Analysis of event tree with imprecise inputs by fuzzy set theory
International Nuclear Information System (INIS)
Ahn, Kwang Il; Chun, Moon Hyun
1990-01-01
Fuzzy set theory approach is proposed as a method to analyze event trees with imprecise or linguistic input variables such as 'likely' or 'improbable' instead of the numerical probability. In this paper, it is shown how the fuzzy set theory can be applied to the event tree analysis. The result of this study shows that the fuzzy set theory approach can be applied as an acceptable and effective tool for analysis of the event tree with fuzzy type of inputs. Comparisons of the fuzzy theory approach with the probabilistic approach of computing probabilities of final states of the event tree through subjective weighting factors and LHS technique show that the two approaches have common factors and give reasonable results
International Nuclear Information System (INIS)
Liu, X.; Fang, K.
1986-01-01
A theoretical study in fuzzy reasoning on Horn Set is presented in this paper. The authors first introduce the concepts of λ-Horn Set of clauses and λ-Input Half Lock deduction. They then use the λ-resolution method to discuss fuzzy reasoning on λ-Horn set of clauses. It is proved that the proposed λ-Input Half Lock resolution method is complete with the rules in certain format
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Xu, Zeshui
2014-01-01
This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...
Directory of Open Access Journals (Sweden)
Shawkat Alkhazaleh
2011-01-01
Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.
Introduction to Fuzzy Set Theory
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Fuzzy sets, rough sets, multisets and clustering
Dahlbom, Anders; Narukawa, Yasuo
2017-01-01
This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.
On Intuitionistic Fuzzy Sets Theory
Atanassov, Krassimir T
2012-01-01
This book aims to be a comprehensive and accurate survey of state-of-art research on intuitionistic fuzzy sets theory and could be considered a continuation and extension of the author´s previous book on Intuitionistic Fuzzy Sets, published by Springer in 1999 (Atanassov, Krassimir T., Intuitionistic Fuzzy Sets, Studies in Fuzziness and soft computing, ISBN 978-3-7908-1228-2, 1999). Since the aforementioned book has appeared, the research activity of the author within the area of intuitionistic fuzzy sets has been expanding into many directions. The results of the author´s most recent work covering the past 12 years as well as the newest general ideas and open problems in this field have been therefore collected in this new book.
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Radiation protection and fuzzy set theory
International Nuclear Information System (INIS)
Nishiwaki, Y.
1993-01-01
In radiation protection we encounter a variety of sources of uncertainties which are due to fuzziness in our cognition or perception of objects. For systematic treatment of this type of uncertainty, the concepts of fuzzy sets or fuzzy measures could be applied to construct system models, which may take into consideration both subjective or intrinsic fuzziness and objective or extrinsic fuzziness. The theory of fuzzy sets and fuzzy measures is still in a developing stage, but its concept may be applied to various problems of subjective perception of risk, nuclear safety, radiation protection and also to the problems of man-machine interface and human factor engineering or ergonomic
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
Theta-Generalized closed sets in fuzzy topological spaces
International Nuclear Information System (INIS)
El-Shafei, M.E.; Zakari, A.
2006-01-01
In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)
Fuzzy set classifier for waste classification tracking
International Nuclear Information System (INIS)
Gavel, D.T.
1992-01-01
We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes
Homeopathic drug selection using Intuitionistic fuzzy sets.
Kharal, Athar
2009-01-01
Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.
Parameter setting and input reduction
Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737
2008-01-01
The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure
Frontiers of higher order fuzzy sets
Tahayori, Hooman
2015-01-01
Frontiers of Higher Order Fuzzy Sets, strives to improve the theoretical aspects of general and Interval Type-2 fuzzy sets and provides a unified representation theorem for higher order fuzzy sets. Moreover, the book elaborates on the concept of gradual elements and their integration with the higher order fuzzy sets. This book also introduces new frameworks for information granulation based on general T2FSs, IT2FSs, Gradual elements, Shadowed sets and rough sets. In particular, the properties and characteristics of the new proposed frameworks are studied. Such new frameworks are shown to be more capable to be exploited in real applications. Higher order fuzzy sets that are the result of the integration of general T2FSs, IT2FSs, gradual elements, shadowed sets and rough sets will be shown to be suitable to be applied in the fields of bioinformatics, business, management, ambient intelligence, medicine, cloud computing and smart grids. Presents new variations of fuzzy set frameworks and new areas of applicabili...
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
A study on generalized hesitant intuitionistic Fuzzy soft sets
Nazra, A.; Syafruddin; Wicaksono, G. C.; Syafwan, M.
2018-03-01
By combining the concept of hesitant intuitionistic fuzzy sets, fuzzy soft sets and fuzzy sets, we extend hesitant intuitionistic fuzzy soft sets to a generalized hesitant intuitionistic fuzzy soft sets. Some operations on generalized hesitant intuitionistic fuzzy soft sets, such as union, complement, operations “AND” and “OR”, and intersection are defined. From such operations the authors obtain related properties such as commutative, associative and De Morgan's laws. The authors also get an algebraic structure of the collection of all generalized hesitant intuitionistic fuzzy soft sets over a set.
Answer Sets in a Fuzzy Equilibrium Logic
Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine
Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.
On Fuzzy β-I-open sets and Fuzzy β-I-continuous functions
International Nuclear Information System (INIS)
Keskin, Aynur
2009-01-01
In this paper, first of all we obtain some properties and characterizations of fuzzy β-I-open sets. After that, we also define the notion of β-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy β-I-continuity with the help of fuzzy β-I-open sets to obtain decomposition of fuzzy continuity.
On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions
Energy Technology Data Exchange (ETDEWEB)
Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail: akeskin@selcuk.edu.tr
2009-11-15
In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.
Fuzzy set approach to quality function deployment: An investigation
Masud, Abu S. M.
1992-01-01
The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a
Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.
Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun
2017-10-03
This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
Human Error Analysis by Fuzzy-Set
International Nuclear Information System (INIS)
Situmorang, Johnny
1996-01-01
In conventional HRA the probability of Error is treated as a single and exact value through constructing even tree, but in this moment the Fuzzy-Set Theory is used. Fuzzy set theory treat the probability of error as a plausibility which illustrate a linguistic variable. Most parameter or variable in human engineering been defined verbal good, fairly good, worst etc. Which describe a range of any value of probability. For example this analysis is quantified the human error in calibration task, and the probability of miscalibration is very low
An experimental methodology for a fuzzy set preference model
Turksen, I. B.; Willson, Ian A.
1992-01-01
A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate
Soft sets combined with interval valued intuitionistic fuzzy sets of type-2 and rough sets
Directory of Open Access Journals (Sweden)
Anjan Mukherjee
2015-03-01
Full Text Available Fuzzy set theory, rough set theory and soft set theory are all mathematical tools dealing with uncertainties. The concept of type-2 fuzzy sets was introduced by Zadeh in 1975 which was extended to interval valued intuitionistic fuzzy sets of type-2 by the authors.This paper is devoted to the discussions of the combinations of interval valued intuitionistic sets of type-2, soft sets and rough sets.Three different types of new hybrid models, namely-interval valued intuitionistic fuzzy soft sets of type-2, soft rough interval valued intuitionistic fuzzy sets of type-2 and soft interval valued intuitionistic fuzzy rough sets of type-2 are proposed and their properties are derived.
Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202
Fuzzy-set based contingency ranking
International Nuclear Information System (INIS)
Hsu, Y.Y.; Kuo, H.C.
1992-01-01
In this paper, a new approach based on fuzzy set theory is developed for contingency ranking of Taiwan power system. To examine whether a power system can remain in a secure and reliable operating state under contingency conditions, those contingency cases that will result in loss-of-load, loss-of generation, or islanding are first identified. Then 1P-1Q iteration of fast decoupled load flow is preformed to estimate post-contingent quantities (line flows, bus voltages) for other contingency cases. Based on system operators' past experience, each post-contingent quantity is assigned a degree of severity according to the potential damage that could be imposed on the power system by the quantity, should the contingency occurs. An approach based on fuzzy set theory is developed to deal with the imprecision of linguistic terms
Mikkelsen, Kim Sass
2017-01-01
Contemporary case studies rely on verbal arguments and set theory to build or evaluate theoretical claims. While existing procedures excel in the use of qualitative information (information about kind), they ignore quantitative information (information about degree) at central points of the analysis. Effectively, contemporary case studies rely on…
Decision and game theory in management with intuitionistic fuzzy sets
Li, Deng-Feng
2014-01-01
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to us...
Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines
Dewi, Ratna Sari; Bijker, Wietske; Stein, Alfred
2017-01-01
This paper addresses uncertainty modelling of shorelines by comparing fuzzy sets and random sets. Both methods quantify extensional uncertainty of shorelines extracted from remote sensing images. Two datasets were tested: pan-sharpened Pleiades with four bands (Pleiades) and pan-sharpened Pleiades
Human factors and fuzzy set theory for safety analysis
International Nuclear Information System (INIS)
Nishiwaki, Y.
1987-01-01
Human reliability and performance is affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it is important to develop a theory by which both the non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. In reality, randomness and fuzziness are sometimes mixed. From the mathematical point of view, probabilistic measures may be considered a special case of fuzzy measures. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. The concept 'failure possibility' based on fuzzy sets is suggested as an approach to safety analysis and fault diagnosis of a large complex system. Fuzzy measures and fuzzy integrals are introduced and their possible applications are also discussed. (author)
On fuzzy quasi continuity and an application of fuzzy set theory
Mahmoud, R A
2003-01-01
Where as classical topology has been developed closely connected with classical analysis describing topological phenomena in analysis, fuzzy topology with its important application in quantum gravity indicated by Witten and Elnaschie, has only been introduced as an analogue of the classical topology. The development of fuzzy topology without close relations to analytical problems did not give the possibility of testing successfully the applicability of the new notions and results. Till now this situation did not change, essentially. Although, many types of fuzzy sets and fuzzy functions having the quasi-property in both of weak and strong than openness and continuity, respectively, have been studied in detail. Many properties on fuzzy topological spaces such as compactness are discussed via fuzzy notion. While others are far from being completely devoted in its foundation. So, this paper is devoted to present a new class of fuzzy quasi-continuous functions via fuzzy compactness has been defined. Some characte...
Application of Bipolar Fuzzy Sets in Graph Structures
Directory of Open Access Journals (Sweden)
Muhammad Akram
2016-01-01
Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.
Self-assessment procedure using fuzzy sets
Mimi, Fotini
2000-10-01
Self-Assessment processes, initiated by a company itself and carried out by its own people, are considered to be the starting point for a regular strategic or operative planning process to ensure a continuous quality improvement. Their importance has increased by the growing relevance and acceptance of international quality awards such as the Malcolm Baldrige National Quality Award, the European Quality Award and the Deming Prize. Especially award winners use the instrument of a systematic and regular Self-Assessment and not only because they have to verify their quality and business results for at least three years. The Total Quality Model of the European Foundation for Quality Management (EFQM), used for the European Quality Award, is the basis for Self-Assessment in Europe. This paper presents a self-assessment supporting method based on a methodology of fuzzy control systems providing an effective means of converting the linguistic approximation into an automatic control strategy. In particular, the elements of the Quality Model mentioned above are interpreted as linguistic variables. The LR-type of a fuzzy interval is used for their representation. The input data has a qualitative character based on empirical investigation and expert knowledge and therefore the base- variables are ordinal scaled. The aggregation process takes place on the basis of a hierarchical structure. Finally, in order to render the use of the method more practical a software system on PC basis is developed and implemented.
New types of bipolar fuzzy sets in -semihypergroups
Directory of Open Access Journals (Sweden)
Naveed Yaqoob
2016-04-01
Full Text Available The notion of bipolar fuzzy set was initiated by Lee (2000 as a generalization of the notion fuzzy sets and intuitionistic fuzzy sets, which have drawn attention of many mathematicians and computer scientists. In this paper, we initiate a study on bipolar ( , -fuzzy sets in -semihypergroups. By using the concept of bipolar ( , -fuzzy sets (Yaqoob and Ansari, 2013, we introduce the notion of bipolar ( , -fuzzy sub -semihypergroups (-hyperideals and bi--hyperideals and discuss some basic results on bipolar ( , -fuzzy sets in -semihypergroups. Furthermore, we define the bipolar fuzzy subset , and prove that if , is a bipolar ( , -fuzzy sub -semihypergroup (resp., -hyperideal and bi--hyperideal of H; then , is also a bipolar ( , -fuzzy sub -semihypergroup (resp., -hyperideal and bi--hyperideal of H.
Construction of Fuzzy Sets and Applying Aggregation Operators for Fuzzy Queries
DEFF Research Database (Denmark)
Hudec, Miroslav; Sudzina, Frantisek
Flexible query conditions could use linguistic terms described by fuzzy sets. The question is how to properly construct fuzzy sets for each linguistic term and apply an adequate aggregation function. For construction of fuzzy sets, the lowest value, the highest value of attribute...... and the distribution of data inside its domain are used. The logarithmic transformation of domains appears to be suitable. This way leads to a balanced distribution of tuples over fuzzy sets. In addition, users’ opinions about linguistic terms as well as current content in database are merged. The second investigated...
On logical, algebraic, and probabilistic aspects of fuzzy set theory
Mesiar, Radko
2016-01-01
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...
Intelligent control-I: review of fuzzy logic and fuzzy set theory
International Nuclear Information System (INIS)
Nagrial, M.H.
2004-01-01
In the past decade or so, fuzzy systems have supplanted conventional technologies in many engineering systems, in particular in control systems and pattern recognition. Fuzzy logic has found applications in a variety of consumer products e.g. washing machines, camcorders, digital cameras, air conditioners, subway trains, cement kilns and many others. The fuzzy technology is also being applied in information technology, where it provides decision-support and expert systems with powerful reasoning capabilities. Fuzzy sets, introduced by Zadeh in 1965 as a mathematical way to represent vagueness in linguistics, can be considered a generalisation of classical set theory. Fuzziness is often confused with probability. This lecture will introduce the principal concepts and mathematical notions of fuzzy set theory. (author)
An input feature selection method applied to fuzzy neural networks for signal esitmation
International Nuclear Information System (INIS)
Na, Man Gyun; Sim, Young Rok
2001-01-01
It is well known that the performance of a fuzzy neural networks strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output. As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural networks and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PAC), genetic algorithms (GA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
Contrast enhancement of fingerprint images using intuitionistic type II fuzzy set
Directory of Open Access Journals (Sweden)
Devarasan Ezhilmaran
2015-04-01
Full Text Available A novel contrast image enhancement of fingerprint images using intuitionistic type II fuzzy set theory is recommended in this work. The method of Hamacher T co-norm(S norm which generates a new membership function with the help of upper and lower membership function of type II fuzzy set. The finger print identification is one of the very few techniques employed in forensic science to aid criminal investigations in daily life, providing access control in financial security;-, visa related services, as well as others. Mostly fingerprint images are poorly illuminated and hardly visible, so it is necessary to enhance the input images. The enhancement is useful for authentication and matching. The fingerprint enhancement is vital for identifying and authenticating people by matching their fingerprints with the stored one in the database. The proposed enhancement of the intuitionistic type II fuzzy set theory results showed that it is more effective, especially, very useful for forensic science operations. The experimental results were compared with non-fuzzy, fuzzy, intuitionistic fuzzy and type II fuzzy methods in which the proposed method offered better results with good quality, less noise and low blur features.
Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs
Sinuk, V. G.; Panchenko, M. V.
2018-03-01
In fuzzy modeling, the inputs of the simulated systems can receive both crisp values and non-Singleton. Computational complexity of fuzzy inference with fuzzy non-Singleton inputs corresponds to an exponential. This paper describes a new method of inference, based on the theorem of decomposition of a multidimensional fuzzy implication and a fuzzy truth value. This method is considered for fuzzy inputs and has a polynomial complexity, which makes it possible to use it for modeling large-dimensional MISO-structure systems.
Fuzzy set theory for cumulative trauma prediction
Fonseca, Daniel J.; Merritt, Thomas W.; Moynihan, Gary P.
2001-01-01
A widely used fuzzy reasoning algorithm was modified and implemented via an expert system to assess the potential risk of employee repetitive strain injury in the workplace. This fuzzy relational model, known as the Priority First Cover Algorithm (PFC), was adapted to describe the relationship between 12 cumulative trauma disorders (CTDs) of the upper extremity, and 29 identified risk factors. The algorithm, which finds a suboptimal subset from a group of variables based on the criterion of...
On Negations and Algebras in Fuzzy Set Theory
1986-03-19
Esteva Departament de Matematiques i Estadistica ~ Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona !Spain) ABSTRACT Dual... Estadistica Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona (Spain) In Zadeh’s definition of Fuzzy Sets [1] the operations are defined
Fuzzy Sets-based Control Rules for Terminating Algorithms
Directory of Open Access Journals (Sweden)
Jose L. VERDEGAY
2002-01-01
Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.
Inference of RMR value using fuzzy set theory and neuro-fuzzy techniques
Energy Technology Data Exchange (ETDEWEB)
Bae, Gyu-Jin; Cho, Mahn-Sup [Korea Institute of Construction Technology, Koyang(Korea)
2001-12-31
In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR(Rock Mass Rating) value from the observation data. The correlation between original RMR value and inferred RMR{sub {sub F}U} and RMR{sub {sub N}F} values from fuzzy Set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and inferred RMR{sub {sub F}U} and RMR{sub {sub N}F} values is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. >From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mass classification is proved to be sufficiently high enough. (author). 17 refs., 5 tabs., 9 figs.
Landscape evaluation of heterogeneous areas using fuzzy sets
Directory of Open Access Journals (Sweden)
Ralf-Uwe Syrbe
1998-02-01
Full Text Available Landscape evaluation is an interesting field for fuzzy approaches, because it happens on the transition line between natural and social systems. Both are very complex. Therefore, transformation of scientific results to politically significant statements on environmental problems demands intelligent support. Particularly landscape planners need methods to gather natural facts of an area and assess them in consideration of its meaning to society as a whole. Since each land unit is heterogeneous, a special methodology is necessary. Such an evaluation technique was developed within a Geographical Information System (ARC/INFO. The methodology combines several known methods with fuzzy approaches to catch the intrinsic fuzziness of ecological systems as well as the heterogeneity of landscape. Additionally, a way will be discussed to vary the fuzzy inference in order to consider spatial relations of various landscape elements. Fuzzy logic is used to process the data uncertainty, to simulate the vagueness of knowledge about ecological functionality, and to model the spatial structure of landscape. Fuzzy sets describe the attributes of thematically defined land units and their assessment results. In this way, the available information will be preserved in their full diversity. The fuzzy operations are executed by AML-programs (ARC/INFO Macro Language. With such a tight coupling, it is possible to use the geographical functions (neighbourhoods, distances, etc. of GIS within the fuzzy system directly.
Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems
International Nuclear Information System (INIS)
Poursamad, Amir; Markazi, Amir H.D.
2009-01-01
This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.
Chaos Synchronization Based on Unknown Input Proportional Multiple-Integral Fuzzy Observer
Directory of Open Access Journals (Sweden)
T. Youssef
2013-01-01
Full Text Available This paper presents an unknown input Proportional Multiple-Integral Observer (PIO for synchronization of chaotic systems based on Takagi-Sugeno (TS fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative zero. Using Lyapunov stability theory, sufficient design conditions for synchronization are proposed. The PIO gains matrices are obtained by resolving linear matrix inequalities (LMIs constraints. Simulation results show through two TS fuzzy chaotic models the validity of the proposed method.
Fuzzy Sets Applications in Civil Engineering Basic Areas
Directory of Open Access Journals (Sweden)
Latif Onur UĞUR
2016-01-01
Full Text Available Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings. This paper presents some Fuzzy Logic (FL applications in civil engeering discipline and shows the potential of facilities of FL in this area. The potential role of fuzzy sets in analysing system and human uncertainty is investigated in the paper. The main finding of this inquiry is FL applications used in different areas of civil engeering discipline with success. Once developed, the fuzzy logic models can be used for further monitoring activities, as a management tool.
Advances in type-2 fuzzy sets and systems theory and applications
Mendel, Jerry; Tahayori, Hooman
2013-01-01
This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet. The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.
Cost efficiency with triangular fuzzy number input prices: An application of DEA
International Nuclear Information System (INIS)
Bagherzadeh Valami, H.
2009-01-01
The cost efficiency model (CE) has been considered by researchers as a Data Envelopment Analysis (DEA) model for evaluating the efficiency of DMUs. In this model, the possibility of producing the outputs of a target DMU is evaluated by the input prices of the DMU. This provides a criterion for evaluating the CE of DMUs. The main contribution of this paper is to provide an approach for generalizing the CE of DMUs when their input prices are triangular fuzzy numbers, where preliminary concepts of fuzzy theory and CE, are directly used.
Cluster analysis by optimal decomposition of induced fuzzy sets
Energy Technology Data Exchange (ETDEWEB)
Backer, E
1978-01-01
Nonsupervised pattern recognition is addressed and the concept of fuzzy sets is explored in order to provide the investigator (data analyst) additional information supplied by the pattern class membership values apart from the classical pattern class assignments. The basic ideas behind the pattern recognition problem, the clustering problem, and the concept of fuzzy sets in cluster analysis are discussed, and a brief review of the literature of the fuzzy cluster analysis is given. Some mathematical aspects of fuzzy set theory are briefly discussed; in particular, a measure of fuzziness is suggested. The optimization-clustering problem is characterized. Then the fundamental idea behind affinity decomposition is considered. Next, further analysis takes place with respect to the partitioning-characterization functions. The iterative optimization procedure is then addressed. The reclassification function is investigated and convergence properties are examined. Finally, several experiments in support of the method suggested are described. Four object data sets serve as appropriate test cases. 120 references, 70 figures, 11 tables. (RWR)
Hesitant fuzzy soft sets with application in multicriteria group decision making problems.
Wang, Jian-qiang; Li, Xin-E; Chen, Xiao-hong
2015-01-01
Soft sets have been regarded as a useful mathematical tool to deal with uncertainty. In recent years, many scholars have shown an intense interest in soft sets and extended standard soft sets to intuitionistic fuzzy soft sets, interval-valued fuzzy soft sets, and generalized fuzzy soft sets. In this paper, hesitant fuzzy soft sets are defined by combining fuzzy soft sets with hesitant fuzzy sets. And some operations on hesitant fuzzy soft sets based on Archimedean t-norm and Archimedean t-conorm are defined. Besides, four aggregation operations, such as the HFSWA, HFSWG, GHFSWA, and GHFSWG operators, are given. Based on these operators, a multicriteria group decision making approach with hesitant fuzzy soft sets is also proposed. To demonstrate its accuracy and applicability, this approach is finally employed to calculate a numerical example.
RSA cryptosystem with fuzzy set theory for encryption and decryption
Abdullah, Kamilah; Bakar, Sumarni Abu; Kamis, Nor Hanimah; Aliamis, Hardi
2017-11-01
In the communication area, user is more focus on communication instead of security of the data communication. Many cryptosystems have been improvised to achieved the effectiveness in communication. RSA cryptosystem is one of well-known cryptosystem used to secure the information and protect the communication by providing a difficulty to the attackers specifically in encryption and decryption. As need arises for guarantee the security of the cryptosystem while the communication must be ensured, we propose a new RSA cryptosystem which is based on fuzzy set theory whereby the plaintext and the ciphertext are in terms of Triangular Fuzzy Number (TFN). Decryption result shows that the message obtained is the same as the original plaintext. This study reveals that the fuzzy set theory is suitable to be used as an alternative tool in securing other cryptosystem.
Application of Fuzzy Sets in an Expert System For Technological Process Management
Directory of Open Access Journals (Sweden)
Filip Tošenovský
2011-12-01
Full Text Available The paper is preoccupied with application of an expert system in the management of a process with one input and one output, using the fuzzy set theory. It resolves the problem of formalization of a verbal description of the process management coupled with the use of process operator’s experience. The procedure that calculates regulatory intervention in the process is presented and accompanied by graphical illustrations.
On Arithmetic in the Cantor-Lukasiewicz Fuzzy Set Theory
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2005-01-01
Roč. 44, č. 6 (2005), s. 763-782 ISSN 1432-0665 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: CEZ:AV0Z10300504 Keywords : Lukasiewicz logic * fuzzy set theory * contradiction Subject RIV: BA - General Mathematics Impact factor: 0.490, year: 2005
International Nuclear Information System (INIS)
Chun, Moon-Hyun; Ahn, Kwang-Il
1991-01-01
Fuzzy set theory provides a formal framework for dealing with the imprecision and vagueness inherent in the expert judgement, and therefore it can be used for more effective analysis of accident progression of PRA where experts opinion is a major means for quantifying some event probabilities and uncertainties. In this paper, an example application of the fuzzy set theory is first made to a simple portion of a given accident progression event tree with typical qualitative fuzzy input data, and thereby computational algorithms suitable for application of the fuzzy set theory to the accident progression event tree analysis are identified and illustrated with example applications. Then the procedure used in the simple example is extended to extremely complex accident progression event trees with a number of phenomenological uncertainty issues, i.e., a typical plant damage state 'SEC' of the Zion Nuclear Power Plant risk assessment. The results show that the fuzzy averages of the fuzzy outcomes are very close to the mean values obtained by current methods. The main purpose of this paper is to provide a formal procedure for application of the fuzzy set theory to accident progression event trees with imprecise and qualitative branch probabilities and/or with a number of phenomenological uncertainty issues. (author)
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Directory of Open Access Journals (Sweden)
Karel Doubravsky
Full Text Available Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (rechecked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Optimization Settings in the Fuzzy Combined Mamdani PID Controller
Kudinov, Y. I.; Pashchenko, F. F.; Pashchenko, A. F.; Kelina, A. Y.; Kolesnikov, V. A.
2017-11-01
In the present work the actual problem of determining the optimal settings of fuzzy parallel proportional-integral-derivative (PID) controller is considered to control nonlinear plants that is not always possible to perform with classical linear PID controllers. In contrast to the linear fuzzy PID controllers there are no analytical methods of settings calculation. In this paper, we develop a numerical optimization approach to determining the coefficients of a fuzzy PID controller. Decomposition method of optimization is proposed, the essence of which was as follows. All homogeneous coefficients were distributed to the relevant groups, for example, three error coefficients, the three coefficients of the changes of errors and the three coefficients of the outputs P, I and D components. Consistently in each of such groups the search algorithm was selected that has determined the coefficients under which we receive the schedule of the transition process satisfying all the applicable constraints. Thus, with the help of Matlab and Simulink in a reasonable time were found the factors of a fuzzy PID controller, which meet the accepted limitations on the transition process.
Use of fuzzy sets in modeling of GIS objects
Mironova, Yu N.
2018-05-01
The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
Directory of Open Access Journals (Sweden)
Xiaoyan Liu
2014-01-01
Full Text Available Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov’s soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
Directory of Open Access Journals (Sweden)
Užga-Rebrovs Oļegs
2017-12-01
Full Text Available Fuzzy inference systems are widely used in various areas of human activity. Their most widespread use lies in the field of fuzzy control of technical devices of different kind. Another direction of using fuzzy inference systems is modelling and assessment of different kind of risks under insufficient or missing objective initial data. Fuzzy inference is concluded by the procedure of defuzzification of the resulting fuzzy sets. A large number of techniques for implementing the defuzzification procedure are available nowadays. The paper presents a comparative analysis of some widespread methods of fuzzy set defuzzification, and proposes the most appropriate methods in the context of ecological risk assessment.
Institutional Complexity and Social Entrepreneurship: A Fuzzy-Set Approach
Munoz, PA; Kibler, E
2016-01-01
This study examines the local institutional complexity of social entrepreneurship. Building on a novel fuzzy-set analysis of 407 social entrepreneurs in the UK, the study identifies five configurations of local institutional forces that collectively explain the confidence of social entrepreneurs in successfully managing their business. The findings demonstrate that local authorities are a dominant condition; yet combinations of other complementary—more and less formalized—local institutions n...
(r, s-(τ12,τ12*-θ-Generalized double fuzzy closed sets in bitopological spaces
Directory of Open Access Journals (Sweden)
E. El-Sanousy
2016-10-01
Full Text Available In this paper, we introduce the notion of (r, s-(i, j-θ-generalized double fuzzy closed sets in double fuzzy bitopological spaces. A new θ-double fuzzy closure C12θ on double fuzzy bitopological spaces by using double supra fuzzy topological spaces are defined. Furthermore, generalized double fuzzy θ-continuous (resp. irresolute and double fuzzy strongly θ-continuous mappings are introduced and some of their properties studied.
Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode
Directory of Open Access Journals (Sweden)
Mostafa Khazaee
Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.
A Novel MADM Approach Based on Fuzzy Cross Entropy with Interval-Valued Intuitionistic Fuzzy Sets
Directory of Open Access Journals (Sweden)
Xin Tong
2015-01-01
Full Text Available The paper presents a novel multiple attribute decision-making (MADM approach for the problem with completely unknown attribute weights in the framework of interval-valued intuitionistic fuzzy sets (IVIFS. First, the fuzzy cross entropy and discrimination degree of IVIFS are defied. Subsequently, based on the discrimination degree of IVIFS, a nonlinear programming model to minimize the total deviation of discrimination degrees between alternatives and the positive ideal solution PIS as well as the negative ideal solution (NIS is constructed to obtain the attribute weights and, then, the weighted discrimination degree. Finally, all the alternatives are ranked according to the relative closeness coefficients using the extended TOPSIS method, and the most desirable alternative is chosen. The proposed approach extends the research method of MADM based on the IVIF cross entropy. Finally, we illustrate the feasibility and validity of the proposed method by two examples.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun
2017-10-12
Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets
Directory of Open Access Journals (Sweden)
Raed I. Hamed
2018-01-01
Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.
Safety analysis and synthesis using fuzzy sets and evidential reasoning
International Nuclear Information System (INIS)
Wang, J.; Yang, J.B.; Sen, P.
1995-01-01
This paper presents a new methodology for safety analysis and synthesis of a complex engineering system with a structure that is capable of being decomposed into a hierarchy of levels. In this methodology, fuzzy set theory is used to describe each failure event and an evidential reasoning approach is then employed to synthesise the information thus produced to assess the safety of the whole system. Three basic parameters--failure likelihood, consequence severity and failure consequence probability, are used to analyse a failure event. These three parameters are described by linguistic variables which are characterised by a membership function to the defined categories. As safety can also be clearly described by linguistic variables referred to as the safety expressions, the obtained fuzzy safety score can be mapped back to the safety expressions which are characterised by membership functions over the same categories. This mapping results in the identification of the safety of each failure event in terms of the degree to which the fuzzy safety score belongs to each of the safety expressions. Such degrees represent the uncertainty in safety evaluations and can be synthesised using an evidential reasoning approach so that the safety of the whole system can be evaluated in terms of these safety expressions. Finally, a practical engineering example is presented to demonstrate the proposed safety analysis and synthesis methodology
A fuzzy set preference model for market share analysis
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share
Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory
Wygralak, Maciej
1996-01-01
In recent years, an impetuous development of new, unconventional theories, methods, techniques and technologies in computer and information sciences, systems analysis, decision-making and control, expert systems, data modelling, engineering, etc. , resulted in a considerable increase of interest in adequate mathematical description and analysis of objects, phenomena, and processes which are vague or imprecise by their very nature. Classical two-valued logic and the related notion of a set, together with its mathematical consequences, are then often inadequate or insufficient formal tools, and can even become useless for applications because of their (too) categorical character: 'true - false', 'belongs - does not belong', 'is - is not', 'black - white', '0 - 1', etc. This is why one replaces classical logic by various types of many-valued logics and, on the other hand, more general notions are introduced instead of or beside that of a set. Let us mention, for instance, fuzzy sets and derivative concepts, flou...
Directory of Open Access Journals (Sweden)
Zejian Zhang
2013-01-01
Full Text Available This paper discusses the stability and stabilization problem for uncertain T-S fuzzy systems with time-varying state and input delays. A new augmented Lyapunov function with an additional triple-integral term and different membership functions of the fuzzy models and fuzzy controllers are introduced to derive the stability criterion, which is less conservative than the existing results. Moreover, a new flexibility design method is also provided. Some numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed method.
Fuzzy set theoretic approach to fault tree analysis | Tyagi ...
African Journals Online (AJOL)
This approach can be widely used to improve the reliability and to reduce the operating cost of a system. The proposed techniques are discussed and illustrated by taking an example of a nuclear power plant. Keywords: Fault tree, Triangular and Trapezoidal fuzzy number, Fuzzy importance, Ranking of fuzzy numbers ...
Ultrafuzziness Optimization Based on Type II Fuzzy Sets for Image Thresholding
Directory of Open Access Journals (Sweden)
Hudan Studiawan
2010-11-01
Full Text Available Image thresholding is one of the processing techniques to provide high quality preprocessed image. Image vagueness and bad illumination are common obstacles yielding in a poor image thresholding output. By assuming image as fuzzy sets, several different fuzzy thresholding techniques have been proposed to remove these obstacles during threshold selection. In this paper, we proposed an algorithm for thresholding image using ultrafuzziness optimization to decrease uncertainty in fuzzy system by common fuzzy sets like type II fuzzy sets. Optimization was conducted by involving ultrafuzziness measurement for background and object fuzzy sets separately. Experimental results demonstrated that the proposed image thresholding method had good performances for images with high vagueness, low level contrast, and grayscale ambiguity.
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...
Simulation of neuro-fuzzy model for optimization of combine header setting
Directory of Open Access Journals (Sweden)
S Zareei
2016-09-01
Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three
Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong
2014-01-01
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.
Fuzzy-Set Based Sentiment Analysis of Big Social Data
DEFF Research Database (Denmark)
Mukkamala, Raghava Rao; Hussain, Abid; Vatrapu, Ravi
2014-01-01
Computational approaches to social media analytics are largely limited to graph theoretical approaches such as social network analysis (SNA) informed by the social philosophical approach of relational sociology. There are no other unified modelling approaches to social data that integrate...... the conceptual, formal, software, analytical and empirical realms. In this paper, we first present and discuss a theory and conceptual model of social data. Second, we outline a formal model based on fuzzy set theory and describe the operational semantics of the formal model with a real-world social data example...... from Facebook. Third, we briefly present and discuss the Social Data Analytics Tool (SODATO) that realizes the conceptual model in software and provisions social data analysis based on the conceptual and formal models. Fourth, we use SODATO to fetch social data from the facebook wall of a global brand...
Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi
2017-07-01
In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yafei Song
2014-01-01
Full Text Available As a generation of ordinary fuzzy set, the concept of intuitionistic fuzzy set (IFS, characterized both by a membership degree and by a nonmembership degree, is a more flexible way to cope with the uncertainty. Similarity measures of intuitionistic fuzzy sets are used to indicate the similarity degree between intuitionistic fuzzy sets. Although many similarity measures for intuitionistic fuzzy sets have been proposed in previous studies, some of those cannot satisfy the axioms of similarity or provide counterintuitive cases. In this paper, a new similarity measure and weighted similarity measure between IFSs are proposed. It proves that the proposed similarity measures satisfy the properties of the axiomatic definition for similarity measures. Comparison between the previous similarity measures and the proposed similarity measure indicates that the proposed similarity measure does not provide any counterintuitive cases. Moreover, it is demonstrated that the proposed similarity measure is capable of discriminating difference between patterns.
Fuzzy-valued linguistic soft set theory and multi-attribute decision-making application
International Nuclear Information System (INIS)
Aiwu, Zhao; Hongjun, Guan
2016-01-01
In this work, we propose the theory of fuzzy linguistic soft set (FLSS) to represent the uncertainty and multi-angle of view when decision makers evaluate an object during decision-making. FLSS integrates fuzzy set theory, linguistic variable and soft set theory. It allows decision makers to utilize linguistic variables to evaluate an object and utilize fuzzy values to describe the corresponding grade of their support of their decisions. Meanwhile, because of the flexibility of soft set, decision makers can use more than one pair of fuzzy-linguistic evaluations to express their opinions from multiple perspectives directly, if necessary. Therefore, it is more flexible and practical than traditional fuzzy set or 2-dimension uncertainty linguistic variable. We also develop a generalized weighted aggregation operator for FLSSs to solve corresponding decision-making issues. Finally, we give a numerical example to verify the practicality and effectiveness of the proposed method.
Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic
Verdegay, Jose; Esteva, Francesc
2015-01-01
This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.
Control of cancer growth using single input autonomous fuzzy Nano-particles
Directory of Open Access Journals (Sweden)
Fahimeh Razmi
2015-04-01
Full Text Available In this paper a single input fuzzy controller is applied on autonomous drug-encapsulated nanoparticles (ADENPs to restrict the cancer growth. The proposed ADENPs, swarmly release the drug in local cancerous tissue and effectively decreases the destruction of normal tissue. The amount of released drug is defined considering to feed backed values of tumor growth rate and the used drug. Some significant characteristics of Nano particles compared to Nano-robots is their ability to recognize the cancerous tissue from the normal one and their simple structure. Nano particles became an attractive topic in Nano science and many efforts have been done to manufacture these particles. Simulation results show that the proposed controlling method not only decreases the cancerous tissue effectively but also reduces the side effects of drug impressively.
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
Evaluation of the Risk of Drug Addiction with the Help of Fuzzy Sets
Directory of Open Access Journals (Sweden)
L. Rakesh
2010-01-01
Full Text Available The primary focus of this paper is to present a general view of the current applications of fuzzy logic in medical analogy of consumption of drugs. The paper also deals with the origin, structure and composition of fuzzy sets. We particularly review the medical literature using fuzzy logic. Fuzzy set theory can be considered as a suitable formalism to deal with the imprecision intrinsic to many real world problems. Fuzzy set theory provides an appropriate framework for the representation of vague medical concepts and imprecise modes of reasoning. We present two concrete illustrations to investigate the impact of the risk related to drug addictions, like smoking and alcohol drinking and thereby highlighting the social problem related to health.
Development of a phenomena identification and ranking table using fuzzy set theory
International Nuclear Information System (INIS)
Kljenak, I.; Jordan Cizelj, R.; Prosek, A.
2001-01-01
The use of fuzzy set theory in the development of Phenomena Identification and Ranking Table for a nuclear power plant transient is presented. Fuzzy set theory was used to aggregate the opinions from different experts concerning the importance of individual basic phenomena with respect to safety criteria. The use of fuzzy set theory is particularly adequate, as experts' opinions are inherently imprecise and uncertain. The method is presented on the specific case of a small-break loss-of-coolant accident in a two-loop pressurized water reactor. (author)
A risk assessment methodology using intuitionistic fuzzy set in FMEA
Chang, Kuei-Hu; Cheng, Ching-Hsue
2010-12-01
Most current risk assessment methods use the risk priority number (RPN) value to evaluate the risk of failure. However, conventional RPN methodology has been criticised as having five main shortcomings as follows: (1) the assumption that the RPN elements are equally weighted leads to over simplification; (2) the RPN scale itself has some non-intuitive statistical properties; (3) the RPN elements have many duplicate numbers; (4) the RPN is derived from only three factors mainly in terms of safety; and (5) the conventional RPN method has not considered indirect relations between components. To address the above issues, an efficient and comprehensive algorithm to evaluate the risk of failure is needed. This article proposes an innovative approach, which integrates the intuitionistic fuzzy set (IFS) and the decision-making trial and evaluation laboratory (DEMATEL) approach on risk assessment. The proposed approach resolves some of the shortcomings of the conventional RPN method. A case study, which assesses the risk of 0.15 µm DRAM etching process, is used to demonstrate the effectiveness of the proposed approach. Finally, the result of the proposed method is compared with the listing approaches of risk assessment methods.
Si, Guangsen; Xu, Zeshui
2018-01-01
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019
Atmospheric stability modelling for nuclear emergency response systems using fuzzy set theory
International Nuclear Information System (INIS)
Walle, B. van de; Ruan, D.; Govaerts, P.
1993-01-01
A new approach to Pasquill stability classification is developed using fuzzy set theory, taking into account the natural continuity of the atmospheric stability and providing means to analyse the obtained stability classes. (2 figs.)
A Comprehensive Literature Review of 50 Years of Fuzzy Set Theory
Directory of Open Access Journals (Sweden)
Cengiz Kahraman
2016-04-01
Full Text Available fuzzy sets have a great progress in every scientific research area. it found many application areas in both theoretical and practical studies from engineering area to arts and humanities, from computer science to health sciences, and from life sciences to physical sciences. in this paper, a comprehensive literature review on the fuzzy set theory is realized. in the recent years, ordinary fuzzy sets have been extended to new types and these extensions have been used in many areas such as energy, medicine, material, economics and pharmacology sciences. this literature review also analyzes the chronological development of these extensions. in the last section of the paper, we present our interpretations on the future of fuzzy sets.
Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set.
Zhang, Shuai; Yu, Dejian; Wang, Yan; Zhang, Wenyu
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
Some applications of fuzzy sets and the analytical hierarchy process to decision making
Castro, Alberto Rosas
1984-01-01
Approved for public release; distribution unlimited This thesis examines the use of fuzzy set theory and the analytic hierarchy process in decision making. It begins by reviewing the insight of psychologists, social scientists and computer scientists to the decision making process. The Operations Research- Systems Analysis approach is discussed followed by a presentation of the basis of fuzzy set theory and the analytic hierarchy process. Two applications of these meth...
Pemodelan Sistem Fuzzy Dengan Menggunakan Matlab
Directory of Open Access Journals (Sweden)
Afan Galih Salman
2010-12-01
Full Text Available Fuzzy logic is a method in soft computing category, a method that could process uncertain, inaccurate, and less cost implemented data. Some methods in soft computing category besides fuzzy logic are artificial network nerve, probabilistic reasoning, and evolutionary computing. Fuzzy logic has the ability to develop fuzzy system that is intelligent system in uncertain environment. Some stages in fuzzy system formation process is input and output analysis, determining input and output variable, defining each fuzzy set member function, determining rules based on experience or knowledge of an expert in his field, and implementing fuzzy system. Overall, fuzzy logic uses simple mathematical concept, understandable, detectable uncertain and accurate data. Fuzzy system could create and apply expert experiences directly without exercise process and effort to decode the knowledge into a computer until becoming a modeling system that could be relied on decision making.
Warren, McCain, and Obama Needed Fuzzy Sets at Presidential Forum
Directory of Open Access Journals (Sweden)
Ashu M. G. Solo
2012-01-01
Full Text Available During a presidential forum in the 2008 US presidential campaign, the moderator, Pastor Rick Warren, wanted Senator John McCain and then-Senator Barack Obama to define rich with a specific number. Warren wanted to know at what specific income level a person goes from being not rich to rich. The problem with this question is that there is no specific income at which a person makes the leap from being not rich to being rich. This is because rich is a fuzzy set, not a crisp set, with different incomes having different degrees of membership in the rich fuzzy set. Fuzzy logic is needed to properly ask and answer Warren's question about quantitatively defining rich. An imprecise natural language word like rich should be considered to have qualitative definitions, crisp quantitative definitions, and fuzzy quantitative definitions.
Correlation Coefficients of Extended Hesitant Fuzzy Sets and Their Applications to Decision Making
Directory of Open Access Journals (Sweden)
Na Lu
2017-03-01
Full Text Available Extended hesitant fuzzy sets (EHFSs, which allow the membership degree of an element to a set represented by several possible value-groups, can be considered as a powerful tool to express uncertain information in the process of group decision making. Therefore, we derive some correlation coefficients between EHFSs, which contain two cases, the correlation coefficients taking into account the length of extended hesitant fuzzy elements (EHFEs and the correlation coefficients without taking into account the length of EHFEs, as a new extension of existing correlation coefficients for hesitant fuzzy sets (HFSs and apply them to decision making under extended hesitant fuzzy environments. A real-world example based on the energy policy problem is employed to illustrate the actual need for dealing with the difference of evaluation information provided by different experts without information loss in decision making processes.
Bi-cooperative games in bipolar fuzzy settings
Hazarika, Pankaj; Borkotokey, Surajit; Mesiar, Radko
2018-01-01
In this paper, we introduce the notion of a bi-cooperative game with Bipolar Fuzzy Bi-coalitions and discuss the related properties. In many decision-making situations, players show bipolar motives while cooperating among themselves. This is modelled in both crisp and fuzzy environments. Bi-cooperative games with fuzzy bi-coalitions have already been proposed under the product order of bi-coalitions where one had memberships in [0, 1]. In the present paper, we adopt the alternative ordering: ordering by monotonicity and account for players' memberships in ?, a break from the previous formulation. This simplifies the model to a great extent. The corresponding Shapley axioms are proposed. An explicit form of the Shapley value to a particular class of such games is also obtained. Our study is supplemented with an illustrative example.
Directory of Open Access Journals (Sweden)
Christian Servin
2018-01-01
Full Text Available In modern mathematics, many concepts and ideas are described in terms of category theory. From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic category of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural fuzzy analog of the category of sets and functions, and we show that, in this category, fuzzy relations (a natural fuzzy analogue of functions can be determined in category terms—of course, modulo 1-1 mapping of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.
Modelling and management of subjective information in a fuzzy setting
Bouchon-Meunier, Bernadette; Lesot, Marie-Jeanne; Marsala, Christophe
2013-01-01
Subjective information is very natural for human beings. It is an issue at the crossroad of cognition, semiotics, linguistics, and psycho-physiology. Its management requires dedicated methods, among which we point out the usefulness of fuzzy and possibilistic approaches and related methods, such as evidence theory. We distinguish three aspects of subjectivity: the first deals with perception and sensory information, including the elicitation of quality assessment and the establishment of a link between physical and perceived properties; the second is related to emotions, their fuzzy nature, and their identification; and the last aspect stems from natural language and takes into account information quality and reliability of information.
Directory of Open Access Journals (Sweden)
Chang Che
2018-01-01
Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.
Bi-cooperative games in bipolar fuzzy settings
Czech Academy of Sciences Publication Activity Database
Hazarika, P.; Borkotokey, S.; Mesiar, Radko
2018-01-01
Roč. 47, č. 1 (2018), s. 51-66 ISSN 0308-1079 Institutional support: RVO:67985556 Keywords : Bi-cooperative games * bipolar fuzzy bi-coalition * Shapley function Subject RIV: BA - General Mathematics Impact factor: 2.490, year: 2016 http://library.utia.cas.cz/separaty/2018/E/mesiar-0485377.pdf
Paired fuzzy sets as a basic structure for knowledge representation
DEFF Research Database (Denmark)
Montero, Javier; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we present an unifying approach to a number of fuzzy models that share the existence of two opposite concepts. In particular, we stress that standard structures for knowledge representation are being built from a family of related concepts, paired concepts in case we simply consider...
Paired fuzzy sets and other opposite-based models
DEFF Research Database (Denmark)
Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.
2016-01-01
In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ...
Web service based system for generating input data sets
International Nuclear Information System (INIS)
Kralev, Velin; Kraleva, Radoslava
2011-01-01
This article deals with a three-layer architectural model of a distributed information system based on Web services, which will be used for automatic generation of sets of input data. The information system will be constructed of a client layer, a service layer and of a data layer. The web services as a tool of developing distributed software systems will be presented briefly. A web service and the implementation of its web methods will be described. A way to use the developed web methods in real application will be proposed. Keywords: web services
Entropy Based Feature Selection for Fuzzy Set-Valued Information Systems
Ahmed, Waseem; Sufyan Beg, M. M.; Ahmad, Tanvir
2018-06-01
In Set-valued Information Systems (SIS), several objects contain more than one value for some attributes. Tolerance relation used for handling SIS sometimes leads to loss of certain information. To surmount this problem, fuzzy rough model was introduced. However, in some cases, SIS may contain some real or continuous set-values. Therefore, the existing fuzzy rough model for handling Information system with fuzzy set-values needs some changes. In this paper, Fuzzy Set-valued Information System (FSIS) is proposed and fuzzy similarity relation for FSIS is defined. Yager's relative conditional entropy was studied to find the significance measure of a candidate attribute of FSIS. Later, using these significance values, three greedy forward algorithms are discussed for finding the reduct and relative reduct for the proposed FSIS. An experiment was conducted on a sample population of the real dataset and a comparison of classification accuracies of the proposed FSIS with the existing SIS and single-valued Fuzzy Information Systems was made, which demonstrated the effectiveness of proposed FSIS.
International Nuclear Information System (INIS)
Shaw, W.; Grindrod, P.
1989-01-01
This document encompasses two main items. The first consists of a review of four aspects of fuzzy sets, namely, the general framework, the role of expert judgment, mathematical and computational aspects, and present applications. The second consists of the application of fuzzy-set theory to simplified problems in radionuclide migration, with comparisons between fuzzy and probabilistic approaches, treated both analytically and computationally. A new approach to fuzzy differential equations is presented, and applied to simple ordinary and partial differential equations. It is argued that such fuzzy techniques represent a viable alternative to probabilistic risk assessment, for handling systems subject to uncertainties
Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei
2017-06-01
Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.
International Nuclear Information System (INIS)
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.
2017-01-01
Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.
The Interval-Valued Triangular Fuzzy Soft Set and Its Method of Dynamic Decision Making
Directory of Open Access Journals (Sweden)
Xiaoguo Chen
2014-01-01
Full Text Available A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular fuzzy soft set is given by the aggregating thought, thereby aggregating interval-valued triangular fuzzy soft sets of different time-series into a collective interval-valued triangular fuzzy soft set. The formulas of selection and decision values of different objects are given; therefore the optimal decision making is achieved according to the decision values. Finally, the steps of this method are concluded, and one example is given to explain the application of the method.
Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.
2018-02-01
This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.
Directory of Open Access Journals (Sweden)
Pereira J.C.R.
2004-01-01
Full Text Available The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA and by fuzzy max-min compositions (fuzzy, and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.
Fuzzy sets as extension of probabilistic models for evaluating human reliability
International Nuclear Information System (INIS)
Przybylski, F.
1996-11-01
On the base of a survey of established quantification methodologies for evaluating human reliability, a new computerized methodology was developed in which a differential consideration of user uncertainties is made. In this quantification method FURTHER (FUzzy Sets Related To Human Error Rate Prediction), user uncertainties are quantified separately from model and data uncertainties. As tools fuzzy sets are applied which, however, stay hidden to the method's user. The user in the quantification process only chooses an action pattern, performance shaping factors and natural language expressions. The acknowledged method HEART (Human Error Assessment and Reduction Technique) serves as foundation of the fuzzy set approach FURTHER. By means of this method, the selection of a basic task in connection with its basic error probability, the decision how correct the basic task's selection is, the selection of a peformance shaping factor, and the decision how correct the selection and how important the performance shaping factor is, were identified as aspects of fuzzification. This fuzzification is made on the base of data collection and information from literature as well as of the estimation by competent persons. To verify the ammount of additional information to be received by the usage of fuzzy sets, a benchmark session was accomplished. In this benchmark twelve actions were assessed by five test-persons. In case of the same degree of detail in the action modelling process, the bandwidths of the interpersonal evaluations decrease in FURTHER in comparison with HEART. The uncertainties of the single results could not be reduced up to now. The benchmark sessions conducted so far showed plausible results. A further testing of the fuzzy set approach by using better confirmed fuzzy sets can only be achieved in future practical application. Adequate procedures, however, are provided. (orig.) [de
The Interval-Valued Triangular Fuzzy Soft Set and Its Method of Dynamic Decision Making
Xiaoguo Chen; Hong Du; Yue Yang
2014-01-01
A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular...
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
Evaluation of students' perceptions on game based learning program using fuzzy set conjoint analysis
Sofian, Siti Siryani; Rambely, Azmin Sham
2017-04-01
An effectiveness of a game based learning (GBL) can be determined from an application of fuzzy set conjoint analysis. The analysis was used due to the fuzziness in determining individual perceptions. This study involved a survey collected from 36 students aged 16 years old of SMK Mersing, Johor who participated in a Mathematics Discovery Camp organized by UKM research group called PRISMatik. The aim of this research was to determine the effectiveness of the module delivered to cultivate interest in mathematics subject in the form of game based learning through different values. There were 11 games conducted for the participants and students' perceptions based on the evaluation of six criteria were measured. A seven-point Likert scale method was used to collect students' preferences and perceptions. This scale represented seven linguistic terms to indicate their perceptions on each module of GBLs. Score of perceptions were transformed into degree of similarity using fuzzy set conjoint analysis. It was found that Geometric Analysis Recreation (GEAR) module was able to increase participant preference corresponded to the six attributes generated. The computations were also made for the other 10 games conducted during the camp. Results found that interest, passion and team work were the strongest values obtained from GBL activities in this camp as participants stated very strongly agreed that these attributes fulfilled their preferences in every module. This was an indicator of efficiency for the program. The evaluation using fuzzy conjoint analysis implicated the successfulness of a fuzzy approach to evaluate students' perceptions toward GBL.
Compound Option Pricing under Fuzzy Environment
Directory of Open Access Journals (Sweden)
Xiandong Wang
2014-01-01
Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.
PENGGUNAAN HIBRIDISASI GENETICS ALGORITHMS DAN FUZZY SETS UNTUK MEMPRODUKSI PAKET SOAL
Directory of Open Access Journals (Sweden)
Rolly Intan
2005-01-01
Full Text Available At least, two important factors, discrimination and difficulty, should be considered in determing whether a problem should be in a packet of problems produced for students entrance examination at a university. The higher the discrimination degree of a problem, the better the problem is used to make a selection of participants based on their intellectual capability. How to provide a packet of entrance examination problems satisfying a determined pattern of discrimination and difficulty is a major problem in this paper for which an algorithm, it can be proved that the beneficiary of applying fuzzy sets and fuzzy relation in determing the first chromosome in the process of GA is that the process can reach tolerable solutions faster. Maximum number of generation is still needed as a threshold to overcome the problem of run time system overflow. Generally, the problems in the form of passages tend to have lower fitnest cost. Abstract in Bahasa Indonesia : Proses penyusunan paket soal (misalnya soal untuk test seleksi masuk universitas yang diambil dari suatu bank soal, minimal harus memperhatikan dua aspek penting yaitu: tingkat kesulitan dan tingkat diskriminan soal. Semakin tinggi tingkat diskriminan suatu soal, semakin baik soal tersebut dipakai untuk menyeleksi kemampuan peserta test. Permasalahan yang dihadapi adalah bagaimana agar pembuat soal dapat memilih dan menentukan kombinasi soal-soal yang tepat (optimum sehingga dapat memenuhi tingkat kesulitan dan diskriminan yang dikehendaki. Untuk menyelesaikan masalah ini, diperkenalkan suatu algoritma yang disusun dengan menggunakan hibridisasi metode Genetics Algorithm dan fuzzy sets. Dari hasil pengujian, didapatkan bahwa penggunaan fuzzy sets dan fuzzy relations dalam pemilihan kromoson awal akan lebih mempercepat pencapaian tolerable solutions. Tetap dibutuhkan treshould maksimum jumlah generasi yang dilakukan untuk mencegah run time sistem overflow. Soal bacaan cenderung memiliki nilai Fitnest
Optical Generation of Fuzzy-Based Rules
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2018-01-01
Full Text Available Cubic intuitionistic fuzzy (CIF set is the hybrid set which can contain much more information to express an interval-valued intuitionistic fuzzy set and an intuitionistic fuzzy set simultaneously for handling the uncertainties in the data. Unfortunately, there has been no research on the aggregation operators on CIF sets so far. Since an aggregation operator is an important mathematical tool in decision-making problems, the present paper proposes some new Bonferroni mean and weighted Bonferroni mean averaging operators between the cubic intuitionistic fuzzy numbers for aggregating the different preferences of the decision-maker. Then, we develop a decision-making method based on the proposed operators under the cubic intuitionistic fuzzy environment and illustrated with a numerical example. Finally, a comparison analysis between the proposed and the existing approaches have been performed to illustrate the applicability and feasibility of the developed decision-making method.
The Concept of Convexity in Fuzzy Set Theory | Rauf | Journal of the ...
African Journals Online (AJOL)
The notions of convex analysis are indispensable in theoretical and applied Mathematics especially in the study of Calculus where it has a natural generalization for the several variables case. This paper investigates the concept of Fuzzy set theory in relation to the idea of convexity. Some fundamental theorems were ...
Poverty Lines Based on Fuzzy Sets Theory and Its Application to Malaysian Data
Abdullah, Lazim
2011-01-01
Defining the poverty line has been acknowledged as being highly variable by the majority of published literature. Despite long discussions and successes, poverty line has a number of problems due to its arbitrary nature. This paper proposes three measurements of poverty lines using membership functions based on fuzzy set theory. The three…
Management and performance features of cancer centers in Europe: A fuzzy-set analysis
Wind, Anke; Lobo, Mariana Fernandes; van Dijk, Joris; Lepage-Nefkens, Isabelle; Laranja-Pontes, Jose; da Conceicao Goncalves, Vitor; van Harten, Willem H.; Rocha-Goncalves, Francisco Nuno
2016-01-01
The specific aim of this study is to identify the performance features of cancer centers in the European Union by using a fuzzy-set qualitative comparative analysis (fsQCA). The fsQCA method represents cases (cancer centers) as a combination of explanatory and outcome conditions. This study uses
Energy Technology Data Exchange (ETDEWEB)
Rashidifar, Mohammed Amin [Faculty of Mechanical Engineering, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of); Rashidifar, Ali Amin, E-mail: rashidifar_58@yahoo.com [Computer Science, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of)
2014-07-01
Conventional model-based control strategies are very complex and difficult to synthesize due to high complexity of the dynamics of robots manipulator considering joint elasticity. This paper presents investigations into the development of hybrid control schemes for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, initially a collocated proportional-derivative (P D)-type Fuzzy Logic Controller (FLC) is developed for tip angular position control of a flexible joint manipulator. This is then extended to incorporate a non-collocated Fuzzy Logic Controller and input shaping scheme for vibration reduction of the flexible joint system. The positive zero-vibration-derivative-derivative (ZVDD) shaper is designed based on the properties of the system. Simulation results of the response of the flexible joint manipulator with the controllers are presented in time and frequency domains. The performances of the hybrid control schemes are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed. (Author)
Directory of Open Access Journals (Sweden)
Abdul Hameed Q. A. Al-Tai
2011-01-01
Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.
Use of fuzzy set theory in the aggregation of expert judgments
International Nuclear Information System (INIS)
Moon, Joo Hyun; Kang, Chang Sun
1999-01-01
It is sometimes impossible to make a correct decision in a certain engineering task without the help from professional expert judgments. Even though there are different expert opinions available, however, they should be appropriately aggregated to a useful form for making an acceptable engineering decision. This paper proposes a technique which utilizes the fuzzy set theory in the aggregation of expert judgments. In the technique, two main key concepts are employed: linguistic variables and fuzzy numbers. Linguistic variables first represent the relative importance of evaluation criteria under consideration and the degree of confidence on each expert perceived by the decision maker, and then are replaced by suitable triangular fuzzy numbers for arithmetic manipulation. As a benchmark problem, the pressure increment in the containment of Sequoyah nuclear power plant due to reactor vessel breach was estimated to verify and validate the proposed technique
A Dual Hesitant Fuzzy Multigranulation Rough Set over Two-Universe Model for Medical Diagnoses
Zhang, Chao; Li, Deyu; Yan, Yan
2015-01-01
In medical science, disease diagnosis is one of the difficult tasks for medical experts who are confronted with challenges in dealing with a lot of uncertain medical information. And different medical experts might express their own thought about the medical knowledge base which slightly differs from other medical experts. Thus, to solve the problems of uncertain data analysis and group decision making in disease diagnoses, we propose a new rough set model called dual hesitant fuzzy multigranulation rough set over two universes by combining the dual hesitant fuzzy set and multigranulation rough set theories. In the framework of our study, both the definition and some basic properties of the proposed model are presented. Finally, we give a general approach which is applied to a decision making problem in disease diagnoses, and the effectiveness of the approach is demonstrated by a numerical example. PMID:26858772
Cornelissen, A.M.G.; Berg, van den J.; Koops, W.J.; Grossman, M.; Udo, H.M.J.
2001-01-01
As a consequence of the impact of sustainability on agricultural production systems, a standardized framework to monitor sustainable development would have great practical utility. The objective of this paper is to introduce fuzzy set theory and develop fuzzy mathematical models to assess
The Compositional Rule of Inference and Zadeh’s Extension Principle for Non-normal Fuzzy Sets
van den Broek, P.M.; Noppen, J.A.R.; Castillo, Oscar
2007-01-01
Defining the standard Boolean operations on fuzzy Booleans with the compositional rule of inference (CRI) or Zadeh's extension principle gives counter-intuitive results. We introduce and motivate a slight adaptation of the CRI, which only effects the results for non-normal fuzzy sets. It is shown
Energy Technology Data Exchange (ETDEWEB)
Furuta, H. [Kansai Univ., Osaka (Japan); Kaneyoshi, M.; Tanaka, H. [Hitachi Zosen Corp., Osaka (Japan); Kamei, M.
1996-06-20
Generally in cable-stayed bridges, optimum pre-stress is introduced into cables to achieve reducing weight of the cable cross section by reducing and equalizing the cross sectional force of the main girders. However, the conventional optimum stress determining methods require setting the cross section to be repeated. Therefore, in order to omit iterative calculations and derive rational pre-stress, a fuzzy sets theory was introduced. With this method, if upper and lower limits of design values (targeted design values) are inputted, which are desired by a designer to be realized as cross sectional force such as in main girders and towers and cable tension, an optimum stress can be derived automatically by means of a fuzzy linearity regression analysis. The targeted design values are given by experience and engineering judgment, and resetting the cross section is not required as long as a target value which can be tolerated by a hypothetical cross section is given. Since the theory used is a fuzzy sets theory, the derived pre-stress may not be guaranteed as a truly optimum pre-stress. In order to have the result approach an optimum solution, it is important to set adequate upper and lower limits of the targeted design values referring to examples of constructions in the past and experience. 10 refs., 11 figs., 7 tabs.
Directory of Open Access Journals (Sweden)
Abbas Mardani
2017-01-01
Full Text Available Rough set theory has been used extensively in fields of complexity, cognitive sciences, and artificial intelligence, especially in numerous fields such as expert systems, knowledge discovery, information system, inductive reasoning, intelligent systems, data mining, pattern recognition, decision-making, and machine learning. Rough sets models, which have been recently proposed, are developed applying the different fuzzy generalisations. Currently, there is not a systematic literature review and classification of these new generalisations about rough set models. Therefore, in this review study, the attempt is made to provide a comprehensive systematic review of methodologies and applications of recent generalisations discussed in the area of fuzzy-rough set theory. On this subject, the Web of Science database has been chosen to select the relevant papers. Accordingly, the systematic and meta-analysis approach, which is called “PRISMA,” has been proposed and the selected articles were classified based on the author and year of publication, author nationalities, application field, type of study, study category, study contribution, and journal in which the articles have appeared. Based on the results of this review, we found that there are many challenging issues related to the different application area of fuzzy-rough set theory which can motivate future research studies.
Rough Set Theory Based Fuzzy TOPSIS on Serious Game Design Evaluation Framework
Directory of Open Access Journals (Sweden)
Chung-Ho Su
2013-01-01
Full Text Available This study presents a hybrid methodology for solving the serious game design evaluation in which evaluation criteria are based on meaningful learning, ARCS motivation, cognitive load, and flow theory (MACF by rough set theory (RST and experts’ selection. The purpose of this study tends to develop an evaluation model with RST based fuzzy Delphi-AHP-TOPSIS for MACF characteristics. Fuzzy Delphi method is utilized for selecting the evaluation criteria, Fuzzy AHP is used for analyzing the criteria structure and determining the evaluation weight of criteria, and Fuzzy TOPSIS is applied to determine the sequence of the evaluations. A real case is also used for evaluating the selection of MACF criteria design for four serious games, and both the practice and evaluation of the case could be explained. The results show that the playfulness (C24, skills (C22, attention (C11, and personalized (C35 are determined as the four most important criteria in the MACF selection process. And evaluation results of case study point out that Game 1 has the best score overall (Game 1 > Game 3 > Game 2 > Game 4. Finally, proposed evaluation framework tends to evaluate the effectiveness and the feasibility of the evaluation model and provide design criteria for relevant multimedia game design educators.
Directory of Open Access Journals (Sweden)
Chung-Min Wu
2015-01-01
Full Text Available This study developed an assistive system for the severe physical disabilities, named “code-maker translator assistive input device” which utilizes a contest fuzzy recognition algorithm and Morse codes encoding to provide the keyboard and mouse functions for users to access a standard personal computer, smartphone, and tablet PC. This assistive input device has seven features that are small size, easy installing, modular design, simple maintenance, functionality, very flexible input interface selection, and scalability of system functions, when this device combined with the computer applications software or APP programs. The users with severe physical disabilities can use this device to operate the various functions of computer, smartphone, and tablet PCs, such as sending e-mail, Internet browsing, playing games, and controlling home appliances. A patient with a brain artery malformation participated in this study. The analysis result showed that the subject could make himself familiar with operating of the long/short tone of Morse code in one month. In the future, we hope this system can help more people in need.
Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets
Kaishan, Liu; Huimin, Li
2017-12-01
The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.
Surface blemish detection from passive imagery using learned fuzzy set concepts
International Nuclear Information System (INIS)
Gurbuz, S.; Carver, A.; Schalkoff, R.
1997-12-01
An image analysis method for real-time surface blemish detection using passive imagery and fuzzy set concepts is described. The method develops an internal knowledge representation for surface blemish characteristics on the basis of experience, thus facilitating autonomous learning based upon positive and negative exemplars. The method incorporates fuzzy set concepts in the learning subsystem and image segmentation algorithms, thereby mimicking human visual perception. This enables a generic solution for color image segmentation. This method has been applied in the development of ARIES (Autonomous Robotic Inspection Experimental System), designed to inspect DOE warehouse waste storage drums for rust. In this project, the ARIES vision system is used to acquire drum surface images under controlled conditions and subsequently perform visual inspection leading to the classification of the drum as acceptable or suspect
A Dynamic Interval-Valued Intuitionistic Fuzzy Sets Applied to Pattern Recognition
Directory of Open Access Journals (Sweden)
Zhenhua Zhang
2013-01-01
Full Text Available We present dynamic interval-valued intuitionistic fuzzy sets (DIVIFS, which can improve the recognition accuracy when they are applied to pattern recognition. By analyzing the degree of hesitancy, we propose some DIVIFS models from intuitionistic fuzzy sets (IFS and interval-valued IFS (IVIFS. And then we present a novel ranking condition on the distance of IFS and IVIFS and introduce some distance measures of DIVIFS satisfying the ranking condition. Finally, a pattern recognition example applied to medical diagnosis decision making is given to demonstrate the application of DIVIFS and its distances. The simulation results show that the DIVIFS method is more comprehensive and flexible than the IFS method and the IVIFS method.
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Directory of Open Access Journals (Sweden)
Lapidus Azariy
2016-01-01
Full Text Available In this article, problems of mathematical modeling and experiment planning of the organization and management of construction. The authors designated the basic restrictions and the difficulties in this field. Concluded that the planning of research experiment is possible in the information sphere with using of heuristic, graphical, mathematical models, as well as neural networks and genetic algorithms. The authors note the need for use of expert information in the case of the formalization of quality parameters. The article presented an overview of the translation methods of qualitative information into mathematical language. Comparison of methods the qualimetry of USSR scientists, the analytic hierarchy process and fuzzy set theory were performed. The benefits of the latter for interpretation of qualitative parameters were identified. The authors have given many examples of application fuzzy sets for formalization of organizational factors of construction processes. Finally, there conclusion was made about progressiveness and effectiveness of fuzzy set theory to describe the qualitative parameters of organization and management of construction.
International Nuclear Information System (INIS)
Al-Rawajfeh, Aiman Eid; Mamlook, Rustom
2008-01-01
In this study, the factors (i.e. weight fractions, crystallization temperatures and interaction such as hydrogen bonding) affecting melting, crystallinity, interaction parameters and miscibility of polymer blends (PB) have been studied by implementation of a fuzzy set. The interaction parameters were calculated using the Nishi-Wang equation, which is based on the Flory-Huggins theory. The values of interaction parameters χ 12 were negative for all blend compositions suggesting that χ 12 depends on the volume fraction (Φ) of the polymer. The various characteristics for the case study was synthesized and converted into relative weights w.r.t fuzzy set method. The fuzzy set analysis for the case study reveal increase as confirmed by the experimental data. The application of the fuzzy set methodology offers reasonable prediction and assessment for detecting yield in polymer blends
Enhanced Decision Support Systems in Intensive Care Unit Based on Intuitionistic Fuzzy Sets
Directory of Open Access Journals (Sweden)
Hanen Jemal
2017-01-01
Full Text Available In areas of medical diagnosis and decision-making, several uncertainty and ambiguity shrouded situations are most often imposed. In this regard, one may well assume that intuitionistic fuzzy sets (IFS should stand as a potent technique useful for demystifying associated with the real healthcare decision-making situations. To this end, we are developing a prototype model helpful for detecting the patients risk degree in Intensive Care Unit (ICU. Based on the intuitionistic fuzzy sets, dubbed Medical Intuitionistic Fuzzy Expert Decision Support System (MIFEDSS, the shown work has its origins in the Modified Early Warning Score (MEWS standard. It is worth noting that the proposed prototype effectiveness validation is associated through a real case study test at the Polyclinic ESSALEMA cited in Sfax, Tunisia. This paper does actually provide some practical initial results concerning the system as carried out in real life situations. Indeed, the proposed system turns out to prove that the MIFEDSS does actually display an imposing capability for an established handily ICU related uncertainty issues. The performance of the prototypes is compared with the MEWS standard which exposed that the IFS application appears to perform highly better in deferring accuracy than the expert MEWS score with higher degrees of sensitivity and specificity being recorded.
Application of Fuzzy Sets for the Improvement of Routing Optimization Heuristic Algorithms
Directory of Open Access Journals (Sweden)
Mattas Konstantinos
2016-12-01
Full Text Available The determination of the optimal circular path has become widely known for its difficulty in producing a solution and for the numerous applications in the scope of organization and management of passenger and freight transport. It is a mathematical combinatorial optimization problem for which several deterministic and heuristic models have been developed in recent years, applicable to route organization issues, passenger and freight transport, storage and distribution of goods, waste collection, supply and control of terminals, as well as human resource management. Scope of the present paper is the development, with the use of fuzzy sets, of a practical, comprehensible and speedy heuristic algorithm for the improvement of the ability of the classical deterministic algorithms to identify optimum, symmetrical or non-symmetrical, circular route. The proposed fuzzy heuristic algorithm is compared to the corresponding deterministic ones, with regard to the deviation of the proposed solution from the best known solution and the complexity of the calculations needed to obtain this solution. It is shown that the use of fuzzy sets reduced up to 35% the deviation of the solution identified by the classical deterministic algorithms from the best known solution.
Directory of Open Access Journals (Sweden)
F. Taheri
2011-04-01
Full Text Available Background and Aims Health, Safety and Environment (HSE performance measurement of the contractors and identification of the best ones can make a perception of the past changes in their HSE performance. Consequently, this may motivate them and provide an opportunity to improve their quality of services. The aim of this study is to rank the contractor-companies of one of the Iranian steel manufacturing companies considering their safety behavior and also to determine the best combination of contractors-companies. Methods safety behavior sampling method used to determine the status of unsafe acts. The fuzzy efficiency numbers of each input were ranked by Chen & Klein method. To obtain a final ranking AHP was applied. The obtained rankings by FIEP-AHP were compared to the ranking of DEA. Results Results indicated that the most frequent unsafe behaviors were related to not-using or miss-using the PPE, using broken tools and inappropriate working condition respectively. A significant relationship between experience, education and age with safety behaviors was obtained (p<0.05. Results showed that companies’ number 2 and 6 had respectively the best and worst ranks. Conclusion Because FIEP increases the power of recognition especially when the number of DMUs is lower than inputs and outputs, it can be suggested as an appropriate model for determining the best contractor companies.
Pairwise Comparison and Distance Measure of Hesitant Fuzzy Linguistic Term Sets
Directory of Open Access Journals (Sweden)
Han-Chen Huang
2014-01-01
Full Text Available A hesitant fuzzy linguistic term set (HFLTS, allowing experts using several possible linguistic terms to assess a qualitative linguistic variable, is very useful to express people’s hesitancy in practical decision-making problems. Up to now, a little research has been done on the comparison and distance measure of HFLTSs. In this paper, we present a comparison method for HFLTSs based on pairwise comparisons of each linguistic term in the two HFLTSs. Then, a distance measure method based on the pairwise comparison matrix of HFLTSs is proposed, and we prove that this distance is equal to the distance of the average values of HFLTSs, which makes the distance measure much more simple. Finally, the pairwise comparison and distance measure methods are utilized to develop two multicriteria decision-making approaches under hesitant fuzzy linguistic environments. The results analysis shows that our methods in this paper are more reasonable.
Design of interpretable fuzzy systems
Cpałka, Krzysztof
2017-01-01
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Directory of Open Access Journals (Sweden)
Yan An
2014-03-01
Full Text Available A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A. Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B, was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system.
Directory of Open Access Journals (Sweden)
Dheeraj Kumar Joshi
2018-03-01
Full Text Available Uncertainties due to randomness and fuzziness comprehensively exist in control and decision support systems. In the present study, we introduce notion of occurring probability of possible values into hesitant fuzzy linguistic element (HFLE and define hesitant probabilistic fuzzy linguistic set (HPFLS for ill structured and complex decision making problem. HPFLS provides a single framework where both stochastic and non-stochastic uncertainties can be efficiently handled along with hesitation. We have also proposed expected mean, variance, score and accuracy function and basic operations for HPFLS. Weighted and ordered weighted aggregation operators for HPFLS are also defined in the present study for its applications in multi-criteria group decision making (MCGDM problems. We propose a MCGDM method with HPFL information which is illustrated by an example. A real case study is also taken in the present study to rank State Bank of India, InfoTech Enterprises, I.T.C., H.D.F.C. Bank, Tata Steel, Tata Motors and Bajaj Finance using real data. Proposed HPFLS-based MCGDM method is also compared with two HFL-based decision making methods.
TING-YU CHEN
2012-01-01
The purpose of this paper is to present a useful method for estimating the importance of criteria and reducing the leniency bias in multiple criteria decision analysis based on interval-valued fuzzy sets. Several types of net predispositions are defined to represent an aggregated effect of interval-valued fuzzy evaluations. The suitability function for measuring the overall evaluation of each alternative is then determined based on simple additive weighting (SAW) methods. Because positive or ...
Couso, Inés; Sánchez, Luciano
2014-01-01
This short book provides a unified view of the history and theory of random sets and fuzzy random variables, with special emphasis on its use for representing higher-order non-statistical uncertainty about statistical experiments. The authors lay bare the existence of two streams of works using the same mathematical ground, but differing form their use of sets, according to whether they represent objects of interest naturally taking the form of sets, or imprecise knowledge about such objects. Random (fuzzy) sets can be used in many fields ranging from mathematical morphology, economics, artificial intelligence, information processing and statistics per se, especially in areas where the outcomes of random experiments cannot be observed with full precision. This book also emphasizes the link between random sets and fuzzy sets with some techniques related to the theory of imprecise probabilities. This small book is intended for graduate and doctoral students in mathematics or engineering, but also provides an i...
International Nuclear Information System (INIS)
Wu, Yunna; Geng, Shuai; Xu, Hu; Zhang, Haobo
2014-01-01
Highlights: • Experts’ opinions are expressed by using the intuitionistic fuzzy values. • Fuzzy measure is used to solve the dependence problem of criteria. • The compensatory problem of performance scores is reasonably processed. - Abstract: Project selection plays an important role in the entire life cycle of wind farm project and the multi-criteria decision making (MCDM) methods are very important in the whole wind farm project plan selection process. There are problems in the present MCDM methods decrease evaluation quality of the wind farm project plans: first, the information loss exists in the wind farm project plan evaluation process. Second, it is difficult to satisfy the independent assumption of the multi-criteria decision making methods used in the wind farm project plan evaluation in fact. Third, the compensatory problem of performance scores of the wind farm project plans is processed unreasonably. Hence the innovation points of this paper are as follows: first, the intuitionistic fuzzy numbers are used instead of fuzzy numbers or numerical values to reflect the experts’ intuitive preferences to decrease the probability of information loss; second, the fuzzy measure is used to rate the important degrees of criteria in order to avoid the independent assumption and to increase the reasonability; third, the partial compensatory problem of performance scores is well processed by using intuitionistic fuzzy Choquet (IFC) operator and generalized intuitionistic fuzzy ordered geometric averaging (GIFOGA) operator. These operators can deal with the compensatory performance scores and non-compensatory performance scores respectively. Finally, a case study demonstrates the effectiveness of decision framework
Decision making using AHP (Analytic Hierarchy Process) and fuzzy set theory in waste management
International Nuclear Information System (INIS)
Chung, J.Y.; Lee, K.J.; Kim, C.D.
1995-01-01
The major problem is how to consider the differences in opinions, when many experts are involved in decision making process. This paper provides a simple general methodology to treat the differences in various opinions. The authors determined the grade of membership through the process of magnitude estimation derived from pairwise comparisons and AHP developed by Saaty. They used fuzzy set theory to consider the differences in opinions and obtain the priorities for each alternative. An example, which can be applied to radioactive waste management, also was presented. The result shows a good agreement with the results of averaging methods
Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi
2017-09-01
Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.
Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition
Directory of Open Access Journals (Sweden)
Malinowski Marek T.
2015-01-01
Full Text Available We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors. The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.
Sridevi.Ravada,; Vani prasanna.Kanakala,; Ramya.Koilada
2011-01-01
A fuzzy filter is constructed from a set of fuzzy IF-THEN rules, these fuzzy rules come either from human experts or by matching input-output pairs .in this paper we propose a new fuzzy filter for the noise reduction of images corrupted with additive noise. here in this approach ,initially fuzzy derivatives for all eight directions that is N,E,W,S, NE,NW,SE,SW are calculated using “fuzzy IF-THEN rules “ and membership functions . Further the fuzzy derivative values obtained are used in the fu...
Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories
Directory of Open Access Journals (Sweden)
Ibsen Chivatá Cárdenas
2008-01-01
Full Text Available A landslide susceptibility model was developed for the city of Manizales, Colombia; landslides have been the city’s main environmental problem. Fuzzy sets and possibility and evidence-based theories were used to construct the mo-del due to the set of circumstances and uncertainty involved in the modelling; uncertainty particularly concerned the lack of representative data and the need for systematically coordinating subjective information. Susceptibility and the uncertainty were estimated via data processing; the model contained data concerning mass vulnerability and uncer-tainty. Output data was expressed on a map defined by linguistic categories or uncertain labels as having low, me-dium, high and very high susceptibility; this was considered appropriate for representing susceptibility. A fuzzy spec-trum was developed for classifying susceptibility levels according to perception and expert opinion. The model sho-wed levels of susceptibility in the study area, ranging from low to high susceptibility (medium susceptibility being mo-re frequent. This article shows the details concerning systematic data processing by presenting theories and tools regarding uncertainty. The concept of fuzzy parameters is introduced; this is useful in modelling phenomena regar-ding uncertainty, complexity and nonlinear performance, showing that susceptibility modelling can be feasible. The paper also shows the great convenience of incorporating uncertainty into modelling and decision-making. However, quantifying susceptibility is not suitable when modelling identified uncertainty because incorporating model output information cannot be reduced into exact or real numerical quantities when the nature of the variables is particularly uncertain. The latter concept is applicable to risk assessment.
International Nuclear Information System (INIS)
Liu Yongkuo; Xia Hong; Xie Chunli; Chen Zhihui; Chen Hongxia
2007-01-01
Rough set theory and fuzzy neural network are combined, to take full advantages of the two of them. Based on the reduction technology to knowledge of Rough set method, and by drawing the simple rule from a large number of initial data, the fuzzy neural network was set up, which was with better topological structure, improved study speed, accurate judgment, strong fault-tolerant ability, and more practical. In order to test the validity of the method, the inverted U-tubes break accident of Steam Generator and etc are used as examples, and many simulation experiments are performed. The test result shows that it is feasible to incorporate the fault intelligence diagnosis method based on rough set and fuzzy neural network in the nuclear power plant equipment, and the method is simple and convenience, with small calculation amount and reliable result. (authors)
Application of fuzzy set theory for integral assessment of agricultural products quality
Derkanosova, N. M.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-05-01
The methodology of integrated assessment of quality and safety of agricultural products, approbated by the example of indicators of wheat grain in relation to the provision of consumer properties of bakery products, was developed. Determination of the level of quality of the raw ingredients will allow direct using of agricultural raw materials for food production, taking into account ongoing technology, types of products, and, respectively, rational use of resource potential of the agricultural sector. The mathematical tool of the proposed method is a fuzzy set theory. The fuzzy classifier to evaluate the properties of the grain is formed. The set of six indicators normalized by the national standard is determined; values are ordered and represented by linguistic variables with a trapeziform membership function; the rules for calculation of membership functions are presented. Specific criteria values for individual indicators in shaping the quality of the finished products are considered. For one of the samples of wheat grain values of membership; functions of the linguistic variable "level" for all indicators and the linguistic variable "level of quality" were calculated. It is established that the studied sample of grain obtains the 2 (average) level of quality. Accordingly, it can be recommended for the production of bakery products with higher requirements for the structural-mechanical properties bakery and puff pastry products hearth bread and flour confectionery products of the group of hard dough cookies and crackers
The use of an integrated variable fuzzy sets in water resources management
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings
Walstra, D.J.R.; Hoekstra, R.; Tonnon, P.K.; Ruessink, B.G.
2013-01-01
Input reduction is imperative to long-term (> years) morphodynamic simulations to avoid excessive computation times. Here, we introduce an input-reduction framework for wave-dominated coastal settings. Our framework comprises 4 steps, viz. (1) the selection of the duration of the original (full)
Directory of Open Access Journals (Sweden)
Antonio Maturo
1999-02-01
Full Text Available In some recent laws about the determination of the rents and of the estimated income of properties, it is required a subdivision of the municipal area in homogeneous zones on the basis of assigned criteria. For this reason in many cities, as it also appeared in some daily newspapers, it has been made a crisp classification of the set of buildings. In some our papers we have observed that the peculiarities of the buildings change in a "not sharp" way and so a fuzzy classification seems more suitable.In this paper, starting from the concept of join space associated to a fuzzy set, we study the relations between fuzzy partitions and commutative hypergroups. More in general, we introduce the concepts of "qualitative linear fuzzy set" and we show the relations among the families of these sets, fuzzy partitions and commutative hypergroups. The aim of the study is to show that the commutative hypergroups are a useful tool to study problems on the evaluation in town-planning. In particular, from the blocks associated to a suitable commutative hypergroup, we single out "almost homogeneous" areas and we can determine, in such areas, the fluctuation of the rents and of the values of the buildings.
Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method
Directory of Open Access Journals (Sweden)
Zhikang Lu
2018-02-01
Full Text Available Fault diagnosis is an important task for the normal operation and maintenance of equipment. In many real situations, the diagnosis data cannot provide deterministic values and are usually imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs are very suitable for expressing imprecise or uncertain fault information in real problems. However, existing literature scarcely deals with fault diagnosis problems, such as gasoline engines and steam turbines with IVFSs. However, the similarity measure is one of the important tools in fault diagnoses. Therefore, this paper proposes a new similarity measure of IVFSs based on logarithmic function and its fault diagnosis method for the first time. By the logarithmic similarity measure between the fault knowledge and some diagnosis-testing samples with interval-valued fuzzy information and its relation indices, we can determine the fault type and ranking order of faults corresponding to the relation indices. Then, the misfire fault diagnosis of the gasoline engine and the vibrational fault diagnosis of a turbine are presented to demonstrate the simplicity and effectiveness of the proposed diagnosis method. The fault diagnosis results of gasoline engine and steam turbine show that the proposed diagnosis method not only gives the main fault types of the gasoline engine and steam turbine but also provides useful information for multi-fault analyses and predicting future fault trends. Hence, the logarithmic similarity measure and its fault diagnosis method are main contributions in this study and they provide a useful new way for the fault diagnosis with interval-valued fuzzy information.
International Nuclear Information System (INIS)
Chun, M.H.; Ahn, K.I.
1991-01-01
An important issue faced by contemporary risk analysts of nuclear power plants is how to deal with uncertainties that arise in each phase of probabilistic risk assessments. The major uncertainty addressed in this paper is the one that arises in the accident-progression event trees (APETs), which treat the physical processes affecting the core after an initiating event occurs. Recent advances in the theory of fuzzy sets make it possible to analyze the uncertainty related to complex physical phenomena that may occur during a severe accident of nuclear power plants by means of fuzzy set or possibility concept. The main purpose of this paper is to prevent the results of assessment of the potential applicability of the fuzzy set theory to the uncertainty analysis of APETs as a possible alternative procedure to that used in the most recent risk assessment
Directory of Open Access Journals (Sweden)
Chong Wu
2014-01-01
Full Text Available As an important content in fuzzy mathematics, similarity measure is used to measure the similarity degree between two fuzzy sets. Considering the existing similarity measures, most of them do not consider the hesitancy degree and some methods considering the hesitancy degree are based on the intuitionistic fuzzy sets, intuitionistic fuzzy values. It may cause some counterintuitive results in some cases. In order to make up for the drawback, we present a new approach to construct the similarity measure between two interval-valued intuitionistic fuzzy sets using the entropy measure and considering the hesitancy degree. In particular, the proposed measure was demonstrated to yield a similarity measure. Besides, some examples are given to prove the practicality and effectiveness of the new measure. We also apply the similarity measure to expert system to solve the problems on pattern recognition and the multicriteria group decision making. In these examples, we also compare it with existing methods such as other similarity measures and the ideal point method.
The selection of construction sub-contractors using the fuzzy sets theory
International Nuclear Information System (INIS)
Krzemiński, Michał
2015-01-01
The paper presents the algorithm for the selection of sub-contractors. Main area of author’s interest is scheduling flow models. The ranking task aims at execution time as short as possible Brigades downtime should also be as small as possible. These targets are exposed to significant obsolescence. The criteria for selection of subcontractors will not be therefore time and cost, it is assumed that all those criteria be meet by sub-contractors. The decision should be made in regard to factors difficult to measure, to assess which is the perfect application of fuzzy sets theory. The paper will present a set of evaluation criteria, the part of the knowledge base and a description of the output variable
Forecasting Innovation Risks of Machine-Building Enterprises with the Use of Fuzzy Sets
Directory of Open Access Journals (Sweden)
Fedorenko Irina A.
2017-03-01
Full Text Available The aim of the article is to solve an actual problem of assessing and forecasting the risks of innovation activity of an enterprise under uncertainty. Numerous studies dedicated to this problem suggest various qualitative and quantitative methods, however, most papers present no results of their practical application, which calls the usefulness of their use into question. With the help of the scientific and methodological approach based on the theory of fuzzy sets, the model of predicting the expected risk using fuzzy triangular numbers is proposed. All possible cases of interaction of the expected value of the studied indicator and the indicator characterizing its boundary conditions are investigated. With the help of the received formulas, the total risk of investing in an innovation project is determined depending on the boundary conditions. The index of profitability of investments is chosen as the indicator to be studied. The model allows potential investors and developers to select the optimal values of the project parameters provided that the risk is minimized.
Directory of Open Access Journals (Sweden)
Lina Ke
2013-01-01
Full Text Available With the rapid development of marine economy industry, the activities for exploring and exploiting the marine resources are increasing, and there are more and more marine construction projects, which contribute to the growing trend of eutrophication and frequent occurrence of red tide. Thus, seawater quality has become the topic which the people generally cared about. The seawater quality evaluation could be considered as an analysis process which combined the evaluation indexes with certainty and evaluation factors with uncertainty and its changes. This paper built a model for the assessment of seawater environmental quality based on the multiobjective variable fuzzy set theory (VFEM. The Qingdao marine dumping site in China is taken as an evaluation example. Through the quantitative research of water-quality data from 2004 to 2008, the model is more reliable than other traditional methods, in which uncertainty and ambiguity of the seawater quality evaluation are considered, and trade the stable results as the final results of seawater quality evaluation, which effectively solved the impact of the fuzzy boundary of evaluation standard and monitoring error, is more suitable for evaluation of a multi-index, multilevel, and nonlinear marine environment system and has been proved to be an effective tool for seawater quality evaluation.
Sotirov, Sotir
2016-01-01
The book offers a comprehensive and timely overview of advanced mathematical tools for both uncertainty analysis and modeling of parallel processes, with a special emphasis on intuitionistic fuzzy sets and generalized nets. The different chapters, written by active researchers in their respective areas, are structured to provide a coherent picture of this interdisciplinary yet still evolving field of science. They describe key tools and give practical insights into and research perspectives on the use of Atanassov's intuitionistic fuzzy sets and logic, and generalized nets for describing and dealing with uncertainty in different areas of science, technology and business, in a single, to date unique book. Here, readers find theoretical chapters, dealing with intuitionistic fuzzy operators, membership functions and algorithms, among other topics, as well as application-oriented chapters, reporting on the implementation of methods and relevant case studies in management science, the IT industry, medicine and/or ...
Fuzzy control of small servo motors
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Set Theory Applied to Uniquely Define the Inputs to Territorial Systems in Emergy Analyses
The language of set theory can be utilized to represent the emergy involved in all processes. In this paper we use set theory in an emergy evaluation to ensure an accurate representation of the inputs to territorial systems. We consider a generic territorial system and we describ...
International Nuclear Information System (INIS)
Han, M.H.; Hwang, W.T.; Kim, E.H.; Suh, K.S.; Choi, Y.G.
2000-01-01
A methodology for assessing the effectiveness of countermeasures against a nuclear accident has been designed by means of the concept of fuzzy set theory. In most of the existing countermeasure models in actions under radiological emergencies, the large variety of possible features is simplified by a number of rough assumptions. During this simplification procedure, a lot of information is lost which results in much uncertainty concerning the output of the countermeasure model. Furthermore, different assumptions should be used for different sites to consider the site specific conditions. In this study, the diversity of each variable related to protective action has been modelled by the linguistic variable. The effectiveness of sheltering and evacuation has been estimated using the proposed method. The potential advantage of the proposed method is in reducing the loss of information by incorporating the opinions of experts and by introducing the linguistic variables which represent the site specific conditions. (author)
Directory of Open Access Journals (Sweden)
Pedro Carmona
2016-05-01
Full Text Available This paper explores the necessary and sufficient conditions of good Corporate Governance practices for high risk disclosure by firms in their Corporate Governance Annual Report. Additionally, we explore whether those recipes have changed during the financial crisis. With a sample of 271 Spanish listed companies, we applied fuzzy-set qualitative comparative analysis to a database of financial and non-financial data. We report that Board of Directors independence, size, level of activity and gender diversity, CEO duality, Audit Committee independence, being audited by the Big Four auditing firms and the presence of institutional investors are associated with high risk disclosure. The conditions included in almost every combination are the presence of institutional investors and being audited by the Big Four. We found similar combinations for 2006 and 2012, while the analysis for 2009 showed the lowest number of causal configurations.
Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.
Gaber, Tarek; Ismail, Gehad; Anter, Ahmed; Soliman, Mona; Ali, Mona; Semary, Noura; Hassanien, Aboul Ella; Snasel, Vaclav
2015-08-01
The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.
Sedelnikov, A. V.
2018-05-01
Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.
Fuzzy Evidence in Identification, Forecasting and Diagnosis
Rotshtein, Alexander P
2012-01-01
The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...
A Comparative Analysis of Fuzzy Inference Engines in Context of ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
Fuzzy Inference engine is an important part of reasoning systems capable of extracting correct conclusions from ... is known as the inference, or rule definition portion, of fuzzy .... minimal set of decision rules based on input- ... The study uses Mamdani FIS model and. Sugeno FIS ... control of induction motor drive. [18] study.
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
Czech Academy of Sciences Publication Activity Database
De Miguel, L.; Bustince, H.; Fernandez, J.; Indurain, E.; Kolesárová, A.; Mesiar, Radko
2016-01-01
Roč. 27, č. 1 (2016), s. 189-197 ISSN 1566-2535 Institutional support: RVO:67985556 Keywords : Mulit-expert decision making * Interval-valued Atanassov intuitionistic fuzzy set * Interval linear order Subject RIV: BA - General Mathematics Impact factor: 5.667, year: 2016 http://library.utia.cas.cz/separaty/2016/E/mesiar-0462471.pdf
Expert Opinion Elicitation Using Fuzzy Set Theory and Distempers-Shaker's Theory
International Nuclear Information System (INIS)
Yu, Donghan
1993-01-01
This study presents a new approach for expert opinion elicitation. The need to work with rare events and limited data is severe accident have led analysts to use expert opinions extensively. Unlike the conventional approaches using point-valued probabilities, the study proposes the concept of fuzzy probability to represent expert opinion. The use of fuzzy probability has an advantage over the conventional approach when an expert's judgment is used under limited data and imprecise knowledge. The study demonstrates a method of combining fuzzy probabilities in a manner consistent with the Distempers-Shaper's Theory (DDT). The propagation of fuzzy probabilities through a system is also introduced
Directory of Open Access Journals (Sweden)
Yan Yang
2017-01-01
Full Text Available Combining interval-valued hesitant fuzzy soft sets (IVHFSSs and a new comparative law, we propose a new method, which can effectively solve multiattribute decision-making (MADM problems. Firstly, a characteristic function of two interval values and a new comparative law of interval-valued hesitant fuzzy elements (IVHFEs based on the possibility degree are proposed. Then, we define two important definitions of IVHFSSs including the interval-valued hesitant fuzzy soft quasi subset and soft quasi equal based on the new comparative law. Finally, an algorithm is presented to solve MADM problems. We also use the method proposed in this paper to evaluate the importance of major components of the well drilling mud pump.
Kumar, Sudhir; Datta, D; Sharma, S D; Chourasiya, G; Babu, D A R; Sharma, D N
2014-04-01
Verification of the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm(3) is one of the recommended methods for measuring RAKR of HDR (192)Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR (192)Ir source strength measurement.
Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz
2013-04-01
and hydro morphological types of streams. Therefore, if habitat modeling for brown trout in Slovenia should be applied, it is necessary to determine preference requirements for the locally present brown trout populations. For efficient determination of applied preference functions and linked fuzzy sets/rules, beside expert determination, calibration according to field sampling must also be performed. After this final step a model is prepared for the analysis to support decision making in the field of environmental flow and other mitigation measures determination.
Directory of Open Access Journals (Sweden)
Feby Agung Pamuji
2015-09-01
Full Text Available this paper describes a hybrid system that consist of Wind Turbines and Photovoltaic to supply electricity continuously for load. Output of Wind Turbines and Photovoltaic is controlled in order to generate maximum power. Multiple-input dc-dc converters is used to control power flow in order to have MPP (Maximum Power Point. Converter control using Fuzzy logic controller to control the output in order to be obtained MPP (Maximum Power Point from Wind Turbines and Photovoltaic, so the efficiency of wind turbines and photovoltaic can be improved.
International Nuclear Information System (INIS)
Taylan, Osman; Kaya, Durmus; Demirbas, Ayhan
2016-01-01
Graphical abstract: Evaluation of compressors by comparing the different cost parameters. - Highlights: • Fuzzy sets and systems are used for decision making in MCDM problems. • An integrated Fuzzy AHP and fuzzy TOPSIS approaches are employed for compressor selection. • Compressor selection is a highly complex and non-linear process. • This approach increases the efficiency, reliability of alternative scenarios, and reduces the pay-back period. - Abstract: Energy efficient technologies offered by the market increases productivity. However, decision making for these technologies is usually obstructed in the firms and comes up with organizational barriers. Compressor selection in petrochemical industry requires assessment of several criteria such as ‘reliability, energy consumption, initial investment, capacity, pressure, and maintenance cost.’ Therefore, air compressor selection is a multi-attribute decision making (MADM) problem. The aim of this study is to select the most eligible compressor(s) so as to avoid the high energy consumption due to the capacity and maintenance costs. It is also aimed to avoid failures due to the reliability problems and high pressure. MADM usually takes place in a vague and imprecise environment. Soft computing techniques such as fuzzy sets and system can be used for decision making where vague and imprecise knowledge is available. In this study, an integrated fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order performance by similarity to ideal solution (TOPSIS) methodologies are employed for the compressor selection. Fuzzy AHP was used to determine the weights of criteria and fuzzy TOPSIS was employed to order the scenarios according to their superiority. The total effect of all criteria was determined for all alternative scenarios to make an optimal decision. Moreover, the types of compressor, carbon emission, waste heat recovery and their capacities were analyzed and compared by statistical
Intuitionistic Fuzzy Subbialgebras and Duality
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2014-01-01
Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.
International Nuclear Information System (INIS)
Kim, D.S.; Seong, P.H.
1994-01-01
This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times
Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo
2013-01-28
Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.
Zhong, Zhixiong; Zhu, Yanzheng; Ahn, Choon Ki
2018-03-20
In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy Neuron: Method and Hardware Realization
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
A semi-linguistic approach based on fuzzy set theory: application to expert judgments aggregation
International Nuclear Information System (INIS)
Ghyym, Seong Ho
1998-01-01
In the present work, a semi-linguistic fuzzy algorithm is proposed to obtain the fuzzy weighting values for multi-criterion, multi-alternative performance evaluation problem, with application to the aggregated estimate in the aggregation process of multi-expert judgments. The algorithm framework proposed is composed of the hierarchical structure, the semi-linguistic approach, the fuzzy R-L type integral value, and the total risk attitude index. In this work, extending the Chang/Chen method for triangular fuzzy numbers, the total risk attitude index is devised for a trapezoidal fuzzy number system. To illustrate the application of the algorithm proposed, a case problem available in literature is studied in connection to the weighting value evaluation of three-alternative (i.e., the aggregation of three-expert judgments) under seven-criterion. The evaluation results such as overall utility value, aggregation weighting value, and aggregated estimate obtained using the present fuzzy model are compared with those for other fuzzy models based on the Kim/Park method, the Liou/Wang method, and the Chang/Chen method
A semi-linguistic approach based on fuzzy set theory: application to expert judgments aggregation
Energy Technology Data Exchange (ETDEWEB)
Ghyym, Seong Ho [KEPRI, Taejon (Korea, Republic of)
1998-10-01
In the present work, a semi-linguistic fuzzy algorithm is proposed to obtain the fuzzy weighting values for multi-criterion, multi-alternative performance evaluation problem, with application to the aggregated estimate in the aggregation process of multi-expert judgments. The algorithm framework proposed is composed of the hierarchical structure, the semi-linguistic approach, the fuzzy R-L type integral value, and the total risk attitude index. In this work, extending the Chang/Chen method for triangular fuzzy numbers, the total risk attitude index is devised for a trapezoidal fuzzy number system. To illustrate the application of the algorithm proposed, a case problem available in literature is studied in connection to the weighting value evaluation of three-alternative (i.e., the aggregation of three-expert judgments) under seven-criterion. The evaluation results such as overall utility value, aggregation weighting value, and aggregated estimate obtained using the present fuzzy model are compared with those for other fuzzy models based on the Kim/Park method, the Liou/Wang method, and the Chang/Chen method.
Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu
2016-01-01
The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.
Directory of Open Access Journals (Sweden)
H. Handan DEMIR
2013-01-01
Full Text Available Today, service quality has become a major phenomenon with the requirement of meeting consumer demands in the best way brought along with the rising competition between companies. Airway transportation is preferred more and more during the recent years. Many qualitative and quantitative criteria are considered while evaluating service criteria in airway transportation. In this context, evaluation of service quality is a decisionmaking problem with many criteria. The purpose of this study is to evaluate service quality of domestic airway companies in Turkey. In this study; fuzzy TOPSIS method which is one of the most preferred fuzzy MCDM methods, extension of multi criteria decision making methods in fuzzy environments, considering qualitative and quantitative criteria together and giving opportunity to make group decisions in fuzzy environments. As a result, evaluation was made based on service quality criteria for the most preferred airways companies in Turkey and these companies were ranked according to their levels of service quality.
Performing Causal Configurations in e-Tourism: a Fuzzy-Set Approach
Directory of Open Access Journals (Sweden)
Hugues Seraphin
2016-07-01
Full Text Available Search engines are constantly endeavouring to integrate social media mentions in the website ranking process. Search Engine Optimization (SEO principles can be used to impact website ranking, considering various social media channels� capability to drive traffic. Both practitioners and researchers has focused on the impact of social media on SEO, but paid little attention to the influences of social media interactions on organic search results. This study explores the causal configurations between social mention variables (strength, sentiment, passion, reach and the rankings of nine websites dedicated to hotel booking (according to organic search results. The social mention variables embedded into the conceptual model were provided by the real-time social media search and analysis tool (www.socialmention.com, while the rankings websites dedicated to hotel booking were determined after a targeted search on Google. The study employs fuzzy-set qualitative comparative analysis (fsQCA and the results reveal that social mention variables has complex links with the rankings of the hotel booking websites included into the sample, according to Quine-McCluskey algorithm solution. The findings extend the body of knowledge related to the impact of social media mentions on
A Preference Model for Supplier Selection Based on Hesitant Fuzzy Sets
Directory of Open Access Journals (Sweden)
Zhexuan Zhou
2018-03-01
Full Text Available The supplier selection problem is a widespread concern in the modern commercial economy. Ranking suppliers involves many factors and poses significant difficulties for decision makers. Supplier selection is a multi-criteria and multi-objective problem, which leads to decision makers forming their own preferences. In addition, there are both quantifiable and non-quantifiable attributes related to their preferences. To solve this problem, this paper presents a preference model based on hesitant fuzzy sets (HFS to select suppliers. The cost and service quality of suppliers are the main considerations in the proposed model. HFS with interactive and multi-criteria decision making are used to evaluate the non-quantifiable attributes of service quality, which include competitive display, qualification ability, suitability and competitiveness of solutions, and relational fitness and dynamics. Finally, a numerical example of supplier selection for a high-end equipment manufacturer is provided to illustrate the applicability of the proposed model. The preferences of a decision maker are then analyzed by altering preference parameters.
Cooperative Fuzzy Games Approach to Setting Target Levels of ECs in Quality Function Deployment
Directory of Open Access Journals (Sweden)
Zhihui Yang
2014-01-01
Full Text Available Quality function deployment (QFD can provide a means of translating customer requirements (CRs into engineering characteristics (ECs for each stage of product development and production. The main objective of QFD-based product planning is to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated example is cited to demonstrate the application and performance of the proposed approach.
Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.
Chen, Liang-Hsuan; Tu, Chien-Cheng
2014-08-01
The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.
Directory of Open Access Journals (Sweden)
Y. Sun
2017-09-01
Full Text Available Hyperspectral imaging system can obtain spectral and spatial information simultaneously with bandwidth to the level of 10 nm or even less. Therefore, hyperspectral remote sensing has the ability to detect some kinds of objects which can not be detected in wide-band remote sensing, making it becoming one of the hottest spots in remote sensing. In this study, under conditions with a fuzzy set of full constraints, Normalized Multi-Endmember Decomposition Method (NMEDM for vegetation, water, and soil was proposed to reconstruct hyperspectral data using a large number of high-quality multispectral data and auxiliary spectral library data. This study considered spatial and temporal variation and decreased the calculation time required to reconstruct the hyper-spectral data. The results of spectral reconstruction based on NMEDM showed that the reconstructed data has good qualities and certain applications, which makes it possible to carry out spectral features identification. This method also extends the application of depth and breadth of remote sensing data, helping to explore the law between multispectral and hyperspectral data.
Directory of Open Access Journals (Sweden)
Quanming Wang
2013-01-01
Full Text Available Due to the complexity and diversity of the issue of sustainable island development, no widely accepted and applicable evaluation system model regarding the issue currently exists. In this paper, we discuss and establish the sustainable development indicator system and the model approach from the perspective of resources, the island environment, the island development status, the island social development, and the island intelligence development. We reference the sustainable development theory and the sustainable development indicator system method concerning land region, combine the character of the sustainable island development, analyze and evaluate the extent of the sustainable island development, orient development, and identify the key and limited factors of sustainable island development capability. This research adopts the entropy method and the nonstructural decision fuzzy set theory model to determine the weight of the evaluating indicators. Changhai County was selected as the subject of the research, which consisted of a quantitative study of its sustainable development status from 2001 to 2008 to identify the key factors influencing its sustainability development, existing problems, and limited factors and to provide basic technical support for ocean development planning and economic development planning.
Cooperative fuzzy games approach to setting target levels of ECs in quality function deployment.
Yang, Zhihui; Chen, Yizeng; Yin, Yunqiang
2014-01-01
Quality function deployment (QFD) can provide a means of translating customer requirements (CRs) into engineering characteristics (ECs) for each stage of product development and production. The main objective of QFD-based product planning is to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated example is cited to demonstrate the application and performance of the proposed approach.
Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients
Directory of Open Access Journals (Sweden)
Xue-Gang Zhou
2014-01-01
Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.
Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space
Directory of Open Access Journals (Sweden)
Apu Kumar Saha
2015-06-01
Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.
CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS
El-Latif, Alaa Mohamed Abd
2015-01-01
− The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...
The CAIN computer code for the generation of MABEL input data sets: a user's manual
International Nuclear Information System (INIS)
Tilley, D.R.
1983-03-01
CAIN is an interactive FORTRAN computer code designed to overcome the substantial effort involved in manually creating the thermal-hydraulics input data required by MABEL-2. CAIN achieves this by processing output from either of the whole-core codes, RELAP or TRAC, interpolating where necessary, and by scanning RELAP/TRAC output in order to generate additional information. This user's manual describes the actions required in order to create RELAP/TRAC data sets from magnetic tape, to create the other input data sets required by CAIN, and to operate the interactive command procedure for the execution of CAIN. In addition, the CAIN code is described in detail. This programme of work is part of the Nuclear Installations Inspectorate (NII)'s contribution to the United Kingdom Atomic Energy Authority's independent safety assessment of pressurized water reactors. (author)
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities
Fuzzy Rough Ring and Its Prop erties
Institute of Scientific and Technical Information of China (English)
REN Bi-jun; FU Yan-ling
2013-01-01
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Generalization of some hidden subgroup algorithms for input sets of arbitrary size
Poslu, Damla; Say, A. C. Cem
2006-05-01
We consider the problem of generalizing some quantum algorithms so that they will work on input domains whose cardinalities are not necessarily powers of two. When analyzing the algorithms we assume that generating superpositions of arbitrary subsets of basis states whose cardinalities are not necessarily powers of two perfectly is possible. We have taken Ballhysa's model as a template and have extended it to Chi, Kim and Lee's generalizations of the Deutsch-Jozsa algorithm and to Simon's algorithm. With perfectly equal superpositions of input sets of arbitrary size, Chi, Kim and Lee's generalized Deutsch-Jozsa algorithms, both for evenly-distributed and evenly-balanced functions, worked with one-sided error property. For Simon's algorithm the success probability of the generalized algorithm is the same as that of the original for input sets of arbitrary cardinalities with equiprobable superpositions, since the property that the measured strings are all those which have dot product zero with the string we search, for the case where the function is 2-to-1, is not lost.
Swanson, J C; Lee, Y; Thompson, P B; Bawden, R; Mench, J A
2011-09-01
Setting directions and goals for animal production systems requires the integration of information achieved through internal and external processes. The importance of stakeholder input in setting goals for sustainable animal production systems should not be overlooked by the agricultural animal industries. Stakeholders play an integral role in setting the course for many aspects of animal production, from influencing consumer preferences to setting public policy. The Socially Sustainable Egg Production Project (SSEP) involved the development of white papers on various aspects of egg production, followed by a stakeholder workshop to help frame the issues for the future of sustainable egg production. Representatives from the environmental, food safety, food retail, consumer, animal welfare, and the general farm and egg production sectors participated with members of the SSEP coordination team in a 1.5-d workshop to explore socially sustainable egg production. This paper reviews the published literature on values integration methodologies and the lessons learned from animal welfare assessment models. The integration method used for the SSEP stakeholder workshop and its outcome are then summarized. The method used for the SSEP stakeholder workshop can be used to obtain stakeholder input on sustainable production in other farm animal industries.
Self tuning fuzzy PID type load and frequency controller
International Nuclear Information System (INIS)
Yesil, E.; Guezelkaya, M.; Eksin, I.
2004-01-01
In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices
Energy Technology Data Exchange (ETDEWEB)
Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br
2009-07-01
A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.
Directory of Open Access Journals (Sweden)
Zhixiong Zhong
2013-01-01
Full Text Available The stability analysis and stabilization of Takagi-Sugeno (T-S fuzzy delta operator systems with time-varying delay are investigated via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback one with uncertainties. By applying the scaled small gain (SSG theorem to deal with this new system, and based on a Lyapunov Krasovskii functional (LKF in delta operator domain, less conservative stability analysis and stabilization conditions are obtained. Numerical examples are provided to illustrate the advantages of the proposed method.
Automatic approach to deriving fuzzy slope positions
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization
International Nuclear Information System (INIS)
Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.
2009-01-01
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.
Directory of Open Access Journals (Sweden)
Raskatova M.I.
2017-01-01
Full Text Available In the article a method of management of material and production reserves of industrial enterprises in conditions of uncertainty has been suggested. The method proposes that a part of a benchmark in economic and mathematical models of determining the volume and completion time for orders for raw products and materials be represented as fuzzy numbers. The application of fuzzy-set theory allows taking into account the uncertainty of the external environment without using the theory of probability. The use of the latter is often difficult. The criterion for choosing the optimal management strategy is the minimization of the objective function of the total cost connected with reserves management. It is suggested to obtain the benchmarks that are expressed by fuzzy numbers with a method of expert evaluation. Using the results obtained with the suggested approach the decision-maker will be able to form a concrete strategy for reserves management in a constantly changing market situation. The suggested technique is universal; its application is possible in various industries.
Directory of Open Access Journals (Sweden)
Lazim Abdullah
2018-01-01
Full Text Available Selecting the best solution to deploy an ambulance in a strategic location is of the important variables that need to be accounted for improving the emergency medical services. The selection requires both quantitative and qualitative evaluation. Fuzzy set based approach is one of the well-known theories that help decision makers to handle fuzziness, uncertainty in decision making and vagueness of information. This paper proposes a new decision making method of Interval Type-2 Fuzzy Simple Additive Weighting (IT2 FSAW as to deal with uncertainty and vagueness. The new IT2 FSAW is applied to establish a preference in ambulance location. The decision making framework defines four criteria and five alternatives of ambulance location preference. Four experts attached to a Malaysian government hospital and a university medical center were interviewed to provide linguistic evaluation prior to analyzing with the new IT2 FSAW. Implementation of the proposed method in the case of ambulance location preference suggests that the ‘road network’ is the best alternative for ambulance location. The results indicate that the proposed method offers a consensus solution for handling the vague and qualitative criteria of ambulance location preference.
Design of a fuzzy logic based controller for neutron power regulation
International Nuclear Information System (INIS)
Velez D, D.
2000-01-01
This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)
Zhao, Jingjing; Yu, Lean; Li, Lian
2017-05-01
Select an appropriate technology in an emergency response is a very important issue with various kinds of chemical contingency spills frequently taking place. Due to the complexity, fuzziness and uncertainties of the chemical contingency spills, the theory of GRA method, dynamic analysis combined with fuzzy set theory will be appropriately applied to selection and evaluation of emergency treatment technology. Finally, a emergency phenol spill accidence occurred in highway is provided to illustrate the applicability and feasibility of the proposed methods.
Directory of Open Access Journals (Sweden)
Xubin Ping
2016-01-01
Full Text Available For quasi-linear parameter varying (quasi-LPV systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC with the consideration of input saturation is investigated. The saturated dynamic output feedback controller is represented by a convex hull involving the actual dynamic output controller and an introduced auxiliary controller. By taking both the actual output feedback controller and the auxiliary controller with a parameter-dependent form, the main optimization problem can be formulated as convex optimization. The consideration of input saturation in the main optimization problem reduces the conservatism of dynamic output feedback controller design. The estimation error set and bounded disturbance are represented by zonotopes and refreshed by zonotopic set-membership estimation. Compared with the previous results, the proposed algorithm can not only guarantee the recursive feasibility of the optimization problem, but also improve the control performance at the cost of higher computational burden. A nonlinear continuous stirred tank reactor (CSTR example is given to illustrate the effectiveness of the approach.
Development of a new fuzzy exposure model
International Nuclear Information System (INIS)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart
2007-01-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Development of a new fuzzy exposure model
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Engenharia de Reatores], E-mail: wagner@ufpe.br, E-mail: cabol@ufpe.br; Texeira, Marcello Goulart [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Terrestrial Modelling Group], E-mail: marcellogt@ime.eb.br
2007-07-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
Associating Human-Centered Concepts with Social Networks Using Fuzzy Sets
Yager, Ronald R.
that allows us to determine how true it is that a particular node is a leader. In this work we look at the use of fuzzy set methodologies [8-10] to provide a bridge between the human analyst and the formal model of the network.
FUZZY RINGS AND ITS PROPERTIES
Directory of Open Access Journals (Sweden)
Karyati Karyati
2017-01-01
One of algebraic structure that involves a binary operation is a group that is defined an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level and strong level as well as image and pre-image homomorphism fuzzy ring. Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring
Directory of Open Access Journals (Sweden)
Fu-Gui Shi
2010-01-01
Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.
A Proposal to Speed up the Computation of the Centroid of an Interval Type-2 Fuzzy Set
Directory of Open Access Journals (Sweden)
Carlos E. Celemin
2013-01-01
Full Text Available This paper presents two new algorithms that speed up the centroid computation of an interval type-2 fuzzy set. The algorithms include precomputation of the main operations and initialization based on the concept of uncertainty bounds. Simulations over different kinds of footprints of uncertainty reveal that the new algorithms achieve computation time reductions with respect to the Enhanced-Karnik algorithm, ranging from 40 to 70%. The results suggest that the initialization used in the new algorithms effectively reduces the number of iterations to compute the extreme points of the interval centroid while precomputation reduces the computational cost of each iteration.
Directory of Open Access Journals (Sweden)
Mehdi Bahramloo
2013-10-01
Full Text Available Ranking various alternatives has been under investigation and there are literally various methods and techniques for making a decision based on various criteria. One of the primary concerns on ranking methodologies such as analytical hierarchy process (AHP is that decision makers cannot express his/her feeling in crisp form. Therefore, we need to use linguistic terms to receive the relative weights for comparing various alternatives. In this paper, we discuss ranking different alternatives based on the implementation of preference relation matrix based on intuitionistic fuzzy sets.
FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...
African Journals Online (AJOL)
This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...
FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT
Directory of Open Access Journals (Sweden)
T.C. Raja Kumar
2011-07-01
Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.
Modeling entrepreneurial decision-making process using concepts from fuzzy set theory
Khefacha, Islem; Belkacem, Lotfi
2015-01-01
Entrepreneurship and entrepreneurial culture are receiving an increased amount of attention in both academic research and practice. The different fields of study have focused on the analysis of the characteristics of potential entrepreneurs and the firm-creation process. In this paper, we develop and test an economic-psychological model of factors that influence individuals' intentions to go into business. We introduce a new measure of entrepreneurial intention based on the logic fuzzy techni...
Directory of Open Access Journals (Sweden)
Reza Kiani Mavi
2013-01-01
Full Text Available Data envelopment analysis (DEA is used to evaluate the performance of decision making units (DMUs with multiple inputs and outputs in a homogeneous group. In this way, the acquired relative efficiency score for each decision making unit lies between zero and one where a number of them may have an equal efficiency score of one. DEA successfully divides them into two categories of efficient DMUs and inefficient DMUs. A ranking for inefficient DMUs is given but DEA does not provide further information about the efficient DMUs. One of the popular methods for evaluating and ranking DMUs is the common set of weights (CSW method. We generate a CSW model with considering nondiscretionary inputs that are beyond the control of DMUs and using ideal point method. The main idea of this approach is to minimize the distance between the evaluated decision making unit and the ideal decision making unit (ideal point. Using an empirical example we put our proposed model to test by applying it to the data of some 20 bank branches and rank their efficient units.
Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš
2017-12-01
Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen depositionforests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier
Properties of Bipolar Fuzzy Hypergraphs
Akram, M.; Dudek, W. A.; Sarwar, S.
2013-01-01
In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.
Directory of Open Access Journals (Sweden)
Maruthai Suresh
2009-10-01
Full Text Available Controller tuning is the process of adjusting the parameters of the selected controller to achieve optimum response for the controlled process. For many of the control problems, a satisfactory performance is obtained by using PID controllers. One of the main problems with mathematical models of physical systems is that the parameters used in the models cannot be determined with absolute accuracy. The values of the parameters may change with time or various effects. In these cases, conventional controller tuning methods suffer when trying a lot to produce optimum response. In order to overcome these difficulties a fuzzy logic based Set- Point weighting controller tuning method is proposed. The effectiveness of the proposed scheme is analyzed through computer simulation using SIMULINK software and the results are presented. The fuzzy logic based simulation results are compared with Cohen-Coon (CC, Ziegler- Nichols (ZN, Ziegler – Nichols with Set- Point weighting (ZN-SPW, Internal Model Control (IMC and Internal model based PID controller responses (IMC-PID. The effects of process modeling errors and the importance of controller tuning have been brought out using the proposed control scheme.
B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry
2014-01-01
This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem; the Gibbard-Satterthwaite theorem; and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...
Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
Directory of Open Access Journals (Sweden)
Nishchal K. Verma
2012-01-01
Full Text Available This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM. The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.
Quasi-min-max Fuzzy MPC of UTSG Water Level Based on Off-Line Invariant Set
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2015-10-01
In a nuclear power plant, the water level of the U-tube steam generator (UTSG) must be maintained within a safe range. Traditional control methods encounter difficulties due to the complexity, strong nonlinearity and “swell and shrink” effects, especially at low power levels. A properly designed robust model predictive control can well solve this problem. In this paper, a quasi-min-max fuzzy model predictive controller is developed for controlling the constrained UTSG system. While the online computational burden could be quite large for the real-time control, a bank of ellipsoid invariant sets together with the corresponding feedback control laws are obtained by off-line solving linear matrix inequalities (LMIs). Based on the UTSG states, the online optimization is simplified as a constrained optimization problem with a bisection search for the corresponding ellipsoid invariant set. Simulation results are given to show the effectiveness of the proposed controller.
On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes
Directory of Open Access Journals (Sweden)
Rajesh K. Thumbakara
2013-01-01
Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.
Group Decision-Making for Hesitant Fuzzy Sets Based on Characteristic Objects Method
Directory of Open Access Journals (Sweden)
Shahzad Faizi
2017-07-01
Full Text Available There are many real-life problems that, because of the need to involve a wide domain of knowledge, are beyond a single expert. This is especially true for complex problems. Therefore, it is usually necessary to allocate more than one expert to a decision process. In such situations, we can observe an increasing importance of uncertainty. In this paper, the Multi-Criteria Decision-Making (MCDM method called the Characteristic Objects Method (COMET is extended to solve problems for Multi-Criteria Group Decision-Making (MCGDM in a hesitant fuzzy environment. It is a completely new idea for solving problems of group decision-making under uncertainty. In this approach, we use L-R-type Generalized Fuzzy Numbers (GFNs to get the degree of hesitancy for an alternative under a certain criterion. Therefore, the classical COMET method was adapted to work with GFNs in group decision-making problems. The proposed extension is presented in detail, along with the necessary background information. Finally, an illustrative numerical example is provided to elaborate the proposed method with respect to the support of a decision process. The presented extension of the COMET method, as opposed to others’ group decision-making methods, is completely free of the rank reversal phenomenon, which is identified as one of the most important MCDM challenges.
PERFORMANCE EVALUATION OF PENSION FUNDS WITH FUZZY EXPERT SYSTEM
Directory of Open Access Journals (Sweden)
SERDAR KORUKOĞLU
2013-06-01
Full Text Available Financial rating and ranking firms often use linguistic instead of numerical values. When input data are mostly qualitative and are based on subjective knowledge of experts, the Fuzzy Set Theory provides a solid mathematical model to represent and handle these data. The aim of this study is developing a fuzzy expert model to evaluate the performance of the pension funds by using their risk and return values. The method is used for evaluating the performance of the randomly selected of twenty seven Turkish pension funds. The obtained results proved that the fuzzy expert system is appropriate and consistent for performance evaluation.
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms
Yamakami, Tomoyuki
2015-01-01
We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomia...
Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents
International Nuclear Information System (INIS)
Qiao Yuanhua; Keren, Nir; Mannan, M. Sam
2009-01-01
Risk assessment and management of transportation of hazardous materials (HazMat) require the estimation of accident frequency. This paper presents a methodology to estimate hazardous materials transportation accident frequency by utilizing publicly available databases and expert knowledge. The estimation process addresses route-dependent and route-independent variables. Negative binomial regression is applied to an analysis of the Department of Public Safety (DPS) accident database to derive basic accident frequency as a function of route-dependent variables, while the effects of route-independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an overall transportation risk analysis, which can be used later to develop a decision support system.
Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets
Directory of Open Access Journals (Sweden)
Thrasher Timothy A
2011-12-01
Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.
Opening the "Black Box" of efficiency measurement : Input allocation in multi-output settings
Dierynck, B.; Cherchye, L.J.H.; Sabbe, J.; Roodhooft, F.; de Rock, B.
2013-01-01
We develop a new data envelopment analysis (DEA)-based methodology for measuring the efficiency of decision-making units (DMUs) characterized by multiple inputs and multiple outputs. The distinguishing feature of our method is that it explicitly includes information about output-specific inputs and
Evaluation of risk from acts of terrorism :the adversary/defender model using belief and fuzzy sets.
Energy Technology Data Exchange (ETDEWEB)
Darby, John L.
2006-09-01
Risk from an act of terrorism is a combination of the likelihood of an attack, the likelihood of success of the attack, and the consequences of the attack. The considerable epistemic uncertainty in each of these three factors can be addressed using the belief/plausibility measure of uncertainty from the Dempster/Shafer theory of evidence. The adversary determines the likelihood of the attack. The success of the attack and the consequences of the attack are determined by the security system and mitigation measures put in place by the defender. This report documents a process for evaluating risk of terrorist acts using an adversary/defender model with belief/plausibility as the measure of uncertainty. Also, the adversary model is a linguistic model that applies belief/plausibility to fuzzy sets used in an approximate reasoning rule base.
DEFF Research Database (Denmark)
Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan
2000-01-01
A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...
International Nuclear Information System (INIS)
Markowski, Adam S.; Mannan, M. Sam
2008-01-01
A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated
Kirchherr, Julian; Charles, Katrina J.; Walton, Matthew J.
2016-01-01
Scholars overwhelmingly adopt the case study method when analyzing causal conditions inducing anti-dam-protests. We have carried out the first medium-N-study on this topic analyzing public opposition to 12 dam projects in Asia. For this purpose, we employ a fuzzy-set Qualitative Comparative Analysis
Energy Technology Data Exchange (ETDEWEB)
Duarte, P.S. [Fleury - Centro de Medicina Diagnostica, Sao Paulo, SP (Brazil). Secao de Medicina Nuclear]. E-mail: paulo.duarte@fleury.com.br; Mastrocolla, L.E.; Farsky, P.S.; Sampaio, C.R.E.P.S. [Fleury - Centro de Medicina Diagnostica, Sao Paulo, SP (Brazil). Secao de Cardiologia; Tonelli, P.A. [Sao Paulo Univ., SP (Brazil). Inst. de Matematica e Estatistica; Barros, L.C. [Universidade Estadual de Campinas , SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica; Ortega, N.R. [Sao Paulo Univ., SP (Brazil). Informatica Medica; Pereira, J.C.R. [Sao Paulo Univ., SP (Brazil). Faculdade de Saude Publica. Dept. de Epidemiologia
2006-01-15
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS. (author)
International Nuclear Information System (INIS)
Duarte, P.S.; Mastrocolla, L.E.; Farsky, P.S.; Sampaio, C.R.E.P.S.; Tonelli, P.A.; Barros, L.C.; Ortega, N.R.; Pereira, J.C.R.
2006-01-01
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS. (author)
Fuzzy inference system for evaluating and improving nuclear power plant operating performance
International Nuclear Information System (INIS)
Guimaraes, Antonio Cesar F.; Lapa, Celso Marcelo Franklin
2003-01-01
This paper presents a fuzzy inference system (FIS) as an approach to estimate Nuclear Power Plant (NPP) performance indicators. The performance indicators for this study are the energy availability factor (EAF) and the planned (PUF) and unplanned unavailability factor (UUF). These indicators are obtained from a non analytical combination among the same operational parameters. Such parameters are, for example, environment impacts, industrial safety, radiological protection, safety indicators, scram rate, thermal efficiency, and fuel reliability. This approach uses the concept of a pure fuzzy logic system where the fuzzy rule base consists of a collection of fuzzy IF-THEN rules. The fuzzy inference engine uses these fuzzy IF-THEN rules to determine a mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the output universe of discourse based on fuzzy logic principles. The results demonstrated the potential of the fuzzy inference to generate a knowledge basis that correlate operations occurrences and NPP performance. The inference system became possible the development of the sensitivity studies, future operational condition previsions and may support the eventual corrections on operation of the plant
Nguyen, Hung T.; Kreinovich, Vladik
2014-01-01
To help computers make better decisions, it is desirable to describe all our knowledge in computer-understandable terms. This is easy for knowledge described in terms on numerical values: we simply store the corresponding numbers in the computer. This is also easy for knowledge about precise (well-defined) properties which are either true or false for each object: we simply store the corresponding “true” and “false” values in the computer. The challenge is how to store information about imprecise properties. In this paper, we overview different ways to fully store the expert information about imprecise properties. We show that in the simplest case, when the only source of imprecision is disagreement between different experts, a natural way to store all the expert information is to use random sets; we also show how fuzzy sets naturally appear in such random-set representation. We then show how the random-set representation can be extended to the general (“fuzzy”) case when, in addition to disagreements, experts are also unsure whether some objects satisfy certain properties or not. PMID:25386045
Obscene Video Recognition Using Fuzzy SVM and New Sets of Features
Directory of Open Access Journals (Sweden)
Alireza Behrad
2013-02-01
Full Text Available In this paper, a novel approach for identifying normal and obscene videos is proposed. In order to classify different episodes of a video independently and discard the need to process all frames, first, key frames are extracted and skin regions are detected for groups of video frames starting with key frames. In the second step, three different features including 1- structural features based on single frame information, 2- features based on spatiotemporal volume and 3-motion-based features, are extracted for each episode of video. The PCA-LDA method is then applied to reduce the size of structural features and select more distinctive features. For the final step, we use fuzzy or a Weighted Support Vector Machine (WSVM classifier to identify video episodes. We also employ a multilayer Kohonen network as an initial clustering algorithm to increase the ability to discriminate between the extracted features into two classes of videos. Features based on motion and periodicity characteristics increase the efficiency of the proposed algorithm in videos with bad illumination and skin colour variation. The proposed method is evaluated using 1100 videos in different environmental and illumination conditions. The experimental results show a correct recognition rate of 94.2% for the proposed algorithm.
Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments
Institute of Scientific and Technical Information of China (English)
LIANG Rui; GAO Jinwu
2008-01-01
Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospec-tive profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the po-tential applications of these models.
Directory of Open Access Journals (Sweden)
Jangwon Suh
2016-08-01
Full Text Available Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE process, particularly well suited for the geographic information system (GIS environment. Photovoltaic (PV solar farm criteria were evaluated for an island-based case region having complex topographic and regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung Island, Korea. Constraint variables that identified areas forbidden to PV farm development were consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection, future land use. Six factor variables were selected as influential on-site suitability within the geospatial database to seek out increased annual average power performance and reduced potential investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours, average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each factor variable was normalized via a fuzzy membership function (FMF and parameter setting based on the local characteristics and criteria for a fixed axis PV system. Representative weighting of the relative importance for each factor variable was assigned via pairwise comparison completed by experts. A suitability index (SI with six factor variables was derived using a weighted fuzzy summation method. Sensitivity analysis was conducted to assess four different SI based on the development scenarios (i.e., the combination of factors being considered. From the resulting map, three highly suitable regions were suggested and validated by comparison with satellite images to confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also be applicable widely to other PV solar farm site selection projects with appropriate adaption for local variables.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon
2006-01-01
In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows
E-Learning: Students Input for Using Mobile Devices in Science Instructional Settings
Yilmaz, Ozkan
2016-01-01
A variety of e-learning theories, models, and strategy have been developed to support educational settings. There are many factors for designing good instructional settings. This study set out to determine functionality of mobile devices, students who already have, and the student needs and views in relation to e-learning settings. The study…
A Fuzzy Linguistic Methodology to Deal With Unbalanced Linguistic Term Sets
Herrera, F.; Herrera-Viedma, Enrique; Martinez, L.
2008-01-01
Many real problems dealing with qualitative aspects use linguistic approaches to assess such aspects. In most of these problems, a uniform and symmetrical distribution of the linguistic term sets for linguistic modeling is assumed. However, there exist problems whose assessments need to be represented by means of unbalanced linguistic term sets, i.e., using term sets that are not uniformly and symmetrically distributed. The use of linguistic variables implies processes of computing with words...
Energy Technology Data Exchange (ETDEWEB)
Velez D, D
2000-07-01
This work presents a fuzzy logic controller design for neutron power control, from its source to its full power level, applied to a nuclear reactor model. First, we present the basic definitions on fuzzy sets as generalized definitions of the crisp (non fuzzy) set theory. Likewise, we define the basic operations on fuzzy sets (complement, union, and intersection), and the operations on fuzzy relations such as projection and cylindrical extension operations. Furthermore, some concepts of the fuzzy control theory, such as the main modules of the typical fuzzy controller structure and its internal variables, are defined. After the knowledge base is obtained by simulation of the reactor behavior, where the controlled system is modeled by a simple nonlinear reactor model, this model is used to infer a set of fuzzy rules for the reactor response to different insertions of reactivity. The reduction of the response time, using fuzzy rule based controllers on this reactor, is possible by adjusting the output membership functions, by selecting fuzzy rule sets, or by increasing the number of crisp inputs to the fuzzy controller. System characteristics, such as number of rules, response times, and safety parameter values, were considered in the evaluation of each controller merits. Different fuzzy controllers are designed to attain the desired power level, to maintain a constant level for long periods of time, and to keep the reactor away from a shutdown condition. The basic differences among the controllers are the number of crisp inputs and the novel implementation of a crisp power level-based selection of different sets of output membership functions. Simulation results highlight, mainly: (1) A decrease of the response variations at low power level, and (2) a decrease in the time required to attain the desired neutron power. Finally, we present a comparative study of different fuzzy control algorithms applied to a nuclear model. (Author)
Selection of Vendor Based on Intuitionistic Fuzzy Analytical Hierarchy Process
Directory of Open Access Journals (Sweden)
Prabjot Kaur
2014-01-01
Full Text Available Business environment is characterized by greater domestic and international competitive position in the global market. Vendors play a key role in achieving the so-called corporate competition. It is not easy however to identify good vendors because evaluation is based on multiple criteria. In practice, for VSP most of the input information about the criteria is not known precisely. Intuitionistic fuzzy set is an extension of the classical fuzzy set theory (FST, which is a suitable way to deal with impreciseness. In other words, the application of intuitionistic fuzzy sets instead of fuzzy sets means the introduction of another degree of freedom called nonmembership function into the set description. In this paper, we proposed a triangular intuitionistic fuzzy number based approach for the vendor selection problem using analytical hierarchy process. The crisp data of the vendors is represented in the form of triangular intuitionistic fuzzy numbers. By applying AHP which involves decomposition, pairwise comparison, and deriving priorities for the various levels of the hierarchy, an overall crisp priority is obtained for ranking the best vendor. A numerical example illustrates our method. Lastly a sensitivity analysis is performed to find the most critical criterion on the basis of which vendor is selected.
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)
1995-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
On fuzzy control of water desalination plants
Energy Technology Data Exchange (ETDEWEB)
Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)
1996-12-31
In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
A fuzzy art neural network based color image processing and ...
African Journals Online (AJOL)
To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
A Fuzzy Query Mechanism for Human Resource Websites
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
DEFF Research Database (Denmark)
Jantzen, Jan
The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...
International Nuclear Information System (INIS)
Nishiwaki, Y.; Shah, S.M.; Kanoh, E.
1983-01-01
For risk assessment of atmospheric contamination due to fossil-fuel combustion in Japan, epidemiological studies have been conducted since 1961. Health effects of sulfur dioxide in industrial areas of Japan where fossil-fuel power stations are located have been investigated. The dose-response relationship between prevalence rates of chronic bronchitis and sulphur dioxide was established. Various efforts have been made to reduce the concentrations of sulfur dioxide in the atmosphere. However, the average concentration of NO 2 tended to increase gradually. It was therefore considered important to study the health effects of nitrogen dioxide. In different areas of Japan with varying atmospheric concentrations of nitrogen dioxide, an extensive epidemiological survey was conducted with over 10,000 school-children. The results of the survey indicate that the prevalence rates of asthma and wheezing were higher with the higher degree of air pollution, and that the indoor pollution is important. It is also attempted to compare hazard indices of the air-borne wastes from fossil-fuel power plants and those from nuclear power plants. The conventional pollutants seem to be much more important as compared with the radioactive releases under normal conditions of operation. The survey of stochastic effects with very small chances of occurrence was not attempted because of the great uncertainties and difficulties in identifying a small signal within a large noise. The possible application of the theory of Fuzzy Set for risk analysis is suggested
Directory of Open Access Journals (Sweden)
Jitka Machalová
2011-01-01
Full Text Available The tourism is the significant tool of prosperity not only of the well-known touristic regions, but it is significant potential developing element of not so developed provincial regions. Develop and placements of tourism are dependent on factors (conditions that influence its use in concrete regions. These factors are classified into selectable, localisation, and realisation (localisation and realisation factors issue was published as a part of solution of the research plan of FBE No. MSM 6215648904, part 03. The selectable factors determine the possibilities of the region to develop tourism in demand function. The landscape character and the environment appertain to these objective presumptions. But these presumptions were subjective perceived. The aim of this paper is to make methodology of evaluation of introduced selectable factors. Geographic information technology will be use for spatial modelling. Theory of fuzzy sets, with its ability to catch the vagueness, will be use for defining of fuzzygeoelements and for the making several fuzzylayers. The fuzzylayers will be come into map algebra for whole formulation of these selectable factors. The methodology will be verified on territory micro region Babi lom (south of Moravia.
Peters, D T J M; Verweij, S; Grêaux, K; Stronks, K; Harting, J
2017-12-01
Improving health requires changes in the social, physical, economic and political determinants of health behavior. For the realization of policies that address these environmental determinants, intersectoral policy networks are considered necessary for the pooling of resources to implement different policy instruments. However, such network diversity may increase network complexity and therefore hamper network performance. Network complexity may be reduced by network management and the provision of financial resources. This study examined whether network diversity - amidst the other conditions - is indeed needed to address environmental determinants of health behavior. We included 25 intersectoral policy networks in Dutch municipalities aimed at reducing overweight, smoking, and alcohol/drugs abuse. For our fuzzy set Qualitative Comparative Analysis we used data from three web-based surveys among (a) project leaders regarding network diversity and size (n = 38); (b) project leaders and project partners regarding management (n = 278); and (c) implementation professionals regarding types of environmental determinants addressed (n = 137). Data on budgets were retrieved from project application forms. Contrary to their intentions, most policy networks typically addressed personal determinants. If the environment was addressed too, it was mostly the social environment. To address environmental determinants of health behavior, network diversity (>50% of the actors are non-public health) was necessary in networks that were either small (policy networks in improving health behaviors by addressing a variety of environmental determinants. Copyright © 2017. Published by Elsevier Ltd.
Uncertain input data problems and the worst scenario method
Czech Academy of Sciences Publication Activity Database
Hlaváček, Ivan
2007-01-01
Roč. 52, č. 3 (2007), s. 187-196 ISSN 0862-7940 R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : uncertain input data * the worst-case approach * fuzzy sets Subject RIV: BA - General Mathematics
Shapley's value for fuzzy games
Directory of Open Access Journals (Sweden)
Raúl Alvarado Sibaja
2009-02-01
Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.
Case Studies Nested in Fuzzy-Set QCA on Sufficiency: Formalizing Case Selection and Causal Inference
Schneider, Carsten Q.; Rohlfing, Ingo
2016-01-01
Qualitative Comparative Analysis (QCA) is a method for cross-case analyses that works best when complemented with follow-up case studies focusing on the causal quality of the solution and its constitutive terms, the underlying causal mechanisms, and potentially omitted conditions. The anchorage of QCA in set theory demands criteria for follow-up…
Pennings, P.J.M.
2003-01-01
What are the main variations in the constitutional control of the executive in 45 parliamentary democracies and how can these differences be accounted for? Four competing hypotheses, based on dichotomies, explain the degree of this control by means of contrasting institutional settings: consensus
Beyond dichotomous explanations: explaining constitutional control of the executive with fuzzy-sets
Pennings, P.J.M.
2003-01-01
What are the main variations in the constitutional control of the executive in 45 parliamentary democracies and how can these differences be accounted for? Four competing hypotheses, based on dichotomies, explain the degree of this control by means of contrasting institutional settings: consensus
A fuzzy set approach to assess the predictive accuracy of land use simulations
van Vliet, J.; Hagen-Zanker, A.; Hurkens, J.; van van Delden, H.
2013-01-01
The predictive accuracy of land use models is frequently assessed by comparing two data sets: the simulated land use map and the observed land use map at the end of the simulation period. A common statistic for this is Kappa, which expresses the agreement between two categorical maps, corrected for
Fuzzy Logic in Medicine and Bioinformatics
Directory of Open Access Journals (Sweden)
Angela Torres
2006-01-01
Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.
PREPAR: a user-friendly preprocessor to create AIRDOS-EPA input data sets
International Nuclear Information System (INIS)
Sjoreen, A.L.; Miller, C.W.; Nelson, C.B.
1984-01-01
PREPAR is a FORTRAN program designed to simplify the preparation of input for the AIRDOS-EPA computer code. PREPAR was designed to provide a method for data entry that is both logical and flexible. It also provides default values for all variables, so the user needs only to enter those data for which the defaults should be changed. Data are entered either unformatted or via a user-selected format. A separate file of the nuclide-specific data needed by AIRDOS-EPA is read by PREPAR. Two utility programs, EXTRAC and RADLST, were written to create and list this file. PREPAR writes the file needed to run AIRDOS-EPA and writes a listing of that file
Fuzzy commutative algebra and its application in mechanical engineering
International Nuclear Information System (INIS)
Han, J.; Song, H.
1996-01-01
Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering
Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID
Wicaksono, H.; Yusuf, Y. G.; Kristanto, C.; Haryanto, L.
2017-11-01
This paper presents a design of altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID. This practical design is implemented outdoor. Barometric and sonar sensor were used in this experiment as an input for the controller YoHe. The throttle signal as a control input was provided by the controller to leveling QuadRotor in particular altitude and known well as altitude stabilization. The parameter of type-2 fuzzy and fuzzy PID was tuned in several heights to get the best control parameter for any height. Type-2 fuzzy produced better result than fuzzy PID but had a slow response in the beginning.
Soft ideal topological space and mixed fuzzy soft ideal topological space
Directory of Open Access Journals (Sweden)
Manash Borah
2019-01-01
Full Text Available In this paper we introduce fuzzy soft ideal and mixed fuzzy soft ideal topological spaces and some properties of this space. Also we introduce fuzzy soft $I$-open set, fuzzy soft $\\alpha$-$I$-open set, fuzzy soft pre-$I$-open set, fuzzy soft semi-$I$-open set and fuzzy soft $\\beta$-$I$-open set and discuss some of their properties.
Mapping Shape Geometry And Emotions Using Fuzzy Logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2008-01-01
An important aspect of artifact/product design is defining the aesthetic and emotional value. The success of a product is not only dependent on its functionality but also on the emotional value that it creates to its user. However, if several designers are faced with a task to create an object...... that would evoke a certain emotion (aggressive, soft, heavy, friendly, etc.), each would most likely interpret the emotion with a different set of geometric features and shapes. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object...... and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...
Safety critical application of fuzzy control
International Nuclear Information System (INIS)
Schildt, G.H.
1995-01-01
After an introduction into safety terms a short description of fuzzy logic will be given. Especially, for safety critical applications of fuzzy controllers a possible controller structure will be described. The following items will be discussed: Configuration of fuzzy controllers, design aspects like fuzzfiication, inference strategies, defuzzification and types of membership functions. As an example a typical fuzzy rule set will be presented. Especially, real-time behaviour a fuzzy controllers is mentioned. An example of fuzzy controlling for temperature control purpose within a nuclear reactor together with membership functions and inference strategy of such a fuzzy controller will be presented. (author). 4 refs, 17 figs
Assessment of the Degree of Consistency of the System of Fuzzy Rules
Directory of Open Access Journals (Sweden)
Pospelova Lyudmila Yakovlevna
2013-12-01
Full Text Available The article analyses recent achievements and publications and shows that difficulties of explaining the nature of fuzziness and equivocation arise in socio-economic models that use the traditional paradigm of classical rationalism (computational, agent and econometric models. The accumulated collective experience of development of optimal models confirms prospectiveness of application of the fuzzy set approach in modelling the society. The article justifies the necessity of study of the nature of inconsistency in fuzzy knowledge bases both on the generalised ontology level and on pragmatic functional level of the logical inference. The article offers the method of search for logical and conceptual contradictions in the form of a combination of the abduction and modus ponens. It discusses the key issue of the proposed method: what properties should have the membership function of the secondary fuzzy set, which describes in fuzzy inference models such a resulting state of the object of management, which combines empirically incompatible properties with high probability. The degree of membership of the object of management in several incompatible classes with respect to the fuzzy output variable is the degree of fuzziness of the “Intersection of all results of the fuzzy inference of the set, applied at some input of rules, is an empty set” statement. The article describes an algorithm of assessment of the degree of consistency. It provides an example of the step-by-step detection of contradictions in statistical fuzzy knowledge bases at the pragmatic functional level of the logical output. The obtained results of testing in the form of sets of incompatible facts, output chains, sets of non-crossing intervals and computed degrees of inconsistency allow experts timely elimination of inadmissible contradictions and, at the same time, increase of quality of recommendations and assessment of fuzzy expert systems.
Directory of Open Access Journals (Sweden)
K. Lefever
2015-03-01
Full Text Available This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART; the Belgian Assimilation System for Chemical ObsErvations (BASCOE; the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA; and the Data Assimilation Model based on Transport Model version 3 (TM3DAM. The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.
Directory of Open Access Journals (Sweden)
Jianghong Zhu
2018-06-01
Full Text Available As a generalization of the intuitionistic fuzzy set (IFS, a Pythagorean fuzzy set has more flexibility than IFS in expressing uncertainty and fuzziness in the process of multiple criteria group decision-making (MCGDM. Meanwhile, the prominent advantage of the Muirhead mean (MM operator is that it can reflect the relationships among the various input arguments through changing a parameter vector. Motivated by these primary characters, in this study, we introduced the MM operator into the Pythagorean fuzzy context to expand its applied fields. To do so, we presented the Pythagorean fuzzy MM (PFMM operators and Pythagorean fuzzy dual MM (PFDMM operator to fuse the Pythagorean fuzzy information. Then, we investigated their some properties and gave some special cases related to the parameter vector. In addition, based on the developed operators, two MCGDM methods under the Pythagorean fuzzy environment are proposed. An example is given to verify the validity and feasibility of our proposed methods, and a comparative analysis is provided to show their advantages.
Güyer, Tolga; Aydogdu, Seyhmus
2016-01-01
This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…
Hierarchical type-2 fuzzy aggregation of fuzzy controllers
Cervantes, Leticia
2016-01-01
This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
Application of fuzzy logic to social choice theory
Mordeson, John N; Clark, Terry D
2015-01-01
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's
Saltkjel, Therese; Holm Ingelsrud, Mari; Dahl, Espen; Halvorsen, Knut
2017-08-01
Based on the ideal type classification of European countries done in Part I of this paper, Part II explores whether the real 'danger' to public health is the interplay between austerity and crisis, rather than recession itself. We constructed two fuzzy sets of changes in population health based on a pooled file of European Union Statistics on Income and Living Conditions (EU-SILC) data (2008 and 2013) including 29 European countries. The linear probability analyses of 'limiting long-standing illness' and 'less than good' health were restricted to the age group 20-64 years. We performed fuzzy set qualitative comparative analysis (fsQCA) and studied whether configurations of 'severe crisis' and 'austerity' were linked to changes in population health. Overall, the results of this fsQCA do not support the 'crisis-austerity' thesis. Results on 'less than good' health were highly inconsistent, while results on 'limiting long-standing illness', contrary to the thesis, showed a two-path model. Countries with either no severe crisis or no austerity were subsets of the set of countries that experienced deteriorated health. Results also show that several countries combined both paths. This fuzzy set analysis does not support Stuckler and Basu's 'crisis-austerity' thesis, as those European countries that experienced recession and austerity were not consistently the countries with deteriorating health. There may be multiple reasons for this result, including analytical approach and operationalization of key concepts, but also resilient forces such as family support. We suggest more research on the topic based on more recent data and possibly other, or more, dimensions of austerity.
Ting-Yu Chen
2014-01-01
Interval type-2 fuzzy sets (T2FSs) with interval membership grades are suitable for dealing with imprecision or uncertainties in many real-world problems. In the Interval type-2 fuzzy context, the aim of this paper is to develop an interactive signed distance-based simple additive weighting (SAW) method for solving multiple criteria group decision-making problems with linguistic ratings and incomplete preference information. This paper first formulates a group decision-making problem with unc...
Frechet differentiation of nonlinear operators between fuzzy normed spaces
International Nuclear Information System (INIS)
Yilmaz, Yilmaz
2009-01-01
By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.
Kalman-fuzzy algorithm in short term load forecasting
International Nuclear Information System (INIS)
Shah Baki, S.R.; Saibon, H.; Lo, K.L.
1996-01-01
A combination of Kalman-Fuzzy-Neural is developed to forecast the next 24 hours load. The input data fed to neural network are presented with training data set composed of historical load data, weather, day of the week, month of the year and holidays. The load data is fed through Kalman-Fuzzy filter before being applied to Neural Network for training. With this techniques Neural Network converges faster and the mean percentage error of predicted load is reduced as compared to the classical ANN technique
Saltkjel, Therese; Ingelsrud, Mari Holm; Dahl, Espen; Halvorsen, Knut
2017-08-01
This is the first part of a two-part paper that takes an explorative approach to assess crisis and austerity in European countries during the Great Recession. The ultimate aim of this two-part paper is to explore the "crisis-austerity" thesis by Stuckler and Basu and assess whether it is the interplay between austerity and crisis, rather than the current economic crisis per se, that can led to deterioration in population health. In Part I of this paper we offer one way of operationalizing crisis severity and austerity. We examine countries as specific configurations of crisis and policy responses and classify European countries into "ideal types." Cases included were 29 countries participating in the European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Based on fuzzy set methodology, we constructed two fuzzy sets, "austerity" and "severe crisis." Austerity was measured by changes in welfare generosity; severe crisis was measured by changes in gross domestic product (GDP) per capita growth. In the initial phase of the Great Recession, most countries faced severe crisis combined with no austerity. From 2010-2011 onward, there was a divide between countries. Some countries consistently showed signs of austerity policies (with or without severe crisis); others consistently did not. The fuzzy set ideal-type analysis shows that the European countries position themselves, by and large, in configurations of crisis and austerity in meaningful ways that allow us to explore the "crisis-austerity" thesis by Stuckler and Basu. This exploration is the undertaking of Part II of this paper.
Membership Functions for Fuzzy Focal Elements
Directory of Open Access Journals (Sweden)
Porębski Sebastian
2016-09-01
Full Text Available The paper presents a study on data-driven diagnostic rules, which are easy to interpret by human experts. To this end, the Dempster-Shafer theory extended for fuzzy focal elements is used. Premises of the rules (fuzzy focal elements are provided by membership functions which shapes are changing according to input symptoms. The main aim of the present study is to evaluate common membership function shapes and to introduce a rule elimination algorithm. Proposed methods are first illustrated with the popular Iris data set. Next experiments with five medical benchmark databases are performed. Results of the experiments show that various membership function shapes provide different inference efficiency but the extracted rule sets are close to each other. Thus indications for determining rules with possible heuristic interpretation can be formulated.
Directory of Open Access Journals (Sweden)
Majid Moshtagh Khorasani
2009-04-01
Full Text Available
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
On Algebraic Study of Type-2 Fuzzy Finite State Automata
Directory of Open Access Journals (Sweden)
Anupam K. Singh
2017-08-01
Full Text Available Theories of fuzzy sets and type-2 fuzzy sets are powerful mathematical tools for modeling various types of uncertainty. In this paper we introduce the concept of type-2 fuzzy finite state automata and discuss the algebraic study of type-2 fuzzy finite state automata, i.e., to introduce the concept of homomorphisms between two type-2 fuzzy finite state automata, to associate a type-2 fuzzy transformation semigroup with a type-2 fuzzy finite state automata. Finally, we discuss several product of type-2 fuzzy finite state automata and shown that these product is a categorical product.
Datta, D P
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained.
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained
A fuzzy logic pitch angle controller for power system stabilization
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)
2006-07-12
In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
Estimation of Collapse Moment for Wall Thinned Elbows Using Fuzzy Neural Networks
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Shin, Sun Ho; Kim, Koung Suk; Kang, Ki Soo
2004-01-01
In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural network to reduce the sensitivity to the input change and the fuzzy neural networks are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of elbows
Word Similarity from Dictionaries: Inferring Fuzzy Measures from Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Vicenc Torra
2008-01-01
Full Text Available WORD SIMILARITY FROM DICTIONARIES: INFERRING FUZZY MEASURES FROM FUZZY GRAPHS The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
A modeling of fuzzy logic controller on gamma scanning device
International Nuclear Information System (INIS)
Arjoni Amir
2010-01-01
Modeling and simulation of controller to set the high position and direction of the source of gamma radiation isotope Co-60 and Nal(TL) detector of gamma scanning device by using fuzzy logic controller FLC have been done. The high positions and in the right direction of gamma radiation and Nal (TI) detector obtained the optimal enumeration. The counting data obtained from gamma scanning device counting system is affected by the instability of high position and direction of the gamma radiation source and Nal(TI) detector or the height and direction are not equal between the gamma radiation source and Nal(TI) detector. Assumed a high position and direction of radiation sources can be fixed while the high position detector h (2, 1,0, -1, -2) can be adjusted up and down and the detector can be changed direction to the left or right angle ω (2, 1 , 0, -1, -2) when the position and direction are no longer aligned with the direction of the source of gamma radiation, the counting results obtained will not be optimal. Movement detector direction towards the left or right and the high detector arranged by the DC motor using fuzzy logic control in order to obtain the amount of output fuzzy logic control which forms the optimal output quantity count. The variation of height difference h between the source position of the gamma radiation detector and change direction with the detector angle ω becomes the input variable membership function (member function) whereas the fuzzy logic for the output variable membership function of fuzzy logic control output is selected scale fuzzy logic is directly proportional to the amount of optimal counting. From the simulation results obtained by the relationship between the amount of data output variable of fuzzy logic controller and the amount of data input variable height h and direction detector ω is depicted in graphical form surface. (author)
Lee, Hwa-Young; Yang, Bong-Min; Kang, Minah
2015-11-01
This paper aims to investigate whether good governance of a recipient country is a necessary condition and what combinations of factors including governance factor are sufficient for low prevalence of HIV/AIDS in HIV/AIDS aid recipient countries during the period of 2002-2010. For this, Fuzzy-set Qualitative Comparative Analysis (QCA) was used. Nine potential attributes for a causal configuration for low HIV/AIDS prevalence were identified through a review of previous studies. For each factor, full membership, full non-membership, and crossover point were specified using both author's knowledge and statistical information of the variables. Calibration and conversion to a fuzzy-set score were conducted using Fs/QCA 2.0 and probabilistic tests for necessary and sufficiency were performed by STATA 11. The result suggested that governance is the necessary condition for low prevalence of HIV/AIDS in a recipient country. From sufficiency test, two pathways were resulted. The low level of governance can lead to low level of HIV/AIDS prevalence when it is combined with other favorable factors, especially, low economic inequality, high economic development and high health expenditure. However, strengthening governance is a more practical measure to keep low prevalence of HIV/AIDS because it is hard to achieve both economic development and economic quality. This study highlights that a comprehensive policy measure is the key for achieving low prevalence of HIV/AIDS in recipient country.
Using Fuzzy Logic to Increase the Accuracy of E-Commerce Risk Assessment Based on an Expert System
Directory of Open Access Journals (Sweden)
H. Beheshti
2017-12-01
Full Text Available Strong adaptive control can be exercised even without access to accurate data inputs. Such control is possible through fuzzy mathematics, which is a meta-collection of Boolean logic principles that imply relative accuracy. Fuzzy mathematics find applications in e-commerce, where different risk analysis methods are available for risk assessment and estimation. Such approaches can be quantitative or qualitative, depending on the type of examined data. Quantitative methods are grounded in statistics, whereas qualitative methods are based on expert judgments and fuzzy set theory. Given that qualitative methods are very subjective and deal with vague or inaccurate data, fuzzy logic can be used to extract useful information from data inaccuracies. In this study, a model based on the opinions of e-commerce security experts was designed and implemented by using fuzzy expert systems and MATLAB. A case study was conducted to validate the effectiveness of the Model.
Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method
Directory of Open Access Journals (Sweden)
Ken Yeh
2010-01-01
Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Rahonis, George
The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.
A fuzzy expert system for predicting the performance of switched reluctance motor
International Nuclear Information System (INIS)
Mirzaeian, B.; Moallem, M.; Lucas, Caro
2001-01-01
In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit method has been used to generate the input-output data. These input-output data is used to produce the initial fuzzy rules for predicting the performance of Switched Reluctance Motor. The initial set of fuzzy rules with triangular membership functions has been devised using a table look-up scheme. The initial fuzzy rules have been optimized to a set of fuzzy rules with Gaussian membership functions using gradient descent training scheme. The performance prediction results for a 6/8, 4 kw, Switched Reluctance Motor shows good agreement with the results obtained from Improved Magnetic Equivalent Circuit method or Finite Element analysis. The developed fuzzy expert system can be used for fast prediction of motor performance in the optimal design process or on-line control schemes of Switched Reluctance motor
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Taeed, Fazel; Salam, Z.; Ayob, S.
2012-01-01
converter (ADC). Instead, a simple analog-to-digital conversion scheme is implemented using the FPGA itself. Due to the simplicity of the SIFLC algorithm and the absence of an external ADC, the overall implementation requires only 408 logic elements and five input-output pins of the FPGA.......) and applied on a 50-W boost converter. The SIFLC is compared to the proportional-integral controller; the simulation and practical results indicate that SIFLC exhibits excellent performance for step load and input reference changes. Another feature of this work is the absence of an external analog-to-digital...
Bandemer, Hans
1992-01-01
Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.
Construction of fuzzy automata by fuzzy experiments
International Nuclear Information System (INIS)
Mironov, A.
1994-01-01
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven
Construction of fuzzy automata by fuzzy experiments
Energy Technology Data Exchange (ETDEWEB)
Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science
1994-12-31
The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.
Forecasting Enrollments with Fuzzy Time Series.
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
Effectiveness of Securities with Fuzzy Probabilistic Return
Directory of Open Access Journals (Sweden)
Krzysztof Piasecki
2011-01-01
Full Text Available The generalized fuzzy present value of a security is defined here as fuzzy valued utility of cash flow. The generalized fuzzy present value cannot depend on the value of future cash flow. There exists such a generalized fuzzy present value which is not a fuzzy present value in the sense given by some authors. If the present value is a fuzzy number and the future value is a random one, then the return rate is given as a probabilistic fuzzy subset on a real line. This kind of return rate is called a fuzzy probabilistic return. The main goal of this paper is to derive the family of effective securities with fuzzy probabilistic return. Achieving this goal requires the study of the basic parameters characterizing fuzzy probabilistic return. Therefore, fuzzy expected value and variance are determined for this case of return. These results are a starting point for constructing a three-dimensional image. The set of effective securities is introduced as the Pareto optimal set determined by the maximization of the expected return rate and minimization of the variance. Finally, the set of effective securities is distinguished as a fuzzy set. These results are obtained without the assumption that the distribution of future values is Gaussian. (original abstract
The majority rule in a fuzzy environment.
Montero, Javier
1986-01-01
In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.
The fuzzy approach to statistical analysis
Coppi, Renato; Gil, Maria A.; Kiers, Henk A. L.
2006-01-01
For the last decades, research studies have been developed in which a coalition of Fuzzy Sets Theory and Statistics has been established with different purposes. These namely are: (i) to introduce new data analysis problems in which the objective involves either fuzzy relationships or fuzzy terms;
Energy Technology Data Exchange (ETDEWEB)
Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Xie, Yu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-12-01
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance) broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Badawi, A M; Derbala, A S; Youssef, A M
1999-08-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history
A fuzzy Bi-linear management model in reverse logistic chains
Directory of Open Access Journals (Sweden)
Tadić Danijela
2016-01-01
Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
Solution of a System of Linear Equations with Fuzzy Numbers
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
2008-01-01
Roč. 159, č. 14 (2008), s. 1788-1810 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy number * fuzzy interval * interval analysis * fuzzy arithmetic * fuzzy class theory * united solution set Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...
Ellipsoidal fuzzy learning for smart car platoons
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Directory of Open Access Journals (Sweden)
Lopes Ana Lúcia Miranda
2002-01-01
Full Text Available This paper address the issue of performance evaluation - productivity and quality - of academic departments at an University. A DEA model was used to simulate a process of cross-evaluation between departments. The results of DEA in the dimensions of teaching, research, service and quality were modeled as fuzzy numbers and then aggregated through a weighted ordered aggregator. A single index of performance for each department was generated. The proposal is to identify departments with low performance in one or more dimensions that should receive additional evaluation from an external auditing committee. A by-product of the model is to enlarge the possibility of working with more variables than a conventional DEA model. The model applied to a set of fifty-eight departments of a Brazilian University showed fifteen with low performance. Zero correlation between department teaching, research and service were observed. Weak correlation was detected between research productivity and quality. Weak scale effects were detected.
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Multi-stage fuzzy PID power system automatic generation controller in deregulated environments
International Nuclear Information System (INIS)
Shayeghi, H.; Shayanfar, H.A.; Jalili, A.
2006-01-01
In this paper, a multi-stage fuzzy proportional integral derivative (PID) type controller is proposed to solve the automatic generation control (AGC) problem in a deregulated power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signals in a modified traditional dynamical model. The multi-stage controller uses the fuzzy switch to blend a proportional derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with simple structure that is easy to implement, and therefore, it can be useful for the real world power systems. The proposed method is tested on a three area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with those of the classical fuzzy PID type controller and classical PID controller through some performance indices to illustrate its robust performance
Directory of Open Access Journals (Sweden)
C. K. Kwong
2013-01-01
Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
International Nuclear Information System (INIS)
Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M.; Palomera, M.A.
2005-01-01
In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)
International Nuclear Information System (INIS)
Jin, L.; Huang, G.H.; Fan, Y.R.; Wang, L.; Wu, T.
2015-01-01
Highlights: • Propose a new energy PIS-IT2FSLP model for Xiamen City under uncertainties. • Analyze the energy supply, demand, and its flow structure of this city. • Use real energy statistics to prove the superiority of PIS-IT2FSLP method. • Obtain optimal solutions that reflect environmental requirements. • Help local authorities devise an optimal energy strategy for this local area. - Abstract: In this study, a new Pseudo-optimal Inexact Stochastic Interval Type-2 Fuzzy Sets Linear Programming (PIS-IT2FSLP) energy model is developed to support energy system planning and environment requirements under uncertainties for Xiamen City. The PIS-IT2FSLP model is based on an integration of interval Type 2 (T2) Fuzzy Sets (FS) boundary programming and stochastic linear programming techniques, enables it to have robust abilities to the tackle uncertainties expressed as T2 FS intervals and probabilistic distributions within a general optimization framework. This new model can sophisticatedly facilitate system analysis of energy supply and energy conversion processes, and environmental requirements as well as provide capacity expansion options with multiple periods. The PIS-IT2FSLP model was applied to a real case study of Xiamen energy systems. Based on a robust two-step solution algorithm, reasonable solutions have been obtained, which reflect tradeoffs between economic and environmental requirements, and among seasonal volatility energy demands of the right hand side constraints of Xiamen energy system. Thus, the lower and upper solutions of PIS-IT2FSLP would then help local energy authorities adjust current energy patterns, and discover an optimal energy strategy for the development of Xiamen City
Simulasi Kecepatan Kendaraan dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2008-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Simulasi Kecepatan Kendaraan Dengan Menggunakan Logika Fuzzy
Lukas, Samuel; Aribowo, Arnold; Tjia, Yogih Suharta
2009-01-01
Artificial intelligence has been implemented widely. Many of household products are designed based on artificial intellegence concept. One of them is fuzzy logic system. This paper describes on how a fuzzy logic system can also be implemented in controling the speed of a car in the road. The fuzzy inference system was designed according to Tsukamoto inferencing method and for the defuzzyfication method is used weighted average method. There are three inputs for the system. The are distance b...
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Directory of Open Access Journals (Sweden)
Özlem TÜRKŞEN
2018-03-01
Full Text Available Some of the experimental designs can be composed of replicated response measures in which the replications cannot be identified exactly and may have uncertainty different than randomness. Then, the classical regression analysis may not be proper to model the designed data because of the violation of probabilistic modeling assumptions. In this case, fuzzy regression analysis can be used as a modeling tool. In this study, the replicated response values are newly formed to fuzzy numbers by using descriptive statistics of replications and golden ratio. The main aim of the study is obtaining the most suitable fuzzy model for replicated response measures through fuzzification of the replicated values by taking into account the data structure of the replications in statistical framework. Here, the response and unknown model coefficients are considered as triangular type-1 fuzzy numbers (TT1FNs whereas the inputs are crisp. Predicted fuzzy models are obtained according to the proposed fuzzification rules by using Fuzzy Least Squares (FLS approach. The performances of the predicted fuzzy models are compared by using Root Mean Squared Error (RMSE criteria. A data set from the literature, called wheel cover component data set, is used to illustrate the performance of the proposed approach and the obtained results are discussed. The calculation results show that the combined formulation of the descriptive statistics and the golden ratio is the most preferable fuzzification rule according to the well-known decision making method, called TOPSIS, for the data set.
Relational Demonic Fuzzy Refinement
Directory of Open Access Journals (Sweden)
Fairouz Tchier
2014-01-01
Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.
Stock and option portfolio using fuzzy logic approach
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
On the mathematics of fuzziness
Energy Technology Data Exchange (ETDEWEB)
Kerre, E. [Ghent Univ. (Belgium)
1994-12-31
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way.
On the mathematics of fuzziness
International Nuclear Information System (INIS)
Kerre, E.
1994-01-01
During the past twenty-five years, the scientific community has been working very extensively on the development of reliable models for the representation and manipulation of impreciseness and uncertainty that pervade the real world. Fuzzy set theory is one of the most popular theories able to treat incomplete information. In this paper, the basic mathematical principles underlying fuzzy set theory are outlined. Special attention is paid to the way that set theory has influenced the development of mathematics in a positive way
Efficient fuzzy logic controller for magnetic levitation systems | Shu ...
African Journals Online (AJOL)
In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Liu, Yan; Yi, Ting-Hua; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established.
Directory of Open Access Journals (Sweden)
Yan Liu
2013-01-01
Full Text Available As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR, this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods’ effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established.
Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad
2017-10-01
The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.
New Definition and Properties of Fuzzy Entropy
Institute of Scientific and Technical Information of China (English)
Qing Ming; Qin Yingbing
2006-01-01
Let X = (x1,x2 ,…,xn ) and F(X) be a fuzzy set on a universal set X. A new definition of fuzzy entropy about a fuzzy set A on F(X), e*, is defined based on the order relation "≤" on [0,1/2] n. It is proved that e* is a σ-entropy under an additional requirement. Besides, some entropy formulas are presented and related properties are discussed.
Juels, Ari
The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.
Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems
International Nuclear Information System (INIS)
Yau, H.-T.; Chen, C.-L.
2006-01-01
This paper proposes a chattering-free fuzzy sliding-mode control (FSMC) strategy for uncertain chaotic systems. A fuzzy logic control is used to replace the discontinuous sign function of the reaching law in traditional sliding-mode control (SMC), and hence a control input without chattering is obtained in the chaotic systems with uncertainties. Base on the Lyapunov stability theory, we address the design schemes of integration fuzzy sliding-mode control, where the reaching law is proposed by a set of linguistic rules and the control input is chattering free. The Genesio chaotic system is used to test the proposed control strategy and the simulation results show the FSMC not only can control the uncertain chaotic behaviors to a desired state without oscillator very fast, but also the switching function is smooth without chattering. This result implies that this strategy is feasible and effective for chaos control
New approach to solve fully fuzzy system of linear equations using ...
Indian Academy of Sciences (India)
Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Gruijter, de J.J.; Walvoort, D.J.J.; Gaans, van P.F.M.
1997-01-01
Soil maps as multi-purpose models of spatial soil distribution have a much higher level of aggregation (map units) than the models of soil processes and land-use effects that need input from soil maps. This mismatch between aggregation levels is particularly detrimental in the context of precision
On Intuitionistic Fuzzy Context-Free Languages
Directory of Open Access Journals (Sweden)
Jianhua Jin
2013-01-01
automata theory. Additionally, we introduce the concepts of Chomsky normal form grammar (IFCNF and Greibach normal form grammar (IFGNF based on intuitionistic fuzzy sets. The results of our study indicate that intuitionistic fuzzy context-free languages generated by IFCFGs are equivalent to those generated by IFGNFs and IFCNFs, respectively, and they are also equivalent to intuitionistic fuzzy recognizable step functions. Then some operations on the family of intuitionistic fuzzy context-free languages are discussed. Finally, pumping lemma for intuitionistic fuzzy context-free languages is investigated.
Development of neural network driven fuzzy controller for outlet sodium temperature of DHX
International Nuclear Information System (INIS)
Okusa, Kyoichi; Endou, Akira; Yoshikawa, Shinji; Ozawa, Kenji
1996-01-01
Fuzzy controls are capable to exquisitely control non-linear dynamic systems in wide operating range, using linguistic description to define the control law. However the selection and the definition of the fuzzy rules and sets require a tedious trial and error process based on experience. As a method to overcome this limitation, a neural network driven fuzzy control (NDF), where the learning capability of the neural network (NN) is used to build the fuzzy rules and sets, is presented in this paper. In the NDF control the IF part of a fuzzy control is represented by a multilayer NN while the THEN part is represented by a series of multilayer NNs which calculate the desirable control action. In this work the usual stepwise variable reduction method, used for the selection of the input variable in the THEN part NN, is replaced with a learning algorithm with forgetting mechanism that realizes the automatic reduction of the variables and the tuning up of all the fuzzy control law i.e. the membership function. The NDF has been successfully applied to control the outlet sodium temperature of a dump heat exchanger (DHX) of a FBR plant
Fuzzy resource optimization for safeguards
International Nuclear Information System (INIS)
Zardecki, A.; Markin, J.T.
1991-01-01
Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab
Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre
2013-01-01
The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.
A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers
Dzung Nguyen, Sy; Choi, Seung-Bok
2012-08-01
This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.
Fuzzy control in environmental engineering
Chmielowski, Wojciech Z
2016-01-01
This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...
Fuzzy Diagnostic System for Oleo-Pneumatic Drive Mechanism of High-Voltage Circuit Breakers
Directory of Open Access Journals (Sweden)
Viorel Nicolau
2013-01-01
Full Text Available Many oil-based high-voltage circuit breakers are still in use in national power networks of developing countries, like those in Eastern Europe. Changing these breakers with new more reliable ones is not an easy task, due to their implementing costs. The acting device, called oleo-pneumatic mechanism (MOP, presents the highest fault rate from all components of circuit breaker. Therefore, online predictive diagnosis and early detection of the MOP fault tendencies are very important for their good functioning state. In this paper, fuzzy logic approach is used for the diagnosis of MOP-type drive mechanisms. Expert rules are generated to estimate the MOP functioning state, and a fuzzy system is proposed for predictive diagnosis. The fuzzy inputs give information about the number of starts and time of functioning per hour, in terms of short-term components, and their mean values. Several fuzzy systems were generated, using different sets of membership functions and rule bases, and their output performances are studied. Simulation results are presented based on an input data set, which contains hourly records of operating points for a time horizon of five years. The fuzzy systems work well, making an early detection of the MOP fault tendencies.
Pengembangan Sistem Proteksi Digital Arus Lebih Berbasis Logika Fuzzy sebagai Pengaman PLTMH
Directory of Open Access Journals (Sweden)
Cahayahati
2013-09-01
Full Text Available In this paper discussed digital overcurrent protection system fuzzy logic on plant systems or Micro Hydro Power Plants with fuzzy logic approach to the identification of the signal changes due to interference overcurrent short circuit the lifeboat station on the system. A digital overcurrent protection with a fuzzy logic-based method and the rules set if-then, fuzzification and defazzification which has 2 inputs are crisp and delta error and error the actual fault current has a crisp output 1 to input changes in current to drive the relay breaker. This system consists of a hardware system with microcontroller (mc ATMega8535 and other series as well as software that helps in the protection process performance Delpi 7 computer using fuzzy logic and program using C language and dicompel with CodeVisionAVR software and uploaded to the microcontroller using ponyprog2000 ATMega8535. The success of a prototype digital overcurrent protection system was tested on a fuzzy logic system voltage of 220 volts with a simple system technique burdened beyond any current settings and calculated over a given working time protection relay. After testing and calculations, then the inverse Characteristics of digital protection between the current disruption to the working time protection can be envisaged that a larger fault current less time working to secure protection from interference generating systems.
Fuzzy Coordinated PI Controller: Application to the Real-Time Pressure Control Process
Directory of Open Access Journals (Sweden)
N. Kanagaraj
2008-01-01
Full Text Available This paper presents the real-time implementation of a fuzzy coordinated classical PI control scheme for controlling the pressure in a pilot pressure tank system. The fuzzy system has been designed to track the variation parameters in a feedback loop and tune the classical controller to achieve a better control action for load disturbances and set point changes. The error and process inputs are chosen as the inputs of fuzzy system to tune the conventional PI controller according to the process condition. This online conventional controller tuning technique will reduce the human involvement in controller tuning and increase the operating range of the conventional controller. The proposed control algorithm is experimentally implemented for the real-time pressure control of a pilot air tank system and validated using a high-speed 32-bit ARM7 embedded microcontroller board (ATMEL AT91M55800A. To demonstrate the performance of the fuzzy coordinated PI control scheme, results are compared with a classical PI and PI-type fuzzy control method. It is observed that the proposed controller structure is able to quickly track the parameter variation and perform better in load disturbances and also for set point changes.
A genetic fuzzy system for unstable angina risk assessment.
Dong, Wei; Huang, Zhengxing; Ji, Lei; Duan, Huilong
2014-02-18
Unstable Angina (UA) is widely accepted as a critical phase of coronary heart disease with patients exhibiting widely varying risks. Early risk assessment of UA is at the center of the management program, which allows physicians to categorize patients according to the clinical characteristics and stratification of risk and different prognosis. Although many prognostic models have been widely used for UA risk assessment in clinical practice, a number of studies have highlighted possible shortcomings. One serious drawback is that existing models lack the ability to deal with the intrinsic uncertainty about the variables utilized. In order to help physicians refine knowledge for the stratification of UA risk with respect to vagueness in information, this paper develops an intelligent system combining genetic algorithm and fuzzy association rule mining. In detail, it models the input information's vagueness through fuzzy sets, and then applies a genetic fuzzy system on the acquired fuzzy sets to extract the fuzzy rule set for the problem of UA risk assessment. The proposed system is evaluated using a real data-set collected from the cardiology department of a Chinese hospital, which consists of 54 patient cases. 9 numerical patient features and 17 categorical patient features that appear in the data-set are selected in the experiments. The proposed system made the same decisions as the physician in 46 (out of a total of 54) tested cases (85.2%). By comparing the results that are obtained through the proposed system with those resulting from the physician's decision, it has been found that the developed model is highly reflective of reality. The proposed system could be used for educational purposes, and with further improvements, could assist and guide young physicians in their daily work.
Directory of Open Access Journals (Sweden)
Abbas Parchami
2016-09-01
Full Text Available Such as other statistical problems, we may confront with uncertain and fuzzy concepts in quality control. One particular case in process capability analysis is a situation in which specification limits are two fuzzy sets. In such a uncertain and vague environment, the produced product is not qualified with a two-valued Boolean view, but to some degree depending on the decision-maker strictness and the quality level of the produced product. This matter can be cause to a rational decision-making on the quality of the production line. First, a comprehensive approach is presented in this paper for modeling the fuzzy quality concept. Then, motivations and advantages of applying this flexible approach instead of using classical quality are mentioned.
Fuzzy systems for process identification and control
International Nuclear Information System (INIS)
Gorrini, V.; Bersini, H.
1994-01-01
Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I
A fuzzy neural network for sensor signal estimation
International Nuclear Information System (INIS)
Na, Man Gyun
2000-01-01
In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique. Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors
Tourist Arrivals to Sabah by Using Fuzzy Forecasting
Directory of Open Access Journals (Sweden)
Tarmudi Zamali
2014-01-01
Full Text Available The aim of this paper is to investigate the existing tourist trend arrival in Sabah based on fuzzy approach. It focuses on the latest 12 years (2002 – 2013 visitors arrival based on their nationality for forecasting purposes. Based on Sabah Tourism Board’s data, the tourist arrival continue to grow annually but with an inconsistent number of arrival. This can be seen from the trend of tourist arrival from 2011 to 2012. There is an increase in the number of arrival but only at 1.1 % compared to the other years which are in the rank of 10 – 18% increase in number of arrival per year. Therefore, the purpose of this study is to predict the number of tourist arrival to Sabah. The study employs the modification of Fuzzy Delphi Method (FDM and utilizes the flexibility of triangular fuzzy numbers (TFNs as well as fuzzy averaging to deal with the yearly inconsistency numbers of visitor’s arrival. Then, the trio levels of alpha (α-cut was used via linguistic variables to assess the confidence of decision made and to overcome the uncertainty of the input data sets. The analysis was carried out using fully data sets obtained from the official website of Sabah tourism board. Results show that our proposed forecasting approach offers a new dimension technique as compared to the traditional statistical method. It also derived more confident decision and precision forecast for Sabah tourism authority planning purposes.
Energy Technology Data Exchange (ETDEWEB)
Dzedzej, Maira; Maciel, Jonas Fernandes; Santos, Afonso Henrique Moreira [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Duarte, Pamella Santos [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil)
2010-07-01
Environmental issues are of great importance when assessing the feasibility and priority installation of new developments in electric power generation. In this sense, fuzzy logic can help define the regions that have favorable characteristics for receiving certain forms of generation. This study sought to order for the State of Sao Paulo, four kinds of generation projects: those using municipal solid waste gasification, those which make use of landfill gas with a change in firing (to reduce emissions), thermoelectric plants (TEPs) to bagasse (with 15% straw) and Small Hydropower (SHP). Such an ordering considered not only the type of generation but also the allocation of projects in the four regions, defined by regional vocations as defined by the State Water Resources Plan (Annex III of the State Law No. 9.034/94): Agriculture, Conservation, In Industrialization and Industrial. As a result, the use of fuzzy sets allowed the creation of a ranking of the alternatives (which totaled 14 possibilities), based exclusively on the degree of interference in air quality resulting from the installation of every form of generation. Such information may help the decision-making governing bodies to establish priorities in order, thereby accelerating the process of installation and operation of projects for generating electricity. (author)
Directory of Open Access Journals (Sweden)
Pugalendhi Ganesh Kumar
Full Text Available This study describes a novel approach to reducing the challenges of highly nonlinear multiclass gene expression values for cancer diagnosis. To build a fruitful system for cancer diagnosis, in this study, we introduced two levels of gene selection such as filtering and embedding for selection of potential genes and the most relevant genes associated with cancer, respectively. The filter procedure was implemented by developing a fuzzy rough set (FR-based method for redefining the criterion function of f-information (FI to identify the potential genes without discretizing the continuous gene expression values. The embedded procedure is implemented by means of a water swirl algorithm (WSA, which attempts to optimize the rule set and membership function required to classify samples using a fuzzy-rule-based multiclassification system (FRBMS. Two novel update equations are proposed in WSA, which have better exploration and exploitation abilities while designing a self-learning FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9 binary datasets of cancer gene expression. Additionally, the performance of the proposed FRFI-WSA method in designing an FRBMS was compared with existing methods for gene selection and optimization such as genetic algorithm (GA, particle swarm optimization (PSO, and artificial bee colony algorithm (ABC on all the datasets. In the global cancer map with repeated measurements (GCM_RM dataset, the FRFI-WSA showed the smallest number of 16 most relevant genes associated with cancer using a minimal number of 26 compact rules with the highest classification accuracy (96.45%. In addition, the statistical validation used in this study revealed that the biological relevance of the most relevant genes associated with cancer and their linguistics detected by the proposed FRFI-WSA approach are better than those in the other methods. The simple interpretable rules with most relevant genes and effectively
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
On a Fuzzy Algebra for Querying Graph Databases
Pivert , Olivier; Thion , Virginie; Jaudoin , Hélène; Smits , Grégory
2014-01-01
International audience; This paper proposes a notion of fuzzy graph database and describes a fuzzy query algebra that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. The algebra, based on fuzzy set theory and the concept of a fuzzy graph, is composed of a set of operators that can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. In a s...
DEFF Research Database (Denmark)
Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas
2012-01-01
as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
Increase efficiency CNC lathe with the help of fuzzy logic controller (FLC
Directory of Open Access Journals (Sweden)
Mošorinski Predrag R.
2016-01-01
Full Text Available This paper discusses the process of increasing the effectiveness of CNC lathe for carrying out the appropriate experiments. Experiments are related to the plastics processing machine and programming fuzzy logic controller (FLC for the requirements of machining. Input parameters of the FLCare obtained as a result of previous experimental parameters set by experience and with a great subjective impact of technologists. Expected results of FLC's settings are based on the complete autonomy of the process and eliminating subjective errors.
Operator’s Fuzzy Norm and Some Properties
Bag, T.; Samanta, S.K.
2015-01-01
In this paper, a concept of operator’s fuzzy norm is introduced for the first time in general t-norm setting. Ideas of fuzzy continuous operators, fuzzy bounded linear operators are given with some properties of such operators studied in this general setting.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Directory of Open Access Journals (Sweden)
E. Golden Julie
2016-01-01
Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
Developed adaptive neuro-fuzzy algorithm to control air conditioning ...
African Journals Online (AJOL)
user
The paper developed artificial intelligence technique adaptive neuro-fuzzy ... system is highly appreciated and essential in most of our daily life. ... It can construct an input-output mapping based on human knowledge and specific input-output data ... fuzzy controllers to produce desirable internal temperature and air quality, ...
New approach for solving intuitionistic fuzzy multi-objective ...
Indian Academy of Sciences (India)
SANKAR KUMAR ROY
2018-02-07
Feb 7, 2018 ... Transportation problem; multi-objective decision making; intuitionistic fuzzy programming; interval programming ... MOTP under multi-choice environment using utility func- ... theory is an intuitionistic fuzzy set (IFS), which was.
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Energy Technology Data Exchange (ETDEWEB)
Valenca, Mauricio Mendonca
1993-05-01
The power system static operation planning has a main objective the determination of performance strategies which satisfy operational criteria. A fuzzy set decision model which takes the load attainment and the compromise between optimality and critical operational constraints into account is presented. The prime characteristic of this methodology is the incorporation of the planner`s preferences structure in a decision process modeled by fuzzy sets. A routine of optimal power flow calculation is used as a computational tool for solving the nonlinear model of the electric power system and for defining the universe of discourse of the decision-making problem. tests were carried on a 30-bus IEEE system in order to find a compromise solution of electric operational goal versus reactive power generation limits. Results and conclusions are presented. (author) 28 refs., 32 figs.
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
On the Difference between Traditional and Deductive Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Běhounek, Libor
2008-01-01
Roč. 159, č. 10 (2008), s. 1153-1164 ISSN 0165-0114 R&D Projects: GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10300504 Keywords : deductive fuzzy logic * fuzzy elements * gradual sets * entropy of fuzzy sets * aggregation * membership degrees * methodology of fuzzy mathematics Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008
A location-routing problem model with multiple periods and fuzzy demands
Directory of Open Access Journals (Sweden)
Ali Nadizadeh
2014-08-01
Full Text Available This paper puts forward a dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD. It is given on input a set of identical vehicles (each having a capacity, a fixed cost and availability level, a set of depots with restricted capacities and opening costs, a set of customers with fuzzy demands, and a planning horizon with multiple periods. The problem consists of determining the depots to be opened only in the first period of the planning horizon, the customers and the vehicles to be assigned to each opened depot, and performing the routes that may be changed in each time period due to fuzzy demands. A fuzzy chance-constrained programming (FCCP model has been designed using credibility theory and a hybrid heuristic algorithm with four phases is presented in order to solve the problem. To obtain the best value of the fuzzy parameters of the model and show the influence of the availability level of vehicles on final solution, some computational experiments are carried out. The validity of the model is then evaluated in contrast with CLRP-FD's models in the literature. The results indicate that the model and the proposed algorithm are robust and could be used in real world problems.
Institute of Scientific and Technical Information of China (English)
杜浩翠; 孙滨
2012-01-01
The interval-valued fuzzy sets is an important basic theory for dealing with uncertainty, incompleteness information. The Lattice Implication Algebras is an important research direction in the internal-valued fuzzy sets. In this paper, the operations are redefined in the interval-valued fuzzy sets, which are the interval complement,the interval pseudo-complement and the interval implication. Furthermore, algebras system ＜1[0, 1],∩,∪,c, * ＞ is proved complemented lattice. At the same time,the Lattice Implication Algebras＜ I[0,1],∩,∪,c, * , →＞is reconstructed in the internal-valued fuzzy sets,and it's properties are discussed.%区间值模糊集合是处理不确定、不完全信息的重要基础理论,格蕴涵代数是区间值模糊集上一个重要的研究方向.文章是在区间值模糊集合上,给出了区间补、区间伪补和区间蕴涵三个运算的概念,证明了〈I[0,1],∪,∩,c,*〉是有余格.与此同时,在区间值模糊集上重新构造了格蕴涵代数(I[0,1],∪,∩,c,*,(→)),且讨论了该格蕴涵代数的一些性质.
Fuzzy associative memories for instrument fault detection
International Nuclear Information System (INIS)
Heger, A.S.
1996-01-01
A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author)
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
A hierarchical fuzzy rule-based approach to aphasia diagnosis.
Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid
2007-10-01
Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Directory of Open Access Journals (Sweden)
T. Pathinathan
2015-01-01
Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.
Esophageal cancer prediction based on qualitative features using adaptive fuzzy reasoning method
Directory of Open Access Journals (Sweden)
Raed I. Hamed
2015-04-01
Full Text Available Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs, where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.
Londoño, Teresa; Trabado, Verónica; García-Rodríguez, Alejo; Balfagón, Pere; Villalbí, Joan R
2018-04-21
This paper describes the use of focus groups as part of the evaluation of programmes to control food allergy and intolerance (FAI) in school settings in the city of Barcelona (Spain). After fostering their adoption and as a qualitative component of their evaluation, the public health services ran two focus groups, one with people from schools that manage their own kitchen, and another from companies that outsource this service. There were 28 participants from 46% of the centres invited. All the schools seem to have implemented a self-control programme on FAI. Although outsourcing companies already had a programme, the schools that managed their own service mostly adopted the programme promoted by the public health services. The number of schoolchildren with reported FAI reduced after the programme, as it required more rigorous documentation from families. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Research on Bounded Rationality of Fuzzy Choice Functions
Directory of Open Access Journals (Sweden)
Xinlin Wu
2014-01-01
Full Text Available The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
A novel Neuro-fuzzy classification technique for data mining
Directory of Open Access Journals (Sweden)
Soumadip Ghosh
2014-11-01
Full Text Available In our study, we proposed a novel Neuro-fuzzy classification technique for data mining. The inputs to the Neuro-fuzzy classification system were fuzzified by applying generalized bell-shaped membership function. The proposed method utilized a fuzzification matrix in which the input patterns were associated with a degree of membership to different classes. Based on the value of degree of membership a pattern would be attributed to a specific category or class. We applied our method to ten benchmark data sets from the UCI machine learning repository for classification. Our objective was to analyze the proposed method and, therefore compare its performance with two powerful supervised classification algorithms Radial Basis Function Neural Network (RBFNN and Adaptive Neuro-fuzzy Inference System (ANFIS. We assessed the performance of these classification methods in terms of different performance measures such as accuracy, root-mean-square error, kappa statistic, true positive rate, false positive rate, precision, recall, and f-measure. In every aspect the proposed method proved to be superior to RBFNN and ANFIS algorithms.
Fuzzy logic control for camera tracking system
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Equipment Selection by using Fuzzy TOPSIS Method
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Analysis of inventory difference using fuzzy controllers
International Nuclear Information System (INIS)
Zardecki, A.
1994-01-01
The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented
DEFF Research Database (Denmark)
Christensen, Line Hjorth
"Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...
Properties of Fuzzy Entropy Based on the Shape Change of Membership Function
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore, play a significant role in analysis of the change of fuzziness of a fuzzy system because a fuzzy partition consists of a set of fuzzy sets which satisfy some special constraints. This paper has shown several results about entropy changes of a fuzzy set. First, the entropies of two same type of fuzzy sets have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Second, as for Triangular Fuzzy Numbers (TFNs), the entropies of any two TFNs which can not be always the same type, also,have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Hence, any two TFNs with the same sizes of support intervals have the same entropies. Third, concerning two Triangular Fuzzy Sets (TFSs) with same sizes of support intervals and different heights, the relationship of their entropies lies on their height.Finally, we point it out a mistake that Chen's assertion that the entropy of resultant fuzzy set of elevation operation is directly proportional to that of the original one while elevation factor just acts as a proportional factor. These results should contribute to the analysis and design of a fuzzy system.
Fuzzy One-Class Classification Model Using Contamination Neighborhoods
Directory of Open Access Journals (Sweden)
Lev V. Utkin
2012-01-01
Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.
Relational Demonic Fuzzy Refinement
Tchier, Fairouz
2014-01-01
We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
Czech Academy of Sciences Publication Activity Database
Samec, P.; Caha, J.; Zapletal, M.; Tuček, P.; Cudlín, Pavel; Kučera, M.
599-600, DEC (2017), s. 899-909 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : abiotic predictors * Forest decline * Fuzzy modelling * Nitrogen deposition * Soil carbon Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.900, year: 2016
Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning
Directory of Open Access Journals (Sweden)
Ya’nan Wang
2016-01-01
Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.
FUZZY LOGIC IN LEGAL EDUCATION
Directory of Open Access Journals (Sweden)
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR
Directory of Open Access Journals (Sweden)
Maria Cristina Floreno
1996-05-01
Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.
Quasi-adaptive fuzzy heating control of solar buildings
Energy Technology Data Exchange (ETDEWEB)
Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute
2006-12-15
Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Directory of Open Access Journals (Sweden)
Rasim M. Alguliyev
2015-01-01
Full Text Available Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method.
International Nuclear Information System (INIS)
Baron, Jorge H.; Rivera, S.S.
2000-01-01
The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)
Fuzzy randomness uncertainty in civil engineering and computational mechanics
Möller, Bernd
2004-01-01
This book, for the first time, provides a coherent, overall concept for taking account of uncertainty in the analysis, the safety assessment, and the design of structures. The reader is introduced to the problem of uncertainty modeling and familiarized with particular uncertainty models. For simultaneously considering stochastic and non-stochastic uncertainty the superordinated uncertainty model fuzzy randomness, which contains real valued random variables as well as fuzzy variables as special cases, is presented. For this purpose basic mathematical knowledge concerning the fuzzy set theory and the theory of fuzzy random variables is imparted. The body of the book comprises the appropriate quantification of uncertain structural parameters, the fuzzy and fuzzy probabilistic structural analysis, the fuzzy probabilistic safety assessment, and the fuzzy cluster structural design. The completely new algorithms are described in detail and illustrated by way of demonstrative examples.
Qualitative assessment of environmental impacts through fuzzy logic
International Nuclear Information System (INIS)
Peche G, Roberto
2008-01-01
The vagueness of many concepts usually utilized in environmental impact studies, along with frequent lack of quantitative information, suggests that fuzzy logic can be applied to carry out qualitative assessment of such impacts. This paper proposes a method for valuing environmental impacts caused by projects, based on fuzzy sets theory and methods of approximate reasoning. First, impacts must be described by a set of features. A linguistic variable is assigned to each feature, whose values are fuzzy sets. A fuzzy evaluation of environmental impacts is achieved using rule based fuzzy inference and the estimated fuzzy value of each feature. Generalized modus ponens has been the inference method. Finally, a crisp value of impact is attained by aggregation and defuzzification of all fuzzy results
A new method for generating an invariant iris private key based on the fuzzy vault system.
Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie
2008-10-01
Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment.
Approximate solutions of dual fuzzy polynomials by feed-back neural networks
Directory of Open Access Journals (Sweden)
Ahmad Jafarian
2012-11-01
Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.
Management of Uncertainty by Statistical Process Control and a Genetic Tuned Fuzzy System
Directory of Open Access Journals (Sweden)
Stephan Birle
2016-01-01
Full Text Available In food industry, bioprocesses like fermentation often are a crucial part of the manufacturing process and decisive for the final product quality. In general, they are characterized by highly nonlinear dynamics and uncertainties that make it difficult to control these processes by the use of traditional control techniques. In this context, fuzzy logic controllers offer quite a straightforward way to control processes that are affected by nonlinear behavior and uncertain process knowledge. However, in order to maintain process safety and product quality it is necessary to specify the controller performance and to tune the controller parameters. In this work, an approach is presented to establish an intelligent control system for oxidoreductive yeast propagation as a representative process biased by the aforementioned uncertainties. The presented approach is based on statistical process control and fuzzy logic feedback control. As the cognitive uncertainty among different experts about the limits that define the control performance as still acceptable may differ a lot, a data-driven design method is performed. Based upon a historic data pool statistical process corridors are derived for the controller inputs control error and change in control error. This approach follows the hypothesis that if the control performance criteria stay within predefined statistical boundaries, the final process state meets the required quality definition. In order to keep the process on its optimal growth trajectory (model based reference trajectory a fuzzy logic controller is used that alternates the process temperature. Additionally, in order to stay within the process corridors, a genetic algorithm was applied to tune the input and output fuzzy sets of a preliminarily parameterized fuzzy controller. The presented experimental results show that the genetic tuned fuzzy controller is able to keep the process within its allowed limits. The average absolute error to the
A version of Stone-Weierstrass theorem in Fuzzy Analysis
Energy Technology Data Exchange (ETDEWEB)
Font, J.J.; Sanchis, D.; Sanchis, M.
2017-07-01
Fuzzy numbers provide formalized tools to deal with non-precise quantities. They are indeed fuzzy sets in the real line and were introduced in 1978 by Dubois and Prade , who also defined their basic operations. Since then, Fuzzy Analysis has developed based on the notion of fuzzy number just as much as classical Real Analysis did based on the concept of real number. Such development was eased by a characterization of fuzzy numbers provided in 1986 by Goetschel and Voxman leaning on their level sets. As in the classical setting, continuous fuzzy-valued functions (fuzzy functions) are the central core of the theory. The principal difference with regard to real-valued continuous functions is the fact that the fuzzy numbers do not form a vectorial space, which determines all the results, and, especially, the proofs. The study of fuzzy functions has developed, principally, about two lines of investigation: - Differential fuzzy equations, which have turned out to be the natural way of modelling physical and engineering problems in contexts where the parameters are vague or incomplete. - The problem of approximation of fuzzy functions, basically using the approximation capability of fuzzy neural networks. We will focus on this second line of investigation, though our approach will be more general and based on an adaptation of the famous Stone-Weierstrass Theorem to the fuzzy context. This way so, we introduce the concept of “multiplier” of a set of fuzzy functions and use it to give a constructive proof of a Stone-Weiestrass type theorem for fuzzy functions. (Author)
interval type-2 fuzzy gain-adaptive controller of a doubly fed
African Journals Online (AJOL)
Loukal K and Benalia L
2016-05-01
May 1, 2016 ... machine a converter PWM (Pulse Width Modulation) between the machine ... operations on fuzzy sets increases with the increasing type of the fuzzy set. ...... Several simulations have been run using the Matlab and Simulink® ...
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy context-free languages - Part 2: Recognition and parsing algorithms
Asveld, P.R.J.
2005-01-01
In a companion paper [P.R.J. Asveld, Fuzzy context-free languages---Part 1: Generalized fuzzy context-free grammars, Theoret. Comp. Sci. (2005)] we used fuzzy context-free grammars in order to model grammatical errors resulting in erroneous inputs for robust recognizing and parsing algorithms for
Using fuzzy fractal features of digital images for the material surface analisys
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory
Directory of Open Access Journals (Sweden)
Ya-jun Wang
2012-06-01
Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.
Design and simulation of a fuzzy controller for naturally ventilated buildings
Energy Technology Data Exchange (ETDEWEB)
Marjanovic, L. [De Montfort Univ., IESD, Leicester (United Kingdom); Eftekhari, M. [Loughborough Univ., Civil and Building Engineering Dept., Loughborough (United Kingdom)
2004-03-01
In this paper the design and validation process of a supervisory control for a single-sided naturally ventilated test room is described. The controller is based on fuzzy logic reasoning and sets of linguistic rules in the form of IF-THEN rules are used. The inputs to the controller are the outside wind speed, outside and inside temperatures. The output is the position of the opening. The basis of any fuzzy rule system is the inference engine responsible for the input's fuzzification, fuzzy processing of the rule base and defuzzification of the output. The choice of the inference engine, starting with the selection of input and output variables and their membership functions. Three rule bases of different complexity were developed and are presented and analysed here. Validation through simulation offers possibility of testing the controller under extreme conditions regardless of physical limitations of an experimental test cell. Simulations were performed for different typical levels of input parameters and also for extreme fictitious conditions. Simulations were carefully designed to allow simultaneous comparison of different controllers' performances. Simulation results have shown that all three controllers are capable of responding to the changes in outside conditions by adjusting the opening positions. They satisfy security requirements due to strong wind and successfully, in a stable manner respond to sudden changes in wind velocity and outdoor temperature. A controller with more membership functions and therefore a larger number of IF-THEN rules was more responsive to the changes in outside conditions. (Author)
An improved advertising CTR prediction approach based on the fuzzy deep neural network.
Jiang, Zilong; Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.
Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis
International Nuclear Information System (INIS)
Bowles, John B.; Pelaez, C.E.
1995-01-01
This paper describes a new technique, based on fuzzy logic, for prioritizing failures for corrective actions in a Failure Mode, Effects and Criticality Analysis (FMECA). As in a traditional criticality analysis, the assessment is based on the severity, frequency of occurrence, and detectability of an item failure. However, these parameters are here represented as members of a fuzzy set, combined by matching them against rules in a rule base, evaluated with min-max inferencing, and then defuzzified to assess the riskiness of the failure. This approach resolves some of the problems in traditional methods of evaluation and it has several advantages compared to strictly numerical methods: 1) it allows the analyst to evaluate the risk associated with item failure modes directly using the linguistic terms that are employed in making the criticality assessment; 2) ambiguous, qualitative, or imprecise information, as well as quantitative data, can be used in the assessment and they are handled in a consistent manner; and 3) it gives a more flexible structure for combining the severity, occurrence, and detectability parameters. Two fuzzy logic based approaches for assessing criticality are presented. The first is based on the numerical rankings used in a conventional Risk Priority Number (RPN) calculation and uses crisp inputs gathered from the user or extracted from a reliability analysis. The second, which can be used early in the design process when less detailed information is available, allows fuzzy inputs and also illustrates the direct use of the linguistic rankings defined for the RPN calculations
Fuzzy Context- Free Languages. Part 2: Recognition and Parsing Algorithms
Asveld, P.R.J.
2000-01-01
In a companion paper \\cite{Asv:FCF1} we used fuzzy context-free grammars in order to model grammatical errors resulting in erroneous inputs for robust recognizing and parsing algorithms for fuzzy context-free languages. In particular, this approach enables us to distinguish between small errors
Directory of Open Access Journals (Sweden)
Iman Raeesi Vanani
2015-03-01
Full Text Available The main goal of research is designing an adaptive nuero-fuzzy inference system for evaluating the implementation of business intelligence systems in software industry. Iranian software development organizations have been facing a lot of problems in case of implementing business intelligence systems. This system would be helpful in recognizing the conditions and prerequisites of success or failure. Organizations can recalculate the neuro-fuzzy system outputs with some considerations on various inputs to figure out which inputs have the most effect on the implementation outputs. By resolving the problems on inputs, organizations can achieve a better level of implementation success. The designed system has been trained by a data set and afterwards, it has been evaluated. The trained system has reached the error value of 0.08. Eventually, some recommendations have been provided for software development firms on the areas that might need more considerations and improvements.
Chen, Guanrong
2005-01-01
Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th
Directory of Open Access Journals (Sweden)
Jinjun Tang
Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.
Fuzzy image processing and applications with Matlab
Chaira, Tamalika
2009-01-01
In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,
Generalized rough sets hybrid structure and applications
Mukherjee, Anjan
2015-01-01
The book introduces the concept of “generalized interval valued intuitionistic fuzzy soft sets”. It presents the basic properties of these sets and also, investigates an application of generalized interval valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The concept of “interval valued intuitionistic fuzzy soft rough sets” is discussed and interval valued intuitionistic fuzzy soft rough set based multi criteria group decision making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The book also details concept of interval valued intuitionistic fuzzy sets of type 2. It presents the basic properties of these sets. The book also introduces the concept of “interval valued intuitionistic fuzzy soft topological space (IVIFS topological space)” together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft cl...
Girola Schneider, R.
2017-07-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
Directory of Open Access Journals (Sweden)
Mehdi Keshavarz-Ghorabaee
2018-03-01
Full Text Available Determination of subjective weights, which are based on the opinions and preferences of decision-makers, is one of the most important matters in the process of multi-criteria decision-making (MCDM. Step-wise Weight Assessment Ratio Analysis (SWARA is an efficient method for obtaining the subjective weights of criteria in the MCDM problems. On the other hand, decision-makers may express their opinions with a degree of uncertainty. Using the symmetric interval type-2 fuzzy sets enables us to not only capture the uncertainty of information flexibly but also to perform computations simply. In this paper, we propose an extended SWARA method with symmetric interval type-2 fuzzy sets to determine the weights of criteria based on the opinions of a group of decision-makers. The weights determined by the proposed approach involve the uncertainty of decision-makers’ preferences and the symmetric form of the weights makes them more interpretable. To show the procedure of the proposed approach, it is used to determine the importance of intellectual capital dimensions and components in a company. The results show that the proposed approach is efficient in determining the subjective weights of criteria and capturing the uncertainty of information.
基于区间模糊综合评判的大学数学课堂教学评价%Evaluation of College Mathematics Teaching Based on Interval-valued Fuzzy Sets
Institute of Scientific and Technical Information of China (English)
李得超
2012-01-01
Fuzzy comprehensive evaluation is more and more important in teaching evaluation. Since it can reflect the ambiguity and uncertainty of things better than others, interval-valued fuzzy set can reduce the loss of information effectively. In order to evaluate objectively and scientifically the university class- room teaching, a model of college mathematics classroom teaching evaluation based on interval-valued fuzz- y sets is shown. It is illustrated that this method of college mathematics classroom teaching evaluation could evaluate college mathematics classroom teaching more accurately and comprehensively than traditional ones.%模糊综合评价在高校教学评价工作中发挥着越来越重要的作用.由于区间值模糊集在信息处理过程中能有效地减少模糊信息的丢失,本文引入了基于区间值模糊综合评判的大学数学课堂评价模式,并实证了此大学数学课堂评价方法较传统的模糊综合评价法更能准确地、全面地评价大学数学课堂教学.
Directory of Open Access Journals (Sweden)
Darko I. Božanić
2010-01-01
pontoon bridge location for the purpose of overcoming water obstacles. The decision making process includes a higher or lower level of indefiniteness of criteria needed for making a relevant decision. Since the fuzzy logic is very suitable for expressing indefiniteness and uncertainty, the decision making process using a fuzzy logic approach is shown in the paper. Characteristics of multi-criteria methods and selection of methods for evaluation With the development of the evaluation theory, evaluation models were being developed as well. Different objectives of evaluation and other differences in the whole procedure had an impact on the development of the majority of evaluation models adapted to different requests. The main objective of multi-criteria methods is to define the priority between particular variants or criteria in the situation with a large number of decision makers and a large number of decision making criteria in repeated periods of time. Main notions of fuzzy logic and fuzzy sets In a larger sense, the fuzzy logic is a synonym for the fuzzy sets theory which refers to the class of objects with unclear borders the membership of which is measured by certain value. It is important to realize that the essence of the fuzzy logic is different from the essence of the traditional logic system. This logic, based on clear and precisely defined rules, has its foundation in the set theory. An element can or cannot be a part of a set, which means that sets have clearly determined borders. Contrary to the conventional logic, the fuzzy logic does not define precisely the membership of an element to a set. The membership value is expressed in percentage, for example. The fuzzy logic is very close to human perception. Fuzzy system modeling for evaluation of selected locations The fuzzy logic is usually used for complex system modeling, when it is difficult to define interdependences between certain variables by other methods. The criteria for the selection of locations for
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Efficient Fuzzy Logic Controller for Magnetic Levitation Systems
African Journals Online (AJOL)
Akorede
ABSTRACT: Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system ... disturbance signal was applied to the input of the control system. Fuzzy ..... Automatic Control System, fifth edition.
Intuitionistic supra fuzzy topological spaces
International Nuclear Information System (INIS)
Abbas, S.E.
2004-01-01
In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Decentralized fuzzy control of multiple nonholonomic vehicles
Energy Technology Data Exchange (ETDEWEB)
Driessen, B.J.; Feddema, J.T.; Kwok, K.S.
1997-09-01
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
Hesitant fuzzy methods for multiple criteria decision analysis
Zhang, Xiaolu
2017-01-01
The book offers a comprehensive introduction to methods for solving multiple criteria decision making and group decision making problems with hesitant fuzzy information. It reports on the authors’ latest research, as well as on others’ research, providing readers with a complete set of decision making tools, such as hesitant fuzzy TOPSIS, hesitant fuzzy TODIM, hesitant fuzzy LINMAP, hesitant fuzzy QUALIFEX, and the deviation modeling approach with heterogeneous fuzzy information. The main focus is on decision making problems in which the criteria values and/or the weights of criteria are not expressed in crisp numbers but are more suitable to be denoted as hesitant fuzzy elements. The largest part of the book is devoted to new methods recently developed by the authors to solve decision making problems in situations where the available information is vague or hesitant. These methods are presented in detail, together with their application to different type of decision-making problems. All in all, the book ...
A new method for ordering triangular fuzzy numbers
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2010-09-01
Full Text Available Ranking fuzzy numbers plays a very important role in linguistic decision making and other fuzzy application systems. In spite of many ranking methods, no one can rank fuzzy numbers with human intuition consistently in all cases. Shortcoming are found in some of the convenient methods for ranking triangular fuzzy numbers such as the coefficient of variation (CV index, distance between fuzzy sets, centroid point and original point, and also weighted mean value. In this paper, we introduce a new method for ranking triangular fuzzy number to overcome the shortcomings of the previous techniques. Finally, we compare our method with some convenient methods for ranking fuzzy numbers to illustrate the advantage our method.
Faizah, Arbiati; Syafei, Wahyul Amien; Isnanto, R. Rizal
2018-02-01
This research proposed a model combining an approach of Total Quality Management (TQM) and Fuzzy method of Service Quality (SERVQUAL) to asses service quality. TQM implementation was as quality management orienting on customer's satisfaction by involving all stakeholders. SERVQUAL model was used to measure quality service based on five dimensions such as tangible, reliability, responsiveness, assurance, and empathy. Fuzzy set theory was to accommodate subjectivity and ambiguity of quality assessment. Input data consisted of indicator data and quality assessment aspect. Input data was, then, processed to be service quality assessment questionnaires of Pesantren by using Fuzzy method to get service quality score. This process consisted of some steps as follows : inputting dimension and questionnaire data to data base system, filling questionnaire through system, then, system calculated fuzzification, defuzzification, gap of quality expected and received by service receivers, and calculating each dimension rating showing quality refinement priority. Rating of each quality dimension was, then, displayed at dashboard system to enable users to see information. From system having been built, it could be known that tangible dimension had the highest gap, -0.399, thus it needs to be prioritized and gets evaluation and refinement action soon.
Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach
Chowdhury, R.; Adhikari, S.
2012-10-01
Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.
Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing
2005-04-01
The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.
Why fuzzy controllers should be fuzzy
International Nuclear Information System (INIS)
Nowe, A.
1996-01-01
Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries
Fuzzy logic approach for energetic and economic evaluation of hydroelectric projects
International Nuclear Information System (INIS)
Iliev, Atanas M.
2003-01-01
A mathematical model for energetic and economic evaluation of hydroelectric projects is developed. The main advantage of the proposed methodology is that the model considers uncertainty and vagueness which appears during the decision making process. Due to modeling of variables that are non statistical in their character, fuzzy logic approach is fully incorporated in the model. The first step in energetic evaluation of the hydro power projects is determination of the characteristic of the efficiency of the units to be installed in hydro power plants. For this purpose the model which uses the best characteristics of Artificial Network Fuzzy Inference System (ANFIS) is applied. The method is tested on real systems: HPP Tikves- the power plant in operation and HPP Kozjak - the power plant in construction. The results obtained from practical implementation show that the proposed approach gives superior results than classical polynomial approximation. The model for determining the consumption characteristic of hydro power plant is developed by Sugeno Fuzzy Logic System with polynomials in the consequent part of the rules. Model takes into account the variable gross head of HPP, as well as, the number of units which will be in operation for given output. Modeling of the gross head and power output are performed by expert's design membership functions. This model is practically applied on HPP Tikves for determination of the consumption characteristic for several gross head. The plausible yearly production of electricity from hydro power project, which is important for estimation of the benefit from the project, is calculated by mixed fuzzy-statistical model. hi this approach fuzzy set of the inflow is constructed according to the statistical parameters. The calculation of the production of electricity is realized for a several hydrological conditions which are described by linguistic variables. Finally, Mamdani Fuzzy Inference System with fuzzy number in consequent part
Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint
2008-10-01
This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.
Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations
Czech Academy of Sciences Publication Activity Database
Wiedermann, Jiří
2001-01-01
Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics
A new type of simplified fuzzy rule-based system
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
RISK MANAGEMENT AUTOMATION OF SOFTWARE PROJECTS BASED ОN FUZZY INFERENCE
Directory of Open Access Journals (Sweden)
T. M. Zubkova
2015-09-01
Full Text Available Application suitability for one of the intelligent methods for risk management of software projects has been shown based on the review of existing algorithms for fuzzy inference in the field of applied problems. Information sources in the management of software projects are analyzed; major and minor risks are highlighted. The most critical parameters have been singled out giving the possibility to estimate the occurrence of an adverse situations (project duration, the frequency of customer’s requirements changing, work deadlines, experience of developers’ participation in such projects and others.. The method of qualitative fuzzy description based on fuzzy logic has been developed for analysis of these parameters. Evaluation of possible situations and knowledge base formation rely on a survey of experts. The main limitations of existing automated systems have been identified in relation to their applicability to risk management in the software design. Theoretical research set the stage for software system that makes it possible to automate the risk management process for software projects. The developed software system automates the process of fuzzy inference in the following stages: rule base formation of the fuzzy inference systems, fuzzification of input variables, aggregation of sub-conditions, activation and accumulation of conclusions for fuzzy production rules, variables defuzzification. The result of risk management automation process in the software design is their quantitative and qualitative assessment and expert advice for their minimization. Practical significance of the work lies in the fact that implementation of the developed automated system gives the possibility for performance improvement of software projects.
Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems
Directory of Open Access Journals (Sweden)
Vasile MAZILESCU
2010-12-01
Full Text Available A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model when it is compared to the second part (the fuzzy facts for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs. The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler.
Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data
Directory of Open Access Journals (Sweden)
Peter Hofmann
2016-06-01
Full Text Available The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification schemes in remote sensing allows each pixel or segment to be an incomplete member of more than one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any one of the classes and is member of more than one class simultaneously. This can lead to fuzzy, ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity (maximum method. The defuzzification of an uncertain or ambiguous fuzzy classification leads to a more or less reliable crisp classification. In this paper the most common parameters for expressing classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability to express the reliability of a crisp classification. This is done by means of a typical practical example from Object Based Image Analysis (OBIA.
effect of varying controller parameters on the performance of a fuzzy
African Journals Online (AJOL)
Dr Obe
is given the primary attention. The adjustments ... hope that this discovery will make it easier to .... deciding what the output fuzzy set should be ... Such a matrix is called a fuzzy associative memory (F ..... and approximate reasoning," Proc. IEEE ...
Relative aggregation operator in database fuzzy querying
Directory of Open Access Journals (Sweden)
Luminita DUMITRIU
2005-12-01
Full Text Available Fuzzy selection criteria querying relational databases include vague terms; they usually refer linguistic values form the attribute linguistic domains, defined as fuzzy sets. Generally, when a vague query is processed, the definitions of vague terms must already exist in a knowledge base. But there are also cases when vague terms must be dynamically defined, when a particular operation is used to aggregate simple criteria in a complex selection. The paper presents a new aggregation operator and the corresponding algorithm to evaluate the fuzzy query.
Fuzzy Logic Approach for the Prediction of Dross Formation in CO2 Laser Cutting of Mild Steel
Directory of Open Access Journals (Sweden)
Miloš Madić
2015-11-01
Full Text Available Dross free laser cutting is very important in the application of laser cutting technology. This paper focuses on the development of a fuzzy logic model to predict dross formation in CO2 laser oxygen cutting of mild steel. Laser cutting experiment, conducted according to Taguchi’s experimental design using L25 orthogonal array, provided a set of data for the development of a fuzzy rule base. The predicting fuzzy logic model is based on using Mamdani-type inference system. Developed fuzzy logic model considered the cutting speed, laser power and assist gas pressure as inputs. Using this model the effects of the selected laser cutting parameters on the dross formation were investigated. Additionally, 3-D surface plots were generated to study the interaction effects of the laser cutting parameters. The analysis revealed that the cutting speed has the most significant effect, followed by laser power and assist gas pressure. The results indicated that the fuzzy logic modeling approach can be effectively used for the dross formation prediction in CO2 laser cutting of mild steel.
Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion
Directory of Open Access Journals (Sweden)
Didier Kumwimba Seya
2015-11-01
Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2004-01-01
Quantum space time as given by topology and geometry of El Naschie's ε (∞) theory must be regarded as fundamentally fuzzy. It's geometry and topology belong to the mathematical category of fuzzy logic and fuzzy set theory. All lines are fuzzy fractal lines in fuzzy spaces and all exact values are exact fuzzy expectation values. That way we remove many paradoxes and contradictions in the standard model of high energy particle physics
Petr Hájek on mathematical fuzzy logic
Montagna, Franco
2014-01-01
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vague
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko
2005-01-01
Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
A Fuzzy Aproach For Facial Emotion Recognition
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty
Starczewski, Janusz T
2013-01-01
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...
Energy Technology Data Exchange (ETDEWEB)
Castro, Antonio Orestes de Salvo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2004-07-01
The hydraulic fracture operation is wide used to increase the oil wells production and to reduce formation damage. Reservoir studies and engineer analysis are made to select the wells for this kind of operation. As the reservoir parameters have some diffuses characteristics, Fuzzy Inference Systems (SIF) have been tested for this selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for hydraulic Fracture well selection, with knowledge acquisition from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, in despite of the genetic fuzzy system would be a younger process, it got better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variables linguistic values. (author)
International Nuclear Information System (INIS)
Ikonomopoulos, A.; Tsoukalas, L.H.
1993-01-01
A novel approach is described for measuring variables with operational significance in a complex system such as a nuclear reactor. The methodology is based on the integration of artificial neural networks with fuzzy reasoning. Neural networks are used to map dynamic time series to a set of user-defined linguistic labels called fuzzy values. The process takes place in a manner analogous to that of measurement. Hence, the entire procedure is referred to as virtual measurement and its software implementation as a virtual measuring device. An optimization algorithm based on information criteria and fuzzy algebra augments the process and assists in the identification of different states of the monitored parameter. The proposed technique is applied for monitoring parameters such as performance, valve position, transient type, and reactivity. The results obtained from the application of the neural network-fuzzy reasoning integration in a high power research reactor clearly demonstrate the excellent tolerance of the virtual measuring device to faulty signals as well as its ability to accommodate noisy inputs
Towards the future of fuzzy logic
Trillas, Enric; Kacprzyk, Janusz
2015-01-01
This book provides readers with a snapshot of the state-of-the art in fuzzy logic. Throughout the chapters, key theories developed in the last fifty years as well as important applications to practical problems are presented and discussed from different perspectives, as the authors hail from different disciplines and therefore use fuzzy logic for different purposes. The book aims at showing how fuzzy logic has evolved since the first theory formulation by Lotfi A. Zadeh in his seminal paper on Fuzzy Sets in 1965. Fuzzy theories and implementation grew at an impressive speed and achieved significant results, especially on the applicative side. The study of fuzzy logic and its practice spread all over the world, from Europe to Asia, America and Oceania. The editors believe that, thanks to the drive of young researchers, fuzzy logic will be able to face the challenging goals posed by computing with words. New frontiers of knowledge are waiting to be explored. In order to motivate young people to engage in the ...
Probabilistic fuzzy systems as additive fuzzy systems
Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.
2014-01-01
Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the
Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.
Abe, S
1998-01-01
In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.
Intuitionistic fuzzy 2-normed space and some related concepts
International Nuclear Information System (INIS)
Mursaleen, M.; Danish Lohani, Q.M.
2009-01-01
Motivated by the notion of 2-norm due to Gaehler [Gaehler S. Lineare 2-normietre Raeume. Math Nachr 28;1965:1-43], in this paper we define the concept of intuitionistic fuzzy 2-normed space which is a generalization of the notion of intuitionistic fuzzy normed space due to Saadati and Park [Saadati R, Park JH, On the intuitionistic fuzzy topological spaces. Chaos Solitons and Fractals 2006;27:331-44]. Further we establish some topological results in this new set up.
An approach to solve replacement problems under intuitionistic fuzzy nature
Balaganesan, M.; Ganesan, K.
2018-04-01
Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.
A neuro-fuzzy inference system for sensor monitoring
International Nuclear Information System (INIS)
Na, Man Gyun
2001-01-01
A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors
A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.
Chang, Chia-Wen; Tao, Chin-Wang
2017-09-01
This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Li, Xiaomiao; Lam, Hak Keung; Song, Ge; Liu, Fucai
2017-01-01
This paper deals with the stability and positivity analysis of polynomial-fuzzy-model-based ({PFMB}) control systems with time delay, which is formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop, under imperfect premise matching. To improve the design and realization flexibility, the polynomial fuzzy model and the polynomial fuzzy controller are allowed to have their own set of premise membership functions. A sum-of-squares (SOS)-based stability ana...
On defining and computing fuzzy kernels on L-valued simple graphs
International Nuclear Information System (INIS)
Bisdorff, R.; Roubens, M.
1996-01-01
In this paper we introduce the concept of fuzzy kernels defined on valued-finite simple graphs in a sense close to fuzzy preference modelling. First we recall the classic concept of kernel associated with a crisp binary relation defined on a finite set. In a second part, we introduce fuzzy binary relations. In a third part, we generalize the crisp kernel concept to such fuzzy binary relations and in a last part, we present an application to fuzzy choice functions on fuzzy outranking relations
A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties
International Nuclear Information System (INIS)
Zhang, X.Y.; Huang, G.H.; Zhu, H.; Li, Y.P.
2017-01-01
In this study, a fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed for supporting sustainable management of electric power system (EPS) under dual uncertainties. As an improvement upon the mixed-integer linear fractional programming, FSDFP can not only tackle multi-objective issues effectively without setting weights, but also can deal with uncertain parameters which have both stochastic and fuzzy characteristics. Thus, the developed method can help provide valuable information for supporting capacity-expansion planning and in-depth policy analysis of EPS management problems. For demonstrating these advantages, FSDFP has been applied to a case study of a typical regional EPS planning, where the decision makers have to deal with conflicts between economic development that maximizes the system profit and environmental protection that minimizes the carbon dioxide emissions. The obtained results can be analyzed to generate several decision alternatives, and can then help decision makers make suitable decisions under different input scenarios. Furthermore, comparisons of the solution from FSDFP method with that from fuzzy stochastic dynamic linear programming, linear fractional programming and dynamic stochastic fractional programming methods are undertaken. The contrastive analysis reveals that FSDFP is a more effective approach that can better characterize the complexities and uncertainties of real EPS management problems. - Highlights: • A fuzzy stochastic dynamic fractional programming (FSDFP) method is proposed. • FSDFP can address multiple conflicting objectives without setting weights. • FSDFP can reflect dual uncertainties with both stochastic and fuzzy characteristics. • Some reasonable solutions for a case of power system sustainable planning are generated. • Comparisons of the solutions from FSDFP with other optimization methods are undertaken.
Directory of Open Access Journals (Sweden)
Esperanza Maldonado Rondón
2012-01-01
fuzzy factorial. The result of this relationship, according to techniques based on fuzzy set, is the building vulnerability index.
Word Similarity From Dictionaries: Inferring Fuzzy Measures From Fuzzy Graphs
Directory of Open Access Journals (Sweden)
Torra
2008-01-01
Full Text Available The computation of similarities between words is a basic element of information retrieval systems, when retrieval is not solely based on word matching. In this work we consider a measure between words based on dictionaries. This is achieved assuming that a dictionary is formalized as a fuzzy graph. We show that the approach permits to compute measures not only for pairs of words but for sets of them.
Fuzzy logic control of steam generator water level in pressurized water reactors
International Nuclear Information System (INIS)
Kuan, C.C.; Lin, C.; Hsu, C.C.
1992-01-01
In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning
Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing
Li, Dongxu; Luo, Qing; Xu, Rui
This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.
Integration of Fault Detection and Isolation with Control Using Neuro-fuzzy Scheme
Directory of Open Access Journals (Sweden)
A. Asokan
2009-10-01
Full Text Available In this paper an algorithms is developed for fault diagnosis and fault tolerant control strategy for nonlinear systems subjected to an unknown time-varying fault. At first, the design of fault diagnosis scheme is performed using model based fault detection technique. The neuro-fuzzy chi-square scheme is applied for fault detection and isolation. The fault magnitude and time of occurrence of fault is obtained through neuro-fuzzy chi-square scheme. The estimated magnitude of the fault magnitude is normalized and used by the feed-forward control algorithm to make appropriate changes in the manipulated variable to keep the controlled variable near its set value. The feed-forward controller acts along with feed-back controller to control the multivariable system. The performance of the proposed scheme is applied to a three- tank process for various types of fault inputs to show the effectiveness of the proposed approach.
AN APPLICATION OF FUZZY PROMETHEE METHOD FOR SELECTING OPTIMAL CAR PROBLEM
Directory of Open Access Journals (Sweden)
SERKAN BALLI
2013-06-01
Full Text Available Most of the economical, industrial, financial or political decision problems are multi-criteria. In these multi criteria problems, optimal selection of alternatives is hard and complex process. Recently, some kinds of methods are improved to solve these problems. Promethee is one of most efficient and easiest method and solves problems that consist quantitative criteria. However, in daily life, there are criteria which are explained as linguistic and cannot modeled numerical. Hence, Promethee method is incomplete for linguistic criteria which are imprecise. To satisfy this deficiency, fuzzy set approximation can be used. Promethee method, which is extended with using fuzzy inputs, is applied to car selection for seven different cars in same class by using criteria: price, fuel, performance and security. The obtained results are appropriate and consistent.
reactor power control using fuzzy logic
International Nuclear Information System (INIS)
Ahmed, A.E.E.
2001-01-01
power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller
A fuzzy intelligent system for land consolidation - a case study in Shunde, China
Wang, J.; Ge, A.; Hu, Y.; Li, C.; Wang, L.
2015-04-01
Traditionally, potential evaluation methods for farmland consolidation have depended mainly on the experts' experiences, statistical computations or subjective adjustments. Some biases usually exist in the results. Thus, computer-aided technology has become essential. In this study, an intelligent evaluation system based on a fuzzy decision tree was established, and this system can deal with numerical data, discrete data and symbolic data. When the original land data are input, the level of potential of the agricultural land for development will be output by this new model. The provision of objective proof for decision making by authorities in rural management is helpful. Agricultural land data characteristically comprise large volumes, complex varieties and more indexes. In land consolidation, it is very important to construct an effective index system. We needed to select a group of indexes useful for land consolidation according to the concrete demand. In this paper, a fuzzy measure, which can describe the importance of a single feature or a group of features, is adopted to accomplish the selection of specific features. A fuzzy integral that is based on a fuzzy measure is a type of fusion tool. We obtained the optimal solution for a fuzzy measure by solving a fuzzy integral. The fuzzy integrals can be transformed to a set of linear equations. We applied the L1-norm regularization method to solve the linear equations, and we found a solution with the fewest nonzero elements for the fuzzy measure; this solution shows the contribution of corresponding features or the combinations of decisions. This algorithm provides a quick and optimal way to identify the land index system when preparing to conduct the research, such as we describe herein, on land consolidation. Shunde's "Three Old" consolidation project provides the data for this work. Our estimation system was compared with a conventional evaluation system that is still accepted by the public. Our results prove
Fuzzy fractals, chaos, and noise
Energy Technology Data Exchange (ETDEWEB)
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.
Self-learning fuzzy controllers based on temporal back propagation
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Conventional control and fuzzy control of a dc-dc converter for machine drive
Energy Technology Data Exchange (ETDEWEB)
Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)
1997-12-31
Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.
Modeling and control of an unstable system using probabilistic fuzzy inference system
Directory of Open Access Journals (Sweden)
Sozhamadevi N.
2015-09-01
Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.
Directory of Open Access Journals (Sweden)
Jude C. Akpe
2016-12-01
Full Text Available A fuzzy logic interface system to estimate oxygen requirement for complete combustion as well as the level of pollution from incinerator gas flue in order to manage solid waste from domestic, institutional, medical and industrial sources was designed. The designed incinerator is double chambered operating with a maximum temperature of 760 °C in the lower chamber and 1000°C in the upper chamber. The insulating wall is made up of a refractory brick of 55mm in thickness having a 2mm thickness low carbon steel as the outer wall. Hydrogen Chloride (HCl and Nitrous oxides (NOx are the gases was used to demonstrate the Fuzzy Inference System (FIS model. The FIS was built with five input variables (Food, PVC, Polythene, Paper and Textile and three input variables with two membership functions. The FIS was developed to estimation the degree of possibility distribution of pollution that should be expected when a certain composition of waste is incinerated. The plots of composition of waste high in food against oxygen require for combustion gives a possibility distribution of about 0.9 which is high according to the fuzzy set definition while the plot of waste composition high in PVC against HCL shows linearity.
Czech Academy of Sciences Publication Activity Database
Chleboun, Jan
2008-01-01
Roč. 197, č. 32 (2008), s. 2500-2516 ISSN 0045-7825 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z10190503 Keywords : uncertain input data * uncertain displacement * uncertain Young modulus Subject RIV: BA - General Mathematics Impact factor: 2.129, year: 2008
A Fuzzy Control Course on the TED Server
DEFF Research Database (Denmark)
Dotoli, Mariagrazia; Jantzen, Jan
1999-01-01
, an educational server that serves as a learning central for students and professionals working with fuzzy logic. Through the server, TED offers an online course on fuzzy control. The course concerns automatic control of an inverted pendulum, with a focus on rule based control by means of fuzzy logic. A ball......The Training and Education Committee (TED) is a committee under ERUDIT, a Network of Excellence for fuzzy technology and uncertainty in Europe. The main objective of TED is to improve the training and educational possibilities for the nodes of ERUDIT. Since early 1999, TED has set up the TED server...