomotory muscles of other species of small mammals and resemble data obtained from hummingbird flight muscles. The ability of nectar bats and hummingbirds to hover in fed and fasted states, fueled almost exclusively by carbohydrate or fat, respectively, allowed the estimation of fractional velocities (v/V(max)) at both the hexokinase and carnitine palmitoyltransferase-2 steps in glucose and fatty acid oxidation, respectively. The results further support the hypothesis of convergent evolution in biochemical and physiological traits in nectar bats and hummingbirds.

  18. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels

    OpenAIRE

    Brembs, Björn; Christiansen, F.; Pflüger, J.; Duch, C.

    2007-01-01

    Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight ...

  19. Allosteric regulation of 6-phosphofructo-1-kinase activity of fat body and flight muscle from the bloodsucking bug Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Gutemberg G. Alves

    2007-03-01

    Full Text Available 6-phosphofructo-1-kinase (phosphofructokinase; PFK activity from Rhodnius prolixus, a haematophagous insect which is usually a poor flyer, was measured and compared in two metabolically active tissues - flight muscle and fat body. The activity of this important regulatory glycolytic enzyme was much more pronounced in muscle (15.1 ± 1.4 U/mg than in fat body extracts (3.6±0.4 U/mg, although the latter presented higher levels of enzyme per protein content, as measured by western-blotting. Muscle extracts are more responsible than fat body to ATP and fructose 6-phosphate, both substrates of PFK. Allosteric regulation exerted by different effectors such as ADP, AMP and fructose 2,6-phosphate presented a singular pattern for each tissue. Optimal pH (8.0-8.5 and sensitivity to pH variation was very similar, and citrate was unable to inhibit PFK activity in both extracts. Our results suggest the existence of a particular PFK activity for each tissue, with regulatory patterns that are consistent with their physiological roles.A atividade da fosfofrutocinase (PFK de Rodnius prolixus, um inseto hematófago, o qual vôa somente pequenas distâncias, foi medida e comparada em dois tecidos metabolicamente ativos - músculo de asa e corpo gorduroso. A atividade desta importante enzima glicolítica regulatória foi muito mais pronunciada em músculo de asa (15,1 ±1,4 U/mg do que em extrato de corpo gorduroso (3,6 ±0,4 U/mg embora este último tenha apresentado níveis mais altos da enzima por quantidade de proteína, como medido por western-blotting. Extratos de músculo foram mais responsivos do que corpo gorduroso para ATP e frutose-6-fosfato, ambos substratos da PFK. A regulação alostérica exercida por diferentes efetores tais como ADP, AMP, frutose-2,6-bisfosfato apresentou um padrão singular para cada tecido. O pH ótimo (8,0-8,5 e a sensibilidade a variações de pH, foram muito similares e o citrato foi incapaz de inibir a atividade da PFK em

  20. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    Science.gov (United States)

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Waldman, J Rhea S; Swartz, Sharon M

    2015-10-07

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical 'string-like' system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. © 2015 The Author(s).

  1. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  2. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

    Science.gov (United States)

    Hieronymus, Tobin L

    2016-11-01

    Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.

  3. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S. (IIT); (Vermont); (BU)

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  4. Distributed power and control actuation in the thoracic mechanics of a robotic insect

    International Nuclear Information System (INIS)

    Finio, Benjamin M; Wood, Robert J

    2010-01-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  5. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    Science.gov (United States)

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  6. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  7. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

    Science.gov (United States)

    Orfanos, Zacharias; Sparrow, John C

    2013-01-01

    During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.

  8. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis.

    Science.gov (United States)

    Soler, Cédric; Taylor, Michael V

    2009-07-01

    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  9. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  10. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids.

    Science.gov (United States)

    Canavoso, Lilián E; Stariolo, Raúl; Rubiolo, Edilberto R

    2003-10-01

    The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

  11. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae: the role of carbohydrates and lipids

    Directory of Open Access Journals (Sweden)

    Lilián E Canavoso

    2003-10-01

    Full Text Available The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001. High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

  12. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    Science.gov (United States)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  13. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the "shoulder lock" in albatrosses.

    Science.gov (United States)

    Meyers, Ron A; Stakebake, Eric F

    2005-01-01

    As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.

  14. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kathleen M Gajewski

    2010-05-01

    Full Text Available The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM, we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F, effects on levels of transcripts of myosin heavy chain (mhc appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size.

  15. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  16. Physical Workload On Neck And Shoulder Muscles During Military Helicopter Flight

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Olsen, Henrik Baare

    , Odense University Hospital, DK E-mail: mmurray@health.sdu.dk AIM: Flight-related neck/shoulder pain is common among military helicopter pilots and crew members. During flight, the flight helmet and additional Night Vision Goggles (NVG) pose a considerable load on the cervical spine. The aim of this study....... (TRA), the upper neck extensors (UNE) and sternocleido-mastoid m. (SCM). Nine repetitive flights were completed, encompassing: Patient-Transport (PT), Patient-Transport with NVG (PT+NVG) and Search And Rescue with NVG (SAR+NVG). A standard helmet (1.85 kg) and NVG (1.1 kg) were used. The EMG signal...

  17. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Shukla, S P; Sacktor, B

    1984-11-01

    Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate ( + proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 microM) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled alpha-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (greater than 99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 microM), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 +/- 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mM. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, alpha-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the

  18. Quantitative analysis of veterinary drugs in bovine muscle and milk by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Saito-Shida, Shizuka; Sakai, Takatoshi; Nemoto, Satoru; Akiyama, Hiroshi

    2017-07-01

    A simple and reliable multiresidue method for quantitative determination of veterinary drugs in bovine muscle and milk using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was developed. Critical MS parameters such as capillary voltage, cone voltage, collision energy, desolvation gas temperature and extraction mass window were carefully optimised to obtain the best possible sensitivity. Analytical samples were prepared using extraction with acetonitrile and hexane in the presence of anhydrous sodium sulphate and acetic acid, followed by ODS cartridge clean-up. The developed method was validated for 82 veterinary drugs in bovine muscle and milk at spike levels of 0.01 and 0.1 mg kg - 1 . With the exception of cefoperazone and phenoxymethylpenicillin, all these compounds exhibited sufficient signal intensity at 0.01 μg ml -1 (equivalent to 0.01 mg kg - 1 ), indicating the high sensitivity of the developed method. For most targets, the determined accuracies were within 70-120%, with repeatability and reproducibility being below 20% at both levels. Except for sulfathiazole in bovine muscle, no interfering peaks at target compound retention times were detected in the blank extract, indicating that the developed method is highly selective. The absence of sulfathiazole in bovine muscle was confirmed by simultaneous acquisition at low and high collision energies to afford exact masses of molecular adduct and fragment ions. Satisfactory linearity was observed for all compounds, with matrix effects being negligible for most targets in bovine muscle and milk at both spike levels. Overall, the results suggest that the developed LC-QTOF-MS method is suitable for routine regulatory-purpose analysis of veterinary drugs in bovine muscle and milk.

  19. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  20. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromises muscle function in Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Petersen, Asbjørn G

    2014-01-01

    When exposed to low temperatures, many insect species enter a reversible comatose state (chill coma), which is driven by a failure of neuromuscular function. Chill coma and chill coma recovery have been associated with a loss and recovery of ion-homeostasis (particularly extracellular [K......+]) and accordingly onset of chill coma has been hypothesised to result from depolarization of membrane potential caused by loss of ion-homeostasis. Here we examined whether onset of chill coma is associated with a disturbance in ion balance by examining the correlation between disruption of ion homeostasis and onset...... of chill coma in locusts exposed to cold at varying rates of cooling. Chill coma onset temperature changed maximally 1°C under different cooling rates and marked disturbances of ion homeostasis were not observed at any of the cooling rates. In a second set of experiments we used isolated tibial muscle...

  1. Trapping of insects in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, S.C.; Parulekar, A.H.

    Some insects caught on RV Gaveshani, while on a cruise in the Arabian Sea in May-June 1986 is reported Of the 23 insects caught, 16 were lepidopterans An interesting flight behaviour of Psychota sp is described...

  2. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight.

    Science.gov (United States)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir; Olsen, Henrik Baare; Nørnberg, Bo Riebeling; Boyle, Eleanor; Søgaard, Karen; Sjøgaard, Gisela

    2016-04-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB) and performing search and rescue (SAR). SAR was performed with Night Vision Goggles (NVG), while AB was performed with (AB+NVG) and without NVG (AB-NVG). EMG was recorded for: trapezius (TRA), upper neck extensors (UNE), and sternocleido-mastoid (SCM). Maximal voluntary contractions (MVC) were performed for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from pre- (0.7±1.3) to post-sortie (1.6±1.9) for pilots (p=0.028). If sustained, UNE activity of ∼10% MVE is high, and implies a risk for neck disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  4. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  5. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.

    Directory of Open Access Journals (Sweden)

    Simon M Walker

    2014-03-01

    Full Text Available Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the

  6. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.

    Science.gov (United States)

    Walker, Simon M; Schwyn, Daniel A; Mokso, Rajmund; Wicklein, Martina; Müller, Tonya; Doube, Michael; Stampanoni, Marco; Krapp, Holger G; Taylor, Graham K

    2014-03-01

    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor.

  7. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  8. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  9. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  10. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  11. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  12. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  13. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  14. Sterile insect supply, emergence, and release

    International Nuclear Information System (INIS)

    Dowell, R.V.; Worley, J.; Gomes, P.J.

    2005-01-01

    Insect mass-rearing for a sterile insect technique (SIT) programme is designed to move beyond the large-scale rearing of insects in a laboratory to the industrial production of consistently high-quality insects for sterilization and release. Each facility reflects the unique biology of the insect reared within it, but there are some generalities for all rearing facilities. Rearing insects in self-contained modules offers flexibility, and increased safety from catastrophic occurrences, compared with using a single building which houses all facets of the rearing process. Although mechanizing certain aspects of the rearing steps helps provide a consistently high-quality insect, successful mass-rearing and delivery depends largely upon the human component. Besides production in centralized facilities, insects can be produced from purchased eggs, or nowadays, adult insects are often obtained from specialized satellite emergence/collection facilities. Interest in commercializing insect production and release is increasing. Shipping sterile insects, sometimes over long distances, is now common practice. Procedures for handling and chilling adult insects, and providing food and water prior to release, are continually being improved. Sterile insects are released via static-release receptacles, ground-release systems, or most commonly from the air. The aerial release of chilled sterile insects is the most efficient method of release, especially when aircraft flight paths are guided by a Global Positioning System (GPS) linked to a computer-controlled release mechanism. (author)

  15. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

    International Nuclear Information System (INIS)

    Truong, Tien Van; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-01-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle. (paper)

  16. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  17. Marketing insects

    DEFF Research Database (Denmark)

    Schiemer, Carolin; Halloran, Afton Marina Szasz; Jespersen, Kristjan

    2018-01-01

    In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood is a mar......In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood...... is a marketing term for nutrient-packed foods, which are successfully promoted to Western consumers with the promises of health, well-being and beauty. However, the increase in the demand in the West is argued to cause negative social, environmental, economic and cultural consequences – externalities – felt...

  18. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  19. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... He writes popular science articles in ... science, English poetry is his area of ... A fascinating branch of insect science (ento- ... Methods in Forensic Entomology .... bullet wound to the right temple, and a substantial pooling of.

  20. Eating insects

    OpenAIRE

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating creatures that are not regarded as food. The low consumer acceptance of this culturally inappropriate food is currently considered to be one of the key barriers to attaining the benefits of this po...

  1. The 2013 German-Russian BION-M1 Joint Flight Project: Skeletal Muscle and Neuromuscular Changes in Mice Housed for 30 Days in a Biosatellite on Orbit

    Science.gov (United States)

    Blottner, Dieter; Shenkman, Boris; Salanova, Michele

    Exposure to microgravity results in various structural, biochemical and molecular changes of the skeletal neuromuscular system. The BION Joint Flight Proposal between the Charité Berlin Center of Space Medicine (www.zwmb.de) in Berlin, and the Institute of Biomedical Problem (IMBP) in Moscow, provided an exciting opportunity for a more detailed analysis of neuromuscular changes in mice (C57/bl6) exposed to real microgravity housed for 30 days in a BION M1 biosatellite on orbit. The mice from the BION flight group (n=5) were compared to three different on-ground control groups (Flight control, BION-ground and Vivarium, each n=5 mice). We started to analyse various skeletal muscles from the hind limbs or trunk. Apart from routine structural and biochemical analysis (fiber size and type distribution, slow/fastMyHC) we test the hypothesis for the presence of a microgravity-induced sarcolemma-cytosolic protein shift of nitric oxide synthase (NOS) and partial loss in neuromuscular synapse scaffold protein (Homer) immunoexpression known to be prone to disuse in mice or humans (hind limb unloading, bed rest) as previously shown (Sandonà D et al., PLoS One, 2012, Salanova M et al., FASEB J, 2011). National Sponsors: Federal Ministry of Economics and Technology (BMWi) via the German AeroSpace Board, DLR e.V., Bonn-Oberkassel, Germany (#50WB1121); Contract RAS-IMBP/Charité Berlin # Bion-M1/2013

  2. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species....... The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims....

  3. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  4. Immunocytochemical electron microscopic study and western blot analysis of paramyosin in different invertebrate muscle cell types of the fruit fly Drosophila melanogaster, the earthworm Eisenia foetida, and the snail Helix aspersa.

    Science.gov (United States)

    Royuela, M; García-Anchuelo, R; Arenas, M I; Cervera, M; Fraile, B; Paniagua, R

    1996-04-01

    The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. The muscles studied were: transversely striated muscle with continuous Z lines (flight muscle from Drosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snail Helix aspersa), obliquely striated body wall muscle from the earthworm Eisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.

  5. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  6. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir

    2016-01-01

    for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference...... between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from...

  7. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  8. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    Science.gov (United States)

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-04-27

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors.

  9. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  10. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  11. Insects and Scorpions

    Science.gov (United States)

    ... insects or scorpions can be hazardous to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects of stinging or biting insects or scorpions range ...

  12. The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations.

    Science.gov (United States)

    Hansford, R G; Lehninger, A L

    1972-02-01

    1. Blowfly flight-muscle mitochondria respiring in the absence of phosphate acceptor (i.e. in state 4) take up greater amounts of K(+), Na(+), choline, phosphate and Cl(-) (but less NH(4) (+)) than non-respiring control mitochondria. 2. Uptake of cations is accompanied by an increase in the volume of the mitochondrial matrix, determined with the use of [(14)C]-sucrose and (3)H(2)O. The osmolarity of the salt solution taken up was approximately that of the suspending medium. 3. The [(14)C]sucrose-inaccessible space decreased with increasing osmolarity of potassium chloride in the suspending medium, confirming that the blowfly mitochondrion behaves as an osmometer. 4. Light-scattering studies showed that both respiratory substrate and a permeant anion such as phosphate or acetate are required for rapid and massive entry of K(+), which occurs in an electrophoretic process rather than in exchange for H(+). The increase in permeability to K(+) and other cations is probably the result of a large increase in the exposed area of inner membrane surface in these mitochondria, with no intrinsic increase in the permeability per unit area. 5. No increase in permeability to K(+) and other cations occurs during phosphorylation of ADP in state 3 respiration.

  13. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  14. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  15. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  16. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  17. A nuclear insect appears

    International Nuclear Information System (INIS)

    Shin, Gi Hwal

    1989-06-01

    This book is dairy of a nuclear insect in A. F. era. It consists of 6 parts, which have fun pictures and titles. The contents are the letter that is sent the Homo sapiens by insect, exodus of nuclear insect F 100 years latter. The time that a nuclear insect is attacked in F 101, the time that a nuclear dinosaur is beat in AF 102, the time that a nuclear insect struggles in AF 104 and the time that a nuclear insect drifts in AF 104.

  18. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  19. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  20. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.

    Science.gov (United States)

    Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M

    2017-04-01

    Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the

  1. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  2. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  3. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  4. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  5. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  6. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    Science.gov (United States)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  7. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  8. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  9. Phytoplasmas: bacteria that manipulate plants and insects.

    Science.gov (United States)

    Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou

    2008-07-01

    Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.

  10. Biological impacts of alcohol fuel emission on selected pollinator, predatory and nutrient-cycling insects and arachnids

    Energy Technology Data Exchange (ETDEWEB)

    D' Eliscu, P.N.

    1981-01-01

    Physiological and behavioral effects of methanol, ethanol, indolene, and formaldehyde emissions on selected arthropods are related to different relative organismic activities, metabolic rates, and respiratory demands. Various species of important pollinators, predators, and nutrient-cycling insects and arachnids respond differently to tailpipe and elevated levels of emissions. A gradient of responses is related to metabolism and trophic niche. Orders tested included various Hymenoptera, Diptera, Lepidoptera, Odonata, Orthoptera, Coleoptera, Collembola, Thysanura, Araneae, Acarina, and Opiliones. Responses included narcosis, spatial disorientation, cardiac arrhythmia, flight muscle and walking leg dysfunction, decreased feeding efficiency and prey capture success ratios, and increased positive thigmotaxis. Tolerance appears to be inversely related to oxygen demand of the arthropods tested, with active fliers most susceptible, weak fliers midscale, and non-fliers most tolerant. Electronic monitoring of heart, brain, and muscle characteristics suggests neuronal and neurosynaps disruptions from alcohols and formaldehyde, and neuromuscular effects from indolene in most arthropods tested.

  11. Phylogenomics resolves the timing and pattern of insect evolution.

    Science.gov (United States)

    Misof, Bernhard; Liu, Shanlin; Meusemann, Karen; Peters, Ralph S; Donath, Alexander; Mayer, Christoph; Frandsen, Paul B; Ware, Jessica; Flouri, Tomáš; Beutel, Rolf G; Niehuis, Oliver; Petersen, Malte; Izquierdo-Carrasco, Fernando; Wappler, Torsten; Rust, Jes; Aberer, Andre J; Aspöck, Ulrike; Aspöck, Horst; Bartel, Daniela; Blanke, Alexander; Berger, Simon; Böhm, Alexander; Buckley, Thomas R; Calcott, Brett; Chen, Junqing; Friedrich, Frank; Fukui, Makiko; Fujita, Mari; Greve, Carola; Grobe, Peter; Gu, Shengchang; Huang, Ying; Jermiin, Lars S; Kawahara, Akito Y; Krogmann, Lars; Kubiak, Martin; Lanfear, Robert; Letsch, Harald; Li, Yiyuan; Li, Zhenyu; Li, Jiguang; Lu, Haorong; Machida, Ryuichiro; Mashimo, Yuta; Kapli, Pashalia; McKenna, Duane D; Meng, Guanliang; Nakagaki, Yasutaka; Navarrete-Heredia, José Luis; Ott, Michael; Ou, Yanxiang; Pass, Günther; Podsiadlowski, Lars; Pohl, Hans; von Reumont, Björn M; Schütte, Kai; Sekiya, Kaoru; Shimizu, Shota; Slipinski, Adam; Stamatakis, Alexandros; Song, Wenhui; Su, Xu; Szucsich, Nikolaus U; Tan, Meihua; Tan, Xuemei; Tang, Min; Tang, Jingbo; Timelthaler, Gerald; Tomizuka, Shigekazu; Trautwein, Michelle; Tong, Xiaoli; Uchifune, Toshiki; Walzl, Manfred G; Wiegmann, Brian M; Wilbrandt, Jeanne; Wipfler, Benjamin; Wong, Thomas K F; Wu, Qiong; Wu, Gengxiong; Xie, Yinlong; Yang, Shenzhou; Yang, Qing; Yeates, David K; Yoshizawa, Kazunori; Zhang, Qing; Zhang, Rui; Zhang, Wenwei; Zhang, Yunhui; Zhao, Jing; Zhou, Chengran; Zhou, Lili; Ziesmann, Tanja; Zou, Shijie; Li, Yingrui; Xu, Xun; Zhang, Yong; Yang, Huanming; Wang, Jian; Wang, Jun; Kjer, Karl M; Zhou, Xin

    2014-11-07

    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects. Copyright © 2014, American Association for the Advancement of Science.

  12. Insect barcode information system.

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  13. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  14. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    Science.gov (United States)

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  15. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  16. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  17. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  18. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  19. Insects and diseases

    Science.gov (United States)

    John W. Couston

    2009-01-01

    Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...

  20. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  1. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  2. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  3. Feeding the insect industry

    Science.gov (United States)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  4. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    wild-type DNA resulted in the production of adults with wing ... using conventional method of breeding and selection. .... insects, birds, and other animals .... used to derive the expression of the antibiotic, tetracycline repressible transactivator.

  5. Allergies to Insect Venom

    Science.gov (United States)

    ... insects (as might be the case when a nest is disturbed, or when Africanized honeybees are involved); ... test with the five commercially available venoms; honey bee, paper wasp, yellow jacket, yellow hornet and white- ...

  6. Evolution of the Insects

    Science.gov (United States)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  7. One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers

    International Nuclear Information System (INIS)

    Si Tie-Yan

    2015-01-01

    A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. (special topic)

  8. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  9. Insect immunology and hematopoiesis

    OpenAIRE

    Hillyer, Julián F.

    2015-01-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and...

  10. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  11. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  13. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  15. Passive aerial dispersal of insects and other arthropods

    Science.gov (United States)

    Miller, Laura

    2016-11-01

    One of the defining features of the aerial dispersal of tiny organisms is the ability to overcome negative buoyancy. This can be accomplished by dispersing in the right wind conditions (e.g. an updraft) or by active flight or active release. Once in the air, draggy structures, such as the draglines of spiders or bristled wings of tiny insects, can reduce the settling velocity and extend the time of transport. Purely passive mechanisms allow spiders and other arthropods to drift on strands of silk to heights of 14,000 m and distances of hundreds of miles. Similarly, tiny insects like thrips and parasitoid wasps can travel distances of thousands to tens of thousands of meters, possibly using a combination of periods of active and passive flight. In this presentation, we used the immersed boundary method to quantify settling velocities and transport dynamics of parachuting insects and other arthropods within a quiescent fluid, a uniform updraft, and eddies.

  16. A novel approach to the quantitative detection of anabolic steroids in bovine muscle tissue by means of a hybrid quadrupole time-of-flight-mass spectrometry instrument.

    Science.gov (United States)

    Bussche, Julie Vanden; Decloedt, Anneleen; Van Meulebroek, Lieven; De Clercq, Nathalie; Lock, Stephen; Stahl-Zeng, Jianru; Vanhaecke, Lynn

    2014-09-19

    In recent years, the analysis of veterinary drugs and growth-promoting agents has shifted from target-oriented procedures, mainly based on liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-QqQ-MS), towards accurate mass full scan MS (such as Time-of-Flight (ToF) and Fourier Transform (FT)-MS). In this study, the performance of a hybrid analysis instrument (i.e. UHPLC-QuadrupoleTime-of-Flight-MS (QqToF-MS)), able to exploit both full scan HR and MS/MS capabilities within a single analytical platform, was evaluated for confirmatory analysis of anabolic steroids (gestagens, estrogens including stilbenes and androgens) in meat. The validation data was compared to previously obtained results (CD 2002/657/EC) for QqQ-MS and single stage Orbitrap-MS. Additionally, a fractional factorial design was used to shorten and optimize the sample extraction. Validation according to CD 2002/657/EC demonstrated that steroid analysis using QqToF has a higher competing value towards QqQ-MS in terms of selectivity/specificity, compared to single stage Orbitrap-MS. While providing excellent linearity, based on lack-of-fit calculations (F-test, α=0.05 for all steroids except 17β-ethinylestradiol: α=0.01), the sensitivity of QqToF-MS proved for 61.8% and 85.3% of the compounds more sensitive compared to QqQ-MS and Orbitrap-MS, respectively. Indeed, the CCα values, obtained upon ToF-MS/MS detection, ranged from 0.02 to 1.74μgkg(-1) for the 34 anabolic steroids, while for QqQ-MS and Orbitrap-MS values ranged from 0.04 to 0.88μgkg(-1) and from 0.07 to 2.50μgkg(-1), respectively. Using QqToF-MS and QqQ-MS, adequate precision was obtained as relative standard deviations for repeatability and within-laboratory reproducibility, were below 20%. In case of Orbitrap-MS, some compounds (i.e. some estrogens) displayed poor precision, which was possibly caused by some lack of sensitivity at lower concentrations and the absence of MRM-like experiments. Overall, it can be

  17. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  18. Insect Repellents: Protect Your Child from Insect Bites

    Science.gov (United States)

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Mosquitoes, biting ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is ...

  19. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  20. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    Campylobacter in flies Flies of the Muscidae family forage on all kind of faeces – various fly species have different preferences. M domestica prefer pigs, horses and cattle faeces, animals which are all known to frequently excrete Campylobacter. As a result, the insects pick up pathogenic micro...

  1. Insects and sex

    NARCIS (Netherlands)

    Beukeboom, Leo

    2005-01-01

    Most organisms reproduce sexually, but the evolution of sexual reproduction is not yet well understood. Sexual reproduction leads to new variation and adaptations to the environment, but sex is also costly. Some insects reproduce without sex through parthenogenesis or paedogenesis. Almost all sexual

  2. Investigation--Insects!

    Science.gov (United States)

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  3. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  4. Anaphylaxis and insect allergy.

    Science.gov (United States)

    Demain, Jeffrey G; Minaei, Ashley A; Tracy, James M

    2010-08-01

    Anaphylaxis is an acute-onset and potentially life-threatening allergic reaction that can be caused by numerous allergic triggers including stinging insects. This review focuses on recent advances, natural history, risk factors and therapeutic considerations. Recent work suggests that concerns over insect allergy diagnosis continue to exist. This is especially true with individuals who have a convincing history of a serious life-threatening anaphylactic event, but lack the necessary diagnostic criteria of venom-specific IgE by skin test or in-vitro diagnostic methods to confirm the diagnosis. The role of occult mastocytosis or increased basophile reactivity may play a role in this subset population. Additionally, epinephrine continues to be underutilized as the primary acute intervention for an anaphylactic reaction in the emergent setting. The incidence of anaphylaxis continues to rise across all demographic groups, especially those less than 20 years of age. Fortunately, the fatalities related to anaphylaxis appear to have decreased over the past decades. Our understanding of various triggers, associated risk factors, as well as an improved understanding and utilization of biological markers such as serum tryptase have improved. Our ability to treat insect anaphylaxis by venom immunotherapy is highly effective. Unfortunately, anaphylaxis continues to be underappreciated and undertreated especially in regard to insect sting anaphylaxis. This includes the appropriate use of injectable epinephrine as the primary acute management tool. These findings suggest that continued education of the general population, primary care healthcare providers and emergency departments is required.

  5. Broadening insect gastronomy

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Münke, Christopher; Vantomme, Paul

    2015-01-01

    In recent years there has been a trend among chefs to diversify their ingredients and techniques, drawing inspiration from other cultures and creating new foods by blending this knowledge with the flavours of their local region. Edible insects, with their plethora of taste, aromatic, textural and...

  6. Culture of insect tissues

    International Nuclear Information System (INIS)

    Cestari, A.N.; Simoes, L.C.G.

    1978-01-01

    Several aspects are discussed related to the behavior of politenic chromosomes from Rhyncosciara salivary glands kept in culture during different periods of time, without interference of insect hormones. Nucleic acid-and protein synthesis in isolated nuclei and chromosomes are also investigated. Autoradiographic techniques and radioactive precursors for nucleic acids and proteins are used in the research. (M.A.) [pt

  7. Insect (food) allergy and allergens.

    Science.gov (United States)

    de Gier, Steffie; Verhoeckx, Kitty

    2018-05-03

    Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are

  8. Edible insects of Northern Angola

    OpenAIRE

    Lautenschläger,Thea; Neinhuis,Christoph; Monizi,Mawunu; Mandombe,José Lau; Förster,Anke; Henle,Thomas; Nuss,Matthias

    2017-01-01

    From 2013–2017, we accompanied and interviewed local people harvesting edible insects in the Northern Angolan province of Uíge. Insect and host plant samples were collected for species identification and nutritive analyses. Additionally, live caterpillars were taken to feed and keep until pupation and eclosion of the imago, necessary for morphological species identification. Altogether, 18 insect species eaten by humans were recorded. Twenty four edible insect species were formerly known from...

  9. Pathogen avoidance by insect predators

    OpenAIRE

    Meyling, Nicolai V.; Ormond, Emma; Roy, Helen E.; Pell, Judith K.

    2008-01-01

    Insects can detect cues related to the risk of attack by their natural enemies. Pathogens are among the natural enemies of insects and entomopathogenic fungi attack a wide array of host species. Evidence documents that social insects in particular have adapted behavioural mechanisms to avoid infection by fungal pathogens. These mechanisms are referred to as 'behavioural resistance'. However, there is little evidence for similar adaptations in non-social insects. We have conducted experime...

  10. Protecting Yourself from Stinging Insects

    Science.gov (United States)

    ... from St ing in g In sect s Flying Insects Outdoor workers are at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While ... If a worker is stung by a stinging insect: ■■ Have someone stay with the worker to be ...

  11. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  12. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  13. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  14. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    Science.gov (United States)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic

  15. Control-oriented reduced order modeling of dipteran flapping flight

    Science.gov (United States)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  16. The significance of moment-of-inertia variation in flight manoeuvres of butterflies

    International Nuclear Information System (INIS)

    Lin, T; Zheng, L; Mittal, R; Hedrick, T

    2012-01-01

    The objective of this study is to understand the role that changes in body moment of inertia might play during flight manoeuvres of insects. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight manoeuvres; the 3D kinematics of the centre of masses of the various body parts of the insect is determined experimentally. Measurements of the mass properties of the insect are used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analysis indicate that changes in moment of inertia during flight are large enough to influence the manoeuvres of these insects. (communication)

  17. Cleptobiosis in Social Insects

    Directory of Open Access Journals (Sweden)

    Michael D. Breed

    2012-01-01

    Full Text Available In this review of cleptobiosis, we not only focus on social insects, but also consider broader issues and concepts relating to the theft of food among animals. Cleptobiosis occurs when members of a species steal food, or sometimes nesting materials or other items of value, either from members of the same or a different species. This simple definition is not universally used, and there is some terminological confusion among cleptobiosis, cleptoparasitism, brood parasitism, and inquilinism. We first discuss the definitions of these terms and the confusion that arises from varying usage of the words. We consider that cleptobiosis usually is derived evolutionarily from established foraging behaviors. Cleptobionts can succeed by deception or by force, and we review the literature on cleptobiosis by deception or force in social insects. We focus on the best known examples of cleptobiosis, the ectatommine ant Ectatomma ruidum, the harvester ant Messor capitatus, and the stingless bee Lestrimellita limão. Cleptobiosis is facilitated either by deception or physical force, and we discuss both mechanisms. Part of this discussion is an analysis of the ecological implications (competition by interference and the evolutionary effects of cleptobiosis. We conclude with a comment on how cleptobiosis can increase the risk of disease or parasite spread among colonies of social insects.

  18. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    Science.gov (United States)

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large

  19. Anatomy of adult Megaphragma (Hymenoptera: Trichogrammatidae, one of the smallest insects, and new insight into insect miniaturization.

    Directory of Open Access Journals (Sweden)

    Alexey A Polilov

    Full Text Available The body size, especially in cases of extreme reduction, is an important characteristic that strongly determines the morphology, physiology, and biology of animals. Miniaturization is a widespread trend in animal evolution and one of the principal directions of evolution in insects. Miniaturization-related features of insect morphology have been subject to intensive studies during the last few years, but the structure of the smallest insects remains insufficiently known. It is especially important to study hymenopterans of the genus Megaphragma, which include the smallest flying insects and a species in which an almost anucleate nervous system was recently discovered. This article is the first detailed study of the external and internal morphology of adults of Megaphragma mymaripenne and M. amalphitanum using histological methods, 3D computer modeling and other techniques. It is shown that in spite of the extremely small size the organization of Megaphragma retains a considerkable level of structural complexity. On the other hand, miniaturization leads to re-organizations of several organ systems. Unique structural features related to miniaturization have been found in both species: lysis of cell bodies and nuclei of neurons at late stages of pupal development, absence of the heart, and considerable reductions in the set of muscles. Comparative analysis of structure in the smallest insects representing different taxa has revealed common features of the evolutionary process of miniaturization in insects.

  20. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  1. Edible insects are the future?

    Science.gov (United States)

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  2. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  3. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  4. ORAL INSECT REPELLENTS - INSECT TASTE RECEPTORS AND THEIR ACTION,

    Science.gov (United States)

    CULICIDAE, * CHEMORECEPTORS ), INSECT REPELLENTS, ELECTROPHYSIOLOGY, STIMULATION(PHYSIOLOGY), ELECTROLYTES(PHYSIOLOGY), BLOOD, INGESTION(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), NUTRITION, ENTOMOLOGY, AEDES, MOUTH

  5. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  6. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  7. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  8. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    Science.gov (United States)

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  10. Adipokinetic hormone functions that are not associated with insect flight

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor

    2008-01-01

    Roč. 33, č. 3 (2008), s. 171-180 ISSN 0307-6962 R&D Projects: GA ČR GA522/07/0788; GA ČR GA522/05/0151 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * anabolic processes * diel changes Subject RIV: ED - Physiology Impact factor: 1.533, year: 2008

  11. Love Games that Insects Play

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Love Games that Insects Play - The Evolution of Sexual Behaviours in Insects ... Author Affiliations. K N Ganeshaiah1. Department of Genetics & Plant Breeding University of Agricultural Sciences, GKVK Bangalore 560 065, India ...

  12. Advances on polyphenism in insects.

    Science.gov (United States)

    Xue, Xian-Ci; Yu, Li

    2017-09-20

    Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.

  13. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  14. Insect anaphylaxis: addressing clinical challenges.

    Science.gov (United States)

    Tracy, James M; Lewis, Elena J; Demain, Jeffrey G

    2011-08-01

    Few allergic reactions are as potentially life-threatening, or frightening to the patient, as anaphylaxis. Food, medications, and insect stings are the three most common triggers of anaphylaxis, but insect allergy provides the best opportunity to understand the biology of anaphylaxis. If the physician can establish a diagnosis of insect allergy, treatment with nearly 98% effectiveness can be initiated. However, sometimes patients have a compelling history of insect sting anaphylaxis, but negative skin and blood tests. This situation presents us with a fascinating opportunity to understand the biology of insect anaphylaxis. Recent and ongoing work shows that occult mast cell disease may be critical in insect anaphylaxis. Mastocytosis, serum tryptase and basophil biology are key elements; genetic markers may potentially help us diagnose at-risk individuals and determine proper treatment. Understanding basophil activation may play an additional role both in diagnosis and knowing when therapy might be terminated. Mast cell disease, serum tryptase and basophil biology are providing an opportunity to better understand and manage insect allergy. This evolving understanding should improve long-term management of insect anaphylaxis and help us to better understand the clinical dilemma of appropriate management of the history-positive patient in which testing is unable to detect venom-specific IgE. Furthermore, omalizumab's immunomodulatory effects may play a role in difficult-to-treat insect allergy and mastocytosis. Finally, unrelated to these, but still important as an ongoing risk factor, is the continued underutilization of epinephrine for both acute and long-term management of insect anaphylaxis.

  15. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  16. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  17. Optic flow-based collision-free strategies: From insects to robots.

    Science.gov (United States)

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Inherited sterility in insects

    International Nuclear Information System (INIS)

    Carpenter, J.E.; Marec, F.; Bloem, S.

    2005-01-01

    The unique genetic phenomena responsible for inherited sterility (IS) in Lepidoptera and some other arthropods, as compared with full sterility, provide advantages for pest control. Lepidopteran females are usually more sensitive to radiation than males of the same species. This allows the radiation dose to be adjusted to suit programme requirements. When partially sterile males mate with wild females, the radiation-induced deleterious effects are inherited by the F 1 generation. As a result, egg hatch is reduced and the resulting offspring are both highly sterile and predominately male. Compared with the high radiation required to achieve full sterility in Lepidoptera, the lower dose of radiation used to induce F 1 sterility increases the quality and competitiveness of the released insects as measured by improved dispersal after release, increased mating ability, and superior sperm competition. F 1 sterile progeny produced in the field enhance the efficacy of released partially sterile males, and improve compatibility with other pest control strategies. In addition, F 1 sterile progeny can be used to increase the production of natural enemies, and to study the potential host and geographical ranges of exotic lepidopteran pests. (author)

  19. Pigeons (C. livia Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight

    Directory of Open Access Journals (Sweden)

    Ivo G. Ros

    2017-12-01

    Full Text Available Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades, and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.

  20. Environmental RNAi in herbivorous insects.

    Science.gov (United States)

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  2. Atomic war on insects intensified

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Intensive research work in many countries using nuclear methods aimed at reducing the immense food losses caused by insects have led to a number of important trial operations this year. Some are now in progress in Capri, the famous Italian tourist island, and in Central America. Both are directed against the Mediterranean fruit fly, which attacks most fruit in tropical and sub-tropical countries. Similar methods are also developing to combat other insect pests

  3. Edible insects are the future?

    OpenAIRE

    Huis, van, Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect speci...

  4. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  5. An Integrated Molecular Database on Indian Insects.

    Science.gov (United States)

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  6. Towards nano-physiology of insects with atomic force microscopy.

    Science.gov (United States)

    Dokukin, M E; Guz, N V; Sokolov, I

    2011-02-01

    Little study of insects with modern nanotechnology tools has been done so far. Here we use one of such tool, atomic force microscopy (AFM) to study surface oscillations of the ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5-10Hz). Here we demonstrate three different ways with which one can identify the origins of the observed peaks - by physical positioning the probe near a specific organ, and by using biological or chemical stimuli. We report on identification of high frequency peaks associated with H. convergens heart, spiracular closer muscles, and oscillations associated with muscles activated while drinking. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing "nanophysiology" of insects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    Science.gov (United States)

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  9. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  10. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    Science.gov (United States)

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-07

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. DYNAMIC TUNING OF INSECT AND BIRD WINGS AND COPEPOD AND DAPHNIA APPENDAGES

    Science.gov (United States)

    Compressible flow theory suggests, and dimensional analysis and growing empirical evidence confirm that, to aid flight, many insects and even some birds, notably hummingbirds, tune their wing-beat frequency to a corresponding characteristic harmonic frequency of air. The same pro...

  12. Molecular cloning and functional expression of the first two specific insect myosuppressin receptors

    DEFF Research Database (Denmark)

    Egerod, Kristoffer; Reynisson, Eyjólfur; Hauser, Frank

    2003-01-01

    insect visceral muscles. Other tested Drosophila neuropeptides did not activate the two receptors. In addition to the two Drosophila myosuppressin receptors, we identified a sequence in the genomic database from the malaria mosquito Anopheles gambiae that also very likely codes for a myosuppressin...

  13. All insects are equal, but some insects are more equal than others

    OpenAIRE

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose of this paper is to investigate the ways in which Dutch consumers, with and without insect tasting experience, are more or less willing to eat different insects. Design/methodology/approach: In a ...

  14. Predicting insect migration density and speed in the daytime convective boundary layer.

    Directory of Open Access Journals (Sweden)

    James R Bell

    Full Text Available Insect migration needs to be quantified if spatial and temporal patterns in populations are to be resolved. Yet so little ecology is understood above the flight boundary layer (i.e. >10 m where in north-west Europe an estimated 3 billion insects km(-1 month(-1 comprising pests, beneficial insects and other species that contribute to biodiversity use the atmosphere to migrate. Consequently, we elucidate meteorological mechanisms principally related to wind speed and temperature that drive variation in daytime aerial density and insect displacements speeds with increasing altitude (150-1200 m above ground level. We derived average aerial densities and displacement speeds of 1.7 million insects in the daytime convective atmospheric boundary layer using vertical-looking entomological radars. We first studied patterns of insect aerial densities and displacements speeds over a decade and linked these with average temperatures and wind velocities from a numerical weather prediction model. Generalized linear mixed models showed that average insect densities decline with increasing wind speed and increase with increasing temperatures and that the relationship between displacement speed and density was negative. We then sought to derive how general these patterns were over space using a paired site approach in which the relationship between sites was examined using simple linear regression. Both average speeds and densities were predicted remotely from a site over 100 km away, although insect densities were much noisier due to local 'spiking'. By late morning and afternoon when insects are migrating in a well-developed convective atmosphere at high altitude, they become much more difficult to predict remotely than during the early morning and at lower altitudes. Overall, our findings suggest that predicting migrating insects at altitude at distances of ≈ 100 km is promising, but additional radars are needed to parameterise spatial covariance.

  15. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  16. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  17. Insects in fluctuating thermal environments.

    Science.gov (United States)

    Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David

    2015-01-07

    All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.

  18. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  19. From the Cover: Environmental and biotic controls on the evolutionary history of insect body size

    Science.gov (United States)

    Clapham, Matthew E.; Karr, Jered A.

    2012-07-01

    Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.

  20. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  1. Respiratory symptoms in insect breeders.

    Science.gov (United States)

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  2. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  3. ESR signals of irradiated insects

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Kameya, Hiromi; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Shimoyama, Yuhei

    2009-01-01

    Analysis of irradiated insects using Electron Spin Resonance (ESR) spectroscopy was reported. The insects were maize weevil, red flour beetle, Indian meal moth and cigarette beetle that are hazardous to crops. The ESR spectra were consisted of a singlet at g=2 and a sextet centered at the similar g-value. The singlet signal is due to an organic free radical. The sextet signal is attributable to the hyperfine interactions from Mn 2+ ions. Upon irradiation, new signals were not detected. The relaxation times, T 1 and T 2 , showed no variations before and after irradiation. (author)

  4. Your Muscles

    Science.gov (United States)

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  5. Tuning of the Preferred Optic Flow Axes of Locust and Blowfly Visual Interneurons to Their Preferred Modes of Flight Behaviour

    National Research Council Canada - National Science Library

    Krapp, Holger G; Bomphrey, R. J; Laughlin, S. B; Taylor, G. K; Wuestenberg, D. G

    2008-01-01

    This report results from a contract tasking Imperial College London as follows: The grantee will investigate the sensory mechanisms of gaze stabilization and flight control on insects (flies and locusts...

  6. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  7. Edible insects in China: Utilization and prospects.

    Science.gov (United States)

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2018-04-01

    The use of edible insects has a long history in China, where they have been consumed for more than 2000 years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last 20 years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species and some medicinal insects. However, only approximately 10 to 20 types of insects are regularly consumed. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil and chitin, and the development of healthcare foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicadas and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and reared

  8. The Curious Connection Between Insects and Dreams

    Directory of Open Access Journals (Sweden)

    Barrett A. Klein

    2011-12-01

    Full Text Available A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  9. The Curious Connection Between Insects and Dreams

    Science.gov (United States)

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  10. The Curious Connection Between Insects and Dreams.

    Science.gov (United States)

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  11. Aquatic wood -- an insect perspective

    Science.gov (United States)

    Peter S. Cranston; Brendan McKie

    2006-01-01

    Immersed wood provides refugia and substrate for a diverse array of macroinvertebrates, and food for a more restricted genuinely xylophagous fauna. Worldwide, xylophages are found across aquatic insect orders, including Coleoptera, Diptera, Trichoptera and Plecoptera. Xylophages often are specialised, feeding on the wood surface or mining deep within. Many feed...

  12. Social insects and selfish genes.

    Science.gov (United States)

    Bourke, A F

    2001-10-01

    Sometimes science advances because of a new idea. Sometimes, it's because of a new technique. When both occur together, exciting times result. In the study of social insects, DNA-based methods for measuring relatedness now allow increasingly detailed tests of Hamilton's theory of kin selection.

  13. Developmental constraint of insect audition

    Directory of Open Access Journals (Sweden)

    Strauß Johannes

    2006-12-01

    Full Text Available Abstract Background Insect ears contain very different numbers of sensory cells, from only one sensory cell in some moths to thousands of sensory cells, e.g. in cicadas. These differences still await functional explanation and especially the large numbers in cicadas remain puzzling. Insects of the different orders have distinct developmental sequences for the generation of auditory organs. These sensory cells might have different functions depending on the developmental stages. Here we propose that constraints arising during development are also important for the design of insect ears and might influence cell numbers of the adults. Presentation of the hypothesis We propose that the functional requirements of the subadult stages determine the adult complement of sensory units in the auditory system of cicadas. The hypothetical larval sensory organ should function as a vibration receiver, representing a functional caenogenesis. Testing the hypothesis Experiments at different levels have to be designed to test the hypothesis. Firstly, the neuroanatomy of the larval sense organ should be analyzed to detail. Secondly, the function should be unraveled neurophysiologically and behaviorally. Thirdly, the persistence of the sensory cells and the rebuilding of the sensory organ to the adult should be investigated. Implications of the hypothesis Usually, the evolution of insect ears is viewed with respect to physiological and neuronal mechanisms of sound perception. This view should be extended to the development of sense organs. Functional requirements during postembryonic development may act as constraints for the evolution of adult organs, as exemplified with the auditory system of cicadas.

  14. Edible insects are the future?

    NARCIS (Netherlands)

    Huis, van Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of

  15. Diversity of insect intestinal microflora

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Štrosová, Lenka; Fliegerová, Kateřina; Kott, T.; Kopečný, Jan

    2008-01-01

    Roč. 53, č. 3 (2008), s. 229-233 ISSN 0015-5632 R&D Projects: GA ČR GA303/06/0974 Institutional research plan: CEZ:AV0Z50450515 Keywords : insect intestinal microflora Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  16. Bug City: Aquatic Insects [Videotape].

    Science.gov (United States)

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  17. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  18. All insects are equal, but some insects are more equal than others

    NARCIS (Netherlands)

    Fischer, Arnout R.H.; Steenbekkers, L.P.A.

    2018-01-01

    Purpose: Lack of acceptance of insects as food is considered a barrier against societal adoption of the potentially valuable contribution of insects to human foods. An underlying barrier may be that insects are lumped together as one group, while consumers typically try specific insects. The purpose

  19. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  20. Plant responses to insect egg deposition

    NARCIS (Netherlands)

    Hilker, M.; Fatouros, N.E.

    2015-01-01

    Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect

  1. Radioisotopes and food preservation against insects

    International Nuclear Information System (INIS)

    Hachem Ahmad, M.S.

    1998-01-01

    The book describes how to preserve food from harmful insects by using radioisotopes. It focusses on the impact of ionized radiation on the different stages of insect growth and on its metabolism and immunity. It also discusses the relationship between radiation doses and insect reproduction. It explains the various methods to detect the irradiated foods

  2. 21 CFR 1250.95 - Insect control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be... generally accepted methods of insect control. ...

  3. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  4. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Hoshino, Takayuki; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2012-12-01

    In this paper, an insect biofuel cell (BFC) using trehalose included in insect hemolymph was developed. The insect BFC is based on trehalase and glucose oxidase (GOD) reaction systems which oxidize β-glucose obtained by hydrolyzing trehalose. First, we confirmed by LC-MS that a sufficient amount of trehalose was present in the cockroach hemolymph (CHL). The maximum power density obtained using the insect BFC was 6.07 μW/cm(2). The power output was kept more than 10 % for 2.5 h by protecting the electrodes with a dialysis membrane. Furthermore, the maximum power density was increased to 10.5 μW/cm(2) by using an air diffusion cathode. Finally, we succeeded in driving a melody integrated circuit (IC) and a piezo speaker by connecting five insect BFCs in series. The results indicate that the insect BFC is a promising insect-mountable battery to power environmental monitoring micro-tools.

  5. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  6. Muscle atrophy

    Science.gov (United States)

    ... People who cannot actively move one or more joints can do exercises using braces or splints . When ... A.M. Editorial team. Muscle Disorders Read more Neuromuscular Disorders Read more NIH MedlinePlus Magazine Read more ...

  7. Dietary and flight energetic adaptations in a salivary gland transcriptome of an insectivorous bat.

    Directory of Open Access Journals (Sweden)

    Carleton J Phillips

    Full Text Available We hypothesized that evolution of salivary gland secretory proteome has been important in adaptation to insectivory, the most common dietary strategy among Chiroptera. A submandibular salivary gland (SMG transcriptome was sequenced for the little brown bat, Myotis lucifugus. The likely secretory proteome of 23 genes included seven (RETNLB, PSAP, CLU, APOE, LCN2, C3, CEL related to M. lucifugus insectivorous diet and metabolism. Six of the secretory proteins probably are endocrine, whereas one (CEL most likely is exocrine. The encoded proteins are associated with lipid hydrolysis, regulation of lipid metabolism, lipid transport, and insulin resistance. They are capable of processing exogenous lipids for flight metabolism while foraging. Salivary carboxyl ester lipase (CEL is thought to hydrolyze insect lipophorins, which probably are absorbed across the gastric mucosa during feeding. The other six proteins are predicted either to maintain these lipids at high blood concentrations or to facilitate transport and uptake by flight muscles. Expression of these seven genes and coordinated secretion from a single organ is novel to this insectivorous bat, and apparently has evolved through instances of gene duplication, gene recruitment, and nucleotide selection. Four of the recruited genes are single-copy in the Myotis genome, whereas three have undergone duplication(s with two of these genes exhibiting evolutionary 'bursts' of duplication resulting in multiple paralogs. Evidence for episodic directional selection was found for six of seven genes, reinforcing the conclusion that the recruited genes have important roles in adaptation to insectivory and the metabolic demands of flight. Intragenic frequencies of mobile- element-like sequences differed from frequencies in the whole M. lucifugus genome. Differences among recruited genes imply separate evolutionary trajectories and that adaptation was not a single, coordinated event.

  8. The extraembryonic serosa protects the insect egg against desiccation

    Science.gov (United States)

    Jacobs, Chris G. C.; Rezende, Gustavo L.; Lamers, Gerda E. M.; van der Zee, Maurijn

    2013-01-01

    Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates. PMID:23782888

  9. Use of synchrotron tomography to image naturalistic anatomy in insects

    Science.gov (United States)

    Socha, John J.; De Carlo, Francesco

    2008-08-01

    Understanding the morphology of anatomical structures is a cornerstone of biology. For small animals, classical methods such as histology have provided a wealth of data, but such techniques can be problematic due to destruction of the sample. More importantly, fixation and physical slicing can cause deformation of anatomy, a critical limitation when precise three-dimensional data are required. Modern techniques such as confocal microscopy, MRI, and tabletop x-ray microCT provide effective non-invasive methods, but each of these tools each has limitations including sample size constraints, resolution limits, and difficulty visualizing soft tissue. Our research group at the Advanced Photon Source (Argonne National Laboratory) studies physiological processes in insects, focusing on the dynamics of breathing and feeding. To determine the size, shape, and relative location of internal anatomy in insects, we use synchrotron microtomography at the beamline 2-BM to image structures including tracheal tubes, muscles, and gut. Because obtaining naturalistic, undeformed anatomical information is a key component of our studies, we have developed methods to image fresh and non-fixed whole animals and tissues. Although motion artifacts remain a problem, we have successfully imaged multiple species including beetles, ants, fruit flies, and butterflies. Here we discuss advances in biological imaging and highlight key findings in insect morphology.

  10. Neck Muscle Fatigue with Helmet-Mounted Systems

    National Research Council Canada - National Science Library

    Eveland, Edward S; Pellettiere, Joseph A

    2006-01-01

    .... Changes in neck muscle strength were identified along with EMG evidence of fatigue. When flights occurred on an almost daily basis over 4 days, the force imparted to the neck was reduced each day...

  11. Helicopter thermal imaging for detecting insect infested cadavers.

    Science.gov (United States)

    Amendt, Jens; Rodner, Sandra; Schuch, Claus-Peter; Sprenger, Heinz; Weidlich, Lars; Reckel, Frank

    2017-09-01

    One of the most common techniques applied for searching living and even dead persons is the FLIR (Forward Looking Infrared) system fixed on an aircraft like e.g. a helicopter, visualizing the thermal patterns emitted from objects in the long-infrared spectrum. However, as body temperature cools down to ambient values within approximately 24h after death, it is common sense that searching for deceased persons can be just applied the first day post-mortem. We postulated that the insect larval masses on a decomposing body generate a heat which can be considerably higher than ambient temperatures for a period of several weeks and that such heat signatures might be used for locating insect infested human remains. We examined the thermal history of two 70 and 90kg heavy pig cadavers for 21days in May and June 2014 in Germany. Adult and immature insects on the carcasses were sampled daily. Temperatures were measured on and inside the cadavers, in selected maggot masses and at the surroundings. Thermal imaging from a helicopter using the FLIR system was performed at three different altitudes up to 1500ft. during seven day-flights and one night-flight. Insect colonization was dominated by blow flies (Diptera: Calliphoridae) which occurred almost immediately after placement of the cadavers. Larvae were noted first on day 2 and infestation of both cadavers was enormous with several thousand larvae each. After day 14 a first wave of post-feeding larvae left the carcasses for pupation. Body temperature of both cadavers ranged between 15°C and 35°C during the first two weeks of the experiment, while body surface temperatures peaked at about 45°C. Maggot masses temperatures reached values up to almost 25°C above ambient temperature. Detection of both cadavers by thermal imaging was possible on seven of the eight helicopter flights until day 21. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  12. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  13. Phase Coexistence in Insect Swarms

    Science.gov (United States)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  14. Nuclear energy against insect pests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-07-15

    The paper presents the main topics discussed at the scientific symposium on the Use and Application of Radioisotopes and Radiation in the Control of Plant and Animal Insect Pests, held in Athens last April, jointly organized by IAEA and FAO with the co-operation of the Greek Government. The sterile male technique is discussed in details and some results from the applications are given

  15. Successes against insects and parasites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-10-15

    With more and more answers being found to intricate problems which have entailed years of research in many parts of the world, some successes can now be claimed in the fight to control insect threats to crops, animals and human beings. Nuclear techniques are playing an important part in world efforts, and recent reports show that they have been effective in pioneer work against crop pests as well as in finding an answer to some diseases caused by parasites

  16. Circadian organization in hemimetabolous insects.

    Science.gov (United States)

    Tomioka, Kenji; Abdelsalam, Salaheldin

    2004-12-01

    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm.

  17. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  18. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  19. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Herbivory increases diversification across insect clades.

    Science.gov (United States)

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  1. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  2. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  3. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Insect Immunity: The Post-Genomic Era

    OpenAIRE

    Bangham, Jenny; Jiggins, Frank; Lemaitre, Bruno

    2006-01-01

    Insects have a complex and effective immune system, many components of which are conserved in mammals. But only in the last decade have the molecular mechanisms that regulate the insect immune response--and their relevance to general biology and human immunology--become fully appreciated. A meeting supported by the Centre National de la Récherche Scientifique (France) was held to bring together the whole spectrum of researchers working on insect immunity. The meeting addressed diverse aspects...

  5. Electronic nose in edible insects area

    OpenAIRE

    Martin Adámek; Anna Adámková; Marie Borkovcová; Jiří Mlček; Martina Bednářová; Lenka Kouřimská; Josef Skácel; Michal Řezníček

    2017-01-01

    Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manusc...

  6. Impacts of urbanization process on insect diversity

    OpenAIRE

    Shuisong Ye; Yan Fang; Kai Li

    2013-01-01

    Rapid worldwide urbanization during the last century has led to more than half the world’s population living in urban regions. Studies of how urbanization affects insect diversity have focused on the following: insect abundance, distribution, extinction, food habits and ecosystem services. Native insect populations have declined greatly in urban areas, where studies of their spatial distribution have revealed that abundance decreases along what is termed the rural–city center gradient (RCG), ...

  7. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    Science.gov (United States)

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  8. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  9. Mass-rearing for sterile insect release

    International Nuclear Information System (INIS)

    Parker, A.G.

    2005-01-01

    As the sterile insect technique (SIT) relies upon released sterile male insects efficiently competing with wild males to mate with wild females, it follows that mass-rearing of insects is one of the principal steps in the process. Mass-rearing for the SIT presents both problems and opportunities due to the increased scale involved compared with rearing insects for most other purposes. This chapter discusses facility design, environmental concerns, strain management, quality control, automation, diet, sex separation, marking, and storage in relation to rearing for the SIT. (author)

  10. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  11. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  12. Insects diversity in lima bean (Phaseolus lunatus

    Directory of Open Access Journals (Sweden)

    WIWIN SETIAWATI

    2005-10-01

    Full Text Available Lima bean (Phaseolus lunatus is a vegetable which usually made as a home yard plant for Indonesian people to fulfill their daily needs. This plant has not been produced in the large number by the farmer. So it is hard to find in the market. Lima bean is light by many kind of insect. Inventory, identification and the study of insect taxon to this plant is being done to collect some information about the insect who life in the plant. The research was done in Balitsa experiment garden in the district of Lembang in Bandung regency on November 2003-February 2004, the experiment start at 4 weeks age, at the height of 1260 m over the sea level. The observation was made systematically by absolute method (D-vac macine and relative method (sweeping net. The research so that there were 26 species of phytofagous insect, 9 species of predator insect, 6 species of parasitoid insect, 4 species of pollinator and 14 species of scavenger insect. According to the research the highest species number was got in the 8th week (3rd sampling, which had 27 variety of species, so the highest diversity was also got in this with 2,113 point. Aphididae and Cicadellidae was the most insect found in roay plant. The research also had high number of species insect so the diversity of insect and evenness become high. A community will have the high stability if it is a long with the high diversity. High evenness in community that has low species dominance and high species number of insect so the high of species richness.

  13. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  14. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    Science.gov (United States)

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  15. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  16. Labeling of Pest Insects Using Radioisotopes to Study Dispersal Pattern, Migration and Estimation of Population Density

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2008-01-01

    To study insects behaviour in their habitat such as dispersal, migration and flight range, insects are needed to be labelled to trace their movement. One of the most promising labeling methodology for internal labeling is the use of radioisotopes. Radioisotopes that have been used for labeling insects are 3 H, 32 P, 14 Ca, 45 K, 35 S, 59 Fe, 60 Co, and 14 C. Insect labeling with isotopes has more advantages as compared to dyes due to isotopes used for labeling is bonded to the tissue such as 3 H, 32 P, 14 Ca, K, 131 I. Several consideration have to be taken to determine isotopes that will be used in line with the time consuming for experiments. This have to be carried out due to the phenomenon that several isotopes are toxic to insects such as 45 Ca, 59 Fe, 86 Rb, 110 Ag, 115 Cd, and 131 J. Precautions have to be fulfilled for insect radiolabeling which are save to insects, environment, easy to apply, materials are available and acceptable to the public. Radioisotope 32 P with a correct dose is very convenience to be used in such experiments due to its relatively short half live, which is only 14.3 days. If it is an stable isotope it can be kept for a long time so the sample analyzed can be conducted convenience for long periods of time. Stable elements such as Rb can be changed to be radioisotopes by bombardment of neutrons in a nuclear reactor or accelerator. Then the element that has been activated can be identified using solid scintillation counter, multichannel analyzer or can be detected using autoradiography. (author)

  17. Feeding Studies of Irradiated Foods with Insects

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, Srisan

    1978-06-15

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  18. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  19. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  20. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  1. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  2. Insects associated with ponderosa pine in Colorado

    Science.gov (United States)

    Robert E. Stevens; J. Wayne Brewer; David A. Leatherman

    1980-01-01

    Ponderosa pine serves as a host for a wide variety of insects. Many of these, including all the particularly destructive ones in Colorado, are discussed in this report. Included are a key to the major insect groups, an annotated list of the major groups, a glossary, and a list of references.

  3. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  4. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  5. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  6. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  7. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  8. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  9. Feeding studies of irradiated foods with insects

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1978-01-01

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  10. Insect and pest control newsletter. No. 56

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  11. Insect and pest control newsletter. No. 55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  12. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  13. Edible insects contributing to food security?

    NARCIS (Netherlands)

    Huis, van Arnold

    2015-01-01

    Because of growing demand for meat and declining availability of agricultural land, there is an urgent need to find alternative protein sources. Edible insects can be produced with less environmental impact than livestock. Insect meal can replace scarce fishmeal as feed ingredient, in particular

  14. Edible Insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    This text provides an important overview of the contributions of edible insects to ecological sustainability, livelihoods, nutrition and health, food culture and food systems around the world. While insect farming for both food and feed is rapidly increasing in popularity around the world, the ro...

  15. Insect cadaver applications: pros and cons

    Science.gov (United States)

    Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...

  16. Insect and pest control newsletter. No. 51

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  17. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  18. The Evolution of Agriculture in Insects

    DEFF Research Database (Denmark)

    Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur Kornelis

    2005-01-01

    Agriculture has evolved independently in three insect orders: once in ants, once in termites, and seven times in ambrosia beetles. Although these insect farmers are in some ways quite different from each other, in many more ways they are remarkably similar, suggesting convergent evolution. All pr...

  19. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  20. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  1. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  2. Modern insect control: Nuclear techniques and biotechnology

    International Nuclear Information System (INIS)

    1988-01-01

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F 1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F 1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  3. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  4. 40 CFR 161.590 - Nontarget insect data requirements.

    Science.gov (United States)

    2010-07-01

    ... pollinators (4) CR CR CR CR CR CR TEP TEP 141-5 Nontarget insect testing—aquatic insects Acute toxicity to aquatic insects (5) 142-1 Aquatic insect life-cycle study (5) 142-1 Simulated or actual field testing for aquatic insects (5) 142-3 Nontarget insect testing—predators and parasites (5) 143-1thru 143-3 Key: CR...

  5. Smads and insect hemimetabolan metamorphosis.

    Science.gov (United States)

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Flight-induced changes in gene expression in the Glanville fritillary butterfly.

    Science.gov (United States)

    Kvist, Jouni; Mattila, Anniina L K; Somervuo, Panu; Ahola, Virpi; Koskinen, Patrik; Paulin, Lars; Salmela, Leena; Fountain, Toby; Rastas, Pasi; Ruokolainen, Annukka; Taipale, Minna; Holm, Liisa; Auvinen, Petri; Lehtonen, Rainer; Frilander, Mikko J; Hanski, Ilkka

    2015-10-01

    Insect flight is one of the most energetically demanding activities in the animal kingdom, yet for many insects flight is necessary for reproduction and foraging. Moreover, dispersal by flight is essential for the viability of species living in fragmented landscapes. Here, working on the Glanville fritillary butterfly (Melitaea cinxia), we use transcriptome sequencing to investigate gene expression changes caused by 15 min of flight in two contrasting populations and the two sexes. Male butterflies and individuals from a large metapopulation had significantly higher peak flight metabolic rate (FMR) than female butterflies and those from a small inbred population. In the pooled data, FMR was significantly positively correlated with genome-wide heterozygosity, a surrogate of individual inbreeding. The flight experiment changed the expression level of 1513 genes, including genes related to major energy metabolism pathways, ribosome biogenesis and RNA processing, and stress and immune responses. Males and butterflies from the population with high FMR had higher basal expression of genes related to energy metabolism, whereas females and butterflies from the small population with low FMR had higher expression of genes related to ribosome/RNA processing and immune response. Following the flight treatment, genes related to energy metabolism were generally down-regulated, while genes related to ribosome/RNA processing and immune response were up-regulated. These results suggest that common molecular mechanisms respond to flight and can influence differences in flight metabolic capacity between populations and sexes. © 2015 John Wiley & Sons Ltd.

  7. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  8. Genetic basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Robinson, A.S.

    2014-01-01

    The use of the sterile insect technique for insect control relies on the introduction of sterility in the females of the wild population. This sterility is produced following the mating of these females with released males carrying, in their sperm, dominant lethal mutations that have been induced by ionizing radiation. As well as radiation-induced sterility, natural mechanisms can be recruited, especially the use of hybrid sterility. Radiation is usually one of the last procedures that insects undergo before leaving mass-rearing facilities for release in the field. It is essential that the dosimetry of the radiation source be checked to ensure that all the insects receive the required minimum dose. A dose should be chosen that maximizes the level of introduced sterility in the wild females in the field. Irradiation in nitrogen can provide protection against the detrimental somatic effects of radiation. Currently, the development of molecular methods to sterilize pest insects in the field, by the release of fertile insects carrying trans genes, is very much in vogue. It is concluded that using a physical process, such as radiation, will always have significant advantages over genetic and other methods of sterilization for the large-scale application of the sterile insect technique. (author)

  9. The smart aerial release machine, a universal system for applying the sterile insect technique: Manuscript Draft

    International Nuclear Information System (INIS)

    Mubarqui, Leal Ruben; Perez, Rene Cano; Klad, Roberto Angulo; Lopez, Jose L. Zavale; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jeremy

    2014-01-01

    Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p < 0.001) for both species and better recapture rates for Anastrepha ludens (p < 0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal.This technology limits damages to insects and allows a large range of release rates from 10 flies/km"2 for tsetse flies up to 600 000 flies/km"2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.

  10. The smart aerial release machine, a universal system for applying the sterile insect technique.

    Directory of Open Access Journals (Sweden)

    Ruben Leal Mubarqui

    Full Text Available Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse.Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software. The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata and we obtained better dispersal homogeneity (% of positive traps, p<0.001 for both species and better recapture rates for Anastrepha ludens (p<0.001, especially at low release densities (<1500 per ha. We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal.This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600,000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.

  11. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  12. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  13. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  14. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Directory of Open Access Journals (Sweden)

    Gao eHu

    2016-02-01

    Full Text Available Most insect migrants fly at considerable altitudes (hundreds of meters above the ground where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects’ self-powered speed is directed downstream, and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here we analyze a large dataset of >600,000 radar-detected ‘medium-sized’ windborne insect migrants (body mass from 10 to 70 mg, flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all ‘migration events’ analyzed, and was also frequent at sunset (85% and at night (81%. Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment, but there was no directional bias in the offsets during the day or at sunset. Orientation ‘performance’ significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings.

  15. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  16. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  17. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  19. Capital Flight from Russia

    OpenAIRE

    Prakash Loungani; Paolo Mauro

    2000-01-01

    This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...

  20. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  1. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  2. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  3. Extraocular muscle function testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  4. Alpha particle radiography of small insects

    International Nuclear Information System (INIS)

    Chingshen Su

    1993-01-01

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope 244 Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52 o C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author)

  5. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  6. Most Costly Insects & Diseases of Southern Hardwoods

    Science.gov (United States)

    T. H. Filer; J. D. Solomon

    1987-01-01

    Insect borers, especially carpenter worms and red oak borers, cause degrade in oaks, an average of $45 per thousand board feet, and an annual loss of $112 million in the 2.5 billion board feet of oaks cut annually.

  7. Insect Bites and Stings: First Aid

    Science.gov (United States)

    ... Tips to remember. American Academy of Allergy, Asthma & Immunology. http://www.aaaai.org/conditions-and-treatments/library/allergy-library/stinging-insect-allergy.aspx. Accessed Jan. 9, 2018. LoVecchio F. ...

  8. Advances in flexible optrode hardware for use in cybernetic insects

    Science.gov (United States)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  9. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    M. L. Gaylord; K. K. Williams; R. W. Hofstetter; J. D. McMillin; T. E. Degomez; M. R. Wagner

    2008-01-01

    Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles...

  10. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  11. Detection of irradiated insects - pest of stored products: locomotion activity of irradiated adult beetles

    International Nuclear Information System (INIS)

    Banasik, K.

    1994-01-01

    An indirect behavioural test (test of locomotion as a measure of vigor) to determine whether the insects have been subject to irradiation is proposed. The higher the dose applied, the lesser the locomotor activity of the treated beetles, pests of stored products. For radiation disinfestation, the doses ranging from 0.3 to 1.0 kGy are suggested. At these doses the walking speed of insects, i.e. ability to disperse, is greatly affected. The various species responded to gamma irradiation in a different way. At the first day after treatment all T. confusum Duv. beetles treated with 0.25 to 0.5 kGy doses showed the reduction of locomotor activity by more than 25%. The walking speed of the granary weevil Sitophilus granarius L. and the bean weevil Acanthoscelides obtectus Say, treated with low doses of gamma radiation, was not affected or it was even higher than the control. At the next day after treatment the walking speed of irradiated insects was negatively correlated with the dose applied. Using data on the percentage of the confused flour beetles that moved outside the 20 cm diam. circle during the first minute as well as during the next minutes, it was possible to discriminate the insects irradiated with high doses of gamma radiation from those treated with 0.25 and 0.5 kGy and untreated. The results obtained suggests that the locomotor test may be used as an identification method of irradiated insects, pests or stored products. The specific causes of decreased locomotor activity of irradiated insects and/or ability to disperse have not been yet established. However, muscles controlling locomotion (walking) seem to be damaged by radiation. (author)

  12. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  13. Synthesis of model compounds derived from natural clerodane insect antifeedants

    NARCIS (Netherlands)

    Klein Gebbinck, E.A.

    1999-01-01

    Insect antifeedants are compounds with the ability to reduce or inhibit insect feeding without directly killing the insect. Such compounds offer a number of properties that are highly desirable in environmentally friendly crop protection agents. Although the principle of insect control

  14. Potential of Insect-Derived Ingredients for Food Applications

    NARCIS (Netherlands)

    Tzompa Sosa, D.A.; Fogliano, V.

    2017-01-01

    Insects are a sustainable and efficient protein and lipid source, compared with conventional livestock. Moreover, insect proteins and lipids are highly nutritional. Therefore, insect proteins and lipids can find its place as food ingredients. The use of insect proteins and lipids as food ingredients

  15. Social insect symbionts: evolution in homeostatic fortresses

    DEFF Research Database (Denmark)

    Hughes, David P; Pierce, Naomi E; Boomsma, Jacobus J

    2008-01-01

    The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant...... in these nests. We hypothesize that biodiversity gradients in these hotspots might be less affected by abiotic latitudinal clines than gradients in neighboring 'control' habitats. We suggest several research lines to test these ideas....

  16. Insect Cells as Hosts for Recombinat Proteins

    OpenAIRE

    Murwani, Retno

    1997-01-01

    Since the development of recombinant baculovirus expression system, insect cell culture has rapidly gain popularity as the method of choice for production of a variety of biologically active proteins. Up to date tens of recombinant protein have been produced by this method commercially or non-commercially and have been widely used for research. This review describes the basic concept of baculovirus expression vector and the use of insect cells as host for recombinant proteins. Examples of the...

  17. Minor lipophilic compounds in edible insects

    OpenAIRE

    Monika Sabolová; Anna Adámková; Lenka Kouřimská; Diana Chrpová; Jan Pánek

    2016-01-01

    Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality) for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition). Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new) source of minor lipophilic compound...

  18. IMp: The customizable LEGO® Pinned Insect Manipulator

    Directory of Open Access Journals (Sweden)

    Steen Dupont

    2015-02-01

    Full Text Available We present a pinned insect manipulator (IMp constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  19. IMp: The customizable LEGO® Pinned Insect Manipulator

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  20. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  1. Attention-like processes in insects.

    Science.gov (United States)

    Nityananda, Vivek

    2016-11-16

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. © 2016 The Author(s).

  2. Tomographic reconstruction of neopterous carboniferous insect nymphs.

    Directory of Open Access Journals (Sweden)

    Russell Garwood

    Full Text Available Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One-Anebos phrixos gen. et sp. nov.-is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles' palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work.

  3. The evolution of plant-insect mutualisms.

    Science.gov (United States)

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  4. Nutritional and sensory quality of edible insects

    Directory of Open Access Journals (Sweden)

    Lenka Kouřimská

    2016-10-01

    Full Text Available Insects are for many nations and ethnic groups an indispensable part of the diet. From a nutritional point of view, insects have significant protein content. It varies from 20 to 76% of dry matter depending on the type and development stage of the insect. Fat content variability is large (2–50% of dry matter and depends on many factors. Total polyunsaturated fatty acids' content may be up to 70% of total fatty acids. Carbohydrates are represented mainly by chitin, whose content ranges between 2.7 mg and 49.8 mg per kg of fresh matter. Some species of edible insects contain a reasonable amount of minerals (K, Na, Ca, Cu, Fe, Zn, Mn and P as well as vitamins such as B group vitamins, vitamins A, D, E, K, and C. However their content is seasonal and dependent on the feed. From the hygienic point of view it should be pointed out that some insects may produce or contain toxic bioactive compounds. They may also contain residues of pesticides and heavy metals from the ecosystem. Adverse human allergic reactions to edible insects could be also a possible hazard. Keywords: Chitin, Entomophagy, Fat, Minerals, Proteins, Vitamins

  5. Seasonal Patterns of Stored-Product Insects at a Rice Mill.

    Science.gov (United States)

    McKay, Tanja; White, Amanda L; Starkus, Laura A; Arthur, Frank H; Campbell, James F

    2017-06-01

    The temporal and spatial patterns in flight activity outside of a rice mill were evaluated for the lesser grain borer [Rhyzopertha dominica (F.)], warehouse beetle [Trogoderma variabile Ballion], cigarette beetle [Lasioderma serricorne (F.)], and Indian meal moth [Plodia interpunctella (Hüϋbner)] to determine critical times of year when the mill would be vulnerable to invasion. Insect activity was monitored using pheromone-baited glue traps (N = 99) from June 2008 to October 2010. Traps were placed along exterior walls of all major buildings and along the fence around the perimeter of the facility. Trogoderma variabile was the most abundant species, with flight activity between mid-March and November. No activity of T. variabile was observed during December through March. Rhyzopertha dominica was also abundant, with activity in mid-April through October. A few adult R. dominica were captured in traps during winter months in the first year of study. Trap captures for all four species increased with an increase in temperature and can be described by linear equations. Knowing seasonal patterns in insect activity allows rice facilities to better understand when facilities are most vulnerable to pest activity. However, this study demonstrates that more research is needed to address how insects are immigrating and emigrating within and around a rice mill. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    Science.gov (United States)

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  7. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  8. Microbiological Load of Edible Insects Found in Belgium

    OpenAIRE

    Rudy Caparros Megido; Sandrine Desmedt; Christophe Blecker; François Béra; Éric Haubruge; Taofic Alabi; Frédéric Francis

    2017-01-01

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crick...

  9. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill.

    Science.gov (United States)

    Ávalos, J A; Martí-Campoy, A; Soto, A

    2014-08-01

    The red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), native to tropical Asian regions, has become a serious threat to palm trees all over the world. Knowledge of its flight potential is vital to improving the preventive and curative measures currently used to manage this pest. As R. ferrugineus is a quarantine pest, it is difficult to study its flight potential in the field. A computer-monitored flight mill was adapted to analyse the flying ability of R. ferrugineus through the study of different flight parameters (number of flights, total distance flown, longest single flight, flight duration, and average and maximum speed) and the influence of the weevil's sex, age, and body size on these flight parameters. Despite significant differences in the adult body size (body weight and length) of males and females, the sex of R. ferrugineus adults did not have an influence on their flight potential. Neither adult body size nor age was found to affect the weevil's flying abilities, although there was a significantly higher percentage of individuals flying that were 8-23 days old than 1-7 days old. Compared to the longest single flight, 54% of the insects were classified as short-distance flyers (covering 5000 m), respectively. The results are compared with similar studies on different insect species under laboratory and field conditions.

  10. Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2018-01-01

    Full Text Available We present a novel bimodal optoelectronic sensor based on Fresnel lenses and the associated stereo-recording device that records the wingbeat event of an insect in flight as backscattered and extinction light. We investigate the complementary information of these two sources of biometric evidence and we finally embed part of this technology in an electronic e-trap for fruit flies. The e-trap examines the spectral content of the wingbeat of the insect flying in and reports wirelessly counts and species identity. We design our devices so that they are optimized in terms of detection accuracy and power consumption, but above all, we ensure that they are affordable. Our aim is to make more widespread the use of electronic insect traps that report in virtually real time the level of the pest population from the field straight to a human controlled agency. We have the vision to establish remote automated monitoring for all insects of economic and hygienic importance at large spatial scales, using their wingbeat as biometric evidence. To this end, we provide open access to the implementation details, recordings, and classification code we developed.

  11. An Intermediate in the evolution of superfast sonic muscles

    Directory of Open Access Journals (Sweden)

    Mok Hin-Kiu

    2011-11-01

    Full Text Available Abstract Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1 causing the tendon and bladder to snap back (part 2 generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.

  12. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  13. Applying the sterile insect technique to the control of insect pests

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, L E; Klassen, W [Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)

    1991-09-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a {sup 60}Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment.

  14. Traumatic ventriculitis following consumption of introduced insect prey (Hymenoptera) in nestling hihi (Notiomystis cincta).

    Science.gov (United States)

    Rippon, Rosemary J; Alley, Maurice R; Castro, Isabel

    2013-01-01

    Nestling mortality in the endangered and endemic Hihi, also called Stitchbird (Notiomystis cincta), was studied over the 2008-09 breeding season at Zealandia-Karori Sanctuary, Wellington, New Zealand. Histopathology showed traumatic ventriculitis in seven of 25 (28%) dead nestlings. Single or multiple granulomas centered on chitinous insect remnants were found lodged within the gizzard mucosa, muscle layers, and ventricular or intestinal serosa. The insect remnants were confirmed as bee or wasp stings (Hymenoptera) using light and electron microscopy. Bacteria or yeasts were also found in some granulomas, and death was due to bacterial septicemia in four cases. Endemic New Zealand birds are likely to lack evolutionary adaptations required to safely consume introduced honey bees (Apis mellifera) and vespulid wasps (Vespula germanica [German wasp], and Vespula vulgaris [common wasp]). However, these insects are attracted to feeding stations used to support translocated Hihi populations. As contact between bees, wasps, and the endemic fauna of New Zealand seems inevitable, it may be necessary to minimize the numbers of these introduced insects in areas set aside for ecologic restoration.

  15. The Flight of Birds and Other Animals

    Directory of Open Access Journals (Sweden)

    Colin J. Pennycuick

    2015-09-01

    Full Text Available Methods of observing birds in flight now include training them to fly under known conditions in wind tunnels, and fitting free-flying birds with data loggers, that are either retrieved or read remotely via satellite links. The performance that comes to light depends on the known limitations of the materials from which they are made, and the conditions in which the birds live. Bird glide polars can be obtained by training birds to glide in a tilting wind tunnel. Translating these curves to power required from the flight muscles in level flight requires drag coefficients to be measured, which unfortunately does not work with bird bodies, because the flow is always fully detached. The drag of bodies in level flight can be determined by observing wingbeat frequency, and shows CD values around 0.08 in small birds, down to 0.06 in small waders specialised for efficient migration. Lift coefficients are up to 1.6 in gliding, or 1.8 for short, temporary glides. In-flight measurements can be used to calculate power curves for birds in level flight, and this has been applied to migrating geese in detail. These typically achieve lift:drag ratios around 15, including allowances for stops, as against 19 for continuous powered flight. The same calculations, applied to Pacific Black-tailed Godwits which start with fat fractions up to 0.55 at departure, show that such birds not only cross the Pacific to New Zealand, but have enough fuel in hand to reach the South Pole if that were necessary. This performance depends on the “dual fuel” arrangements of these migrants, whereby they use fat as their main fuel, and supplement this by extra fuel from burning the engine (flight muscles, as less power is needed later in the flight. The accuracy of these power curves has never been checked, although provision for stopping the bird, and making these checks at regular intervals during a simulated flight was built into the original design of the Lund wind tunnel. The

  16. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  17. Forward flight of swallowtail butterfly with simple flapping motion

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroto [School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138 (United States); Shimoyama, Isao, E-mail: isao@i.u-tokyo.ac.j [Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-06-15

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  18. Forward flight of swallowtail butterfly with simple flapping motion

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Shimoyama, Isao

    2010-01-01

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  19. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  20. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  1. Evidence for Endothermy in Pterosaurs Based on Flight Capability Analyses

    Science.gov (United States)

    Jenkins, H. S.; Pratson, L. F.

    2005-12-01

    Previous attempts to constrain flight capability in pterosaurs have relied heavily on the fossil record, using bone articulation and apparent muscle allocation to evaluate flight potential (Frey et al., 1997; Padian, 1983; Bramwell, 1974). However, broad definitions of the physical parameters necessary for flight in pterosaurs remain loosely defined and few systematic approaches to constraining flight capability have been synthesized (Templin, 2000; Padian, 1983). Here we present a new method to assess flight capability in pterosaurs as a function of humerus length and flight velocity. By creating an energy-balance model to evaluate the power required for flight against the power available to the animal, we derive a `U'-shaped power curve and infer optimal flight speeds and maximal wingspan lengths for pterosaurs Quetzalcoatlus northropi and Pteranodon ingens. Our model corroborates empirically derived power curves for the modern black-billed magpie ( Pica Pica) and accurately reproduces the mechanical power curve for modern cockatiels ( Nymphicus hollandicus) (Tobalske et al., 2003). When we adjust our model to include an endothermic metabolic rate for pterosaurs, we find a maximal wingspan length of 18 meters for Q. northropi. Model runs using an exothermic metabolism derive maximal wingspans of 6-8 meters. As estimates based on fossil evidence show total wingspan lengths reaching up to 15 meters for Q. northropi, we conclude that large pterosaurs may have been endothermic and therefore more metabolically similar to birds than to reptiles.

  2. The neurobiological basis of orientation in insects: insights from the silkmoth mating dance.

    Science.gov (United States)

    Namiki, Shigehiro; Kanzaki, Ryohei

    2016-06-01

    Counterturning is a common movement pattern during orientation behavior in insects. Once male moths sense sex pheromones and then lose the input, they demonstrate zigzag movements, alternating between left and right turns, to increase the probability to contact with the pheromone plume. We summarize the anatomy and function of the neural circuit involved in pheromone orientation in the silkmoth. A neural circuit, the lateral accessory lobe (LAL), serves a role as the circuit module for zigzag movements and controls this operation using a flip-flop neural switch. Circuit design of the LAL is well conserved across species. We hypothesize that this zigzag module is utilized in a wide range of insect behavior. We introduce two examples of the potential use: orientation flight and the waggle dance in bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Fungus-insect gall of Phlebopus portentosus.

    Science.gov (United States)

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  4. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  5. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biological basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Lance, D.R.; McInnis, D.O.

    2005-01-01

    In principle, the sterile insect technique (SIT) is applicable to controlling a wide variety of insect pests, but biological factors, interacting with socio-economic and political forces, restrict its practical use to a narrower set of pest species and situations. This chapter reviews how the biology and ecology of a given pest affect the feasibility and logistics of developing and using the SIT against that pest insect. The subjects of pest abundance, distribution, and population dynamics are discussed in relation to producing and delivering sufficient sterile insects to control target populations. Pest movement and distribution are considered as factors that influence the feasibility and design of SIT projects, including the need for population- or area-wide management approaches. Biological characteristics, that affect the ability of sterile insects to interact with wild populations, are presented, including the nature of mating systems of pests, behavioural and physiological consequences of mass production and sterilization, and mechanisms that males use to block a female's acquisition and/or use of sperm from other males. An adequate knowledge of the biology of the pest species and potential target populations is needed, both for making sound decisions on whether integration of the SIT into an area-wide integrated pest management (AW-IPM) programme is appropriate, and for the efficient and effective application of the technique. (author)

  7. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  8. Recombinant DNA technology and insect control

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, J A; Cockburn, Andrew F [Insects Affecting Man and Animals Laboratory, Agric. Res. Serv., U.S. Department of Agriculture, Gainesville, FL (United States)

    1989-08-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal.

  9. Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia.

    Directory of Open Access Journals (Sweden)

    Kristjan Niitepõld

    Full Text Available Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage, resting metabolic rate and lifespan (repair and maintenance, flight metabolic rate (flight capacity, egg number and composition (reproduction, and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a

  10. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  11. Thermal sensitivity of excitation-contraction-coupling in a chill susceptible insect, Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Overgaard, Johannes

    Many insect species enter a state of neuromuscular paralysis when their body temperature is lowered to a critical limit but the physiological and cellular processes underlying this chill coma are largely unknown. Previous studies on locusts show that muscle force production is highly depressed...... at low temperature implicating impairment in cellular mechanism in the muscle per se. Aiming to determine these mechanisms we examined the thermal sensitivity of several events in the excitation-contraction-coupling process including: i) Passive membrane properties and propagation of electrical signals...

  12. Morphology and histochemistry of primary flight muscles in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... metabolic rates of which similar size exercising terrestrial mammals appear ... Structurally, they have a small motor neuron and fiber diameter, a ... low supply of creative phosphate, a low glycogen content. Functionally, type I ...

  13. Core Flight Software

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...

  14. Nutrition, endocrinology, and body composition during space flight

    Science.gov (United States)

    Lane, H. W.; Gretebeck, R. J.; Smith, S. M.

    1998-01-01

    Space flight induces endocrine changes that perturb metabolism. This altered metabolism affects both the astronauts' body composition and the nutritional requirements necessary to maintain their health. During the last 25 years, a combination of studies conducted on Skylab (the first U.S. space laboratory), U.S. Shuttle flights, and Soviet and Russian flights provides a range of data from which general conclusions about energy and protein requirements can be drawn. We have reviewed the endocrine data from those studies and related it to changes in body composition. From these data it appears that protein and energy intake of astronauts are similar to those on Earth. However, a combination of measures, including exercise, appropriate diet, and, potentially, drugs, is required to provide the muscle health needed for long duration space flight.

  15. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  16. Freshwater biodiversity and aquatic insect diversification.

    Science.gov (United States)

    Dijkstra, Klaas-Douwe B; Monaghan, Michael T; Pauls, Steffen U

    2014-01-01

    Inland waters cover less than 1% of Earth's surface but harbor more than 6% of all insect species: Nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are highly susceptible to environmental change and exhibit marked ecological gradients. Standing waters appear to harbor more dispersive species than running waters, but there is little understanding of how this fundamental ecological difference has affected diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bioindicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification.

  17. Unraveling navigational strategies in migratory insects.

    Science.gov (United States)

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M

    2012-04-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  19. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  20. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  1. A new look at the comparative physiology of insect and human hearts.

    Science.gov (United States)

    Sláma, Karel

    2012-08-01

    Recent electrocardiographic (ECG) studies of insect hearts revealed the presence of human-like, involuntary and purely myogenic hearts. Certain insects, like a small light-weight species of hoverfly (Episyrphus balteatus), have evolved a very efficient cardiac system comprised of a compact heart ventricle and a narrow tube of aorta, which evolved as an adaptation to sustained hovering flights. Application of thermocardiographic and optocardiographic ECG methods revealed that adult flies of this species use the compact muscular heart chamber (heart ventricle) for intensive pumping of insect "blood" (haemolymph) into the head and thorax which is ringed all over with indirect flight musculature. The recordings of these hearts revealed extremely high, record rates of forward-directed, anterograde heartbeat (up to 10Hz), associated with extremely enhanced synchronic (not peristaltic) propagation of systolic myocardial contractions (32.2mm/s at room temperature). The relatively slow, backward-directed or retrograde cardiac contractions occurred only sporadically in the form of individual or twinned pulses replacing occasionally the resting periods. The compact heart ventricle contained bi-directional lateral apertures, whose opening and closure diverted the intracardiac anterograde "blood" streams between the abdominal haemocoelic cavity and the aortan artery, respectively. The visceral organs of this flying machine (crop, midgut) exhibited myogenic, extracardiac peristaltic pulsations similar to heartbeat, including the periodically reversed forward and backward direction of the peristaltic waves. The tubular crop contracted with a periodicity of 1Hz, both forwards and backwards, with propagation of the peristaltic waves at 4.4mm/s. The air-inflated and blindly ended midgut contracted at 0.2Hz, with a 0.9mm/s propagation of the peristaltic contraction waves. The neurogenic system of extracardiac haemocoelic pulsations, widely engaged in the regulation of circulatory and

  2. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioural action

    Directory of Open Access Journals (Sweden)

    Martin eEgelhaaf

    2012-12-01

    Full Text Available Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight manoeuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioural actions to actively shape the dynamics of the image flow on their eyes (optic flow. The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behaviour in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioural contexts by making optimal use of the closed action–perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.

  3. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi; Hajj, M. R.; Mook, Dean T.; Stanford, Bret K.; Bé ran, Philip S.; Watson, Layne T.

    2013-01-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  4. High contrast sensitivity for visually guided flight control in bumblebees.

    Science.gov (United States)

    Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie

    2017-12-01

    Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

  5. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi

    2013-06-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  6. New feed ingredients: the insect opportunity.

    Science.gov (United States)

    van Raamsdonk, L W D; van der Fels-Klerx, H J; de Jong, J

    2017-08-01

    In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the European Union, generally, a new feed ingredient should comply with legal constraints in terms of 'yes, provided that' its safety commits to a range of legal limits for heavy metals, mycotoxins, pesticides, contaminants, pathogens etc. In the case of animal proteins, however, a second legal framework applies which is based on the principle 'no, unless'. This legislation for eradicating transmissible spongiform encephalopathy consists of prohibitions with a set of derogations applying to specific situations. Insects are currently considered animal proteins. The use of insect proteins is a good case to illustrate this difference between a positive, although restricted, modus and a negative modus for allowing animal proteins. This overview presents aspects in the areas of legislation, feed safety, environmental issues, efficiency and detection of the identity of insects. Use of insects as an extra step in the feed production chain costs extra energy and this results in a higher footprint. A measure for energy conversion should be used to facilitate the comparison between production systems based on cold- versus warm-blooded animals. Added value can be found by applying new commodities for rearing, including but not limited to category 2 animal by-products, catering and household waste including meat, and manure. Furthermore, monitoring of a correct use of insects is one possible approach for label control, traceability and prevention of fraud. The link between legislation and enforcement is strong. A principle called WISE (Witful, Indicative, Societal demands, Enforceable) is launched for governing the relationship between the above-mentioned aspects.

  7. Flight performance in night-flying sweat bees suffers at low light levels.

    Science.gov (United States)

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  8. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars.

    Science.gov (United States)

    Schiffner, Ingo; Srinivasan, Mandyam V

    2015-06-05

    We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds' flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints.

  9. A statistical model for predicting muscle performance

    Science.gov (United States)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing

  10. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  12. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  13. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering

    International Nuclear Information System (INIS)

    Xu, Na; Sun, Mao

    2014-01-01

    Many insects hover with their wings beating in a horizontal plane (‘normal hovering’), while some insects, e.g., hoverflies and dragonflies, hover with inclined stroke-planes. Here, we investigate the lateral dynamic flight stability of a hovering model hoverfly. The aerodynamic derivatives are computed using the method of computational fluid dynamics, and the equations of motion are solved by the techniques of eigenvalue and eigenvector analysis. The following is shown: The flight of the insect is unstable at normal hovering (stroke-plane angle equals 0) and the instability becomes weaker as the stroke-plane angle increases; the flight becomes stable at a relatively large stroke-plane angle (larger than about 24°). As previously shown, the instability at normal hovering is due to a positive roll-moment/side-velocity derivative produced by the ‘changing-LEV-axial-velocity’ effect. When the stroke-plane angle increases, the wings bend toward the back of the body, and the ‘changing-LEV-axial-velocity’ effect decreases; in addition, another effect, called the ‘changing-relative-velocity’ effect (the ‘lateral wind’, which is due to the side motion of the insect, changes the relative velocity of its wings), becomes increasingly stronger. This causes the roll-moment/side-velocity derivative to first decrease and then become negative, resulting in the above change in stability as a function of the stroke-plane angle. (paper)

  14. Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion

    Science.gov (United States)

    Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2015-01-01

    Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.

  15. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  16. Insect pest control newsletter. No. 65

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  17. STS-78 Flight Day 11

    Science.gov (United States)

    1996-01-01

    On this eleventh day of the STS-78 mission, the flight crew, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., are shown conducting a news conference to discuss the progress of the international mission with media from the United States, Canada and Europe. During the press conference, the crew explained the relevance of the experiments conducted aboard the Life Sciences and Microgravity mission, and praised support crews and researchers on Earth who are involved in the mission. Payload Specialist Dr. Robert Thirsk told Canadian journalists of how the research will not only benefit astronauts as they conduct long-term space missions, but also people on Earth. Some of the research will aid studies on osteoporosis and the effects steroids have on bones, and also may help doctors on Earth develop treatments for muscle diseases like muscular dystrophy, Thirsk told reporters in Toronto.

  18. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  19. Investigation of gliding flight by flying fish

    Science.gov (United States)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  20. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    Science.gov (United States)

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs.

  1. Diseases in insects produced for food and feed

    DEFF Research Database (Denmark)

    Eilenberg, Jørgen; Vlak, J.M.; Nielsen-Leroux, C.

    2015-01-01

    Increased production of insects on a large scale for food and feed will likely lead to many novel challenges, including problems with diseases. We provide an overview of important groups of insect pathogens, which can cause disease in insects produced for food and feed. Main characteristics of each...... pathogen group (viruses, bacteria, fungi, protists and nematodes) are described and illustrated, with a selection of examples from the most commonly produced insect species for food and feed. Honeybee and silkworm are mostly produced for other reasons than as human food, yet we can still use them...... as examples to learn about emergence of new diseases in production insects. Results from a 2014 survey about insect diseases in current insect production systems are presented for the first time. Finally, we give some recommendations for the prevention and control of insect diseases. Key words: disease...

  2. The nutritional value of fourteen species of edible insects in ...

    African Journals Online (AJOL)

    hope&shola

    2006-02-02

    Feb 2, 2006 ... in Africa, Asia, and Latin America (Bodenheimer, 1951). Hundreds of ... developed among the cultivators of the forest region. It is .... Proximate analysis (%) of commonly eaten dried insects in south western Nigeria. Insects.

  3. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... other host-odor responsive receptors from vector insect spe- cies would .... those that mediate host-seeking behaviour in insect disease vectors and ... receptors are transmitted and processed via olfactory circuits. (Vosshall ...

  4. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  5. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  6. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  7. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  8. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  9. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  10. Engineering insect-resistant crops: A review

    African Journals Online (AJOL)

    dgeorge

    African Journal of Biotechnology ... Transgenic crops engineered for enhanced levels of resistance to insect ... this background that research work targeting other candidate genes such as ... nisms, and potential deleterious environmental effects. ... The global market value of biotech crops was esti- .... located in repeat 11.

  11. Insects: Little Things That Run the World

    Science.gov (United States)

    Tilley, Luke

    2014-01-01

    Insects are easily the most abundant and diverse group of animals, with over 24,000 species in the UK alone. They can be found in almost every habitat on Earth and are fundamentally important to ecology, conservation, food production, animal and human health, and biodiversity. They are a prominent feature of almost every food web in the UK and…

  12. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  13. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  14. Natural products from microbes associated with insects

    DEFF Research Database (Denmark)

    Beemelmanns, Christine; Guo, Huijuan; Rischer, Maja

    2016-01-01

    Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We...

  15. Eicosanoid-mediated immunity in insects

    Science.gov (United States)

    Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are ...

  16. Measuring Asymmetry in Insect-Plant Networks

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Claudia P T [Programa de Pos-Graduacao em Fisica, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Almeida, Adriana M [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); Corso, Gilberto, E-mail: claudia@dfte.ufrn.br, E-mail: adrianam@ufrn.br, E-mail: corso@cb.ufrn.br [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D{sub 1}, and the plant network, D{sub 2}. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D{sub 2} and D{sub 1} we test for a set of 23 networks from the ecologic literature networks: the difference in size, {Delta}L, clustering coefficient difference, {Delta}C, and mean connectivity difference, {Delta}. We used a nonparametric statistical test to check the differences in {Delta}L, {Delta}C and {Delta}. Our results indicate that {Delta}L and {Delta} show a significative asymmetry.

  17. Pathogenesis induced by (recombinant) baculoviruses in insects

    NARCIS (Netherlands)

    Flipsen, H.

    1995-01-01

    Infection of insect larvae by a baculovirus leads to cessation of feeding and finally to the death of the larva. Under optimal conditions this process may take as little as five days during which the virus multiplies approximately a billion times and transforms 30% of the larval weight into

  18. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine...

  19. Electronic nose in edible insects area

    Directory of Open Access Journals (Sweden)

    Martin Adámek

    2017-01-01

    Full Text Available Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor and giant mealworm (Zophobas morio using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP.

  20. Radioisotope labelling of several major insect pest

    International Nuclear Information System (INIS)

    Sutrisno, Singgih

    1981-01-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in 32 P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of 32 P with specific activities of 1, 3, 5 and 7 μCi/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 μCi/ml 32 P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 μCi/ml respectivelly. (author)

  1. Invasive pests—insects and diseases

    Science.gov (United States)

    Donald A. Duerr; Paul A. Mistretta

    2013-01-01

    Key FindingsNonnative pest species have increasing impacts in the South regardless of climate change, patterns of land ownership, or changes in the composition of vegetation.“New” nonnative invasive insects and diseases will have serious impacts on southern forests over the next 50 years. Some species such as emerald ash borer...

  2. Insect Pests of Field Crops. MP-28.

    Science.gov (United States)

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  3. STATUS OF INSECT DIVERSITY CONSERVATION IN NIGERIA

    African Journals Online (AJOL)

    Timothy Ademakinwa

    With a rapid surge in human population, there has been concomitant increase in anthropogenic threats to biodiversity, especially for ecologically-important groups such as insects. With the loss of about 79% of its forest cover, Nigeria ranked as the nation with the highest rate of forest loss in 2005. How these and other.

  4. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    IAS Admin

    Director of ... function of the Lp is to deliver lipids throughout the insect body for metabolism ... Lipid is used as a major energy source for development as well as other metabolic .... LpR4 receptor variant was expressed exclusively in the brain and.

  5. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This ...

  6. Insect pest management in stored grain

    Science.gov (United States)

    Stored grain is vulnerable to attach by a variety of insect pests, that can generally be classified as external or internal feeders. Infestations primarily occur after grain is stored, though there is some evidence that infestations can occur in the field right before harvest. There are a variety of...

  7. Some insects affecting Penstemon seed production

    Science.gov (United States)

    Robert Hammon; Melissa Franklin

    2012-01-01

    Beardtongue (Penstemon Schmidel [Scrophulariaceae)) seeds are often produced without apparent damage from pests, but several species of native insects can adversely impact seed production fields. Tarnished plant bug (Lygus lineolaris (Palisot)) and western plant bug (Lygus hesperus Knight [Hemiptera: Miridae]), penstemon weevil (Hesperobaris sp. Casey [Coleoptera:...

  8. Ecology of insects in California chaparral

    Science.gov (United States)

    Don C. Force

    1990-01-01

    Studies stimulated by the International Biological Program showed total insect faunal biomass and diversity to be greatest in the spring of the year, which matches increased plant growth and flowering at this time. Ground-inhabiting beetle studies indicated the family Tenebrionidae to be overwhelmingly dominant in biomass, but the family Staphylinidae to be richest in...

  9. Book review: Insect morphology and phylogeny

    Directory of Open Access Journals (Sweden)

    Susanne Randolf

    2014-05-01

    Full Text Available Beutel RG, Friedrich F, Ge S-Q, Yang X-K (2014 Insect Morphology and Phylogeny: A textbook for students of entomology. De Gruyter, Berlin/Boston, 516 pp., softcover. ISBN 978-3-11-026263-6.

  10. Short notes and reviews Insect history

    NARCIS (Netherlands)

    Schram, Frederick R.

    2003-01-01

    Review of: History of Insects, edited by A. P. Rasnitsyn and D. L. J. Quicke. Kluwer Academic Publ., Dordrecht, Netherlands, 2002, 517 pp., ISBN 14 0200 026 X In the winter of 1977, I visited the Paleontological Institute of the Academy of Sciences in Moscow. I wanted to study the type specimens of

  11. Insect biodiversity of boreal peat bogs

    Czech Academy of Sciences Publication Activity Database

    Spitzer, Karel; Danks, H. V.

    2006-01-01

    Roč. 51, - (2006), s. 137-161 ISSN 0066-4170 R&D Projects: GA ČR(CZ) GA206/97/0077; GA AV ČR(CZ) IBS5007015 Institutional research plan: CEZ:AV0Z50070508 Keywords : peatlands * tyrphobiontic insects * conservation Subject RIV: EH - Ecology, Behaviour Impact factor: 8.714, year: 2006

  12. Bug City: House and Backyard Insects [Videotape].

    Science.gov (United States)

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  13. Insect transgenesis: current applications and future prospects.

    Science.gov (United States)

    Fraser, Malcolm J

    2012-01-01

    The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized. Copyright © 2012 by Annual Reviews. All rights reserved.

  14. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System

    Directory of Open Access Journals (Sweden)

    Johannes Strauß

    2017-11-01

    Full Text Available The defense glands in the dorsal prothorax are an important autapomorphic trait of stick insects (Phasmatodea. Here, we study the functional anatomy and neuronal innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859 (Pseudophasmatinae, a species which sprays its defense secretions when disturbed or attacked. We use a neuroanatomical approach to identify the nerves innervating the gland muscles and the motoneurons with axons in the different nerves. The defense gland is innervated by nerves originating from two segments, the subesophageal ganglion (SOG, and the prothoracic ganglion. Axonal tracing confirms the gland innervation via the anterior subesophageal nerve, and two intersegmental nerves, the posterior subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion. The strongest innervating nerve of the gland is the anterior subesophageal nerve, which also supplies dorsal longitudinal thorax muscles (neck muscles by separate nerve branches. Tracing of individual nerve branches reveals different sets of motoneurons innervating the defense gland (one ipsilateral and one contralateral subesophageal neuron or the neck muscle (ventral median neurons. The ipsilateral and contralateral subesophageal neurons have no homologs in related taxa like locusts and crickets, and thus evolved within stick insects with the differentiation of the defense glands. The overall innervation pattern suggests that the longitudinal gland muscles derived from dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal muscles are conserved in stick insects, while the neuronal control system was specialized with conserved motoneurons for the persisting neck muscles, and evolutionarily novel subesophageal and prothoracic motoneurons innervating the defense gland.

  15. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  16. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  17. The sterile insect technique [videorecording]: An environment-friendly method of insect pest suppression and eradication

    International Nuclear Information System (INIS)

    2003-01-01

    Using graphic displays and clips of actual laboratory and field activities related to the sterile insect technique (SIT), the video covers various topics on the principles and applications of this technique

  18. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    Science.gov (United States)

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  19. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  20. Healthy Muscles Matter

    Science.gov (United States)

    ... or lying down, and faster when you’re running or playing sports and your skeletal muscles need more blood to help them do their work. What can go wrong? Injuries Almost everyone has had sore muscles after exercising ...

  1. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  2. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.

    Science.gov (United States)

    Crall, J D; Chang, J J; Oppenheimer, R L; Combes, S A

    2017-02-06

    Natural environments are characterized by variable wind that can pose significant challenges for flying animals and robots. However, our understanding of the flow conditions that animals experience outdoors and how these impact flight performance remains limited. Here, we combine laboratory and field experiments to characterize wind conditions encountered by foraging bumblebees in outdoor environments and test the effects of these conditions on flight. We used radio-frequency tags to track foraging activity of uniquely identified bumblebee ( Bombus impatiens ) workers, while simultaneously recording local wind flows. Despite being subjected to a wide range of speeds and turbulence intensities, we find that bees do not avoid foraging in windy conditions. We then examined the impacts of turbulence on bumblebee flight in a wind tunnel. Rolling instabilities increased in turbulence, but only at higher wind speeds. Bees displayed higher mean wingbeat frequency and stroke amplitude in these conditions, as well as increased asymmetry in stroke amplitude-suggesting that bees employ an array of active responses to enable flight in turbulence, which may increase the energetic cost of flight. Our results provide the first direct evidence that moderate, environmentally relevant turbulence affects insect flight performance, and suggest that flying insects use diverse mechanisms to cope with these instabilities.

  3. A comparison of two common flight interception traps to survey tropical arthropods

    Directory of Open Access Journals (Sweden)

    Greg Lamarre

    2012-08-01

    Full Text Available Tropical forests are predicted to harbor most of the insect diversity on earth, but few studies have been conducted to characterize insect communities in tropical forests. One major limitation is the lack of consensus on methods for insect collection. Deciding which insect trap to use is an important consideration for ecologists and entomologists, yet to date few study has presented a quantitative comparison of the results generated by standardized methods in tropical insect communities. Here, we investigate the relative performance of two flight interception traps, the windowpane trap, and the more widely used malaise trap, across a broad gradient of lowland forest types in French Guiana. The windowpane trap consistently collected significantly more Coleoptera and Blattaria than the malaise trap, which proved most effective for Diptera, Hymenoptera, and Hemiptera. Orthoptera and Lepidoptera were not well represented using either trap, suggesting the need for additional methods such as bait traps and light traps. Our results of contrasting trap performance among insect orders underscore the need for complementary trapping strategies using multiple methods for community surveys in tropical forests.

  4. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  6. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption

    OpenAIRE

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-01-01

    Abstract: Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safe...

  7. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.

    Science.gov (United States)

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-02-01

    Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safety of edible insects can thus contribute to the process of acceptance of insects as an alternative food source, changing the perception of developed countries regarding entomophagy. In the present study, the levels of organic contaminants (i.e. flame retardants, PCBs, DDT, dioxin compounds, pesticides) and metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) were investigated in composite samples of several species of edible insects (greater wax moth, migratory locust, mealworm beetle, buffalo worm) and four insect-based food items currently commercialized in Belgium. The organic chemical mass fractions were relatively low (PCBs: 27-2065 pg/g ww; OCPs: 46-368 pg/g ww; BFRs: up to 36 pg/g ww; PFRs 783-23800 pg/g ww; dioxin compounds: up to 0.25 pg WHO-TEQ/g ww) and were generally lower than those measured in common animal products. The untargeted screening analysis revealed the presence of vinyltoluene, tributylphosphate (present in 75% of the samples), and pirimiphos-methyl (identified in 50% of the samples). The levels of Cu and Zn in insects were similar to those measured in meat and fish in other studies, whereas As, Co, Cr, Pb, Sn levels were relatively low in all samples (consume these insect species with no additional hazards in comparison to the more commonly consumed animal products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  9. Social insects: from selfish genes to self organisation and beyond.

    Science.gov (United States)

    Boomsma, Jacobus J; Franks, Nigel R

    2006-06-01

    Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.

  10. The insect cookbook : food for a sustainable planet

    NARCIS (Netherlands)

    Huis, van A.; Gurp, van H.; Dicke, M.

    2014-01-01

    In The Insect Cookbook, two entomologists and a chef make the case for insects as a sustainable source of protein for humans and a necessary part of our future diet. They provide consumers and chefs with the essential facts about insects for culinary use, with recipes simple enough to make at home

  11. Viruses of insects reared for food and feed

    NARCIS (Netherlands)

    Maciel-Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in

  12. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and...

  13. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  14. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  15. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Available online at http://www.academicjournals.org/AJB ... It is now known that many insects possess ferromagnetic materials in the head ... nanoparticles in insects and their potential for use in insect pest management. ... often synthesized using chemical methods. ..... opacus termite: FMR characterization.

  16. The Native Hawaiian Insect Microbiome Initiative: A Critical Perspective for Hawaiian Insect Evolution

    Directory of Open Access Journals (Sweden)

    Kirsten E. Poff

    2017-12-01

    Full Text Available Insects associate with a diversity of microbes that can shape host ecology and diversity by providing essential biological and adaptive services. For most insect groups, the evolutionary implications of host–microbe interactions remain poorly understood. Geographically discrete areas with high biodiversity offer powerful, simplified model systems to better understand insect–microbe interactions. Hawaii boasts a diverse endemic insect fauna (~6000 species characterized by spectacular adaptive radiations. Despite this, little is known about the role of bacteria in shaping this diversity. To address this knowledge gap, we inaugurate the Native Hawaiian Insect Microbiome Initiative (NHIMI. The NHIMI is an effort intended to develop a framework for informing evolutionary and biological studies in Hawaii. To initiate this effort, we have sequenced the bacterial microbiomes of thirteen species representing iconic, endemic Hawaiian insect groups. Our results show that native Hawaiian insects associate with a diversity of bacteria that exhibit a wide phylogenetic breadth. Several groups show predictable associations with obligate microbes that permit diet specialization. Others exhibit unique ecological transitions that are correlated with shifts in their microbiomes (e.g., transition to carrion feeding from plant-feeding in Nysius wekiuicola. Finally, some groups, such as the Hawaiian Drosophila, have relatively diverse microbiomes with a conserved core of bacterial taxa across multiple species and islands.

  17. ALOFT Flight Test Report

    Science.gov (United States)

    1977-10-01

    wmmmmmmmmmmmm i ifmu.immM\\]i\\ ßinimm^mmmmviwmmiwui »vimtm twfjmmmmmmi c-f—rmSmn NWC TP 5954 ALOFT Flight Test Report by James D. Ross anrJ I.. M...responsible i"- u conducting the ALOFT Flight Test Program and made contributions to this report: J. Basden , R. ".estbrook, L. Thompson, J. Willians...REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM 7. AUTMORC«; <oss James D./Xo L. M.y&ohnson IZATION NAME AND ADDRESS Naval

  18. Flight activity of Noack's round-leafbat (Hipposideros cf. ruber) at two caves in central Ghana, West Africa

    Czech Academy of Sciences Publication Activity Database

    Nkrumah, E. E.; Badu, E. K.; Baldwin, H. J.; Anti, P.; Klose, S. M.; Vallo, Peter; Drosten, C.; Kalko, E. K. V.; Oppong, S. K.; Tschapka, M.

    2017-01-01

    Roč. 19, č. 2 (2017), s. 347-355 ISSN 1508-1109 Institutional support: RVO:68081766 Keywords : prey * insects * temperature * caves * flight activity * Hipposideros cf. ruber Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 1.040, year: 2016

  19. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    Science.gov (United States)

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  20. Photorhabdus luminescens genes induced upon insect infection

    Directory of Open Access Journals (Sweden)

    Jung Kirsten

    2008-05-01

    Full Text Available Abstract Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18 were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known

  1. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  2. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  3. Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.

    Science.gov (United States)

    Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wethington, Susan M; Chiu, George T C; Deng, Xinyan

    2016-11-15

    Hummingbirds are nature's masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the 'helicopter model' that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species. © 2016. Published by The Company of Biologists Ltd.

  4. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  5. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  6. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  7. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  8. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  9. Stroke in Commercial Flights.

    Science.gov (United States)

    Álvarez-Velasco, Rodrigo; Masjuan, Jaime; DeFelipe, Alicia; Corral, Iñigo; Estévez-Fraga, Carlos; Crespo, Leticia; Alonso-Cánovas, Araceli

    2016-04-01

    Stroke on board aircraft has been reported in retrospective case series, mainly focusing on economy class stroke syndrome. Data on the actual incidence, pathogenesis, and prognosis of stroke in commercial flights are lacking. A prospective registry was designed to include all consecutive patients referred from an international airport (40 million passengers a year) to our hospital with a diagnosis of ischemic stroke or transient ischemic attack and onset of symptoms during a flight or immediately after landing. Forty-four patients (32 ischemic strokes and 12 transient ischemic attacks) were included over a 76-month period (January 2008 to April 2014). The estimated incidence of stroke was 1 stroke in 35 000 flights. Pathogeneses of stroke or transient ischemic attack were atherothrombotic in 16 (36%), economy class stroke syndrome in 8 (18%), cardioembolic in 7 (16%), arterial dissection in 4 (9%), lacunar stroke in 4 (9%), and undetermined in 5 (12%) patients. Carotid stenosis >70% was found in 12 (27%) of the patients. Overall prognosis was good, and thrombolysis was applied in 44% of the cases. The most common reason for not treating patients who had experienced stroke onset midflight was the delay in reaching the hospital. Only 1 patient with symptom onset during the flight prompted a flight diversion. We found a low incidence of stroke in the setting of air travel. Economy class stroke syndrome and arterial dissection were well represented in our sample. However, the main pathogenesis was atherothrombosis with a high proportion of patients with high carotid stenosis. © 2016 American Heart Association, Inc.

  10. Comparative proteomics reveal characteristics of life-history transitions in a social insect

    Directory of Open Access Journals (Sweden)

    Amdam Gro V

    2007-07-01

    Full Text Available Abstract Background Honey bee (Apis mellifera workers are characterized by complex social behavior. Their life-history is dominated by a period of within-nest activity followed by a phase of long-distance flights and foraging. General insights into insect metabolism imply that foraging onset is associated with fundamental metabolic changes, and theory on social evolution suggests metabolic adaptations that are advantageous for the colony as a whole. Results Here we address the life-history characteristics of workers with LC-MS/MS based relative quantification of major proteins. Our approach includes: i. Calculation of a false positive rate for the identifications, ii. Support of relative protein quantification results obtained from spectral count by non-parametric statistics, and iii. Correction for Type 1 error inflation using a bootstrap iteration analysis. Our data are consistent with the use of glucose as the main fuel for honey bee flight. Moreover, the data delivers information on the expression of ATPsynthases/ATPases, and provide new insights into nurse- and forager-specific patterns of protection against oxidative stress. Conclusion The results show the suitability of this approach to investigate fundamental biochemical changes in an insect, and provide new evidence for metabolic specializations that occur during the social ontogeny of worker honey bees.

  11. Australian Consumers' Awareness and Acceptance of Insects as Food.

    Science.gov (United States)

    Wilkinson, Kerry; Muhlhausler, Beverly; Motley, Crystal; Crump, Anna; Bray, Heather; Ankeny, Rachel

    2018-04-19

    Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods) and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits) or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  12. Australian Consumers’ Awareness and Acceptance of Insects as Food

    Directory of Open Access Journals (Sweden)

    Kerry Wilkinson

    2018-04-01

    Full Text Available Insects have long been consumed as part of the diets of many Asian, African, and South American cultures. However, despite international agencies such as the Food and Agriculture Organization of the United Nations advocating the nutritional, environmental, and economic benefits of entomophagy, attitudinal barriers persist in Western societies. In Australia, the indigenous ‘bush tucker’ diet comprising witchetty grubs, honey ants, and Bogong moths is quite well known; however, in most Australian locales, the consumption of insects tends to occur only as a novelty. Therefore, this study aimed to investigate the awareness and acceptance of insects as food. An online survey of 820 consumers found that 68% of participants had heard of entomophagy, but only 21% had previously eaten insects; witchetty grubs, ants, grasshoppers, and crickets were the most commonly tasted insects. Taste, appearance, safety, and quality were identified as the factors that were most likely to influence consumer willingness to try eating insects, but consumer attitudes towards entomophagy were underpinned by both food neophobia (i.e., reluctance to eat new or novel foods and prior consumption of insects. Neophobic consumers were far less accepting of entomophagy than neophilic consumers, while consumers who had previously eaten insects were most accepting of insects as food. Incorporating insects into familiar products (e.g., biscuits or cooked meals also improved their appeal. Collectively, these findings can be used by the food industry to devise production and/or marketing strategies that overcome barriers to insect consumption in Australia.

  13. Emerging strategies for RNA interference (RNAi) applications in insects.

    Science.gov (United States)

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  14. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  15. Bugs, butterflies, and spiders: children's understandings about insects

    Science.gov (United States)

    Shepardson, Daniel P.

    2002-06-01

    This article explores elementary children's ideas about insects. The study involved 20 children from each grade level, kindergarten through fifth-grade, for a total of 120 children. The data collection procedure was designed to investigate what an insect means to children, through the use of three different tasks: draw and explain, interview about instances, and the formulation of a general rule. Considering children's responses to the three tasks, I found that their ideas about insects reflect understandings based on physical characteristics of size and shape, arthropod characteristics, insect characteristics, human-insect interactions, life habits of insects, feeding habits of insects, and means of locomotion. Children's understandings are juxtaposed to that of a scientific perspective, elucidating implications for curriculum development and instructional practice.

  16. Interactions between parasites and insects vectors

    Directory of Open Access Journals (Sweden)

    Hilary Hurd

    1994-01-01

    Full Text Available This review stresses the importance of studies that will provide a basic understanding of the pathology of parasite-infected vector insects. This knowledge should be a vital component of the very focussed initiatives currently being funded in the areas of vector control. Vector fecundity reduction is discussed as an example of such pathology. Underlying mechanisms are being investigated in a model system, Hymenolepis diminuta-infected Tenebrio molitor and in Onchocerca-infected blackflies and Plasmodium-infected Anopheles stephensi. In all cases, host vitellogenesis is disrupted by the parasite and, in the tapeworm/beetle model, interaction between the parasite and the endocrine control of the insect's reproductive physiology has been demonstrated.

  17. Detection methods for irradiated mites and insects

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1999-01-01

    Results of the study on the following tests for separation of irradiated pests from untreated ones are reported: (a) test for identification of irradiated mites (Acaridae) based on lack of fecundity of treated females; (b) test for identification of irradiated beetles based on their locomotor activity; (c) test for identification of irradiated pests based on electron spin resonance (ESR) signal derived from treated insects; (d) test for identification of irradiated pests based on changes in the midgut induced by gamma radiation; and (e) test for identification of irradiated pests based on the alterations in total proteins of treated adults. Of these detection methods, only the test based on the pathological changes induced by irradiation in the insect midgut may identify consistently either irradiated larvae or adults. This test is simple and convenient when a rapid processing technique for dehydrating and embedding the midgut is used. (author)

  18. Entomologic evaluation of insect hypersensitivity in horses.

    Science.gov (United States)

    Greiner, E C

    1995-04-01

    Potential methods of incriminating insects as the cause of insect hypersensitivity are presented. A listing of the biting midges known to attack horses in North America is presented also. An example of how species may be determined to be the cause of the hypersensitivity is given using data from a recent study in Florida. Light trap collections indicated the temporal and geographic distribution of potential contributing species and collections made by vacuuming horses further delineated species by proving they feed on horses and the correct locations on the horses to match lesion distribution. Culicoides hypersensitivity in horses in Florida seems to be caused by a series of species active and feeding on the horses at different times of the year.

  19. Velocity correlations in laboratory insect swarms

    Science.gov (United States)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  20. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    Science.gov (United States)

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We