WorldWideScience

Sample records for inp epitaxial layers

  1. Magnetoresistance measurements of different geometries on epitaxial InP and GaInAs/InP layers

    Somogyi, K. [Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Technical Physics

    1996-12-31

    Hall effect measurement is the main method of the determination of the charge carrier mobility in semiconductors. Magnetoresistance measurements are much less used for the same purpose, perhaps because of the influence of the sample geometry or of the scattering factor differing from the Hall factor. On the other hand, in the case of the epitaxial layers, all these measurements require semi-insulating substrate. In this work two aspects of the magnetoresistance measurements and use of them is demonstrated. First classical geometrical magnetoresistance measurements on InP are studied. On the other hand, a method is presented and applied to sandwich structures in order to measure the geometrical magnetoresistance on epitaxial layers grown on conducting substrates. Resistance of structures metal-epitaxial layer-substrate-metal is measured in the dependence on the angle between the current and magnetic field vectors.

  2. Lattice defects in LPE InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates

    Ishida, K.; Matsumoto, Y.; Taguchi, K.

    1982-01-01

    Lattice defects generated during LPE growth of InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates are studied. Two different kinds of dislocations are observed at the two interfaces of the epitaxial layers; at the InP-InGaAsP interface, misfit dislocations are generated in the InP layer by carry over of InGaAsP melt into the InP one and at the InGaAs-InP interface, V-shaped dislocations are generated in the InGaAs layer. It is shown that the critical amount of lattice mismatch to suppress generation of misfit dislocations in InP is about two times smaller than that of other III-V compound semiconductors. Conditions to suppress the generation of these dislocations are clarified. (author)

  3. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Grym, Jan; Yatskiv, Roman

    2013-01-01

    Roč. 28, č. 4 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Colloidal graphite * Epitaxial growth * Schottky barrier diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  4. Use of halide transport in epitaxial growth of InP and related compounds

    Somogyi, K. [Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Technical Physics

    1996-12-31

    In this paper methods and results in the InP (and related) growth practice are reviewed, classified and summarized on the basis of the recent literature. The aim is to show the present place and role of the halogen transport in the epitaxial growth. In the case of InP the importance of the classical hydride method is still high. Though MOVPE technique dominates in the case of growth of the compounds with In content, atomic layer epitaxy and selective area growth are successful with auxiliary application of the halogen transport. Chlorine assisted MOVPE has an increasing role.

  5. Epitaxial growth of InP on SI by MOCVD

    Konushi, F.; Seki, A.; Kudo, J.; Sato, H.; Kakimoto, S.; Fukushima, T.; Kubota, Y.; Koba, M.

    1988-01-01

    The authors have studied the heteroepitaxial growth of InP on large diameter Si substrates using MOCVD. A new MOCVD system with four inch wafer size capability was utilized in the growth. Single domain InP films have been successfully grown on four inch Si substrates by using a new heterostructure with a thin GaAs intermediate layer. In this paper, the authors describe the crystalline quality and residual stress of InP epilayers, estimated by etch pit density and x-ray diffraction, respectively. The authors also reports on the reduction of EPD by post-growth annealing

  6. Molecular beam epitaxy of InxGa1-xAs on InP (100) substrates

    Dvoryankina, G.G.; Dvoryankin, V.F.; Petrov, A.G.; Kudryashov, A.A.; Khusid, L.B.

    1991-01-01

    Heteroepitaxy layers of In x Ga 1-x As in the wide field of compositions (x=0.2-0.8) of 0.2-2.0 μm thick on (100) InP substrates were grown using the methods of epitaxy from molecular beams. Structure, surface morphology and electric properties of layers in relation to their thick and composition were investigated. It was shown that the quality of In x Ga 1-x As layers on (100) InP was more sensitive to tensile strain than compressive strain. Different mechanisms of scattering of free electrons in layers of In x Ga 1-x As(x∼=0.53) on (101) InP were considered

  7. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-01-01

    In an attempt to achieve an InP–Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO 2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP–Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO 2 mask which in turn would have been a consequence of the initial process treatments. The direct InP–Si heterointerface can find applications in high efficiency and cost-effective Si based III–V semiconductor multijunction solar cells and optoelectronics integration. (paper)

  8. Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy

    Gong, Q.; Noetzel, R.; Veldhoven, P.J. van; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    We report on an effective way to continuously tune the emission wavelength of InAs quantum dots (QDs) grown on InP (100) by chemical-beam epitaxy. The InAs QD layer is embedded in a GaInAsP layer lattice matched to InP. With an ultrathin GaAs layer inserted between the InAs QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated surface In layer floating on the GaInAsP buffer layer

  9. Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)

    Sohel, Mohammad; Munoz, Martin; Tamargo, Maria C.

    2004-01-01

    High crystalline quality zinc-blende structure Zn (1-x) Mg x Se epitaxial layers were grown on InP (001) substrates by molecular beam epitaxy. Their band gap energies were determined as a function of Mg concentration and a linear dependence was observed. The band gap of the Zn (1-x) Mg x Se closely lattice matched to InP was found to be 3.59 eV at 77 K and the extrapolated value for zinc-blende MgSe was determined to be 3.74 eV. Quantum wells of Zn (1-x) Cd x Se with Zn (1-x) Mg x Se as the barrier layer were grown which exhibit near ultraviolet emission

  10. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η p =14.4±0.4% and η p =14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  11. Characteristic of doping and diffusion of heavily doped n and p type InP and InGaAs epitaxial layers grown by metal organic chemical vapor deposition

    Pinzone, C.J.; Dupuis, R.D.; Ha, N.T.; Luftman, H.S.; Gerrard, N.D.

    1990-01-01

    Electronic and photonic device applications of the InGaAs/InP materials system often require the growth of epitaxial material doped to or near the solubility limit of the impurity in the host material. These requirements present an extreme challenge for the crystal grower. To produce devices with abrupt dopant profiles, preserve the junction during subsequent growth, and retain a high degree of crystalline perfection, it is necessary to understand the limits of dopant incorporation and the behavior of the impurity in the material. In this study, N-type doping above 10 19 cm -3 has been achieved in InP and InGaAs using Sn as a dopant. P-type Zn doping at these levels has also been achieved in these materials but p type activation above ∼3 x 10 18 cm -3 in InP has not been seen. All materials were grown by the metalorganic chemical vapor deposition (MOCVD) crystal growth technique. Effective diffusion coefficients have been measured for Zn and Sn in both materials from analysis of secondary ion mass spectra (SIMS) of specially grown and annealed samples

  12. The thermal expansion coefficient of Ga/sub x/In/sub 1-x/As/sub y/P/sub 1-y/ epitaxial layers grown on InP substrate

    Pietsch, U.; Marlow, D.

    1986-01-01

    The amount of the measured room temperature thermal expansion coefficient of tetragonal strained layers grown lattice matched on the InP substrate used is about 30% greater the expected one for a cubic 'relaxed' material. This issue has to be taken into account for the determination of the composition of the quarternary Ga/sub x/In/sub 1-x/As/sub y/P/sub 1-y/ layers from both X-ray and photoluminescence data as well as for the estimation of the thermally created stress field of optoelectronic devices. (author)

  13. XRD Investigation of the relaxation of InAsP layers grown by CBE on (100) InP

    Marschner, T.H.; Leijs, M.R.; Vonk, H.; Wolter, J.H.

    1998-01-01

    We present X-ray diffraction (XRD) investigations of the influence of the substrate off-orientation on the relaxation of InAsP layers grown on InP by chemical beam epitaxy (CBE). Our measurements show that with beginning relaxation the As-concentration increases drastically and stays constant if the

  14. InP solar cell with window layer

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  15. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    Galiev, G. B., E-mail: galiev-galib@mail.ru [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Grekhov, M. M. [National Research Nuclear University “MEPhI” (Russian Federation); Kitaeva, G. Kh. [Moscow State University, Faculty of Physics (Russian Federation); Klimov, E. A.; Klochkov, A. N. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Kolentsova, O. S. [National Research Nuclear University “MEPhI” (Russian Federation); Kornienko, V. V.; Kuznetsov, K. A. [Moscow State University, Faculty of Physics (Russian Federation); Maltsev, P. P.; Pushkarev, S. S. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation)

    2017-03-15

    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds that from similar layers formed on the (100) InP substrates by a factor of 3–5.

  16. Growth of semiconductor alloy InGaPBi on InP by molecular beam epitaxy

    Wang, K; Wang, P; Pan, W W; Wu, X Y; Yue, L; Gong, Q; Wang, S M

    2015-01-01

    We report the first successful growth of InGaPBi single crystals on InP substrate with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InGaPBi thin films reveal excellent surface and structural qualities, making it a promising new III–V compound family member for heterostructures. The strain can be tuned between tensile and compressive by adjusting Ga and Bi compositions. The maximum achieved Bi concentration is 2.2 ± 0.4% confirmed by Rutherford backscattering spectroscopy. Room temperature photoluminescence shows strong and broad light emission at energy levels much smaller than the InP bandgap. (paper)

  17. Epitaxial growth of silicon for layer transfer

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  18. X-ray diffraction study of InAlAs-InGaAs on InP high electron mobility transistor structure prepared by molecular-beam epitaxy

    Liu, H.Y.; Kao, Y.C.; Kim, T.S.

    1990-01-01

    High-electron mobility transistors (HEMTs) can be prepared by growing alternating epitaxial layers of InAlAs and InGaAs on InP substrates. Lattice matched HEMTs are obtained by growing layers of IN x Al (1-x) As and In y Ga (1-y) As with x ≅ 0.5227 and y ≅ 0.5324. Varying the values of x and y by controlling the individual flux during molecular-beam epitaxial (MBE) growth, one can obtain pseudomorphic HEMTs. Pseudomorphic HEMTs may have superior electronic transport properties and larger conduction band discontinuity when compared to an unstrained one. The precise control of the composition is thus important to the properties of HEMTs. This control is however very difficult and the values of x and y may vary from run to run. The authors demonstrate in this paper the capability of a double crystal rocking curve (DCRC) on the structure characterization

  19. A study of 1/f noise in InP grown by CBE

    Chen, X.Y.; Leijs, M.R.

    1996-01-01

    The origin of low-frequency noise in InP was studied experimentally by measuring the noise of InP layers grown by chemical beam epitaxy (CBE). Such InP layers are unintentionally doped, but of varying purity and always of n-type conductivity. We performed noise measurements at temperatures from 77

  20. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  1. Infrared reflection spectra of multilayer epitaxial heterostructures with embedded InAs and GaAs layers

    Seredin, P. V.; Domashevskaya, E. P.; Lukin, A. N.; Arsent'ev, I. N.; Vinokurov, D. A.; Tarasov, I. S.

    2008-01-01

    The effect of the thickness of embedded InAs and GaAs layers on the infrared reflection spectra of lattice vibrations for AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs, and AlInAs/InGaAs/GaAs/InGaAs/AlInAs multilayer epitaxial heterostructures grown by MOC hydride epitaxy on InP (100) substrates is studied. Relative stresses emerging in the layers surrounding the embedded layers with variation in the number of monolayers from which the quantum dots are formed and with variation the thickness of the layers themselves surrounding the embedded layers are evaluated.

  2. High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates

    Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.

    1994-01-01

    We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.

  3. High quality InAsSb grown on InP substrates using AlSb/AlAsSb buffer layers

    Wu, B.-R.; Liao, C.; Cheng, K. Y.

    2008-01-01

    High quality InAsSb grown on semi-insulating InP substrates by molecular beam epitaxy was achieved using AlSb/AlAsSb structure as the buffer layer. A 1000 A InAsSb layer grown on top of 1 μm AlSb/AlAsSb buffer layer showed a room temperature electron mobility of ∼12 000 cm 2 /V s. High structural quality and low misfit defect density were also demonstrated in the InAsSb layer. This novel AlSb/AlAsSb buffer layer structure with the AlAsSb layer lattice matched to InP substrates could enhance the performance of optoelectronic devices utilizing 6.1 A family of compound semiconductor alloys

  4. Epitaxial growth and processing of InP films in a ``novel`` remote plasma-MOCVD apparatus

    Bruno, G. [Bari Univ. (Italy). Centro di Studio per la Chimica; Losurdo, M. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capezzuto, P. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capozzi, V. [Bari Univ. (Italy). Ist. di Fisica; Lorusso, F.G. [Bari Univ. (Italy). Ist. di Fisica; Minafra, A. [Bari Univ. (Italy). Ist. di Fisica

    1996-06-01

    A new remote plasma MOCVD apparatus for the treatment and deposition of III-V materials and, specifically, of indium phosphide, has been developed. The plasma source is used to produce hydrogen atoms and to predissociate phosphine for, respectively, the reduction of native oxide on InP substrate surface and the InP deposition. In situ diagnostics by optical emission spectroscopy, mass spectrometry, and spectroscopic ellipsometry are used to fingerprint the gas phase and the growth surface. The plasma cleaning process effectively reduce the InP oxide layer without surface damage. Indium phosphide epilayers deposited from trimethylindium and plasma activated PH{sub 3} show singular photoluminescence spectra with signal intensity higher than that of the best InP film deposited under conventional MOCVD condition (without PH{sub 3} plasma preactivation). (orig.)

  5. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  6. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  7. Selenium implantation in epitaxial gallium arsenide layers

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.

    1981-01-01

    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  8. Particle detectors based on semiconducting InP epitaxial layers

    Yatskiv, Roman; Grym, Jan; Žďánský, Karel

    2011-01-01

    Roč. 6, C01072 (2011), C010721-C010725 ISSN 1748-0221 R&D Projects: GA AV ČR KJB200670901; GA MŠk(CZ) OC10021; GA ČR(CZ) GP102/08/P617 Institutional research plan: CEZ:AV0Z20670512 Keywords : Solid state detectors * Gamma detectors * Radiation-hard detectors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  9. Optical characterization of epitaxial semiconductor layers

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  10. In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.

    1997-07-01

    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.

  11. Interface relaxation and band gap shift in epitaxial layers

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  12. Surface passivation of InP solar cells with InAlAs layers

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  13. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  14. Epitaxial grown InP quantum dots on a GaAs buffer realized on GaP/Si(001) templates

    Hartwig, Walter; Wiesner, Michael; Koroknay, Elisabeth; Paul, Matthias; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen und Research Center SCoPE, Universitaet Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2013-07-01

    The increasing necessity of higher computational capacity and security in the information technology requires originally technical solutions, which today's standard microelectronics, as their technical limits are close, can't provide anymore. One way out offers the integration of III-V semiconductor photonics with low-dimensional structures in current CMOS technology, enabling on-chip quantum optical applications, like quantum cryptography or quantum computing. Challenges in the heteroepitaxy of III-V semiconductors and silicon are the mismatches in material properties of the both systems. Defects, like dislocations and anti-phase domains (APDs), inhibit the monolithic integration of III-V semiconductor on Si. We present the growth of a thin GaAs buffer on CMOS-compatible oriented Si(001) by metal-organic vapor-phase epitaxy. To circumvent the forming APDs in the GaAs buffer a GaP on Si template (provided by NAsP{sub III/V} GmbH) was used. The dislocation density was then reduced by integrating several layers of InAs quantum dots in the GaAs buffer to bend the threading misfit dislocations. On top of this structure we grew InP quantum dots embedded in a Al{sub x}Ga{sub 1-x}InP composition and investigated the photoluminescence properties.

  15. Liquid-phase epitaxy of InGaAsP solid solutions on profiled substrates of InP(100)

    Dvoryankin, V.F.; Kaevitser, L.R.; Komarov, A.A.; Telegin, A.A.; Khusid, L.B.; Chernushin, M.D.

    1990-01-01

    Peculiarities of selective growth of InGaAsP solid solutions under liquid-phase epitaxy in shallow grooves are considered. InGaAsP crystals grown in grooves oriented along crystallografic [110] and [011] directions are determined to trend to equilibrium form under two-phase epitaxy, while wedge-shaped form of In 0.77 Ga 0.23 As 0.53 P 0.45 and In 0.53 P o.45 and IN 0.59 Ga 0.41 As 0.83 P 0.12 epitaxial layers obtained in grooves is determined by their composition only and does not depend on groove configuration

  16. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  17. High-efficiency silicon doping of InP and In0.53Ga0.47As in gas source and metalorganic molecular beam epitaxy using silicon tetrabromide

    Jackson, S.L.; Fresina, M.T.; Baker, J.E.; Stillman, G.E.

    1994-01-01

    Efficient vapor source Si doping of InP and In 0.53 Ga 0.47 As have been demonstrated using SiBr 4 as the Si source for both gas source (GSMBE) and metalorganic molecular beam epitaxy (MOMBE). Net electron concentrations ranging from n=2x10 17 to 6.8x10 19 cm -3 and from 9x10 16 to 3x10 19 cm -3 have been obtained for InP and In 0.53 Ga 0.47 As, respectively. Comparison of these data with those for Si 2 H 6 indicate that the Si incorporation efficiency with SiBr 4 is more than 10 000 times greater than with Si 2 H 6 for substrate temperatures in the range of 475≤T s ≤500 degree C. Specular surface morphologies were obtained, even for the most heavily doped samples. While [Si] as high as 1.8x10 20 cm -3 was obtained in InP, the net electron concentrations and 300 K Hall mobilities decrease with increasing [Si] for [Si]>6.8x10 19 cm -3 . Contact resistances as low as R c =3x10 -8 Ω cm 2 were obtained using a nonalloyed Ti/Pt/Au contact to InP layers doped to n=6.3x10 19 cm -3 . During GSMBE growth, an increased Si background concentration ([Si]∼2x10 17 cm -3 ) was observed after extended use of the SiBr 4 source for these heavy doping concentrations. This increased background was not observed in MOMBE-grown material. Depth profiles of pulse-doped structures indicate the absence of memory effects for structures grown by MOMBE

  18. AFM observation of OMVPE-grown ErP on InP substrates using a new organometal tris(ethylcyclopentadienyl)erbium (Er(EtCp)3)

    Akane, T.; Jinno, S.; Yang, Y.; Kuno, T.; Hirata, T.; Isogai, Y.; Watanabe, N.; Fujiwara, Y.; Nakamura, A.; Takeda, Y.

    2003-01-01

    ErP has been grown on InP(0 0 1) substrates by organometallic vapor phase epitaxy (OMVPE) using a new liquid organic Er source: tris(ethylcyclopentadienyl)erbium (Er(EtCp) 3 ). Morphological change of an ErP layer on InP(0 0 1) is investigated together with that of an overgrown capping InP layer. Optimum growth condition of InP causes islanding on over-monolayer-ErP. A relatively low overgrowth temperature of InP is a key factor for attaining complete capping coverage on ErP

  19. Growth of high purity semiconductor epitaxial layers by liquid phase ...

    Unknown

    semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such ... reference to the growth of GaAs layers. The technique of growing very high purity layers ... the inner walls of the gas lines and (e) the containers for storing, handling and cleaning of the mate-.

  20. Growth and properties of epitaxial iron oxide layers

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  1. Defect analysis of NiMnSb epitaxial layers

    Nowicki, L. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Stonert, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, F. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France); Molenkamp, L.W. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Bach, P. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Schmidt, G. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, POB 510119, 01314 Dresden (Germany)

    2005-10-15

    NiMnSb layers grown on InP substrates with InGaAs buffer were studied by the backscattering/channeling spectrometry (RBS/C) with He beams. The nature of predominant defects observed in the layers was studied by determination of incident-energy dependence of the relative channeling yield. The defects are described as a combination of large amount of interstitial atoms and of stacking faults or grain boundaries. The presence of grains was confirmed by transmission electron microscopy.

  2. Molecular beam epitaxy of InP single junction and InP/In0.53Ga0.47As monolithically integrated tandem solar cells using solid phosphorous source material

    Delaney, A.; Chin, K.; Street, S.; Newman, F.; Aguilar, L.; Ignatiev, A.; Monier, C.; Velela, M.; Freundlich, A.

    1998-01-01

    This work reports the first InP solar cells, InP/In 0.53 Ga 0.47 As tandem solar cells and InP tunnel junctions to be grown using a solid phosphorous source cracker cell in a molecular beam epitaxy system. High p-type doping achieved with this system allowed for the development of InP tunnel junctions. These junctions which allow for improved current matching in subsequent monolithically integrated tandem devices also do not absorb photons which can be utilized in the InGaAs structure. Photocurrent spectral responses compared favorably to devices previously grown in a chemical beam epitaxy system. High resolution x-ray scans demonstrated good lattice matching between constituent parts of the tandem cell. AM0 efficiencies of both InP and InP/InGaAs tandem cells are reported

  3. Seed layer technique for high quality epitaxial manganite films

    P. Graziosi

    2016-08-01

    Full Text Available We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  4. InAs quantum wires on InP substrate for VCSEL applications

    Lamy , Jean-Michel; Paranthoën , Cyril; Levallois , Christophe; Nakkar , Abdulhadi; Folliot , Hervé; Dehaese , Olivier; Le Corre , Alain; Loualiche , Slimane; Castany , Olivier; Dupont , Laurent

    2008-01-01

    International audience; Quantum dash based vertical cavity surface emitting lasers (VCSEL) on InP substrate are presented. Single and close stacking layers were successfully grown with molecular beam epitaxy. Optimized quantum dash layers exhibit a strong polarized 1.55 µm photoluminescence along the [1-10] crystallographic axis. Continuous wave laser emission is demonstrated at room temperature for the first time on a quantum dash VCSEL structure on InP susbtrate. The quantum dash VCSEL lase...

  5. Effect of Fe inter-diffusion on properties of InP layers grown with addition of RE elements

    Prochazkova, O.; Zavadil, J.; Zdansky, K.

    2005-01-01

    This contribution reports the redistribution behaviour of Fe during the growth of InP layers from liquid phase with addition of some rare earth elements on semi-insulating InP:Fe substrates. We have studied the influence of different rare earths on the Fe diffusion into InP layer and compared it with the phenomenon of an extraction of iron from Fe doped materials into adjacent layers doped by Zn, Cd and Be, reported recently. In the case of Tm addition a conversion of electrical conductivity of InP layer to semi-insulating as a consequence of Fe diffusion has been observed while no significant Fe inter-diffusion has been confirmed in the presence of other investigated rare earth additions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    Full text: For today silicon is one of the most suitable materials because it is investigated, cheap and several its parameters are even just as good as those of connections A III B V . Disintegration of the USSR has led to the must difficult position of the industry of silicon instrument manufacture because of all industry of semiconductor silicon manufacture had generally concentrated in Ukraine. The importance of semiconductor silicon is rather great, because of, in opinion of expects, the nearest decade this material will dominate over not only on microelectronics but also in the majority of basic researches. Research of obtain of semiconductor silicon, power electronics and solar conversion, is topical interest of the science. In the work research of technological conditions of obtain and measurement of parameters of epitaxial layers obtained from technical silicon + stannum is resulted. Growth of silicon epitaxial layer with suitable parameters on thickness, cleanliness uniformity and structural perfection depends on the correct choice of condition of the growth and temperature. It is shown that in this case the growth occurring without preliminary clearing of materials (mix materials and substrates) at crystallization of epitaxial layer from technical silicon is accompanied by clearing of silicon film from majority of impurities order-of-magnitude. As starting raw material technical silicon of mark Kr.3 has been taken. By means of X-ray microanalyzer 'Jeol' JSM 5910 LV - Japan the quantitative analysis from the different points has been and from the different sides and from different points has been carried out. After corresponding chemical and mechanical processing the quantitative analysis of layer on chip has been carried out. Results of the quantitative analysis are shown. More effective clearing occurs that of the impurity atoms such as Al, P, Ca, Ti and Fe. The obtained material (epitaxial layer) has the parameters: specific resistance ρ∼0.1-4.0

  7. Large-area, laterally-grown epitaxial semiconductor layers

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  8. Equilibrium stability of strained epitaxial layers on a rigid substrate

    Granato, E.; Kosterlitz, J.M.; Ying, S.C.

    1987-07-01

    A simple theory of the equilibrium stability of an strained epitaxial layer on a rigid substrate is presented. We generalise the Frankvan der Merwe model of a single layer and consider N layers of adsorbate on a substrate. Continuum elasticity theory is used to describe each layer, but the coupling between layers is treated ina discrete fashion. Our method interpolates between a few layers and the thick film limit of standard dislocation theory, and in this limit the standard results are obtained. In addition, we developed a variational approach which agrees well with our exact calculations. The advantage of our method over previous ores is that it allows to perform stability analyses of arbitrary superlattice configurations. (author) [pt

  9. Interaction of GaN epitaxial layers with atomic hydrogen

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  10. Interaction of GaN epitaxial layers with atomic hydrogen

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  11. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    Dorokhov, A., E-mail: Andrei.Dorokhov@IReS.in2p3.f [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Bertolone, G.; Baudot, J.; Brogna, A.S.; Colledani, C.; Claus, G.; De Masi, R. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Deveaux, M. [Goethe-Universitaet Frankfurt am Main, Senckenberganlage 31, 60325 Frankfurt am Main (Germany); Doziere, G.; Dulinski, W. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Fontaine, J.-C. [Groupe de Recherche en Physique des Hautes Energies (GRPHE), Universite de Haute Alsace, 61, rue Albert Camus, 68093 Mulhouse (France); Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2010-12-11

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) . Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10{mu}m pitch device was found to be {approx}10{sup 13}n{sub eq}/cm{sup 2}, while it was only 2x10{sup 12}n{sub eq}/cm{sup 2} for a 20{mu}m pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10{sup 14}) n{sub eq}/cm{sup 2}. This goal relies on a fabrication process featuring a 15{mu}m thin, high resistivity ({approx}1k{Omega}cm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages (<5V) is similar to the layer thickness. Measurements with m.i.p.s show that the charge collected in the seed pixel is at least twice larger for the depleted epitaxial layer than for the undepleted one, translating into a signal-to-noise ratio (SNR) of {approx}50. Tests after irradiation have shown that this excellent performance is maintained up to the highest fluence considered (3x10{sup 13}n{sub eq}/cm{sup 2}), making evidence of a significant extension of the radiation tolerance limits of MAPS.

  12. Band Offsets and Interfacial Properties of HfAlO Gate Dielectric Grown on InP by Atomic Layer Deposition.

    Yang, Lifeng; Wang, Tao; Zou, Ying; Lu, Hong-Liang

    2017-12-01

    X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy have been used to determine interfacial properties of HfO 2 and HfAlO gate dielectrics grown on InP by atomic layer deposition. An undesirable interfacial InP x O y layer is easily formed at the HfO 2 /InP interface, which can severely degrade the electrical performance. However, an abrupt interface can be achieved when the growth of the HfAlO dielectric on InP starts with an ultrathin Al 2 O 3 layer. The valence and conduction band offsets for HfAlO/InP heterojunctions have been determined to be 1.87 ± 0.1 and 2.83 ± 0.1 eV, respectively. These advantages make HfAlO a potential dielectric for InP MOSFETs.

  13. Silicon epitaxy on textured double layer porous silicon by LPCVD

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  14. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, D. G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong

    2016-01-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+delta, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy (ALL-Laser MBE) significantly advances the state of the art...

  15. Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE)

    Venkatasamy, V

    2006-04-01

    Full Text Available This paper describes the first instance of HgTe growth by electrochemical atomic layer epitaxy (EC-ALE). EC-ALE is the electrochemical analog of atomic layer epitaxy (ALE) and atomic layer deposition (ALD), all of which are based on the growth...

  16. Characterization of GaN/AlGaN epitaxial layers grown

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers ...

  17. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    Kim, Wun-gwi

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N2 physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO2 and good CO2/CH4 selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO2 and CH4 gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface. © 2012 American Chemical Society.

  18. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    Dorokhov, A.; Bertolone, G.; Baudot, J.; Brogna, A.S.; Colledani, C.; Claus, G.; De Masi, R.; Deveaux, M.; Doziere, G.; Dulinski, W.; Fontaine, J.-C.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I.

    2010-01-01

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) . Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10μm pitch device was found to be ∼10 13 n eq /cm 2 , while it was only 2x10 12 n eq /cm 2 for a 20μm pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10 14 ) n eq /cm 2 . This goal relies on a fabrication process featuring a 15μm thin, high resistivity (∼1kΩcm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages ( 13 n eq /cm 2 ), making evidence of a significant extension of the radiation tolerance limits of MAPS.

  19. X-ray photoelectron spectroscopy/Ar+ ion profile study of thin oxide layers on InP

    Thurgate, S.M.; Erickson, N.E.

    1990-01-01

    The effect of incremental ion bombardment on the surface layers of an aqua regia etched InP sample was studied by monitoring the components of the In 3d 5/2 and O 1s x-ray photoelectron spectroscopy (XPS) lines as the sample was bombarded with low energy (1 keV) Ar + ions. The changes in the stoichiometry of the surface produced large shifts in the position of the In 3d and O 1s lines that were not paralleled by shifts in the P 2p line. Analysis of these shifts indicated that the surface was covered with a mixture of indium hydroxide and indium phosphate, with the phosphate closer to the InP substrate. It is proposed that this layer structure is due to differences in the dissolution rates of the oxidation products in the acid etch and the effect of the distilled water rinse. It may be possible to alter the composition of such oxides by carefully tailoring the etch conditions to optimize the kinetics for the particular oxide phase required. The analysis of the XPS lines also showed that the InP substrate was damaged at very low ion doses, and finally decomposed by the ion beam. When the ion ''cleaned'' sample was exposed to oxygen, a different oxide system was produced which consisted largely of In 2 O 3 and InPO 4 [or In(PO 3 ) x ]. This model of the oxidized surface of InP is consistent with other measurements and we conclude that ion milling together with XPS and careful curve fitting can be used to find the nature of the thin oxides on InP

  20. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  1. Growth of thermal oxide layers on GaAs and InP in the presence of ammonium heptamolybdate

    Mittova, I.Ya.; Lavrushina, S.S.; Afonchikova, A.V.

    2004-01-01

    Processes of thermal oxidation of GaAs and InP in the presence of ammonium heptamolybdate were studied using the methods of X-ray fluorescence analysis and IR spectroscopy at temperatures 480-580 Deg C. It was ascertained that introduction of the activator into the system results in accelerated growth of layers on semiconductors due to participation of anionic component of the chemostimulator in oxidation processes. The activator is integrated into the salts formed [ru

  2. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  3. Substrate-induced magnetism in epitaxial graphene buffer layers.

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  4. Effect of rapid thermal annealing on InP1−xBix grown by molecular beam epitaxy

    Wu, X Y; Wang, K; Pan, W W; Wang, P; Li, Y Y; Song, Y X; Gu, Y; Yue, L; Xu, H; Zhang, Z P; Cui, J; Gong, Q; Wang, S M

    2015-01-01

    The effect of post-growth rapid thermal annealing on structural and optical properties of InP 1−x Bi x thin films was investigated. InPBi shows good thermal stability up to 500 °C and a modest improvement in photoluminescence (PL) intensity with an unchanged PL spectral feature. Bismuth outdiffusion from InPBi and strain relaxation are observed at about 600 °C. The InPBi sample annealed at 800 °C shows an unexpected PL spectrum with different energy transitions. (paper)

  5. Vapor-phase etching of InP using anhydrous HCl and PH/sub 3/ gas

    Pak, K.; Koide, Y.; Imai, K.; Yoshida, A.; Nakamura, T.; Yasuda, Y.; Nishinaga, T.

    1986-01-01

    In situ etching of the substrate surface for vapor-phase epitaxy is a useful technique for obtaining a smooth and damage-free surface prior to the growth. Previous work showed that the incorporation of in situ etching of InP substrate with anhydrous HCl gas resulted in a significant improvement in the surface morphologies for MOVPE-grown InGaAs/InP and InP epitaxial layers. However, the experiment on the HCl etching of the InP substrate for a wide temperature range has not been performed as yet. In this note, the authors describe the effect of the substrate temperature on the etching morphology of InP substrate by using the anhydrous HCl and PH/sub 3/ gases. In the experiment, they used a standard MOVPE horizontal system. A quartz reactor tube in a 60 mm ID, 60 cm long, was employed

  6. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  7. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  8. Effects of nitrogen incorporation in HfO(2) grown on InP by atomic layer deposition: an evolution in structural, chemical, and electrical characteristics.

    Kang, Yu-Seon; Kim, Dae-Kyoung; Kang, Hang-Kyu; Jeong, Kwang-Sik; Cho, Mann-Ho; Ko, Dae-Hong; Kim, Hyoungsub; Seo, Jung-Hye; Kim, Dong-Chan

    2014-03-26

    We investigated the effects of postnitridation on the structural characteristics and interfacial reactions of HfO2 thin films grown on InP by atomic layer deposition (ALD) as a function of film thickness. By postdeposition annealing under NH3 vapor (PDN) at 600 °C, an InN layer formed at the HfO2/InP interface, and ionized NHx was incorporated in the HfO2 film. We demonstrate that structural changes resulting from nitridation of HfO2/InP depend on the film thickness (i.e., a single-crystal interfacial layer of h-InN formed at thin (2 nm) HfO2/InP interfaces, whereas an amorphous InN layer formed at thick (>6 nm) HfO2/InP interfaces). Consequently, the tetragonal structure of HfO2 transformed into a mixture structure of tetragonal and monoclinic because the interfacial InN layer relieved interfacial strain between HfO2 and InP. During postdeposition annealing (PDA) in HfO2/InP at 600 °C, large numbers of oxidation states were generated as a result of interfacial reactions between interdiffused oxygen impurities and out-diffused InP substrate elements. However, in the case of the PDN of HfO2/InP structures at 600 °C, nitrogen incorporation in the HfO2 film effectively blocked the out-diffusion of atomic In and P, thus suppressing the formation of oxidation states. Accordingly, the number of interfacial defect states (Dit) within the band gap of InP was significantly reduced, which was also supported by DFT calculations. Interfacial InN in HfO2/InP increased the electron-barrier height to ∼0.6 eV, which led to low-leakage-current density in the gate voltage region over 2 V.

  9. Thermal conductivity of InAs quantum dot stacks using AlAs strain compensating layers on InP substrate

    Salman, S.; Folliot, H.; Le Pouliquen, J.; Chevalier, N.; Rohel, T.; Paranthoën, C.; Bertru, N.; Labbé, C.; Letoublon, A.; Le Corre, A.

    2012-01-01

    Highlights: ► The thermal conductivity of InAs on InP (1 1 3)B quantum dots stacks is measured. ► The growth of a close stack of 100 layers of InAs using AlAs strain compensating layers is presented. ► New data on the thermal conductivity of InP n-doped susbtrate are given. - Abstract: The growth and thermal conductivity of InAs quantum dot (QD) stacks embedded in GaInAs matrix with AlAs compensating layers deposited on (1 1 3)B InP substrate are presented. The effect of the strain compensating AlAs layer is demonstrated through Atomic Force Microscopy (AFM) and X-ray diffraction structural analysis. The thermal conductivity (2.7 W/m K at 300 K) measured by the 3ω method reveals to be clearly reduced in comparison with a bulk InGaAs layer (5 W/m K). In addition, the thermal conductivity measurements of S doped InP substrates and the SiN insulating layer used in the 3ω method in the 20–200 °C range are also presented. An empirical law is proposed for the S doped InP substrate, which slightly differs from previously presented results.

  10. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  11. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Seo, Masahiro; Yamaya, Tadafumi

    2005-01-01

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width

  12. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Seo, Masahiro [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: seo@elechem1-mc.eng.hokudai.ac.jp; Yamaya, Tadafumi [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)

    2005-11-10

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width.

  13. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  14. Increased carrier lifetimes in epitaxial silicon layers on buried silicon nitride produced by ion implantation

    Skorupa, W.; Kreissig, U.; Hensel, E.; Bartsch, H.

    1984-01-01

    Carrier lifetimes were measured in epitaxial silicon layers deposited on buried silicon nitride produced by high-dose nitrogen implantation at 330 keV. The values were in the range 20-200 μs. The results are remarkable taking into account the high density of crystal defects in the epitaxial layers. Comparing with other SOI technologies the measured lifetimes are higher by 1-2 orders of magnitude. (author)

  15. Spatially indirect radiative recombination in InAlAsSb grown lattice-matched to InP by molecular beam epitaxy

    Hirst, Louise C.; Abell, Josh; Ellis, Chase T.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Walters, Robert J. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC 20375 (United States); Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); González, María [Sotera Defense Solutions, Inc., Annapolis Junction, Maryland 20701-1067 (United States)

    2015-06-07

    A photoluminescence (PL) spectroscopy study of the bulk quaternary alloy InAlAsSb is presented. Samples were grown lattice-matched to InP by molecular beam epitaxy and two different growth temperatures of 450 °C and 325 °C were compared. Interpolated bandgap energies suggest that the development of this alloy would extend the range of available direct bandgaps attainable in materials lattice-matched to InP to energies as high as 1.81 eV. However, the peak energy of the observed PL emission is anomalously low for samples grown at both temperatures, with the 450 °C sample showing larger deviation from the expected bandgap. A fit of the integrated PL intensity (I) to an I∝P{sup k} dependence, where P is the incident power density, yields characteristic coefficients k = 1.05 and 1.18 for the 450 °C and 325 °C samples, respectively. This indicates that the PL from both samples is dominated by excitonic recombination. A blue-shift in the peak emission energy as a function of P, along with an S-shaped temperature dependence, is observed. These trends are characteristic of spatially-indirect recombination associated with compositional variations. The energy depth of the confining potential, as derived from the thermal quenching of the photoluminescence, is 0.14 eV for the 325 °C sample, which is consistent with the red-shift of the PL emission peak relative to the expected bandgap energy. This suggests that compositional variation is the primary cause of the anomalously low PL emission peak energy. The higher energy PL emission of the 325 °C sample, relative to the 450 °C sample, is consistent with a reduction of the compositional fluctuations. The lower growth temperature is therefore considered more favorable for further growth optimization.

  16. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  17. Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A

    Ha, Neul; Kuroda, Takashi; Liu, Xiangming; Mano, Takaaki; Mitsuishi, Kazutaka; Noda, Takeshi; Sakuma, Yoshiki; Sakoda, Kazuaki; Castellano, Andrea; Sanguinetti, Stefano

    2014-01-01

    We demonstrate the formation of InAs quantum dots (QDs) on InAlAs/InP(111)A by means of droplet epitaxy. The C 3v symmetry of the (111)A substrate enabled us to realize highly symmetric QDs that are free from lateral elongations. The QDs exhibit a disk-like truncated shape with an atomically flat top surface. Photoluminescence signals show broad-band spectra at telecommunication wavelengths of 1.3 and 1.5 μm. Strong luminescence signals are retained up to room temperature. Thus, our QDs are potentially useful for realizing an entangled photon-pair source that is compatible with current telecommunication fiber networks

  18. Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy

    Ding Jian; Zhang Di; Konomi, Takaharu; Saito, Katsuhiko; Guo Qixin

    2012-01-01

    ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates.

  19. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  20. Epitaxial growth of tungsten layers on MgO(001)

    Zheng, Pengyuan; Ozsdolay, Brian D.; Gall, Daniel, E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Smooth single crystal W(001) layers were grown on MgO(001) substrates by magnetron sputtering at 900 °C. X-ray diffraction ω–2θ scans, ω-rocking curves, pole figures, and reciprocal space maps indicate a 45°-rotated epitaxial relationship: (001){sub W}‖(001){sub MgO} and [010]{sub W}‖[110]{sub MgO}, and a relaxed lattice constant of 3.167 ± 0.001 nm. A residual in-plane biaxial compressive strain is primarily attributed to differential thermal contraction after growth and decreases from −0.012 ± 0.001 to −0.001 ± 0.001 with increasing layer thickness d = 4.8–390 nm, suggesting relaxation during cooling by misfit dislocation growth through threading dislocation glide. The in-plane x-ray coherence length increases from 3.4 to 33.6 nm for d = 4.8–390 nm, while the out-of-plane x-ray coherence length is identical to the layer thickness for d ≤ 20 nm, but is smaller than d for d ≥ 49.7 nm, indicating local strain variations along the film growth direction. X-ray reflectivity analyses indicate that the root-mean-square surface roughness increases from 0.50 ± 0.05 to 0.95 ± 0.05 nm for d = 4.8–19.9 nm, suggesting a roughness exponent of 0.38, but remains relatively constant for d > 20 nm with a roughness of 1.00 ± 0.05 nm at d = 47.9 nm.

  1. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  2. Impact of GaN transition layers in the growth of GaN epitaxial layer on silicon

    Zhao Danmei; Zhao Degang; Jiang Desheng; Liu Zongshun; Zhu Jianjun; Chen Ping; Liu Wei; Li Xiang; Shi Ming

    2015-01-01

    A method for growing GaN epitaxial layer on Si (111) substrate is investigated. Due to the large lattice mismatch between GaN and AlN, GaN grown directly above an AlN buffer layer on the Si substrate turns out to be of poor quality. In this study, a GaN transition layer is grown additionally on the AlN buffer before the GaN epitaxial growth. By changing the growth conditions of the GaN transition layer, we can control the growth and merging of islands and control the transfer time from 3D to 2D growth mode. With this method, the crystalline quality of the GaN epitaxial layer can be improved and the crack density is reduced. Here, we have investigated the impact of a transition layer on the crystalline quality and stress evolution of a GaN epitaxial layer with methods of X-ray diffraction, optical microscopy and in situ reflectivity trace. With the increasing thickness of transition layer, the crack decreases and the crystalline quality is improved. But when the transition layer exceeds a critical thickness, the crystalline quality of the epilayer becomes lower and the crack density increases. (paper)

  3. Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers

    Syvorotka, I.I.; Sugak, D.; Wierzbicka, A.; Wittlin, A.; Przybylińska, H.; Barzowska, J.; Barcz, A.; Berkowski, M.; Domagała, J.; Mahlik, S.; Grinberg, M.; Ma, Chong-Geng

    2015-01-01

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce 3+ related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce 3+ multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce 3+ by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG

  4. Layered growth model and epitaxial growth structures for SiCAlN alloys

    Liu Zhaoqing; Ni Jun; Su Xiaoao; Dai Zhenhong

    2009-01-01

    Epitaxial growth structures for (SiC) 1-x (AlN) x alloys are studied using a layered growth model. First-principle calculations are used to determine the parameters in the layered growth model. The phase diagrams of epitaxial growth are given. There is a rich variety of the new metastable polytype structures at x=1/6 ,1/5 ,1/4 ,1/3 , and 1/2 in the layered growth phase diagrams. We have also calculated the electronic properties of the short periodical SiCAlN alloys predicted by our layered growth model. The results show that various ordered structures of (SiC) 1-x (AlN) x alloys with the band gaps over a wide range are possible to be synthesized by epitaxial growth.

  5. Process for forming epitaxial perovskite thin film layers using halide precursors

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  6. Characterization of GaN/AlGaN epitaxial layers grown by ...

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical ... reported by introducing annealing of the GaN layer in nitrogen [5], Fe doping [6], .... [2] Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan,.

  7. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  8. GaN:Co epitaxial layers grown by MOVPE

    Šimek, P.; Sedmidubský, D.; Klímová, K.; Mikulics, M.; Maryško, Miroslav; Veselý, M.; Jurek, Karel; Sofer, Z.

    2015-01-01

    Roč. 44, Mar (2015), 62-68 ISSN 0022-0248 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : doping * metalorganic vapor phase epitaxy * cobalt * gallium compounds * nitrides * magnetic materials spintronics Subject RIV: CA - Inorganic Chemistry Impact factor: 1.462, year: 2015

  9. Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion

    Parameshwaran, Vijay; Enck, Ryan; Chung, Roy; Kelley, Stephen; Sampath, Anand; Reed, Meredith; Xu, Xiaoqing; Clemens, Bruce

    2017-05-01

    III-V materials, which exhibit high absorption coefficients and charge carrier mobility, are ideal templates for solar energy conversion applications. This work describes the photoelectrochemistry research in several IIIV/electrolyte junctions as an enabler for device design for solar chemical reactions. By designing lattice-matched epitaxial growth of InGaP and GaP on GaAs and Si, respectively, extended depletion region electrodes achieve photovoltages which provide an additional boost to the underlying substrate photovoltage. The InGaP/GaAs and GaP/Si electrodes drive hydrogen evolution currents under aqueous conditions. By using nanowires of InN and InP under carefully controlled growth conditions, current and capacitance measurements are obtained to reveal the nature of the nanowire-electrolyte interface and how light is translated into photocurrent for InP and a photovoltage in InN. The materials system is expanded into the III-V nitride semiconductors, in which it is shown that varying the morphology of GaN on silicon yields insights to how the interface and light conversion is modulated as a basis for future designs. Current extensions of this work address growth and tuning of the III-V nitride electrodes with doping and polarization engineering for efficient coupling to solar-driven chemical reactions, and rapid-throughput methods for III-V nanomaterials synthesis in this materials space.

  10. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  11. High microwave performance ion-implanted GaAs MESFETs on InP substrates

    Wada, M.; Kato, K.

    1990-01-01

    Ion implantation was employed, for the first time, in fabricating GaAs MESFETs in undoped 2 μm thick GaAs epitaxial layers directly grown on InP substrates by low-pressure MOVPE. The Si-ion-implanted GaAs layer on InP substrates showed excellent electrical characteristics: a mobility of 4300 cm 2 /Vs with a carrier density of 2 x 10 17 cm -3 at room temperature. The MESFET (0.8 μm gate length) exhibited a current-gain cutoff frequency of 25 GHz and a maximum frequency of oscillation of 53 GHz, the highest values yet reported to GaAs MESFETs on InP substrates. These results demonstrate the high potential of ion-implanted MESFETs as electronic devices for high-speed InP-based OEICs. (author)

  12. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  13. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  14. InP layers with low density of defects: effect of holmium and erbium admixture

    Procházková, Olga; Novotný, Jan; Zavadil, Jiří; Kohout, Jindřich; Žďánský, Karel

    Roč. 48, 9 Special Issue (1997), s. 66-69 ISSN 0013-578X. [Development of Materials Science in Research and Education - DMS-RE 1997 /7./. Kočovce, 09.06.1997-11.06.1997] R&D Projects: GA ČR GA102/96/1238 Keywords : semiconductors * epitaxial growth * rare earth compounds * crystal defects Subject RIV: CA - Inorganic Chemistry

  15. Influence of rare earth admixtures on growth rate of InP layers

    Grym, Jan; Procházková, Olga; Šrobár, Fedor

    2005-01-01

    Roč. 1, č. 1 (2005), s. 170-170 ISSN 1336-7242. [Zjazd chemických spoločností /57./. Tatranské Matliare, 04.09.2005-08.09.2005] R&D Projects: GA ČR(CZ) GA102/03/0379 Institutional research plan: CEZ:AV0Z20670512 Keywords : liquid phase epitaxial growth * semiconductors * rare earth compounds Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  17. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  18. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir; Bregolin, Felipe L.; Hübner, Rene; Voelskow, Matthias; Helm, Manfred; Skorupa, Wolfgang [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of the III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.

  19. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  20. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  1. Improvement of GaN epilayer by gradient layer method with molecular-beam epitaxy

    Chen, Yen-Liang; Lo, Ikai; Gau, Ming-Hong; Hsieh, Chia-Ho; Sham, Meng-Wei; Pang, Wen-Yuan; Hsu, Yu-Chi; Tsai, Jenn-Kai; Schuber, Ralf; Schaadt, Daniel

    2012-01-01

    We demonstrated a molecular beam epitaxy method to resolve the dilemma between structural and morphological quality in growth of the GaN epilayer. A gradient buffer layer was grown in such a way that the N/Ga ratio was gradually changed from nitrogen-rich to gallium-rich. The GaN epitaxial layer was then grown on the gradient buffer layer. In the X-ray diffraction analysis of GaN(002) rocking curves, we found that the full width at half-maximum was improved from 531.69″ to 59.43″ for the sample with a gradient buffer layer as compared to a purely gallium-rich grown sample. Atomic force microscopy analysis showed that the root-mean-square roughness of the surface was improved from 18.28 nm to 1.62 nm over an area of 5 × 5 μm 2 with respect to a purely nitrogen-rich grown sample. Raman scattering showed the presence of a slightly tilted plane in the gradient layer. Furthermore we showed that the gradient layer can also slash the strain force caused by either Ga-rich GaN epitaxial layer or AlN buffer layer. - Highlights: ► The samples were grown by plasma-assisted molecular beam epitaxy. ► The GaN epilayer was grown on sapphire substrate. ► The samples were characterized by X-ray diffraction and atomic force microscopy. ► The sample quality was improved by gradient buffer layer.

  2. Improvement of GaN epilayer by gradient layer method with molecular-beam epitaxy

    Chen, Yen-Liang [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Lo, Ikai, E-mail: ikailo@mail.phys.nsysu.edu.tw [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Gau, Ming-Hong; Hsieh, Chia-Ho; Sham, Meng-Wei; Pang, Wen-Yuan; Hsu, Yu-Chi [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Tsai, Jenn-Kai [Department of Electronics Engineering, National Formosa University, Hu-Wei, Yun-Lin County 63208, Taiwan, ROC (China); Schuber, Ralf; Schaadt, Daniel [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2012-07-31

    We demonstrated a molecular beam epitaxy method to resolve the dilemma between structural and morphological quality in growth of the GaN epilayer. A gradient buffer layer was grown in such a way that the N/Ga ratio was gradually changed from nitrogen-rich to gallium-rich. The GaN epitaxial layer was then grown on the gradient buffer layer. In the X-ray diffraction analysis of GaN(002) rocking curves, we found that the full width at half-maximum was improved from 531.69 Double-Prime to 59.43 Double-Prime for the sample with a gradient buffer layer as compared to a purely gallium-rich grown sample. Atomic force microscopy analysis showed that the root-mean-square roughness of the surface was improved from 18.28 nm to 1.62 nm over an area of 5 Multiplication-Sign 5 {mu}m{sup 2} with respect to a purely nitrogen-rich grown sample. Raman scattering showed the presence of a slightly tilted plane in the gradient layer. Furthermore we showed that the gradient layer can also slash the strain force caused by either Ga-rich GaN epitaxial layer or AlN buffer layer. - Highlights: Black-Right-Pointing-Pointer The samples were grown by plasma-assisted molecular beam epitaxy. Black-Right-Pointing-Pointer The GaN epilayer was grown on sapphire substrate. Black-Right-Pointing-Pointer The samples were characterized by X-ray diffraction and atomic force microscopy. Black-Right-Pointing-Pointer The sample quality was improved by gradient buffer layer.

  3. High uniformity of self-organized InAs quantum wires on InAlAs buffers grown on misoriented InP(001)

    Wang Yuanli; Jin, P.; Ye, X.L.; Zhang, C.L.; Shi, G.X.; Li, R.Y.; Chen, Y.H.; Wang, Z.G.

    2006-01-01

    Highly uniform InAs quantum wires (QWRs) have been obtained on the In 0.5 Al 0.5 As buffer layer grown on the InP substrate 8 (convolutionsign) off (001) towards (111) by molecular-beam epitaxy. The quasi-periodic composition modulation was spontaneously formed in the In 0.5 Al 0.5 As buffer layer on this misoriented InP (001). The width and period of the In-rich bands are about 10 and 40 nm, respectively. The periodic In-rich bands play a major role in the sequent InAs QWRs growth and the InAs QWRs are well positioned atop In-rich bands. The photoluminescence (PL) measurements showed a significant reduction in full width at half maximum and enhanced PL efficiency for InAs QWRs on misoriented InP(001) as compared to that on normal InP(001)

  4. Atomic layer epitaxy of ZnO for applications in molecular beam epitaxy growth of GaN and InGaN

    Godlewski, M.; Szczerbakow, A.; Ivanov, V. Yu.; Barski, A.; Goldys, E.M.

    2000-01-01

    We report the successful atomic layer epitaxy growth of thin ZnO films and their use for GaN and InGaN epitaxy. The properties of ZnO epilayers, obtained by four different procedures, are analysed, as well as of GaN and InGaN films grown on ZnO-coated Si and GaAs by MBE. (author)

  5. InP quantum dots embedded in GaP: Optical properties and carrier dynamics

    Hatami, F.; Masselink, W.T.; Schrottke, L.; Tomm, J.W.; Talalaev, V.; Kristukat, C.; Goni, A.R.

    2003-01-01

    The optical emission and dynamics of carriers in Stranski-Krastanow self-organized InP quantum dots embedded in a GaP matrix are studied. InP deposited on GaP (001) using gas-source molecular-beam epitaxy forms quantum dots for InP coverage greater than 1.8 monolayers. Strong photoluminescence from the quantum dots is observed up to room temperature at about 2 eV; photoluminescence from the two-dimensional InP wetting layer is measured at about 2.2 eV. Modeling based on the 'model-solid theory' indicates that the band alignment for the InP quantum dots is direct and type I. Furthermore, low-temperature time-resolved photoluminescence measurements indicate that the carrier lifetime in the quantum dots is about 2 ns, typical for type-I quantum dots. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP quantum dots at normal pressure with the GaP X states lying about 30 meV higher than the Γ states in the InP quantum dots, but indicate that they become type II under hydrostatic pressures of about 1.2 GPa

  6. Preparation of p-type InP layers for detection of radiation

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Žďánský, Karel

    2005-01-01

    Roč. 275, 1/2 (2005), e959-e963 ISSN 0022-0248. [ICCG /14./ and ICVG /12./. Grenoble, 09.08.2004-13.08.2004] R&D Projects: GA ČR(CZ) GA102/03/0379; GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z20670512 Keywords : rare earth compounds * liquid phase epitaxial growth * III-V semiconductors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.681, year: 2005

  7. Role of ç-elements in the growth of InP layers for radiation detectors

    Procházková, Olga; Zavadil, Jiří; Žďánský, Karel

    2001-01-01

    Roč. 36, 8/10 (2001), s. 979-987 ISSN 0232-1300. [Polish Conference on Crystal Growth /PCCG 6./. Poznan, 20.05.2001-23.05.2001] R&D Projects: GA ČR GA102/99/0341; GA AV ČR KSK1010104 Projekt 04/01:4043 Institutional research plan: CEZ:AV0Z2067918 Keywords : liquid phase epitaxial growth * rare earth metals * semiconductor materials Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.536, year: 2001

  8. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multi-Layered Organic Epitaxial Nanofibers

    Tavares, Luciana; Cadelano, Michele; Quochi, Francesco

    2015-01-01

    Multi-layered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials due to their well-defined morphology, high luminescence efficiencies, and color tunability. We resort to temperature-dependent cw and picosecond photoluminescence (PL......) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes...... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...

  9. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  10. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  11. Microhardness of epitaxial layers of GaAs doped with rare earths

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  12. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  13. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  14. MOVPE grown InGaAs quantum dots of high optical quality as seed layer for low-density InP quantum dots

    Richter, D; Hafenbrak, R; Joens, K D; Schulz, W-M; Eichfelder, M; Rossbach, R; Jetter, M; Michler, P

    2010-01-01

    To achieve a low density of optically active InP-quantum dots we used InGaAs islands embedded in GaAs as a seed layer. First, the structural InGaAs quantum dot properties and the influence of the annealing technique was investigated by atomic force microscope measurements. High-resolution micro-photoluminescence spectra reveal narrow photoluminescence lines, with linewidths down to 11 μeV and fine structure splittings of 25 μeV. Furthermore, using these InGaAs quantum dots as seed layer reduces the InP quantum dot density of optically active quantum dots drastically. InP quantum dot excitonic photoluminescence emission with a linewidth of 140 μeV has been observed.

  15. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    Takeo Ohno and Yutaka Oyama

    2012-01-01

    Full Text Available In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE, in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor.

  16. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  17. Photoacoustic study of the effect of doping concentration on the transport properties of GaAs epitaxial layers

    George, S.D.; Dilna, S.; Prasanth, R.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2003-01-01

    We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho's theory of the PA effect. The

  18. Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range

    Semenova, Elizaveta; Kulkova, Irina; Kadkhodazadeh, Shima

    2014-01-01

    . In order to extract the QD benefits for the longer telecommunication wavelength range the technology of QD fabrication should be developed for InP based materials. In our work, we take advantage of both QD fabrication methods Stranski-Krastanow (SK) and selective area growth (SAG) employing block copolymer...

  19. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  20. Epitaxially Grown Layered MFI–Bulk MFI Hybrid Zeolitic Materials

    Kim, Wun-gwi; Zhang, Xueyi; Lee, Jong Suk; Tsapatsis, Michael; Nair, Sankar

    2012-01-01

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered

  1. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  2. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  3. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    María Eugenia Dávila; Guy Le Lay

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established o...

  4. Direct Current Sputter Epitaxy of Heavily Doped p+ Layer for Monocrystalline Si Solar Cells

    Wenchang Yeh

    2017-01-01

    Full Text Available Sputter epitaxy of p+ layer for fabrication of Si solar cells (SCs was demonstrated. Hall carrier concentration of p+ layer was 2.6 × 1020 cm−3 owing to cosputtering of B with Si at low temperature, which had enabled heavy and shallow p+ dope layer. p+nn+ SCs were fabricated and influence of p+ and n+ layers was investigated. Internal quantum efficiency (IQE of p+nn+ SCs was 95% at visible light and was larger than 60% at ultraviolet (UV light when the p+ layer was thinner than 30 nm. At near infrared (NIR, extra increment on IQE was achieved by rear n+ back surface field (BSF layer with a thickness thinner than 100 nm.

  5. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers

    Jana, Dipankar; Porwal, S.; Sharma, T. K.; Oak, S. M.; Kumar, Shailendra

    2014-01-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates

  6. About influence of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in heterobipolar transistors

    E Pankratov

    2016-10-01

    Full Text Available In this paper we introduce an approach to manufacture a heterobipolar transistors. Framework this approach we consider doping by diffusion or by ion implantation of required parts of a heterostructure with special configuration and optimization of annealing of dopant and/or radiation defects. In this case one have possibility to manufacture bipolar transistors, which include into itself p-n-junctions with higher sharpness and smaller dimensions. We also consider influence of presents of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in the considered transistors. An approach to decrease value of mismatch-induced stress has been considered.

  7. P/N InP solar cells on Ge wafers

    Wojtczuk, Steven; Vernon, Stanley; Burke, Edward A.

    1994-01-01

    Indium phosphide (InP) P-on-N one-sun solar cells were epitaxially grown using a metalorganic chemical vapor deposition process on germanium (Ge) wafers. The motivation for this work is to replace expensive InP wafers, which are fragile and must be thick and therefore heavy, with less expensive Ge wafers, which are stronger, allowing use of thinner, lighter weight wafers. An intermediate InxGs1-xP grading layer starting as In(0.49)Ga(0.51) at the GaAs-coated Ge wafer surface and ending as InP at the top of the grading layer (backside of the InP cell) was used to attempt to bend some of the threading dislocations generated by lattice-mismatch between the Ge wafer and InP cell so they would be harmlessly confined in this grading layer. The best InP/Ge cell was independently measured by NASA-Lewis with a one-sun 25 C AMO efficiently measured by NASA-Lewis with a one-circuit photocurrent 22.6 mA/sq cm. We believe this is the first published report of an InP cell grown on a Ge wafer. Why get excited over a 9 percent InP/Ge cell? If we look at the cell weight and efficiency, a 9 percent InP cell on an 8 mil Ge wafer has about the same cell power density, 118 W/kg (BOL), as the best InP cell ever made, a 19 percent InP cell on an 18 mil InP wafer, because of the lighter Ge wafer weight. As cell panel materials become lighter, the cell weight becomes more important, and the advantage of lightweight cells to the panel power density becomes more important. In addition, although InP/Ge cells have a low beginning-of-life (BOL) efficiency due to dislocation defects, the InP/Ge cells are very radiation hard (end-of-life power similar to beginning-of-life). We have irradiated an InP/Ge cell with alpha particles to an equivalent fluence of 1.6 x 10(exp 16) 1 MeV electrons/sq cm and the efficiency is still 83 percent of its BOL value. At this fluence level, the power output of these InP/Ge cells matches the GaAs/Ge cell data tabulated in the JPL handbook. Data are presented

  8. High-resolution synchrotron diffraction study of porous buffer InP(001) layers

    Lomov, A. A.; Punegov, V. I.; Nohavica, Dušan; Chuev, M.A.; Vasiliev, A.L.; Novikov, D. V.

    2014-01-01

    Roč. 47, č. 5 (2014), s. 1614-1625 ISSN 0021-8898 Institutional support: RVO:67985882 Keywords : porous layers * X-ray reciprocal space mapping * indium phosphide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.720, year: 2014

  9. Rubrene epitaxial layers for organic TFT's grown by hot wall epitaxy

    Abd AL-Baqi, S.

    2010-01-01

    discussed in a statistical analysis as well as using thermodynamic modelling. Rubrene films were grown on different substrates as well as applying electrical field during the growth to study the growth mechanism. Optical characterisation techniques like fluorescence microscopy (FM), laser scanning confocal microscopy (LSCM), time resolved photoluminescence spectra and thermally stimulated luminescence were implemented to analyse various growth conditions to obtain more details about the material and the crystallization properties. Ellipsometry was also used to find the optical parameters for rubrene thin films. By using a special evaluation program for ellipsometry, it was possible to find the thickness of rubrene films. Finally, field effect transistors with rubrene thin films as an active layer were fabricated and characterized. Better output characteristics are achieved by using a self-assembled monolayer at the interface between SiO 2 and rubrene. (author) [de

  10. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    Scalise, E.; Cinquanta, E.; Houssa, M.; Broek, B. van den; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.

    2014-01-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  11. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    Scalise, E., E-mail: emilio.scalise@fys.kuleuven.be [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Cinquanta, E. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Houssa, M.; Broek, B. van den [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Chiappe, D. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Grazianetti, C. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Ealet, B. [Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Molle, A. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano (MI) (Italy); Afanas’ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  12. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  13. SiC epitaxial layer growth in a novel multi-wafer VPE reactor

    Burk, A.A. Jr.; O`Loughlin, M.J. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States); Mani, S.S. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    Preliminary results are presented for SiC epitaxial layer growth employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7 x 2-inch) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600 C. Specular epitaxial layers have been grown in the reactor at growth rates from 3-5 {mu}m/hr. The thickest layer grown to data was 42 {mu}m. The layers exhibit minimum unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, room temperature mobilities of {proportional_to}1000 cm{sup 2}/Vs, and intentional n-type doping from {proportional_to}5 x 10{sup 15} cm{sup -3} to >1 x 10{sup 19} cm{sup -3}. Intrawafer thickness and doping uniformities of 4% and 7% (standard deviation/mean) have been obtained, respectively, on 35 mm diameter substrates. Recently, 3% thickness uniformity has been demonstrated on a 50 mm substrate. Within a run, wafer-to-wafer thickness deviation is {proportional_to}4-14%. Doping variation is currently larger, ranging as much as a factor of two from the highest to the lowest doped wafer. Continuing efforts to improve the susceptor temperature uniformity and reduce unintentional hydrocarbon generation to improve layer uniformity and reproducibility, are presented. (orig.) 18 refs.

  14. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    NONE

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  15. Design of Strain-Compensated Epitaxial Layers Using an Electrical Circuit Model

    Kujofsa, Tedi; Ayers, John E.

    2017-12-01

    The design of heterostructures that exhibit desired strain characteristics is critical for the realization of semiconductor devices with improved performance and reliability. The control of strain and dislocation dynamics requires an understanding of the relaxation processes associated with mismatched epitaxy, and the starting point for this analysis is the equilibrium strain profile, because the difference between the actual strain and the equilibrium value determines the driving force for dislocation glide and relaxation. Previously, we developed an electrical circuit model approach for the equilibrium analysis of semiconductor heterostructures, in which an epitaxial layer may be represented by a stack of subcircuits, each of which involves an independent current source, a resistor, an independent voltage source, and an ideal diode. In this work, we have applied the electrical circuit model to study the strain compensation mechanism and show that, for a given compositionally uniform device layer with fixed mismatch and layer thickness, a buffer layer may be designed (in terms of thickness and mismatch) to tailor the strain in the device layer. A special case is that in which the device layer will exhibit zero residual strain in equilibrium (complete strain compensation). In addition, the application of the electrical circuit analogy enables the determination of exact expressions for the residual strain characteristics of both the buffer and device layers in the general case where the device layer may exhibit partial strain compensation. On the basis of this framework, it is possible to develop design equations for the tailoring of the strain in a device layer grown on a uniform composition buffer.

  16. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G., E-mail: ekerdt@utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  17. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-01-01

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al 2 O 3 and HfO 2 . However, there has been much effort to deposit ternary oxides, such as perovskites (ABO 3 ), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable

  18. Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer

    Black, L.E.; Cavalli, A.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.; Kessels, W.M.M.

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following

  19. The barrier to misfit dislocation glide in continuous, strained, epitaxial layers on patterned substrates

    Watson, G.P.; Ast, D.G.; Anderson, T.J.; Pathangey, B.

    1993-01-01

    In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. 58, 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 65, 2220 (1989)] when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In 0.04 Ga 0.96 As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane

  20. Atomistics of Ge deposition on Si(100) by atomic layer epitaxy.

    Lin, D S; Wu, J L; Pan, S Y; Chiang, T C

    2003-01-31

    Chlorine termination of mixed Ge/Si(100) surfaces substantially enhances the contrast between Ge and Si sites in scanning tunneling microscopy observations. This finding enables a detailed investigation of the spatial distribution of Ge atoms deposited on Si(100) by atomic layer epitaxy. The results are corroborated by photoemission measurements aided by an unusually large chemical shift between Cl adsorbed on Si and Ge. Adsorbate-substrate atomic exchange during growth is shown to be important. The resulting interface is thus graded, but characterized by a very short length scale of about one monolayer.

  1. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  2. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  3. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  4. Structural and electrical properties of epitaxial Si layers prepared by E-beam evaporation

    Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Rudigier, E.; Fenske, F.; Lee, K.Y.; Gorka, B.; Rau, B.; Conrad, E.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2008-08-30

    In this work, we present structural and electrical properties of thin Si films which are homoepitaxially grown at low substrate temperatures (T{sub s} 450-700 deg. C) by high-rate electron beam evaporation. As substrates, monocrystalline Si wafers with (100) and (111) orientations and polycrystalline Si (poly-Si) seed layers on glass were used. Applying Secco etching, films grown on Si(111) wafers exhibit a decreasing etch pit density with increasing T{sub s}. The best structural quality of the films was obtained on Si(100) wafers. Defect etching on epitaxially grown poly-Si absorbers reveal regions with different crystalline quality. Solar cells have been prepared on both wafers and seed layers. Applying Rapid Thermal Annealing (RTA) and Hydrogen plasma passivation an open circuit voltage of 570 mV for wafer based and 346 mV for seed layer based solar cells have been reached.

  5. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  6. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  7. GaInAs Junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing

    Selders, J.; Wachs, H.J.; Jurgensen, H.

    1986-01-01

    GaInAs JFETs were fabricated on VPE-grown GaInAs layers. The pn junctions have been realised with Be ion implantation and rapid thermal annealing. The devices show a high transconductance of 130 mS/mm and an electron saturation velocity of 1.8 x 10 7 cm/s. Channel mobilities measured at the complete device are as high as 6800 cm 2 /Vs. These excellent device properties are due to the use of an undoped InP buffer layer which avoids the diffusion of Fe from the substrate into the active layer. The data were supported by S-parameter measurements which gave a frequency limit of 20 GHz for gate dimensions of 1.6 by 200 μm 2 . (author)

  8. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-01-01

    The thickness of InGaAsP (lambda/sub g/=1.15 μm) and InGaAs (lambda/sub g/=1.68 μm) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l 2 /D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size

  9. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  10. Influence of Yb AND Yb2O3 addition on the properties of InP layers

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Žďánský, Karel; Lorinčík, Jan

    2008-01-01

    Roč. 10, č. 12 (2008), s. 3261-3264 ISSN 1454-4164 R&D Projects: GA ČR GA102/06/0153; GA ČR(CZ) GP102/08/P617 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor technology * rare earth elements * InP Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.577, year: 2008

  11. Few layer epitaxial germanene: a novel two-dimensional Dirac material.

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-10

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  12. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  13. Unusual strain in homoepitaxial CdTe(001) layers grown by molecular beam epitaxy

    Heinke, H.; Waag, A.; Moeller, M.O.; Regnet, M.M.; Landwehr, G. [Physikalisches Institut, Univ. Wuerzburg (Germany)

    1994-01-01

    For homoepitaxial CdTe(001) films grown by molecular beam epitaxy onto CdTe(001) substrates, a difference between the lattice constants of the substrate and the layer was systematically observed using high resolution X-ray diffraction. Reciprocal space maps point out an unusual strain state of such layers which is indicated by the position of their reciprocal lattice points. They lie in a section of reciprocal space which is usually forbidden by elasticity theory. The strain is laterally anisotropic leading to a monoclinic symmetry of the thin films. The lateral strain is depth dependent. Possible reasons for the formation of the unusual strain are discussed, and a correlation of the unusual strain with the growth conditions is attempted

  14. Characterization of InGaGdN layers prepared by molecular beam epitaxy

    Tawil, Siti Nooraya Mohd [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihagaoka, Ibaraki, 567-0047 Osaka (Japan); Faculty of Electrical and Electronic Engineering, Tun Hussein Onn University of Malaysia, 86400 Batu Pahat Johor (Malaysia); Kakimi, Rina; Krishnamurthy, Daivasigamani; Emura, Shuichi; Tambo, Hiroyuki; Hasegawa, Shigehiko; Asahi, Hajime [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihagaoka, Ibaraki, 567-0047 Osaka (Japan)

    2010-11-15

    Gd-doped InGaN layers were prepared by plasma-assisted molecular-beam epitaxy in search of new functional diluted magnetic semiconductors for their potential use in spintronics. The local structure around the Gd atoms was examined by the Gd L{sub III}-edge of X-ray absorption fine structure. It was found that the majority of Gd atoms substitutionally occupied the cation sites in the InGaGdN layers. Clear hysteresis and saturation magnetization were observed from the magnetization versus field curves examined by means of a superconducting quantum interference device magnetometer at low and room temperatures. In addition, the incorporation of extra shallow donors by co-doping InGaN with both Gd and Si showed higher magnetization than the undoped InGaGdN. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  16. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  17. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    McCallum, J.C.

    1998-01-01

    The kinetics of dopant-enhanced solid phase epitaxy (SPE) have been measured in buried a-Si layers doped with arsenic. SPE rates were measured over the temperature range 480 - 660 deg C for buried a-Si layers containing ten different As concentrations. In the absence of H-retardation effects, the dopant-enhanced SPE rate is observed to depend linearly on the As concentration over the entire range of concentrations, 1-16 x 10 19 cm -3 covered in the study. The Fermi level energy was calculated as a function of doping and find an equation that can provide good fits to the data. The implications of these results for models of the SPE process is discussed

  18. Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy

    Hill, Heather M.; Rigosi, Albert F.; Chowdhury, Sugata; Yang, Yanfei; Nguyen, Nhan V.; Tavazza, Francesca; Elmquist, Randolph E.; Newell, David B.; Hight Walker, Angela R.

    2017-11-01

    Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Although much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density-functional theory, to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.

  19. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  20. InAlAs/InGaAs Pseudomorphic High Eelectron Mobility Transistors Grown by Molecular Beam Epitaxy on the InP Substrate

    Huang Jie; Guo Tian-Yi; Zhang Hai-Ying; Xu Jing-Bo; Fu Xiao-Jun; Yang Hao; Niu Jie-Bin

    2010-01-01

    A novel PMMA/PMGI/ZEP520 trilayer resist electron beam lithograph (EBL) technology is successfully developed and used to fabricate the 150 nm gate-length In 0.7 Ga 0.3 As/In 0.52 Al 0.48 As Pseudomorphic HEMT on an InP substrate, of which the material structure is successfully designed and optimized. A perfect profile of T-gate is successfully obtained. These fabricated devices demonstrate excellent dc and rf characteristics: the transconductance G m , maximum saturation drain-to-source current I DSS , threshold voltage V T , maximum current gain frequency f T derived from h 21 , maximum frequency of oscillation derived from maximum available power gain/maximum stable gain and from unilateral power-gain of metamorphic InGaAs/InAlAs high electron mobility transistors (HEMTs) are 470 mS/mm, 560 mA/mm, −1.0 V, 76 GHz, 135 GHz and 436 GHz, respectively. The excellent high frequency performances promise the possibility of metamorphic HEMTs for millimeter-wave applications. (cross-disciplinary physics and related areas of science and technology)

  1. Characteristics of the epitaxy of InGaN-based light-emitting diodes grown by nanoscale epitaxial lateral overgrowth using a nitrided titanium buffer layer

    Shieh, Chen-Yu; Li, Zhen-Yu; Chang, Jenq-Yang; Chi, Gou-Chung

    2015-01-01

    In this work, a buffer layer of nitrided titanium (Ti) achieved through the nitridation of a Ti metal layer on a sapphire substrate was used for the epitaxial growth of InGaN-based light-emitting diodes (LEDs) achieved by low pressure metal-organic chemical vapor deposition. The effect of in-situ Ti metal nitridation on the performance of these InGaN-based LEDs was then investigated. It was very clear that the use of the nitrided Ti buffer layer (NTBL) induced the formation of a nanoscale epitaxial lateral overgrowth layer during the epitaxial growth. When evaluated by Raman spectroscopy, this epi-layer exhibited large in-plane compressive stress releasing with a Raman shift value of 567.9 cm -1 . Cathodoluminescence spectroscopy and transmission electron microscopy results indicated that the InGaN-based LEDs with an NTBL have improved crystal quality, with a low threading dislocations density being yielded via the strain relaxation in the InGaN-based LEDs. Based on the results mentioned above, the electroluminescence results indicate that the light performance of InGaN-based LEDs with an NTBL can be enhanced by 45% and 42% at 20 mA and 100 mA, respectively. These results suggest that the strain relaxation and quality improvement in the GaN epilayer could be responsible for the enhancement of emission power. - Highlights: • The crystal-quality of InGaN-based LEDs with NTBL by NELOG was improved. • The InGaN-based LEDs with NTBL have strain releases by NELOG. • The optical properties of InGaN-based LEDs were shown by CL and EL measurements

  2. STM studies of GeSi thin layers epitaxially grown on Si(111)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  3. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  4. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  5. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  6. Possibility of the use of intermediate carbidsiliconoxide nanolayers on polydiamond substrates for gallium nitride layers epitaxy

    Averichkin, P. A., E-mail: P-Yugov@mail.ru; Donskov, A. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Dukhnovsky, M. P. [R & D Enterprise Istok (Russian Federation); Knyazev, S. N. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation); Kozlova, Yu. P. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Yugova, T. G.; Belogorokhov, I. A. [State Research and Design Institute of Rare-Metal Industry Giredmet AO (Russian Federation)

    2016-04-15

    The results of using carbidsiliconoxide (a-C:SiO1{sub .5}) films with a thickness of 30–60 nm, produced by the pyrolysis annealing of oligomethylsilseskvioksana (CH{sub 3}–SiO{sub 1.5}){sub n} with cyclolinear (staircased) molecular structure, as intermediate films in the hydride vapor phase epitaxy of gallium nitride on polycrystalline CVD-diamond substrates are presented. In the pyrolysis annealing of (CH{sub 3}–SiO{sub 1.5}){sub n} films in an atmosphere of nitrogen at a temperature of 1060°C, methyl radicals are carbonized to yield carbon atoms chemically bound to silicon. In turn, these atoms form a SiC monolayer on the surface of a-C:SiO{sub 1.5} films via covalent bonding with silicon. It is shown that GaN islands grow on such an intermediate layer on CVD-polydiamond substrates in the process of hydride vapor phase epitaxy in a vertical reactor from the GaCl–NH{sub 3}–N{sub 2} gas mixture.

  7. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  8. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2012-03-15

    Co/Pd epitaxial multilayer films were prepared on Pd(111){sub fcc} underlayers hetero-epitaxially grown on MgO(111){sub B1} single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed. - Highlights: Black-Right-Pointing-Pointer Epitaxial Co/Pd multilayer films are prepared on Pd(111){sub fcc} underlayers. Black-Right-Pointing-Pointer Lattice strain in Co layer and CoPd-alloy formation are noted around the interface. Black-Right-Pointing-Pointer Magnetic property dependence on layer thickness is reported.

  9. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  10. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  11. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  12. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    Nie, Anmin; Liu, Jiabin; Li, Qianqian; Cheng, Yingchun; Dong, Cezhou; Zhou, Wu; Wang, Pengfei; Wang, Qingxiao; Yang, Yang; Zhu, Yihan; Zeng, Yuewu; Wang, Hongtao

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations

  13. Interface manipulation in GaxIn1-xAs/InP multiple layer structures grown by chemical beam epitaxy

    Rongen, R.T.H.; van Rijswijk, A.J.C.; Leijs, M.R.; Es, van C.M.; Vonk, H.; Wolter, J.H.

    1997-01-01

    In this study the control of interfacial layers in nanometre thin heterostructures is demonstrated by variation of the growth interruption sequence (GIS) at the binary - ternary interfaces. All samples have been prepared by chemical beam epitaxy simultaneously growing the structures on exact (100)

  14. AlGaInAs EML having high extinction ratios fabricated by identical epitaxial layer technique

    Deng, Qiufang; Guo, Lu; Liang, Song; Sun, Siwei; Xie, Xiao; Zhu, Hongliang; Wang, Wei

    2018-04-01

    AlGaInAs electroabsorption-modulated lasers (EMLs) fabricated by identical epitaxial layer technique are demonstrated. The EML device shows an infinite characteristic temperature when the temperature ranges from 20 oC to 30 oC. The integrated modulator has static extinction ratios of larger than 20 dB at a reverse bias voltage of - 2 V. The small signal modulation bandwidth of the modulator is larger than 11 GHz. At 10 Gb/s data modulation, the dynamic extinction ratio is about 9.5 dB in a back to back test configuration. Because only a simple fabrication procedure is needed, our EMLs are promising low cost light sources for optical fiber transmission applications.

  15. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  16. The effect of a thin silver layer on the critical current of epitaxial YBCO films

    Polturak, E.; Koren, G.; Cohen, D.; Cohen, D.; Snapiro, I.

    1992-01-01

    We compare measurements of the critical current density of an epitaxial YBCO film with that of an identical film overlaid by a thin silver layer. We find that the presence of the silver lowers Tc of the film by about 1.5 K, which is two orders of magnitude larger than predicted by the theory of the proximity effect for our experimental conditions. In addition, J c of the Ag/YBCO film near Tc is also significantly lower than that of the bare YBCO film. We propose two alternate interpretations of this effect, one in terms of destabilization of the flux distribution in the film and the other making use of the effect of the silver on the Bean-Livingston surface barrier for the initial penetration of flux. The latter seems the more plausible explanation of our results. (orig.)

  17. Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites

    Andersen, Tassie K. [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Cook, Seyoung [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wan, Gang [Materials Science; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Marks, Laurence D. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Fong, Dillon D. [Materials Science

    2018-01-31

    Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as a function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.

  18. Efficient n-type doping of CdTe epitaxial layers grown by photo-assisted molecular beam epitaxy with the use of chlorine

    Hommel, D.; Scholl, S.; Kuhn, T.A.; Ossau, W.; Waag, A.; Landwehr, G. (Univ. Wuerzburg, Physikalisches Inst. (Germany)); Bilger, G. (Univ. Stuttgart, Inst. fuer Physikalische Elektronik (Germany))

    1993-01-30

    Chlorine has been used successfully for the first time for n-type doping of CdTe epitaxial layers (epilayers) grown by photo-assisted molecular beam epitaxy. Similar to n-type doping of ZnSe layers, ZnCl[sub 2] has been used as source material. The free-carrier concentration can be varied over more than three orders of magnitude by changing the ZnCl[sub 2] oven temperature. Peak mobilities are 4700 cm[sup 2] V[sup -1] s[sup -1] for an electron concentration of 2x10[sup 16] cm[sup -3] and 525 cm[sup 2] V[sup -1] s[sup -1] for 2x10[sup 18] cm[sup -3]. The electrical transport data obtained by Van der Pauw configuration and Hall structure measurements are consistent with each other, indicating a good uniformity of the epilayers. In photoluminescence the donor-bound-exciton emission dominates for all chlorine concentrations. This contasts significantly with results obtained for indium doping, commonly used for obtaining n-type CdTe epilayers. The superiority of chlorine over indium doping and the influence of growth parameters on the behaviour of CdTe:Cl layers will be discussed on the basis of transport, luminescence, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy data. (orig.).

  19. CBE growth of high-quality ZnO epitaxial layers

    El-Shaer, A.; Bakin, A.; Mofor, A.C.; Kreye, M.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Stoimenos, J. [Physics Department, Aristotele University, Univ. Campus, 54006 Thessaloniki (Greece); Pecz, B. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary); Heuken, M. [Aixtron AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2006-03-15

    Further improvements on the recently reported novel approach to zinc oxide Chemical Beam Epitaxy (CBE) are presented. Hydrogen peroxide is employed as a very efficient novel oxidant. ZnO layers with a thickness from 100 nm to 600 nm were grown on c-sapphire using a MgO buffer. PL-mapping as well as conductivity mapping shows a good uniformity across the 2 inch ZnO-on-sapphire epiwafers. The measured surface roughness for the best layers is as low as 0.26 nm. HRXRD measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO. The FWHM of the HRXRD (0002) rocking curves measured for the 2 inch ZnO-on-sapphire wafers is as low as 27 arcsec with a very high lateral homogeneity across the whole wafer. Plane view HRTEM observations reveal the very good quality of the ZnO films. The results indicate that CBE is a suitable technique to fabricate ZnO of very high structural quality, which can eventually be used as an alternative to bulk ZnO substrates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    Maryński, A.; Sĕk, G.; Musiał, A.; Andrzejewski, J.; Misiewicz, J. [Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Gilfert, C.; Reithmaier, J. P. [Technische Physik, Institute of Nanostructure Technology and Analytics, CINSaT, University of Kassel, Heinrich Plett-Str. 40, D-34132 Kassel (Germany); Capua, A.; Karni, O.; Gready, D.; Eisenstein, G. [Department of Electrical Engineering, Technion, Haifa 32000 (Israel); Atiya, G.; Kaplan, W. D. [Department of Materials Science and Engineering, Technion, Haifa 32000 (Israel); Kölling, S. [Fraunhofer Institute for Photonic Microsystems, Center for Nanoelectronic Technologies, Königsbrücker Straße 180, D-01099 Dresden (Germany)

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band k·p model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  1. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  2. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-01-01

    We report the growth and characterization of III-nitride ternary thin films (Al x Ga 1−x N, In x Al 1−x N and In x Ga 1−x N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures

  3. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  4. Bromine doping of CdTe and CdMnTe epitaxial layers grown by molecular beam epitaxy

    Waag, A. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Scholl, S. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Schierstedt, K. von (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Hommel, D. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1993-03-01

    We report on the n-type doping of CdTe and CdMnTe with bormine as a novel dopant material. /the thin films were grown by molecular beam epitaxy. ZnBr[sub 2] was used as a source material for the n-type doping. Free carrier concentrations at room temperature of up to 2.8x10[sup 18] cm[sup -3] could be readily obtained for both CdTe as well as CdMnTe thin films with Mn concentrations below 10%. This is to our knowledge the highest value ever obtained for the dilute magnetic semiconductor CdMnTe. For ZnBr[sub 2] source temperatures up to 60 C - corresponding to a free carrier concentration of (2-3)x10[sup 18] cm[sup -3] - the free carrier concentration of the epitaxial film increases with ZnBr[sub 2] source temperature. For higher ZnBr[sub 2] source temperatures compensation becomes dominant, which is indicated by a steep decrease of the free carrier concentration with increasing ZnBr[sub 2] source temperature. In addition the carrier mobility decreases drastically for such high dopant fluxes. A model of bromine incorporation is proposed. (orig.)

  5. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    LeClair, Patrick R. [Univ. of Alabama, Tuscaloosa, AL (United States); Gary, Mankey J. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  6. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  7. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  8. Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically grown Graphene

    Hwang, Sung Won [Konkuk University, Chungju (Korea, Republic of); Choi, Suk-Ho [Kyung Hee University, Yongin (Korea, Republic of)

    2016-07-15

    Sapphire is widely used as a substrate for the growth of GaN epitaxial layer (EPI), but has several drawbacks such as high cost, large lattice mismatch, non-flexibility, and so on. Here, we first employ graphene directly grown on Si or sapphire substrate as a platform for the growth and lift-off of GaN-light-emitting diode (LED) EPI, useful for not only recycling the substrate but also transferring the GaN-LED EPI to other flexible substrates. Sequential standard processes of nucleation/recrystallization of GaN seeds and deposition of undoped (u-) GaN/AlN buffer layer were done on graphene/substrate before the growth of GaN-LED EPI, accompanied by taping and lift-off of u-GaN/AlN or GaN-LED EPI. This approach can overcome the limitations by the catalytic growth and transfer of graphene, and make the oxygen-plasma treatment of graphene for the growth of GaN EPI unnecessary.

  9. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  10. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2017-01-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  11. Intensity Distribution of the Three-Wave Diffraction from Dislocation Epitaxial Layers in the Reciprocal Space

    Kyutt, R. N.

    2018-04-01

    The three-wave X-ray diffraction in strongly disordered epitaxial layers of GaN and ZnO is experimentally investigated. The charts of the intensity distribution in the reciprocal space are plotted in coordinates q θ and q ϕ for the most intensive three-wave combination (1010)/(1011) by means of subsequent θ- and ϕ-scanning. A nontrivial shape of the θ-sections of these contours at a distance from the ϕ center of reflection is revealed; it is different for different samples. For the θ-curves at the center of reflection, we observed a common peak that may be approximated by the Voigt function with a power-low decrease in the intensity at the wings; the decrease law (from-4.5 to-5.0) is found to be considerably greater than that for the similar curves of two-wave diffraction and not depending on the dislocation density and distribution in layers. In some films we observed a coarse-block structure; in addition, it follows from the distribution in the reciprocal space that these blocks are turned with respect to each other around a normal to the surface, which allows us to suggest the existence of low-angle boundaries between them, consisting exclusively of edge dislocations.

  12. Silicon doped InP as an alternative plasmonic material for mid-infrared

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  13. Influence of some f-elements on the properties of InP layers prepared by LPE

    Procházková, Olga; Zavadil, Jiří; Žďánský, Karel; Novotný, Jan; Peřina, Vratislav

    1999-01-01

    Roč. 50, 2/s (1999), s. 20-23 ISSN 1335-3632. [Development of Materials Science in Research and Education - DMS -RE 1998 /8./. Zlenice, 08.09.1998-10.09.1998] R&D Projects: GA ČR GA102/96/1238; GA AV ČR KSK1010601 Projekt 7/96/K:4073 Institutional research plan: CEZ:AV0Z2067918 Keywords : III-V semiconductors * rare earth compounds * liquid phase epitaxial growth * crystal defects Subject RIV: CA - Inorganic Chemistry

  14. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  15. Changing of micromorphology of silicon-on-sapphire epitaxial layer surface at irradiation by subthreshold energy X-radiation

    Kiselev, A N; Skupov, V D; Filatov, D O

    2001-01-01

    The morphology of silicon-on-sapphire epitaxial layer surface after pulse irradiation by the X-rays with the energy of <= 140 keV is studied. The study on the irradiated material surface is carried out by the methods of the atomic force microscopy and ellipsometry. The average roughness value after irradiation constitutes 7 nm. The change in the films surface microrelief occurs due to reconstruction of their dislocation structure under the action of elastic waves, originating in the X radiation

  16. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  17. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  18. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  19. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Sun, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Makise, Kazumasa; Terai, Hirotaka [Advanced ICT Research Institute, National Institute of Information and Communications Technology (Japan); Zhang, Lu [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Wang, Zhen, E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Tech University, Shanghai 201210 (China)

    2016-06-15

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{sup 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.

  20. Fabrication of GaN epitaxial thin film on InGaZnO4 single-crystalline buffer layer

    Shinozaki, Tomomasa; Nomura, Kenji; Katase, Takayoshi; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2010-01-01

    Epitaxial (0001) films of GaN were grown on (111) YSZ substrates using single-crystalline InGaZnO 4 (sc-IGZO) lattice-matched buffer layers by molecular beam epitaxy with a NH 3 source. The epitaxial relationships are (0001) GaN //(0001) IGZO //(111) YSZ in out-of-plane and [112-bar 0] GaN //[112-bar 0] IGZO //[11-bar 0] YSZ in in-plane. This is different from those reported for GaN on many oxide crystals; the in-plane orientation of GaN crystal lattice is rotated by 30 o with respect to those of oxide substrates except for ZnO. Although these GaN films showed relatively large tilting and twisting angles, which would be due to the reaction between GaN and IGZO, the GaN films grown on the sc-IGZO buffer layers exhibited stronger band-edge photoluminescence than GaN grown on a low-temperature GaN buffer layer.

  1. Structure characterization of Pd/Co/Pd tri-layer films epitaxially grown on MgO single-crystal substrates

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2011-09-30

    Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001){sub fcc}, (111){sub fcc}, and (011){sub fcc} orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001){sub fcc} layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111){sub fcc} and the Pd(011){sub fcc} layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111){sub fcc} layers consist of hcp(0001) + fcc(111) and Pd(111){sub fcc} epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011){sub fcc} layers with two variants, hcp(11-bar 00) and fcc(111). On the Co layers, Pd(011){sub fcc} epitaxial layers are formed.

  2. Photo-irradiation effects on GaAs atomic layer epitaxial growth. GaAs no genshiso epitaxial seicho ni okeru hikari reiki koka

    Mashita, M.; Kawakyu, Y.; Sasaki, M.; Ishikawa, H. (Toshiba Corp., Kawasaki (Japan). Research and Development Center)

    1990-08-10

    Single atomic layer epitaxy (ALE) aims at controlling a growing film at a precision of single molecular layer. In this article, it is reported that the growth temperature range of ALE was expanded by the vertical irradiation of KrF exima laser (248 nm) onto the substrate for the ALE growth of GaAs using the metalorganic chemical vapor deposition (MOCVD) method. Thanks for the results of the above experiment, it was demonstrated that the irradiation effect was not thermal, but photochemical. In addition, this article studies the possibility of adsorption layer irradiation and surface irradiation as the photo-irradiation mechanism, and points out that coexistence of both irradiation mechanisms can be considered and, in case of exima laser, strong possibility of direct irradiation of the adsorption layer because of its high power density. Hereinafter, by using both optical growth ALE and thermal growth ALE jointly, the degree of freedom of combination of hetero ALE increases and its application to various material systems becomes possible. 16 refs., 6 figs.

  3. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  4. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  5. Effect of the Ti-Nanolayer Thickness on the Self-Lift-off of Thick GaN Epitaxial Layers

    Yugov, A. A.; Malahov, S. S.; Donskov, A. A.; Duhnovskii, M. P.; Knyazev, S. N.; Kozlova, Yu. P.; Yugova, T. G.; Belogorokhov, I. A.

    2016-01-01

    The effect of the type of substrate, sapphire substrate (c- and r-orientation) or GaN/Al_2O_3 template (c- and r-orientations), on the nitridation of an amorphous titanium nanolayer is shown. The effect of the titanium-nanolayer thickness on thick GaN epitaxial layer self-separation from the substrate is revealed. The titanium-nanolayer thickness at which thick GaN layer is reproducibly self-separated is within 20–40 nm.

  6. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  7. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Zhonghua; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The growth mechanism has been revealed for the ZnO buffers with different thickness. • The surface morphology has been determined as the key factor to affect the epitaxial growth. • The relation between the hexagonal pits from buffers and epi-films has been established. • The hexagonal pits formed in the epi-films have been attributed to the V-shaped defects inheriting from the dislocations in the buffers. • The structural and electrical properties of the V-defects have been presented and analyzed. - Abstract: In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  8. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-01-01

    Highlights: • The growth mechanism has been revealed for the ZnO buffers with different thickness. • The surface morphology has been determined as the key factor to affect the epitaxial growth. • The relation between the hexagonal pits from buffers and epi-films has been established. • The hexagonal pits formed in the epi-films have been attributed to the V-shaped defects inheriting from the dislocations in the buffers. • The structural and electrical properties of the V-defects have been presented and analyzed. - Abstract: In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  9. Simulation for silicon-compatible InGaAs-based junctionless field-effect transistor using InP buffer layer

    Seo, Jae Hwa; Cho, Seongjae; Kang, In Man

    2013-10-01

    In this paper, we present the optimized performances of indium gallium arsenide (InGaAs)-based compound junctionless field-effect transistors (JLFETs) using an indium phosphide (InP) buffer layer. The proposed InGaAs-InP material combination with little lattice mismatch provides a significant improvement in current drivability securing various potential applications. Device optimization is performed in terms of primary dc parameters and characterization is investigated by two-dimensional (2D) technology computer-aided design simulations. The optimization variables were the channel doping concentration (Nch), the buffer doping concentration (Nbf), and the channel thickness (Tch). For the optimally designed InGaAs JLFET, on-state current (Ion) of 325 µA µm-1, subthreshold swing (S) of 80 mV dec-1, and current ratio (Ion/Ioff) of 109 were obtained. In the end, the results are compared with the data of silicon (Si)-based JL MOSFETs to confirm the improvements.

  10. Surface Plasmons on Highly Doped InP

    Panah, Mohammad Esmail Aryaee; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    Silicon doped InP is grown by metal-organic vapor phase epitaxy (MOVPE) using optimized growth parameters to achieve high free carrier concentration. Reflectance of the grown sample in mid-IR range is measured using FTIR and the result is used to retrieve the parameters of the dielectric function...

  11. High conversion efficiency and high radiation resistance InP solar cells

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  12. Growth of AlN/Pt heterostructures on amorphous substrates at low temperatures via atomic layer epitaxy

    Nepal, N.; Goswami, R.; Qadri, S.B.; Mahadik, N.A.; Kub, F.J.; Eddy, C.R.

    2014-01-01

    Recent results on atomic layer epitaxy (ALE) growth and characterization of (0 0 0 1)AlN on highly oriented (1 1 1)Pt layers on amorphous HfO 2 /Si(1 0 0) are reported. HfO 2 was deposited by atomic layer deposition on Si(1 0 0) followed by ALE growth of Pt(15 nm) and, subsequently, AlN(60 nm) at 500 °C. Based on the X-ray diffraction and transmission electron microscopy measurements, the Pt and AlN layers are highly oriented along the (1 1 1) and (0 0 0 2) directions, respectively. Demonstrations of AlN/Pt heterostructures open up the possibility of new state-of-the-art microelectromechanical systems devices

  13. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  14. Segregation of antimony in InP in MOVPE

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  15. Segregation of antimony in InP in MOVPE

    Weeke, Stefan

    2008-01-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  16. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  17. Reduction of buffer layer conduction near plasma-assisted molecular-beam epitaxy grown GaN/AlN interfaces by beryllium doping

    Storm, D.F.; Katzer, D.S.; Binari, S.C.; Glaser, E.R.; Shanabrook, B.V.; Roussos, J.A.

    2002-01-01

    Beryllium doping of epitaxial GaN layers is used to reduce leakage currents through interfacial or buffer conducting layers grown by plasma-assisted molecular-beam epitaxy on SiC. Capacitance-voltage measurements of Schottky barrier test structures and dc pinch-off characteristics of unintentionally doped GaN high-electron-mobility transistors indicate that these leakage currents are localized near the GaN/AlN interface of our AlGaN/GaN/AlN device structures. Insertion of a 2000 Aa Be:GaN layer at the interface reduces these currents by three orders of magnitude

  18. Strain and crystalline defects in epitaxial GaN layers studied by high-resolution X-ray diffraction

    Chierchia, Rosa

    2007-07-01

    This thesis treats strain and dislocations in MOVPE GaN layers. The mosaic structure of metalorganic vapour phase epitaxy (MOVPE)-grown GaN layers was studied in dependence on the grain diameter utilizing high-resolution XRD. Different models for the defect structure were analyzed, the edge type TD densities were calculated under the assumption that the dislocations are not randomly distributed but localized at the grain boundaries. Moreover, in situ measurements have shown that the layers are under tension in the c-plane when a nucleation layer is used. The second part of this thesis treats a particular approach to reduce dislocations in MOVPE GaN layers, i.e. maskless pendeo epitaxial growth of MOVPE GAN layers. FE simulations assuming the strain to be completely induced during cooling of the structures after growth agree only partly with experimental data. The strain state of single layers and stripes of GaN grown on SiC was studied to exploit the evolution of the strain in the different phases of the PE growth. The biaxial compressive stress, due to the lattice mismatch between the GaN layer and the AlN nucleation layer is plastically relieved before overgrowth. Temperature dependent measurements show a linear reduction of the wing tilt with increasing temperature varying from sample to sample. Bent TDs have been observed in TEM images of maskless PE samples. Stress induced from the mismatch between the AlN buffer layer and the GaN also contributes to the remaining part of the wing tilt not relieved thermally. It has to be noted that the rest tilt value varies from sample to sample at the growth temperature. In fact some of the data indicate that the wing tilt decreases with increasing V/III ratio. In the last Chapter the application of X-ray techniques for the analysis of strain and composition in layers of inhomogeneous composition is explored. In the first part of the Chapter the strain state and the Al content of AlGaN buffer layers grown directly on (0001

  19. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  20. Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

    Prohl, Christopher; Lenz, Andrea, E-mail: alenz@physik.tu-berlin.de [Technische Universität Berlin, Institut für Festkörperphysik, 10623 Berlin (Germany); Döscher, Henning; Kleinschmidt, Peter; Hannappel, Thomas [Helmholtz Center Berlin for Materials and Energy, 14109 Berlin (Germany)

    2016-05-15

    In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surface sensitivity of this method.

  1. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  2. Epitaxial graphene

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  3. InP tunnel junction for InGaAs/InP tandem solar cells

    Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.

    1995-01-01

    Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting

  4. Direct Growth of High-Quality InP Layers on GaAs Substrates by MOCVD

    K. F. Yarn

    2003-01-01

    group V partial pressure, growth rate and V/III ratios. A mirror-like, uniform surface and high crystal quality of the metamorphic buffer layer directly grown on a GaAs substrate can be achieved. Finally, to investigate the performance of the metamorphic microwave devices, we also fabricate the InAlAs/InGaAs metamorphic HEMT on GaAs substrates.

  5. Improved interface properties of atomic-layer-deposited HfO{sub 2} film on InP using interface sulfur passivation with H{sub 2}S pre-deposition annealing

    Jin, Hyun Soo [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Cho, Young Jin [Inorganic Material Lab., Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Department of Materials Science & Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Seok, Tae Jun; Kim, Dae Hyun; Kim, Dae Woong [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Sang-Moon [Process Development Team, Semiconductor R& D Center, Samsung Electronics Co. Ltd, Hwasung 445-701 (Korea, Republic of); Park, Jong-Bong; Yun, Dong-Jin [Analytical Engineering Group, Platform Technology Lab., Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Kim, Seong Keun [Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Tae Joo, E-mail: tjp@hanyang.ac.kr [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2015-12-01

    Highlights: • ALD HfO{sub 2} films were grown on InP for III–V compound-semiconductor-based devices. • S passivation was performed with (NH{sub 4}){sub 2}S solution and annealing under a H{sub 2}S atmosphere. • The H{sub 2}S annealing provided similar S profiles at the interface without surface damage. • The H{sub 2}S annealing was more effective to suppress interface state density due to thermal energy. - Abstract: Surface sulfur (S) passivation on InP substrate was performed using a dry process – rapid thermal annealing under H{sub 2}S atmosphere for III–V compound-semiconductor-based devices. The electrical properties of metal-oxide-semiconductor capacitor fabricated with atomic-layer-deposited HfO{sub 2} film as a gate insulator were examined, and were compared with the similar devices with S passivation using a wet process – (NH{sub 4}){sub 2}S solution treatment. The H{sub 2}S annealing provided solid S passivation with the strong resistance against oxidation compared with the (NH{sub 4}){sub 2}S solution treatment, although S profiles at the interface of HfO{sub 2}/InP were similar. The decrease in electrical thickness of the gate insulator by S passivation was similar for both methods. However, the H{sub 2}S annealing was more effective to suppress interface state density near the valence band edge, because thermal energy during the annealing resulted in stronger S bonding and InP surface reconstruction. Moreover, the flatband voltage shift by constant voltage stress was lower for the device with H{sub 2}S annealing.

  6. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  7. Continuous growth of low-temperature Si epitaxial layer with heavy phosphorous and boron doping using photoepitaxy

    Yamazaki, T.; Minakata, H.; Ito, T.

    1990-01-01

    The authors grew p + -n + silicon epitaxial layers, heavily doped with phosphorus and boron, continuously at 650 degrees C using low-temperature photoepitaxy. Then N + photoepitaxial layer with a phosphorus concentration above 10 17 cm -3 grown on p - substrate shows high-density surface pits, and as a result, poor crystal quality. However, when this n + photoepitaxial layer is grown continuously on a heavily boron-doped p + photoepitaxial layer, these surface pits are drastically decreased, disappearing completely above a hole concentration of 10 19 cm -3 in the p + photoepitaxial layer. The phosphorus activation ratio and electron Hall mobility in the heavily phosphorus-doped n + photoexpitaxial layer were also greatly improved. The authors investigated the cause of the surface pitting using a scanning transmission electron microscope, secondary ion mass spectroscopy, and energy-dispersive x-ray spectroscopy. They characterized the precipitation of phosphorus atoms on the crystal surface at the initial stage of the heavily phosphorus-doped n + photoexpitaxial layer growth

  8. Comparative study of polar and semipolar (112¯2) InGaN layers grown by metalorganic vapour phase epitaxy

    Dinh, Duc V.; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J.; Caliebe, M.; Scholtz, F.

    2014-01-01

    InGaN layers were grown simultaneously on (112 ¯ 2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (≥750 °C), the indium content ( ¯ 2) and (0001) InGaN layers was similar. However, for temperatures less than 750 °C, the indium content of the (112 ¯ 2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112 ¯ 2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112 ¯ 2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112 ¯ 2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ≈(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  9. Low-temperature heteroepitaxial growth of InAlAs layers on ZnSnAs{sub 2}/InP(001)

    Oomae, Hiroto; Suzuki, Akiko; Toyota, Hideyuki; Uchitomi, Naotaka [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan); Nakamura, Shin' ichi [Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-0206, Kanagawa (Japan)

    2015-06-15

    We studied the epitaxial growth of InAlAs on ZnSnAs{sub 2} thin films to establish magnetic heterostructures involving ferromagnetic Mn-doped ZnSnAs{sub 2} (ZnSnAs{sub 2}:Mn) thin films. These heterostructures were successfully grown at temperatures around 300 C to maintain room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn. Reflection high-energy electron diffraction, X-ray diffraction measurements and cross-sectional transmission electron microscopy revealed that the InAlAs layers were pseudomorphically lattice-matched with ZnSnAs{sub 2,} even at the low temperature of 300 C. We attempted to prepare magnetic quantum well structures from the InAlAs/ZnSnAs{sub 2}:Mn magnetic multilayer structure. We found that InAlAs layers heteroepitaxially grown on ZnSnAs{sub 2} and ferromagnetic ZnSnAs{sub 2}:Mn films are suitable for preparing InP-based magnetic semiconductor quantum structures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Summary of Workshop on InP: Status and Prospects

    Walters, R. J.; Weinberg, I.

    1994-01-01

    The primary objective of most of the programs in InP solar cells is the development of the most radiation hard solar cell technology. In the workshop, it was generally agreed that the goal is a cell which displays high radiation tolerance in a radiation environment equivalent to a 1 MeV electron fluence of about 10(exp 16)/sq cm. Furthermore, it is desired that the radiation response of the cell be essentially flat out to this fluence - i.e. that the power output of the cell not decrease from its beginning of life (BOL) value in this radiation environment. It was also agreed in the workshop that the manufacturability of InP solar cells needs to be improved. In particular, since InP wafers are relatively dense and brittle, alternative substrates need to be developed. Research on hetero-epitaxial InP cells grown on Si, Ge, and GaAs substrates is currently underway. The ultimate goal is to develop hetero-epitaxial InP solar cells using a cheap, strong, and lightweight substrate.

  11. Growth of β-FeSi2 layers on Si (111) by solid phase and reactive deposition epitaxies

    Miquita, D.R.; Paniago, R.; Rodrigues, W.N.; Moreira, M.V.B.; Pfannes, H.-D.; Oliveira, A.G. de

    2005-01-01

    Iron silicides were grown on Si (111) substrates by Solid Phase Epitaxy (SPE) and Reactive Deposition Epitaxy (RDE) to identify the optimum conditions to obtain the semiconducting β-FeSi 2 phase. The films were produced under different growth and annealing conditions and analyzed in situ and ex situ by X-ray Photoelectron Spectroscopy, and ex situ by Conversion Electron Moessbauer Spectroscopy. The use of these techniques allowed the investigation of different depth regions of the grown layer. Films of the ε-FeSi and β-FeSi 2 phases were obtained as well as the mixtures Fe 3 Si + ε-FeSi and ε-FeSi + β-FeSi 2 . The sequence Fe 3 Si→ε-FeSi→β-FeSi 2 was found upon annealing, where the phase transformation occurred due to the migration of silicon atoms from the substrate to the surface region of the grown layer. The best conditions for the phase transformation in SPE samples were met after annealing in the range 700 - 800 deg. C. For the RDE samples, the transition to the beta phase occurred between 600 and 700 deg. C, but pure β-FeSi 2 was obtained only after two hours of annealing at 700 deg. C

  12. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    Li Yanbo; Zhang Yang; Zhang Yuwei; Wang Baoqiang; Zhu Zhanping; Zeng Yiping

    2012-01-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (Ga Sb ) defect.

  13. Heteroepitaxially grown InP solar cells

    Weinberg, I.; Swartz, C.K.; Brinker, D.J.; Wilt, D.M.

    1990-01-01

    Although they are significantly more radiation resistant than either Si or GaAs solar cells, their high wafer cost presents a barrier to the widespread use of InP solar cells in space. For this reason, the authors have initiated a program aimed at producing high efficiency, radiation resistant solar cells processed from InP heteroepitaxially grown on cheaper substrates. The authors' objective is to present the most recent results emanating from this program together with the results of their initial proton irradiations on these cells. This paper reports that InP cells were processed from a 4 micron layer of InP, grown by OMCVD on a silicon substrate, with a 0.5 micron buffer layer between the InP directly grown on a GaAs substrate. Initial feasibility studies, in a Lewis sponsored program at the Spire corporation, resulted in air mass zero efficiencies of 7.1% for the former cells and 9.1% for the latter. These initial low efficiencies are attributed to the high dislocation densities caused by lattice mismatch. The authors' preirradiation analysis indicates extremely low minority carrier diffusion lengths, in both cell base and emitter, and high values of both the diffusion and recombination components of the diode reverse saturation currents. Irradiation by 10 MeV protons, to a fluence of 10 13 cm -2 , resulted in relatively low degradation in cell efficiency, short circuit current and open circuit voltage

  14. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  15. Far-infrared phonon spectroscopy of Pb1-xMn xTe layers grown by molecular beam epitaxy

    Romcevic, N.; Nadolny, A.J.; Romcevic, M.; Story, T.; Taliashvili, B.; Milutinovic, A.; Trajic, J.; Lusakowska, E.; Vasiljevic-Radovic, D.; Domukhovski, V.; Osinniy, V.; Hadzic, B.; Dziawa, P.

    2007-01-01

    In this paper we used far-infrared spectroscopy, reflection high energy electron diffraction (RHEED), X-ray diffraction and atomic force microscopy (AFM) to investigate structural and optical properties of Pb 1-x Mn x Te layers grown by molecular beam epitaxy (MBE). A numerical model for calculating the reflectivity coefficient for complex systems which include films, buffer layer and substrate has been applied. The infrared reflectivity spectra consist of Pb 1-x Mn x Te phonons, which exhibit intermediate one-two mode behavior, and MnTe phonons. A good agreement between calculated and experimental spectra is achieved. We registered the local distribution of Mn impurities depending on substrate type. For films growth on BaF 2 substrate we registered the orthorhombic local structure of MnTe clusters, while in the case of KCl substrate this structure is cubic. The Pb 1-x Mn x Te long wavelength optical phonons were described by the modified Genzel's model

  16. Impact of rare earth elements on the properties of InP-based epitaxial layers

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Žďánský, Karel; Kopecká, M.

    2005-01-01

    Roč. 1, č. 1 (2005), s. 187-187 ISSN 1336-7242. [Zjazd chemických spoločností /57./. Tatranské Matliare, 04.09.2005-08.09.2005] R&D Projects: GA ČR(CZ) GA102/03/0379 Institutional research plan: CEZ:AV0Z20670512 Keywords : epitaxial growth * semiconductors * rare earth compounds Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  18. When is an INP not an INP?

    Simpson, Emma; Connolly, Paul; McFiggans, Gordon

    2016-04-01

    Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a

  19. Fabrication of SGOI material by oxidation of an epitaxial SiGe layer on an SOI wafer with H ions implantation

    Cheng Xinli; Chen Zhijun; Wang Yongjin; Jin Bo; Zhang Feng; Zou Shichang

    2005-01-01

    SGOI materials were fabricated by thermal dry oxidation of epitaxial H-ion implanted SiGe layers on SOI wafers. The hydrogen implantation was found to delay the oxidation rate of SiGe layer and to decrease the loss of Ge atoms during oxidation. Further, the H implantation did not degrade the crystallinity of SiGe layer during fabrication of the SGOI

  20. Optical and electrical properties of Te doped AlGaAsSb/AlAsSb Bragg mirrors on InP

    Toginho Filho, D. O.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.

    2006-01-01

    We present a comparative study carried out on the optical and electrical characteristics of undoped and Te doped AlGaAsSb/AlAsSb Bragg mirrors with 6.5 pairs of layers and bulk undoped and Te doped AlGaAsSb epilayers alloys lattice matched on InP, grown by molecular beam epitaxy, using SIMS, photoluminescence, reflectivity and IxV techniques. The temperature dependence of PL transitions observed in the Bragg mirrors are similar to that observed in bulk samples and associated with the donor an...

  1. Characterization of InAs quantum wires on (001) InP: toward the realization of VCSEL structures with a stabilized polarization

    Lamy , Jean-Michel; Levallois , Christophe; Nakkar , Abdulhadi; Caroff , Philippe; Paranthoen , Cyril; Dehaese , Olivier; Le Corre , Alain; Ramdane , Abderrahim; Loualiche , Slimane

    2006-01-01

    International audience; We propose a new type of long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of quantum wires (QWires) layers of InAs/InGaAsP grown on InP(001) and dielectrics Bragg mirrors, in order to control the in plane polarization of output power. QWires and quantum wells growth are performed by molecular beam epitaxy. QWires present a strong photoluminescence dependence to the polarization in contrast to the quantum wells, a polarization rate of 33% is...

  2. Ln{sup 3+}:KLu(WO{sub 4}){sub 2}/KLu(WO{sub 4}){sub 2} epitaxial layers: Crystal growth and physical characterisation

    Silvestre, O.; Pujol, M.C.; Sole, R.; Bolanos, W.; Carvajal, J.J.; Massons, J.; Aguilo, M. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain); Diaz, F. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain)], E-mail: f.diaz@urv.cat

    2008-01-15

    Monoclinic epitaxial layers of single doped KLu{sub 1-x}Ln{sub x}(WO{sub 4}){sub 2} (Ln{sup 3+} = Yb{sup 3+} and Tm{sup 3+}) have been grown on optically passive KLuW substrates by liquid phase epitaxy (LPE) technique using K{sub 2}W{sub 2}O{sub 7} as solvent. The ytterbium content in the layer is in the range of 0.05 < x < 0.75 atomic substitution and the studied thulium concentrations are 0.05 < x < 0.10. The grown epitaxies are free of macroscopic defects and only in highly ytterbium-doped epilayers do some cracks or inclusions appear. The refractive indices of the epilayers were determined. The absorption and emission cross sections of ytterbium and thulium in KLuW are characterised and laser generation results are presented and discussed.

  3. Epitaxial growth of matched metallic ErP0.6As0.4 layers on GaAs

    Guivarc'h, A.; Le Corre, A.; Gaulet, J.; Guenais, B.; Minier, M.; Ropars, G.; Badoz, P.A.; Duboz, J.Y.

    1990-01-01

    Successful growth of (001)ErP 0.6 As 0.4 single crystal film on (001) GaAs has been demonstrated. The epitaxial metallic layers reproducibly showed lattice mismatch below 5 10 -4 . This is, to the authors' knowledge, the first report of a stable, epitaxial and lattice-matched metal/compound semiconductor heterostructure. The ErP 0.6 As 0.4 /n-GaAs diodes yielded excellent I-V characteristics with an ideality factor of 1.1 and barrier height of 0.88 eV. For a 240 Angstrom- thick film, metallic behavior was observed with resistivities of 25 and 86 μΩcm at 1.5 K and room temperature, respectively. As the other Er compounds ErP, ErAs, ErSb and ErSi 2 , ErP 0.6 As 0.4 presents an abrupt drop in resistivity in the vicinity of the liquid helium temperature, due to a paramagnetic to antiferromagnetic phase transition

  4. Epitaxial Growth of MgxCa1-xO on GaN by Atomic Layer Deposition.

    Lou, Xiabing; Zhou, Hong; Kim, Sang Bok; Alghamdi, Sami; Gong, Xian; Feng, Jun; Wang, Xinwei; Ye, Peide D; Gordon, Roy G

    2016-12-14

    We demonstrate for the first time that a single-crystalline epitaxial Mg x Ca 1-x O film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched Mg x Ca 1-x O/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard's law. An atomically sharp interface from cross-sectional transmission electron microscopy (TEM) confirmed the high quality of the epitaxy. High-temperature capacitance-voltage characterization showed that the film with composition Mg 0.25 Ca 0.75 O has the lowest interfacial defect density. With this optimal oxide composition, a Mg 0.25 Ca 0.75 O/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility (MOS-HEMT) device was fabricated. An ultrahigh on/off ratio of 10 12 and a near ideal SS of 62 mV/dec were achieved with this device.

  5. Epitaxial AlN layers on sapphire and diamond; Epitaktische AlN-Schichten auf Saphir und Diamant

    Hermann, Martin

    2009-04-27

    In this work, epitaxial AlN layers deposited by molecular beam epitaxy on sapphire and diamond substrates were investigated. Starting from this AlN, the dopant silicon was added. The influence of the silicon doping on the structural properties of the host AlN crystal was investigated using high resolution X-ray diffraction. Once the silicon concentration exceeds 1 x 10{sup 19} cm{sup -3}, a significant change of the AlN:Si crystal can be observed: increasing the silicon concentration up to 5 x 10{sup 20} cm{sup -3} results in a decrease of the a lattice parameter by approximately 1.2 pm and an increase of the c lattice parameter by about 1.0 pm. The crystal is stressed additionally by adding silicon resulting in a increase of the biaxial compressive stress of up to 2.0 GPa. Further increase of the silicon concentration leads to lattice relaxation. This result from X-ray diffraction was independently confirmed by Raman spectroscopy investigations. Further increase of the silicon concentration leads to the generation of polycrystalline phases within the epitaxial layer. XTEM measurements detected these polycrystalline phases. In addition, XTEM investigations confirmed also the increase of the lateral crystal size with increasing silicon concentration, as well as a great reduction of the screw dislocation density by more than one order of magnitude as found by X-ray diffraction: in undoped, nitrogen rich grown AlN layers the screw dislocation density is about 3 x 10{sup 8} cm{sup -2}, while AlN layers with a silicon concentration of 5 x 10{sup 20} cm{sup -3} show a screw dislocation density of only 1 x 10{sup 7} cm{sup -2}. In low-doped AlN:Si ([Si]{approx}2 x 10{sup 19} cm{sup -3}) the activation energy of the electronic conductivity is about 250 meV. Increasing the silicon concentration to about 1 x 10{sup 21} cm{sup -3} leads to an increase of the activation energy up to more than 500 meV in the now much more stressed AlN:Si epilayer. Studies of the absorption

  6. Low temperature step-graded InAlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy

    Shang, X Z; Wu, S D; Liu, C; Wang, W X; Guo, L W; Huang, Q; Zhou, J M

    2006-01-01

    Low-temperature step-graded InAlAs metamorphic buffer layers on GaAs substrate grown by molecular beam epitaxy were investigated. The strain relaxation and the composition of the top InAlAs layer were determined by high-resolution triple-axis x-ray diffraction measurements, which show that the top InAlAs layer is nearly fully relaxed. Surface morphology was observed by reflection high-energy electron diffraction pattern and atomic force microscopy. Under a selected range of growth parameters, the root mean square surface roughness of the sample grown at 380 deg. C is 0.802 nm, which has the smallest value compared with those of other samples. Furthermore, The ω-2θ and ω scans of the triple-axis x-ray diffraction, and photoluminescence show the sample grown at 380 deg. C has better crystalline quality. With decreasing As overpressure at this growth temperature, crystalline quality became poor and could not maintain two dimensional growth with increasing overpressure. The carrier concentrations and Hall mobilities of the InAlAs/ InGaAs/GaAs MM-HEMT structure on low-temperature step-graded InAlAs metamorphic buffer layers grown in optimized conditions are high enough to make devices

  7. Extremely improved InP template and GaInAsP system growth on directly-bonded InP/SiO2-Si and InP/glass substrate

    Matsumoto, Keiichi; Makino, Tatsunori; Kimura, Katsuya; Shimomura, Kazuhiko

    2013-01-01

    We have developed an ultrathin InP template with low defect density on SiO 2 -Si and glass substrate by employing wet etching and wafer direct bonding technique. We have demonstrated epitaxial growth on these substrates and GaInAs/InP multiple quantum well layers were grown by low pressure metal-organic vapor-phase epitaxy. Photoluminescence measurements of the layers show that they are optically active and we have obtained almost the same intensity from these substrates compared to the InP substrate. These results may be attributed to improvement of InP template quality and should provide further improvements in device performance realized on SiO 2 -Si and glass substrate. And, these are promising results in terms of integration of InP-based several functional optical devices on SiO 2 -Si and glass substrate. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Systems and methods for advanced ultra-high-performance InP solar cells

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  9. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    Lumb, M. P.; Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J.; González, M.; Bennett, M. F.; Herrera, M.; Delgado, F. J.; Molina, S. I.

    2016-01-01

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm 2 to be realized.

  10. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    Lumb, M. P. [The George Washington University, Washington, DC 20037 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Yakes, M. K.; Schmieder, K. J.; Affouda, C. A.; Walters, R. J. [US Naval Research Laboratory, Washington, DC 20375 (United States); González, M.; Bennett, M. F. [Sotera Defense Solutions, Annapolis Junction, Maryland 20701 (United States); US Naval Research Laboratory, Washington, DC 20375 (United States); Herrera, M.; Delgado, F. J.; Molina, S. I. [University of Cádiz, 11510, Puerto Real, Cádiz (Spain)

    2016-05-21

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm{sup 2} to be realized.

  11. Quantum Nanostructures by Droplet Epitaxy

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  12. Graphene enhanced field emission from InP nanocrystals.

    Iemmo, L; Di Bartolomeo, A; Giubileo, F; Luongo, G; Passacantando, M; Niu, G; Hatami, F; Skibitzki, O; Schroeder, T

    2017-12-08

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  13. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  14. Molecular beam epitaxy of InN layers on Sapphire, GaN and indium tin oxide

    Denker, Christian; Landgraf, Boris; Schuhmann, Henning; Malindretos, Joerg; Seibt, Michael; Rizzi, Angela [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Segura-Ruiz, Jaime; Gomez-Gomez, Maribel; Cantarero, Andres [Materials Science Institute, University of Valencia, Paterna (Spain)

    2009-07-01

    Among the group-III nitrides semiconductors, InN is the one with the narrowest gap (0.67 eV), lowest effective electron mass and highest peak drift velocity. It is therefore a very interesting material for several applications, in particular semiconductor solar cells. Furthermore, the high electron affinity makes it suitable also as electrode material for organic solar cells. InN layers were grown by molecular beam epitaxy on MOCVD GaN templates, on bare c-plane sapphire and on polycrystalline indium tin oxide. On all substrates the III-V ratio as well as the substrate temperature was varied. A RHEED analysis of InN growth on GaN showed a relatively sharp transition from N-rich and columnar growth to In-rich growth with droplet formation by increasing the In flux impinging on the surface. The InN layers on single crystalline substrates were characterized by SEM, AFM, XRD, PL and Raman. The InN layers on ITO were mainly analyzed with respect to the surface morphology with SEM. HRTEM in cross section gives insight into the structure of the interface to the ITO substrate.

  15. Structural and optical properties of GaxIn1-xP layers grown by chemical beam epitaxy

    Seong, Tae-Yeon; Yang, Jung-Ja; Ryu, Mee Yi; Song, Jong-In; Yu, Phil W.

    1998-05-01

    Chemical beam epitaxial (CBE) GaxIn1-xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{-1+δ,1-δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of 1/2\\{bar 110\\} , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (˜45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.

  16. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  17. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  18. Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD

    Arslan, Engin; Ozbay, Ekmel; Ozturk, Mustafa K; Ozcelik, Suleyman; Teke, Ali

    2008-01-01

    We report the growth of GaN films on the Si(1 1 1) substrate by metalorganic chemical vapour phase deposition (MOCVD). Different buffer layers were used to investigate their effects on the structural and optical properties of GaN layers. A series of GaN layers were grown on Si(1 1 1) with different buffer layers and buffer thicknesses and were characterized by Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements. We first discuss the optimization of the LT-AlN/HT-AlN/Si(1 1 1) templates and then the optimization of the graded AlGaN intermediate layers. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.6 μm. The XRD and PL measurements results confirmed that a wurtzite GaN was successfully grown. The resulting GaN film surfaces were flat, mirror-like and crack-free. The mosaic structure in the GaN layers was investigated. With a combination of Williamson-Hall measurements and the fitting of twist angles, it was found that the buffer thickness determines the lateral coherence length, vertical coherence length, as well as the tilt and twist of the mosaic blocks in GaN films. The PL spectra at 8 K show that a strong band edge photoluminescence of GaN on Si (1 1 1) emits light at an energy of 3.449 eV with a full width at half maximum (FWHM) of approximately 16 meV. At room temperature, the peak position and FWHM of this emission become 3.390 eV and 58 meV, respectively. The origin of this peak was attributed to the neutral donor bound exciton. It was found that the optimized total thickness of the AlN and graded AlGaN layers played a very important role in the improvement of quality and in turn reduced the cracks during the growth of GaN/Si(1 1 1) epitaxial layers

  19. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  20. Comparison of linear and nonlinear optical spectra of various ZnO epitaxial layers and of bulk material obtained by different experimental techniques

    Priller, H.; Brueckner, J.; Klingshirn, C.; Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Gruber, Th.; Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert Einstein Allee 45, 89081 Ulm (Germany); Ko, H.J.; Yao, T. [Institute for Material Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2004-03-01

    We investigate ZnO epitaxial layers grown by MBE (Molecular Beam Epitaxy) and MOVPE (Metal Organic Vapor Phase Epitaxy) techniques. The samples show similar optical behavior in temperature dependent photoluminescence measurements, reflection and photoluminescence excitation spectroscopy in the low density regime. High excitation measurements show different behavior. While the MBE sample leads to stimulated emission from the exciton-exciton-scattering, an electron hole plasma is formed in the MOVPE sample which leads to stimulated emission at higher excitation intensities. The gain value measured by the variable stripe length method is much higher for the MBE grown sample. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  2. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  3. Bi-epitaxial tilted out-of-plane YBCO junctions on NdGaO{sub 3} substrates with YSZ seeding layer

    Mozhaev, P.B. (Institute of Physics and Technology RAS, Moscow (Russian Federation)); Mozhaev, J.E.; Bindslev Hansen, J.; Jacobsen, C.S. (Technical Univ. of Denmark, Dept. of Physics, Kgs. Lyngby (Denmark)); Kotelyanskil, I.M.; Luzanov, V.A. (Institute of Radio Engineering and Electronics RAS, Moscow (Russian Federation)); Benacka, S.; Strbik, V. (Institute of Electrical Engineering SAS, Bratislava (SK))

    2008-10-15

    Bi-epitaxial junctions with out-of plane tilt of the c axis were fabricated of YBCO superconducting thin films on NdGaO{sub 3} substrates with different miscut angles. Bi-epitaxial growth was provided by implementation of an Y:ZrO{sub 2} seeding layer on a certain part of the substrate. Junctions with different orientation of the bi-epitaxial boundaries were fabricated, their DC electrical properties were studied as a function of the boundary orientation angle. The junctions showed extremely high critical current densities for all tested miscut angles and bi-epitaxial boundary orientations (about 105 A/cm2 at 77 K and up to 106 A/cm2 at 4.2 K). The dependence of critical current density on the bi-epitaxial boundary orientation angle may be explained as an effect of a d-wave pairing mechanism in the HTSC with the simple Sigrist-Rice model. The studied boundaries may be considered as model structures for the grain boundaries in the coated conductors. (au)

  4. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  5. Single-Crystal Y2O3 Epitaxially on GaAs(001 and (111 Using Atomic Layer Deposition

    Y. H. Lin

    2015-10-01

    Full Text Available Single-crystal atomic-layer-deposited (ALD Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE GaAs(001-4 \\(\\times\\ 6 and GaAs(111A-2 \\(\\times\\ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using \\textit{in-situ} reflection high-energy electron diffraction in our uniquely designed MBE/ALD multi-chamber system. More detailed studies on the crystallography of the hetero-structures were carried out using high-resolution synchrotron radiation X-ray diffraction. When deposited on GaAs(001, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are of a cubic phase and have (110 as the film normal, with the orientation relationship being determined: Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(110\\[\\(001\\][\\(\\overline{1}10\\]//GaAs(\\(001\\[\\(110\\][\\(1\\overline{1}0\\]. On GaAs(\\(111\\A, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are also of a cubic phase with (\\(111\\ as the film normal, having the orientation relationship of Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(111\\[\\(2\\overline{1}\\overline{1}\\] [\\(01\\overline{1}\\]//GaAs (\\(111\\ [\\(\\overline{2}11\\][\\(0\\overline{1}1\\]. The relevant orientation for the present/future integrated circuit platform is (\\(001\\. The ALD-Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\/GaAs(\\(001\\-4 \\(\\times\\ 6 has shown excellent electrical properties. These include small frequency dispersion in the capacitance-voltage CV curves at accumulation of ~7% and ~14% for the respective p- and n-type samples with the measured frequencies of 1 MHz to 100 Hz. The interfacial trap density (Dit is low of ~10\\(^{12}\\ cm\\(^{−2}\\eV\\(^{−1}\\ as extracted from measured quasi-static CVs. The frequency dispersion at accumulation and the D\\(_{it}\\ are the lowest ever achieved among all the ALD-oxides on GaAs(\\(001\\.

  6. Determination of the nitrogen concentration in epitaxial layers of GaAs /SUB 1-x/ p /SUB x/ by the optical method

    Lupal, M.V.; Klot, B; Nikhter, K.; Pikhtin, A.N.; Trapp, M.

    1986-01-01

    This paper determines the dependence of the cross section for absorption in the A /SUB N/ line of a bound exciton on the nitrogen content in the solid solution GaAs /SUB 1-x/ P /SUB x/ by comparing the results of optical measurements with the data from secondary ionic mass spectrometry, and these results are used to study the effect of technological factors on the nitrogen concentration epitaxial layers obtained by the gas-transport method. Doping was carried out with nitrogen by injecting ammonia into the reactor zone; the partial pressure of the ammonia was varied from 1 to 25 kPa. Aside from nitrogen, the authors doped the layers with shallow donor Te. It is established that the solubility of nitrogen in the solid solution decreases as the arsenic content increases when the convenient optical method for determining the nitrogen concentration in epitaxial GaAs /SUB 1-x/ P /SUB x/ layers is used

  7. Quantitative Evaluation of Strain in Epitaxial 2H AlN Layers

    Nader, N.; Pezoldt, J.

    2011-01-01

    To improve the quality of AlN layer deposit on SiC/Si, different Ge amounts (0.25, 0.5, 1, 2ML) were deposited before the carbonization process at the silicon substrate in order to reduce the lattice parameters mismatch between Si and SiC grown layers. The residual stress of the hexagonal AlN layers derives from the phonon frequency shifts of the E1(TO) phonon mode. The crystalline quality of the AlN layer is correlated to and investigated by the full width of the half maximum (FWHM) and the intensity of E1(TO) mode of the 2H-AlN. Best crystalline quality and lower stress value are found in the case where 1ML of Ge amount is predeposited. The E1(TO) mode phonon frequency shifts-down by 3 cm-1/GPa with respect to an unstrained layer. (author)

  8. InP p-type epitaxial layers grown with the addition of rare-earth elements for use in radiation detection

    Zavadil, Jiří; Procházková, Olga; Žďánský, Karel; Gladkov, Petar

    2007-01-01

    Roč. 9, č. 5 (2007), s. 1221-1226 ISSN 1454-4164. [ROCAM 2006 - Romanian Conference on Advanced Materials /5./. Bucuresti, 11.09.2006-14.11.2006] R&D Projects: GA ČR GA102/06/0153 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductors * photoluminescence * galvanomagnetic effects Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.827, year: 2007

  9. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    Li, Henan; Li, Ying; Aljarb, Areej; Shi, Yumeng; Li, Lain-Jong

    2017-01-01

    to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches

  10. InP membrane on silicon integration technology

    Smit, M.K.

    2013-01-01

    Integration of light sources in silicon photonics is usually done with an active InP-based layer stack on a silicon-based photonic circuit-layer. InP Membrane On Silicon (IMOS) technology integrates all functionality in a single InP-based layer.

  11. Structural anisotropy of nonpolar and semipolar InN epitaxial layers

    Darakchieva, V.; Xie, M.-Y.; Franco, N.; Giuliani, F.; Nunes, B.; Alves, E.; Hsiao, C. L.; Chen, L. C.; Yamaguchi, T.; Takagi, Y.; Kawashima, K.; Nanishi, Y.

    2010-10-01

    We present a detailed study of the structural characteristics of molecular beam epitaxy grown nonpolar InN films with a- and m-plane surface orientations on r-plane sapphire and (100) γ-LiAlO2, respectively, and semipolar (101¯1) InN grown on r-plane sapphire. The on-axis rocking curve (RC) widths were found to exhibit anisotropic dependence on the azimuth angle with minima at InN [0001] for the a-plane films, and maxima at InN [0001] for the m-plane and semipolar films. The different contributions to the RC broadening are analyzed and discussed. The finite size of the crystallites and extended defects are suggested to be the dominant factors determining the RC anisotropy in a-plane InN, while surface roughness and curvature could not play a major role. Furthermore, strategy to reduce the anisotropy and magnitude of the tilt and minimize defect densities in a-plane InN films is suggested. In contrast to the nonpolar films, the semipolar InN was found to contain two domains nucleating on zinc-blende InN(111)A and InN(111)B faces. These two wurtzite domains develop with different growth rates, which was suggested to be a consequence of their different polarity. Both, a- and m-plane InN films have basal stacking fault densities similar or even lower compared to nonpolar InN grown on free-standing GaN substrates, indicating good prospects of heteroepitaxy on foreign substrates for the growth of InN-based devices.

  12. Structural anisotropy of nonpolar and semipolar InN epitaxial layers

    Darakchieva, V.; Xie, M.-Y.; Franco, N.; Alves, E.; Giuliani, F.; Nunes, B.; Hsiao, C. L.; Chen, L. C.; Yamaguchi, T.; Takagi, Y.; Kawashima, K.; Nanishi, Y.

    2010-01-01

    We present a detailed study of the structural characteristics of molecular beam epitaxy grown nonpolar InN films with a- and m-plane surface orientations on r-plane sapphire and (100) γ-LiAlO 2 , respectively, and semipolar (1011) InN grown on r-plane sapphire. The on-axis rocking curve (RC) widths were found to exhibit anisotropic dependence on the azimuth angle with minima at InN [0001] for the a-plane films, and maxima at InN [0001] for the m-plane and semipolar films. The different contributions to the RC broadening are analyzed and discussed. The finite size of the crystallites and extended defects are suggested to be the dominant factors determining the RC anisotropy in a-plane InN, while surface roughness and curvature could not play a major role. Furthermore, strategy to reduce the anisotropy and magnitude of the tilt and minimize defect densities in a-plane InN films is suggested. In contrast to the nonpolar films, the semipolar InN was found to contain two domains nucleating on zinc-blende InN(111)A and InN(111)B faces. These two wurtzite domains develop with different growth rates, which was suggested to be a consequence of their different polarity. Both, a- and m-plane InN films have basal stacking fault densities similar or even lower compared to nonpolar InN grown on free-standing GaN substrates, indicating good prospects of heteroepitaxy on foreign substrates for the growth of InN-based devices.

  13. Real-time observation of epitaxial crystal growth in gaseous environment using x-ray diffraction and x-ray reflectometry

    Kawamura, Tomoaki; Bhunia, Satyaban; Watanabe, Yoshio; Fujikawa, Seiji

    2008-01-01

    We made the x-ray diffractometer combined with the MOCVD growth system for the real-time observation of epitaxial growth in gaseous environment, and investigated the growth mechanism of InP crystals. Changes of the (-5/2 O) Bragg diffraction during the growth revealed that the growth starts immediately after the In source has been supplied and gradually stopped, owing to the migrating In atoms on the surface. Additionally, one can easily determine the growth modes, including 3-dimensional mode, layer-by-layer mode, and step-flow mode, by observing the change of x-ray reflectivity with various growth conditions. (author)

  14. Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular-beam epitaxy using a ZnS epitaxial buffer layer

    Onuma, T.; Chichibu, S.F.; Uedono, A.; Yoo, Y.-Z.; Chikyow, T.; Sota, T.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    Nonradiative photoluminescence (PL) lifetime (τ nr ) and point defect density in the (0001) ZnO epilayer grown on (111) Si substrates by laser-assisted molecular-beam epitaxy (L-MBE) using a (0001) ZnS epitaxial buffer layer were compared with those in the ZnO films on (111) and (001) Si substrates prepared by direct transformation of ZnS epilayers on Si by thermal oxidation [Yoo et al., Appl. Phys. Lett. 78, 616 (2001)]. Both the ZnO films exhibited excitonic reflectance anomalies and corresponding PL peaks at low temperature, and the density or size of vacancy-type point defects (Zn vacancies), which were measured by the monoenergetic positron annihilation measurement, in the L-MBE epilayer was lower than that in the films prepared by the oxidation transformation. The ZnO epilayer grown on a (0001) ZnS epitaxial buffer on (111) Si exhibited longer τ nr of 105 ps at room temperature

  15. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  16. Investigation of the compositional depth profile in epitaxial submicrometer layers of AIIIBV heterostructures

    Baumbach, T.; Bruehl, H.G.; Rhan, H.; Pietsch, U.

    1988-01-01

    The compositional depth profile in semiconductor heterostructures can be determined from X-ray diffraction patterns. Different grading profiles were studied through theoretical simulations with regard to their features in the rocking curve. It was found that the thickness and the grading of a particular layer cannot be determined independently of each other. A linear grading gives rise to an increased peak width of the layer diffraction peak whereas an exponential grading can be detected from the damping of high-order interference fringes. The exponential model can be applied to determine the abruptness of the heterointerfaces. The proposed evaluation method of experimental rocking curves includes the case of overlapping peaks of the layer and the substrate diffraction. The simulation results are discussed for a GaAs/Ga 1-x Al x As/GaAs[100] double heterostructure. When the experimental resolution is taken into account, the sensitivity of the interface width determination was 100-200 A. (orig.)

  17. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  18. Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers

    Aleksandr V. Mazalov

    2016-06-01

    The effect of thermal annealing of GaN:Mg layers on acceptor impurity activation has been investigated. Hole concentration increased and mobility decreased with an increase in thermal annealing temperature. The sample annealed at 1000 °C demonstrated the lowest value of resistivity. Rapid thermal annealing (annealing with high heating speed considerably improved the efficiency of Mg activation in the GaN layers. The optimum time of annealing at 1000 °C has been determined. The hole concentration increased by up to 4 times compared to specimens after conventional annealing.

  19. Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Apostolopoulos, V.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, B.

    2004-01-01

    Crystalline $KY(WO_{4})_{2}$ thin layers doped with different rare-earth ions were grown on b-oriented, undoped $KY(WO_{4})_{2}$ substrates by liquid-phase epitaxy employing a low-temperature flux. The ternary chloride mixture of NaCl, KCl, and CsCl with a melting point of 480°C was used as a

  20. Surface photovoltage and photoluminescence study of thick Ga(In)AsN layers grown by liquid-phase epitaxy

    Donchev, V; Milanova, M; Lemieux, J; Shtinkov, N; Ivanov, I G

    2016-01-01

    We present an experimental and theoretical study of Ga(In)AsN layers with a thickness of around 1 μm grown by liquid-phase epitaxy (LPE) on n-type GaAs substrates. The samples are studied by surface photovoltage (SPV) spectroscopy and by photoluminescence spectroscopy. Theoretical calculations of the electronic structure and the spectral dependence of the dielectric function are carried out for different nitrogen concentrations using a full-band tight-binding approach in the sp 3 d 5 s*s N parameterisation. The SPV spectra measured at room temperature clearly show a red shift of the absorption edge with respect to the absorption of the GaAs substrate. This shift, combined with the results of the theoretical calculations, allows assessing the nitrogen concentration in different samples. The latter increases with increasing the In content. The analysis of the SPV phase spectra provides information about the alignment of the energy bands across the structures. The photoluminescence measurements performed at 2 K show a red shift of the emission energy with respect to GaAs, in agreement with the SPV results. (paper)

  1. Effect of the energy of bombarding electrons on the conductivity of n-4H-SiC (CVD) epitaxial layers

    Kozlovski, V. V., E-mail: kozlovski@physics.spbstu.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation); Lebedev, A. A.; Strel’chuk, A. M.; Davidovskaya, K. S. [Ioffe Physical–Technical Institute (Russian Federation); Vasil’ev, A. E. [Peter the Great St. Petersburg State Polytechnic University (Russian Federation); Makarenko, L. F. [Belarusian State University (Belarus)

    2017-03-15

    The electrical characteristics of epitaxial layers of n-4H-SiC (CVD) irradiated with 0.9 and 3.5MeV electrons are studied. It is shown that the donor removal rate becomes nearly four times higher as the energy of impinging electrons increases by a factor of 4, although the formation cross section of primary radiation defects (Frenkel pairs in the carbon sublattice) responsible for conductivity compensation of the material is almost energy independent in this range. It is assumed that the reason for the observed differences is the influence exerted by primary knocked-out atoms. First, cascade processes start to manifest themselves with increasing energy of primary knocked-out atoms. Second, the average distance between genetically related Frenkel pairs grows, and, as a consequence, the fraction of defects that do not recombine under irradiation becomes larger. The recombination radius of Frenkel pairs in the carbon sublattice is estimated and the possible charge state of the recombining components is assessed.

  2. Molecular Beam Epitaxial Growth and Characterization of Graphene and Hexagonal Boron Nitride Two-Dimensional Layers

    Zheng, Renjing

    Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and

  3. Effects of the electron beam on InP(100)

    Bouslama, M.; Jardin, C.; Ghamnia, M.

    1996-01-01

    Auger Electron Spectroscopy (AES) is performed to monitor the InP(100) surface evolution while it is irradiated by an electron beam of 5 KeV energy and 10 -3 A.cm -2 current density. A charge phenomenon appears during the irradiation of sputter-cleaned InP(100) by Ar + at low energy (500 eV). The deposition of phosphorus or antimony at room temperature on cleaned InP(100) is a good way of preventing this charging problem. This is also achieved by the growth of stoichiometric indium phosphide on InP(100) substrate, from an injection of phosphine and indium trimethyl whose ratio V/III is of 50, in a MOCVD (Metal Organic Chemical Vapor Deposition) reactor. The electron beam even acts to stimulate oxidation of the stoichiometric InP(100) surface involving on the top layers, into a well defined oxide such as InPO 4 or a contamination layer composed of carbon and oxygen. The partial pressure in the spectrometer is about 10 -9 Torr. The incident electrons produce breaking of (In-P) chemical bonds so that the resulting indium takes part in the oxidation process. The phosphorus is thought to be desorbed from the surface. (author)

  4. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  5. Palladium nanoparticles on InP for hydrogen detection

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Layers of palladium (Pd nanoparticles on indium phosphide (InP were prepared by electrophoretic deposition from the colloid solution of Pd nanoparticles. Layers prepared by an opposite polarity of deposition showed different physical and morphological properties. Particles in solution are separated and, after deposition onto the InP surface, they form small aggregates. The size of the aggregates is dependent on the time of deposition. If the aggregates are small, the layer has no lateral conductance. Forward and reverse I-V characteristics showed a high rectification ratio with a high Schottky barrier height. The response of the structure on the presence of hydrogen was monitored.

  6. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    2014-01-01

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding...... short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account...

  7. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  8. Strain relaxation during solid-phase epitaxial crystallisation of Ge{sub x}Si{sub 1-x} alloy layers with depth dependent G{sub e} compositions

    Wong, Wahchung; Elliman, R G; Kringhoj, P [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    The solid-phase epitaxial crystallisation of depth dependent Ge{sub x}Si{sub lx} alloy layers produced by implanting Ge into Si substrates was studied. In-situ monitoring was done using time-resolved reflectivity (TRR) whilst post-anneal defect structures were characterised by Rutherford backscattering and channeling spectrometry (RBS-C) and transmission electron microscopy (TEM). Particular attention was directed at Ge concentrations above the critical concentration for the growth of fully strained layers. Strain relief is shown to be correlated with a sudden reduction in crystallisation velocity caused by roughening of the crystalline/amorphous interface. 11 refs., 1 tab., 2 figs.

  9. Strain relaxation during solid-phase epitaxial crystallisation of Ge{sub x}Si{sub 1-x} alloy layers with depth dependent G{sub e} compositions

    Wong, Wahchung; Elliman, R.G.; Kringhoj, P. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    The solid-phase epitaxial crystallisation of depth dependent Ge{sub x}Si{sub lx} alloy layers produced by implanting Ge into Si substrates was studied. In-situ monitoring was done using time-resolved reflectivity (TRR) whilst post-anneal defect structures were characterised by Rutherford backscattering and channeling spectrometry (RBS-C) and transmission electron microscopy (TEM). Particular attention was directed at Ge concentrations above the critical concentration for the growth of fully strained layers. Strain relief is shown to be correlated with a sudden reduction in crystallisation velocity caused by roughening of the crystalline/amorphous interface. 11 refs., 1 tab., 2 figs.

  10. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  11. High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.

    1994-01-01

    Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.

  12. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  13. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  14. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  15. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kuznetsov, P. I.; Nikolaev, S. N.; Onistchenko, E. E.; Pruchkina, A. A.; Temiryazev, A. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radio-Engineering and Electronics (Russian Federation)

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing does not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.

  16. Control of metamorphic buffer structure and device performance of In(x)Ga(1-x)As epitaxial layers fabricated by metal organic chemical vapor deposition.

    Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C

    2014-12-05

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  17. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  18. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  19. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  20. Nanoscale imaging of surface piezoresponse on GaN epitaxial layers

    Stoica, T.; Calarco, R.; Meijers, R.; Lueth, H.

    2007-01-01

    Surfaces of GaN films were investigated by atomic force microscopy (AFM) with implemented piezoelectric force microscopy technique. A model of PFM based on the surface depletion region in GaN films is discussed. The local piezoelectric effect of the low frequency regime was found to be in phase with the applied voltage on large domains, corresponding to a Ga-face of the GaN layer. Low piezoresponse is obtained within the inter-domain regions. The use of frequencies near a resonance frequency enhances very much the resolution of piezo-imaging, but only for very low scanning speed the piezo-imaging can follow the local piezoelectric effect. An inversion of the PFM image contrast is obtained for frequencies higher than the resonance frequencies. The effect of a chemical surface treatment on the topography and the piezoresponse of the GaN films was also investigated. Textured surfaces with very small domains were observed after the chemical treatment. For this kind of surfaces, piezo-induced torsion rather than bending of the AFM cantilever dominates the contrast of the PFM images. A small memory effect was observed, and explained by surface charging and confinement of the piezoelectric effect within the carrier depletion region at the GaN surface

  1. Raman scattering from epitaxial HfN layers grown on MgO(001)

    Stoehr, M.; Seo, H.-S.; Petrov, I.; Greene, J.E.

    2006-01-01

    Stoichiometric single-crystal HfN layers grown on MgO(001) are analyzed by Raman spectroscopy. Second-order Raman scattering predominates, but first-order modes in the acoustic and optical ranges are also visible. The latter indicates that the O h symmetry of NaCl-structure HfN is broken. The large mass difference between Hf and N leads to a correspondingly large separation, 250 cm -1 , between the first-order acoustic and optical bands. Within this gap, four Raman lines are clearly observed. The first three are the second-order transverse acoustic mode (240 cm -1 ), the sum of the first-order transverse and longitudinal acoustic modes (280 cm -1 ), and the second-order longitudinal acoustic mode (325 cm -1 ). The fourth line at 380 cm -1 is identified as the difference between the first-order optical and acoustic modes. The observed first-order Raman scattering, as well as the width of the gap between the first-order acoustic and optical modes, is in good agreement with previously calculated HfN phonon density of states

  2. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Mitsuru Ohtake

    2017-05-01

    Full Text Available FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001 single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001 films with disordered fcc structure (A1 grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001 cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001 variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100 and (010 variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001 variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  3. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  4. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Daniltsev, V. M.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  5. Low temperature photoluminescence and photoacoustic characterization of Zn-doped InxGa1-xAsySb1-y epitaxial layers for photovoltaic applications

    Gomez-Herrera, M.L.; Herrera-Perez, J.L.; Rodriguez-Fragoso, P.; Riech, I.; Mendoza-Alvarez, J.G.

    2008-01-01

    In this paper we present results on the characterization of Zn-doped InGaAsSb epitaxial layers to be used in the development of stacked solar cells. Using the liquid phase epitaxy technique we have grown p-type InGaAsSb layers, using Zn as the dopant, and n-type Te-doped GaSb wafers as substrates. A series of Zn-doped InGaAsSb samples were prepared by changing the amount of Zn in the melt in the range: 0.1-0.9 mg to obtain different p-type doping levels, and consequently, different p-n region characteristics. Low temperature photoluminescence spectra (PL) were measured at 15 K using at various excitation powers in the range 80-160 mW. PL spectra show the presence of an exciton-related band emission around 0.642 eV and a band at 0.633 eV which we have related to radiative emission involving Zn-acceptors. Using the photoacoustic technique we measured the interface recombination velocities related to the interface crystalline quality, showing that the layer-substrate interface quality degrades as the Zn concentration in the layers increases

  6. Evolution of ordered one-dimensional and two-dimensional InAs/InP quantum dot arrays on patterned InP (1 0 0) and (3 1 1)B substrates by self-organized anisotropic strain engineering

    Sritirawisarn, N.; Wera, J.L.E.; Otten, van F.W.M.; Nötzel, R.

    2010-01-01

    The formation of ordered InAs/InP quantum dot (QD) arrays is demonstrated on patterned InP (1 0 0) and (3 1 1)B substrates by the concept of self-organized anisotropic strain engineering in chemical beam epitaxy (CBE). On shallow- and deep stripe-patterned InP (1 0 0) substrates, depending on the

  7. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  8. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...

  9. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  10. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  11. EDITORIAL: Epitaxial graphene Epitaxial graphene

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  12. InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy

    Yeh, N.-T.; Liu, W.-S.; Chen, S.-H.; Chiu, P.-C.; Chyi, J.-I.

    2002-01-01

    This letter presents the lasing properties of InAs/GaAs quantum dot lasers with InGaP cladding layers grown by solid-source molecular-beam epitaxy. These Al-free lasers exhibit a threshold current density of 138 A/cm 2 , an internal loss of 1.35 cm -1 , and an internal quantum efficiency of 31% at room temperature. At a low temperature, a very high characteristic temperature of 425 K and very low threshold current density of 30 A/cm 2 are measured

  13. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.

    2012-01-01

    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  14. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  15. Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates

    Anderson, Travis J.; Koehler, Andrew D.; Tadjer, Marko J.; Hite, Jennifer K.; Nath, Anindya; Mahadik, Nadeemullah A.; Aktas, Ozgur; Odnoblyudov, Vladimir; Basceri, Cem; Hobart, Karl D.; Kub, Francis J.

    2017-12-01

    AlGaN/GaN high-electron-mobility transistor (HEMT) device layers were grown by metal organic chemical vapor deposition (MOCVD) on commercial engineered QST™ substrates to demonstrate a path to scalable, cost-effective foundry processing while supporting the thick epitaxial layers required for power HEMT structures. HEMT structures on 150 mm Si substrates were also evaluated. The HEMTs on engineered substrates exhibited material quality, DC performance, and forward blocking performance superior to those of the HEMT on Si. GaN device layers up to 15 µm were demonstrated with a wafer bow of 1 µm, representing the thickest films grown on 150-mm-diameter substrates with low bow to date.

  16. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy

    Mishra, Pawan

    2017-01-03

    Recent interest in two-dimensional materials has resulted in ultra-thin devices based on the transfer of transition metal dichalcogenides (TMDs) onto other TMDs or III-nitride materials. In this investigation, we realized p-type monolayer (ML) MoS2, and intrinsic GaN/p-type MoS2 heterojunction by the GaN overgrowth on ML-MoS2/c-sapphire using the plasma-assisted molecular beam epitaxy. A systematic nitrogen plasma (N∗2N2*) and gallium (Ga) irradiation studies are employed to understand the individual effect on the doping levels of ML-MoS2, which is evaluated by micro-Raman and high-resolution X-Ray photoelectron spectroscopy (HRXPS) measurements. With both methods, p-type doping was attained and was verified by softening and strengthening of characteristics phonon modes E12gE2g1 and A1gA1g from Raman spectroscopy. With adequate N∗2N2*-irradiation (3 min), respective shift of 1.79 cm−1 for A1gA1g and 1.11 cm−1 for E12gE2g1 are obtained while short term Ga-irradiated (30 s) exhibits the shift of 1.51 cm−1 for A1gA1g and 0.93 cm−1 for E12gE2g1. Moreover, in HRXPS valence band spectra analysis, the position of valence band maximum measured with respect to the Fermi level is determined to evaluate the type of doping levels in ML-MoS2. The observed values of valance band maximum are reduced to 0.5, and 0.2 eV from the intrinsic value of ≈1.0 eV for N∗2N2*- and Ga-irradiated MoS2 layers, which confirms the p-type doping of ML-MoS2. Further p-type doping is verified by Hall effect measurements. Thus, by GaN overgrowth, we attained the building block of intrinsic GaN/p-type MoS2 heterojunction. Through this work, we have provided the platform for the realization of dissimilar heterostructure via monolithic approach.

  17. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy

    Mishra, Pawan; Tangi, Malleswararao; Ng, Tien Khee; Hedhili, Mohamed Nejib; Anjum, Dalaver H.; Alias, Mohd Sharizal; Tseng, Chien-Chih; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    Recent interest in two-dimensional materials has resulted in ultra-thin devices based on the transfer of transition metal dichalcogenides (TMDs) onto other TMDs or III-nitride materials. In this investigation, we realized p-type monolayer (ML) MoS2, and intrinsic GaN/p-type MoS2 heterojunction by the GaN overgrowth on ML-MoS2/c-sapphire using the plasma-assisted molecular beam epitaxy. A systematic nitrogen plasma ( N2 * ) and gallium (Ga) irradiation studies are employed to understand the individual effect on the doping levels of ML-MoS2, which is evaluated by micro-Raman and high-resolution X-Ray photoelectron spectroscopy (HRXPS) measurements. With both methods, p-type doping was attained and was verified by softening and strengthening of characteristics phonon modes E2 g 1 and A 1 g from Raman spectroscopy. With adequate N2 * -irradiation (3 min), respective shift of 1.79 cm-1 for A 1 g and 1.11 cm-1 for E2 g 1 are obtained while short term Ga-irradiated (30 s) exhibits the shift of 1.51 cm-1 for A 1 g and 0.93 cm-1 for E2 g 1 . Moreover, in HRXPS valence band spectra analysis, the position of valence band maximum measured with respect to the Fermi level is determined to evaluate the type of doping levels in ML-MoS2. The observed values of valance band maximum are reduced to 0.5, and 0.2 eV from the intrinsic value of ≈1.0 eV for N2 * - and Ga-irradiated MoS2 layers, which confirms the p-type doping of ML-MoS2. Further p-type doping is verified by Hall effect measurements. Thus, by GaN overgrowth, we attained the building block of intrinsic GaN/p-type MoS2 heterojunction. Through this work, we have provided the platform for the realization of dissimilar heterostructure via monolithic approach.

  18. Twenty years of molecular beam epitaxy

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  19. Micropore modification in InP

    Nohavica, Dušan; Gladkov, Petar; Jarchovský, Zdeněk; Zelinka, Jiří; Komninou, Ph.; Delimitis, A.; Kehagias, Th.; Karakostas, Th.

    2008-01-01

    Roč. 205, č. 11 (2008), s. 2577-2580 ISSN 1862-6300 Institutional research plan: CEZ:AV0Z20670512 Keywords : Porous semiconductors * semiconductors epitaxial layers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.205, year: 2008

  20. Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition

    McDaniel, M.D.; Posadas, A.; Wang, T.; Demkov, A.A.; Ekerdt, J.G.

    2012-01-01

    Epitaxial anatase titanium dioxide (TiO 2 ) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO 2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225–250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10 −7 Pa) for 1–2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO 2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO 2 growth. X-ray diffraction revealed that the TiO 2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO 2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: ► Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). ► Four unit cells of SrTiO 3 on silicon create a stable template for ALD. ► TiO 2 thin films have a compressed c-axis and an expanded a-axis. ► Up to 100 nm thick TiO 2 films remain highly ordered in the (001) direction.

  1. Fully relaxed low-mismatched InAlAs layer on an InP substrate by using a two step buffer

    Plissard, S.R.; Coinon, C.; Androussi, Y.; Wallart, X.

    2010-01-01

    The strain relaxation in low mismatched InxAl1-xAs layers has been studied by triple axis x-ray diffraction, transmission electron microscopy, and photoluminescence. Using a two step buffer, a fully relaxed top layer has been grown by adapting the composition and thickness of a first "strained

  2. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices.

    Sanatinia, Reza; Berrier, Audrey; Dhaka, Veer; Perros, Alexander P; Huhtio, Teppo; Lipsanen, Harri; Anand, Srinivasan

    2015-10-16

    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.

  3. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

    Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J

    2011-10-21

    High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.

  4. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  5. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham B.; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Yu, Edward T. [Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Bruley, John [IBM Research Division, Yorktown Heights, New York 10593 (United States)

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6 nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225  °C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600  °C. Two-dimensional XRD confirms the tetragonal structure and orientation of 7–20-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 7–20 nm-thick BTO films are examined and show an effective dielectric constant of ∼660 for the heterostructure.

  6. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Malinverni, M.; Lamy, J.-M.; Martin, D.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.; Grandjean, N.

    2014-12-01

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH3-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10-4 Ω cm2, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH3-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm2 ridge dimension and a threshold current density of ˜5 kA cm-2 in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al0.06Ga0.94N:Mg despite the low growth temperature.

  7. Epitaxial c-axis oriented BaTiO3 thin films on SrTiO3-buffered Si(001) by atomic layer deposition

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G.; Posadas, Agham B.; Demkov, Alexander A.; Hu, Chengqing; Yu, Edward T.; Bruley, John

    2014-01-01

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO 3 (BTO) on Si(001) using a thin (1.6 nm) buffer layer of SrTiO 3 (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225  °C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600  °C. Two-dimensional XRD confirms the tetragonal structure and orientation of 7–20-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 7–20 nm-thick BTO films are examined and show an effective dielectric constant of ∼660 for the heterostructure

  8. Particle detectors based on InP Schottky diodes

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  9. Ionospheric research at INPE

    Abdu, M.A.

    1984-01-01

    Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt

  10. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  11. Study of the structural and optical properties of GaP(N) layers synthesized by molecular-beam epitaxy on Si(100) 4° substrates

    Kryzhanovskaya, N. V., E-mail: NataliaKryzh@gmail.com; Polubavkina, Yu. S. [Russian Academy of Sciences, St. Petersburg National Research Academic University–Nanotechnology Research and Education Center (Russian Federation); Nevedomskiy, V. N. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Nikitina, E. V.; Lazarenko, A. A. [Russian Academy of Sciences, St. Petersburg National Research Academic University–Nanotechnology Research and Education Center (Russian Federation); Egorov, A. Yu. [St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (Russian Federation); Maximov, M. V.; Moiseev, E. I.; Zhukov, A. E. [Russian Academy of Sciences, St. Petersburg National Research Academic University–Nanotechnology Research and Education Center (Russian Federation)

    2017-02-15

    The structural and optical properties of GaP and GaPN layers synthesized by molecular-beam epitaxy on Si(100) substrates misoriented by 4° are studied. The possibility of producing GaP buffer layers that exhibit a high degree of heterointerface planarity and an outcropping dislocation density of no higher than ~2 × 10{sup 8} cm{sup –2} is shown. Emission from the Si/GaP/GaPN structure in the spectral range of 630–640 nm at room temperature is observed. Annealing during growth of the Si/GaP/GaPN structure makes it possible to enhance the room-temperature photoluminescence intensity by a factor of 2.6, with no shift of the maximum of the emission line.

  12. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  13. Study of the structural and optical properties of GaP(N) layers synthesized by molecular-beam epitaxy on Si(100) 4° substrates

    Kryzhanovskaya, N. V.; Polubavkina, Yu. S.; Nevedomskiy, V. N.; Nikitina, E. V.; Lazarenko, A. A.; Egorov, A. Yu.; Maximov, M. V.; Moiseev, E. I.; Zhukov, A. E.

    2017-01-01

    The structural and optical properties of GaP and GaPN layers synthesized by molecular-beam epitaxy on Si(100) substrates misoriented by 4° are studied. The possibility of producing GaP buffer layers that exhibit a high degree of heterointerface planarity and an outcropping dislocation density of no higher than ~2 × 10"8 cm"–"2 is shown. Emission from the Si/GaP/GaPN structure in the spectral range of 630–640 nm at room temperature is observed. Annealing during growth of the Si/GaP/GaPN structure makes it possible to enhance the room-temperature photoluminescence intensity by a factor of 2.6, with no shift of the maximum of the emission line.

  14. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2

    Xiao, Zewen; Ran, Fan-Yong; Hiramatsu, Hidenori; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2014-01-01

    BaZn 2 As 2 is expected for a good p-type semiconductor and has two crystalline phases of an orthorhombic α phase and a higher-symmetry tetragonal β phase. Here, we report that high-quality epitaxial films of the tetragonal β-BaZn 2 As 2 were grown on single-crystal MgO (001) substrates by a reactive solid-phase epitaxy technique. Out-of-plane and in-plane epitaxial relationships between the film and the substrate were BaZn 2 As 2 (00 l)//MgO (001) and BaZn 2 As 2 [200]//MgO [200], respectively. The full-widths at half maximum were 0.082° for a 008 out-of-plane rocking curve and 0.342° for a 200 in-plane rocking curve. A step-and-terrace structure was observed by atomic force microscopy. The band gap of β-BaZn 2 As 2 was evaluated to be around 0.2 eV, which is much smaller than that of a family compound LaZnOAs (1.5 eV). Density functional theory calculation using the Heyd–Scuseria–Ernzerhof hybrid functionals supports the small band gap. - Highlights: • High-quality epitaxial β-BaZn 2 As 2 films were obtained. • The band gap of β-BaZn 2 As 2 was evaluated to around 0.2 eV. • Hybrid Heyd–Scuseria–Ernzerhof calculation supports the small band gap

  15. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  16. Epitaxial growth of high purity cubic InN films on MgO substrates using HfN buffer layers by pulsed laser deposition

    Ohba, R.; Ohta, J.; Shimomoto, K.; Fujii, T.; Okamoto, K.; Aoyama, A.; Nakano, T.; Kobayashi, A.; Fujioka, H.; Oshima, M.

    2009-01-01

    Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been found that the use of HfN (100) buffer layers allows us to grow cubic InN (100) films with an in-plane epitaxial relationship of [001] InN //[001] HfN //[001] MgO . X-ray diffraction and electron back-scattered diffraction measurements have revealed that the phase purity of the cubic InN films was as high as 99%, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD. - Graphical abstract: Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been revealed that the phase purity of the cubic InN films was as high as 99 %, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD.

  17. Control of persistent photoconductivity in nanostructured InP through morphology design

    Monaico, Ed; Postolache, V; Borodin, E; Lupan, O; Tiginyanu, I M; Ursaki, V V; Adelung, R; Nielsch, K

    2015-01-01

    In this paper, we show that long-duration-photoconductivity decay (LDPCD) and persistent photoconductivity (PPC) in porous InP structures fabricated by anodic etching of bulk substrates can be controlled through the modification of the sample morphology. Particularly, the PPC inherent at low temperatures to porous InP layers with the thickness of skeleton walls comparable with pore diameters is quenched in structures consisting of ultrathin walls produced at high anodization voltages. The relaxation of photoconductivity in bulk InP substrates, porous layers, and utrathin membranes is investigated as a function of temperature and excitation power density. The obtained results suggest that PPC in porous InP layers is due to porosity induced potential barriers which hinder the recombination of photoexcited carriers, while the photoconductivity relaxation processes in ultrathin membranes are governed by surface states. (paper)

  18. Optical properties of tellurium-doped InxGa1-xAsySb1-y epitaxial layers studied by photoluminescence spectroscopy

    Diaz-Reyes, J; Cardona-Bedoya, J A; Gomez-Herrera, M L; Herrera-Perez, J L; Riech, I; Mendoza-Alvarez, J G

    2003-01-01

    Controlled doping of quaternary alloys of In x Ga 1-x As y Sb 1-y with tellurium is fundamental to obtain the n-type layers needed for the development of optoelectronic devices based on p-n heterojunctions. InGaAsSb epitaxial layers were grown by liquid phase epitaxy and Te doping was obtained by incorporating small Sb 3 Te 2 pellets in the growth melt. The tellurium doping levels were in the range 10 16 -10 17 cm -3 . We have used low-temperature photoluminescence (PL) spectroscopy to study the influence of the Te donor levels on the radiative transitions shown in the PL spectra. The PL measurements were done by exciting the samples with the 448 nm line of an Ar ion laser with varying excitation powers in the range from 10 to 200 mW. For the low-doped sample the PL spectrum showed a narrow exciton-related peak centred at around 610 meV with a full width at half maximum (FWHM) of about 7 meV which is evidence of the good crystalline quality of the layers. For higher Te doping, the PL spectra show the presence of band-to-band and donor-to-acceptor transitions which overlap as the Te concentration increases. The peak of the PL band shifts to higher energies as Te doping increases due to a band-filling effect as the Fermi level enters into the conduction band. From the peak energy of the PL spectra, and using a model that includes the band-filling and band-shrinkage effects due to the carriers, we have estimated the effective carrier concentration due to doping with Te in the epilayers

  19. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  20. Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition

    Jungbauer, M.; Hühn, S.; Moshnyaga, V.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.

    2014-01-01

    We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO 3 ) n (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO 3 (001) substrates by means of a sequential deposition of Sr-O/Ti-O 2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2–4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5–6 repetitions of the SrO(SrTiO 3 ) 4 block at the level of 2.4%. This identifies the SrTiO 3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy

  1. Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering

    Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.; Robinson, Zachary R.; Nath, Anindya; Kozen, Alexander C.; Qadri, Syed B.; DeMasi, Alexander; Hite, Jennifer K.; Ludwig, Karl F.; Eddy, Charles R.

    2017-05-01

    Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layer epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.

  2. Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO{sub 3}){sub n} films by means of metalorganic aerosol deposition

    Jungbauer, M.; Hühn, S.; Moshnyaga, V. [Erstes Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2014-12-22

    We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO{sub 3}){sub n} (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO{sub 3}(001) substrates by means of a sequential deposition of Sr-O/Ti-O{sub 2} atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2–4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5–6 repetitions of the SrO(SrTiO{sub 3}){sub 4} block at the level of 2.4%. This identifies the SrTiO{sub 3} substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy.

  3. Selfsupported epitaxial silicon films

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  4. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  5. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  6. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  7. InP tunnel junctions for InP/InGaAs tandem solar cells

    Vilela, Mauro F.; Freundlich, Alex; Renaud, P.; Medelci, N.; Bensaoula, A.

    1996-01-01

    We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 A/cm and maximum specific resistivities (Vp/Ip - peak voltage to peak current ratio) in the range of 10(exp -4)Omega cm(exp 2) is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.

  8. Characterization of highly stacked InAs quantum dot layers on InP substrate for a planar saturable absorber at 1.5 μm band

    Inoue, Jun; Akahane, Kouichi; Yamamoto, Naokatsu; Isu, Toshiro; Tsuchiya, Masahiro

    2006-01-01

    We examined the absorption saturation properties in the 1.5 μm band of novel highly stacked InAs quantum dot layers. The transmission change at vertical incidence based on the saturable absorption of the quantum dots was more than 1%. This value is as large as the reflection changes of previously reported 1-μm-band quantum dot saturable absorber with interference enhancement. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  10. Physical-chemical and technological aspects of the preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O by method of metal organic vapour phase epitaxy

    Stejskal, J.; Nevriva, M.; Leitner, J.

    1995-01-01

    The method of metal organic vapour phase epitaxy (MO VPE) was used for preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O. The suitable chemical precursors (β-diketonates) on the literature data and of the own thermodynamic calculations were selected. The optimal thermodynamic data and thermodynamic stability of the prepared samples were determined

  11. YBa2Cu3O7-δ/NdBa2(Cu1-xNix)3O7-δ double layers by liquid-phase epitaxial growth

    Yao, X.; Izumi, Toru; Hobara, Natsuro; Nakamura, Yuichi; Izumi, Teruo; Shiohara, Yuh

    2001-01-01

    Our present investigation has answered questions pertaining to the REBa 2 Cu 3 O 7-δ (RE123, RE=rare-earth elements)-coated conductor application when NdBa 2 (Cu 1-x Ni x ) 3 O 7-δ (Ni-NdBCO) solid solution is used as a buffer layer by the liquid-phase epitaxy(LPE) process. The NiO/Ni substrate has no substantial reaction in the Ni-saturated Nd-Ba-Cu-O liquid. There is no essential Ni interdiffusion between YBa 2 Cu 3 O 7-δ (YBCO) and Ni-NdBCO LPE thick films as evident from T c values of 90 K obtained from multilayer YBCO/Ni-NdBCO samples. (author)

  12. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    Malinverni, M., E-mail: marco.malinverni@epfl.ch; Lamy, J.-M.; Martin, D.; Grandjean, N. [ICMP, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Feltin, E.; Dorsaz, J. [NOVAGAN AG, CH-1015 Lausanne (Switzerland); Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C. [EXALOS AG, CH-8952 Schlieren (Switzerland)

    2014-12-15

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.

  13. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  14. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices

    Sanatinia, Reza; Berrier, Audrey; Anand, Srinivasan; Dhaka, Veer; Perros, Alexander P; Huhtio, Teppo; Lipsanen, Harri

    2015-01-01

    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, ‘black InP,’ a property useful for solar cells. The realization of a conformal p–n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved. (paper)

  15. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors

    Bhuiyan, M S; Paranthaman, M; Sathyamurthy, S; Aytug, T; Kang, S; Lee, D F; Goyal, A; Payzant, E A; Salama, K

    2003-01-01

    We have grown epitaxial CeO 2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 C in a gas mixture of Ar-4%H 2 for 15 min. Detailed x-ray studies indicate that CeO 2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8 deg. and 7.5 deg., respectively. High temperature in situ XRD studies show that the nucleation of CeO 2 films starts at 600 C and the growth completes within 5 min when heated at 1100 C. SEM and AFM investigations of CeO 2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD CeO 2 -buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, J c , of about 1.5 MA cm -2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/CeO 2 (spin-coated)/Ni-W

  16. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 um process with a high resistivity epitaxial layer

    Senyukov, Serhiy; Besson, Auguste; Claus, Gilles; Cousin, Loic; Dorokhov, Andrei; Dulinski, Wojciech; Goffe, Mathieu; Hu-Guo, Christine; Winter, Marc

    2013-01-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 um thin CMOS Pixel Sensors (CPS) covering either the 3 innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 um CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJa...

  17. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Redondo-Cubero, A.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-01-01

    Indium incorporation into wurtzite (0001)-oriented In x Al y Ga 1-x-y N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01< y<0.27). The layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM

  18. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  19. Correlation between (in)commensurate domains of multilayer epitaxial graphene grown on SiC(0 0 0 1-bar ) and single layer electronic behavior

    Mendes-de-Sa, T G; Goncalves, A M B; Matos, M J S; Coelho, P M; Magalhaes-Paniago, R; Lacerda, R G

    2012-01-01

    A systematic study of the evolution of the electronic behavior and atomic structure of multilayer epitaxial graphene (MEG) as a function of growth time was performed. MEG was obtained by sublimation of a 4H-SiC(0 0 0 1-bar ) substrate in an argon atmosphere. Raman spectroscopy and x-ray diffraction were carried out in samples grown for different times. For 30 min of growth the sample Raman signal is similar to that of graphite, while for 60 min the spectrum becomes equivalent to that of exfoliated graphene. Conventional x-ray diffraction reveals that all the samples have two different (0001) lattice spacings. Grazing incidence x-ray diffraction shows that thin films are composed of rotated (commensurate) structures formed by adjacent graphene layers. Thick films are almost completely disordered. This result can be directly correlated to the single layer electronic behavior of the films as observed by Raman spectroscopy. Finally, to understand the change in lattice spacings as a result of layer rotation, we have carried out first principles calculations (using density functional theory) of the observed commensurate structures. (paper)

  20. Strain Engineering of Ferroelectric Domains in KxNa1−xNbO3 Epitaxial Layers

    Jutta Schwarzkopf

    2017-08-01

    Full Text Available The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3 are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110 NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.

  1. Magnesium doping in InAlAs and InGaAs/Mg films lattice-matched to InP grown by MOVPE

    Ezzedini, Maher, E-mail: maher.ezz7@gmail.com [Monastir University, Laboratoire de Micro-Optoélectroniques et Nanostructures (Tunisia); Sfaxi, Larbi, E-mail: sfaxi.larbi@yahoo.fr [Sousse University, High School of Sciences and Technology of Hammam Sousse (Tunisia); M’Ghaieth, Ridha, E-mail: ridha.mghaieth@fsm.rnu.tn [Monastir University, Laboratoire de Micro-Optoélectroniques et Nanostructures (Tunisia)

    2017-01-15

    Mg-doped InAlAs and InGaAs films were grown at 560 °C lattice matched to InP semi-insulting substrate by metalorganic vapor phase epitaxy (MOVPE) under various Cp{sub 2}Mg flow conditions. Hall effect, photoluminescence (PL), high-resolution X-ray diffraction (HR-XRD), and secondary ion mass (SIMS) were the tools used in this work. The crystalline quality and the n-p conversion of the InAlAs and InGaAs/Mg films are described and discussed in relation to the Cp{sub 2}Mg flow. Distinguishing triple emission peaks in PL spectra is observed and seems to be strongly dependent on the Cp{sub 2}Mg flow. SIMS is employed to analyze the elements in the epitaxial layers. The variation of indium and magnesium components indicates a decrease of magnesium incorporation during the growth of InAlAs layers leading to a contracted lattice. In addition, the magnesium incorporation in the InGaAs lattice during growth has been confirmed by SIMS.

  2. The effect of Bi composition on the properties of InP{sub 1−x}Bi{sub x} grown by liquid phase epitaxy

    Das, T. D., E-mail: tddas@hotmail.com [Department of Electronic Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)

    2014-05-07

    InP{sub 1−x}Bi{sub x} epilayers (x ≥ 1.2%) on InP (001) are grown reproducibly by liquid phase epitaxy with conventional solution baking in a H{sub 2} environment. The Bi composition and surface morphology of the grown layers are studied by secondary ion mass spectroscopy and atomic force microscopy, respectively. High-resolution x-ray diffraction is used to characterize the lattice parameters and the crystalline quality of the layers. 10 K photoluminescence measurements indicate three clearly resolved peaks in undoped InP layers with band-to-band transition at 1.42 eV which is redshifted with Bi incorporation in the layer with a maximum band gap reduction of 50 meV/% Bi. The effect is attributed to the interaction between the valence band edge and Bi-related defect states as is explained here by valence-band anticrossing model. Room temperature Hall measurements indicate that the mobility of the layer is not significantly affected for Bi concentration up to 1.2%.

  3. Electrochemical formation of InP porous nanostructures and its application to amperometric chemical sensors

    Sato, Taketomo; Mizohata, Akinori; Fujino, Toshiyuki; Hashizume, Tamotsu

    2008-01-01

    In this paper, we report the electrochemical formation of the InP porous nanostructures and their feasibility for the application to the amperometric chemical sensors. Our two step electrochemical process consists of the pore formation on a (001) n-type InP substrate and the subsequent etching of pore walls caused by changing the polarity of the InP electrode in a HCl-based electrolyte. By applying the anodic bias to the InP electrode, the high-density array of uniform nanopores was formed on the surface. Next, the cathodic bias was applied to the porous sample to reduce the wall thickness by cathodic decomposition of InP, where the thickness of InP nanowall decreased uniformly along the entire depth of the porous layer. From the amperometric measurements of the porous electrode, it was found that the electrocatalytic activity was much higher than that of the planar electrode. Furthermore, the current sensitivity for the H 2 O 2 detection was much enhanced after the cathodic decomposition process. The InP porous nanostructure formed by the present process is one of the promising structures for the application to the semiconductor-based bio/chemical sensors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    Nepal, Neeraj [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Anderson, Virginia R. [American Society for Engineering Education, 1818 N Street NW, Washington, DC 20036; Johnson, Scooter D. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Downey, Brian P. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Meyer, David J. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; DeMasi, Alexander [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Robinson, Zachary R. [Department of Physics, SUNY College at Brockport, 350 New Campus Dr, Brockport, New York 14420; Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Eddy, Charles R. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375

    2017-03-13

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities due to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to

  5. MBE growth and characterization of GaAs1-x Sb x epitaxial layers on Si (0 0 1) substrates

    Toda, T.; Nishino, F.; Kato, A.; Kambayashi, T.; Jinbo, Y.; Uchitomi, N.

    2006-01-01

    We investigated the growth of GaAs 1- x Sb x (x=1.0, 0.82, 0.69, 0.44, 0.0) layers on Si (0 0 1) substrates using AlSb as a buffer layer. Epilayers were grown as a function of As beam equivalent pressure (BEP) under a constant Sb BEP, and they were then characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and micro-Raman scattering analysis. We confirmed that GaAs 1- x Sb x layers have been successfully grown on Si substrates by introducing AlSb layers

  6. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    Saroj, R K; Dhar, S

    2014-01-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  7. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  8. Elaboration by epitaxy in liquid phase and monocrystalline layers of doped Yag. Realisation of wave guides lasers neodymium and ytterbium at low thresholds

    Pelenc, D.

    1993-10-01

    This thesis reports on the prototype development of a new laser waveguide fabrication technique, Liquid Phase Epitaxy, as part of the research on diode-pumped compact laser devices. This technique has been applied to the growth of single crystal thin layers of neodymium and ytterbium doped YAG on pure YAG substrates. In order to obtain good quality waveguides, we have defined the growth conditions, and demonstrated the advantage of the growth of an undoped YAG cladding layer. Two extra dopings have been studied: gallium, in order to control the refractive index of the layer, and lutetium, in order to control their lattice mismatch. The determination of the segregation coefficient of these four dopants has required the development of a model that takes into account the evolution of the melt with time. We have measured the refractive index increase for each dopant and proposed a mechanism that explains this increase. The spectroscopic characterisation of the layers has shown that the neodymium and ytterbium ions have the same properties as in the bulk material of the same composition. The laser characterisation has shown very low propagation losses (around 0.1 dB/cm), comparable to those of bulk. For the neodymium laser transition at 1064 nm, we have demonstrated the laser effect for an absorbed power threshold of 700μW and measured a slope efficiency of 40% for a threshold of 14 mW in diode pumping. For quasi 3 level transitions, a significant reduction in threshold with respect to unguided lasers has been obtained: at 946 nm in a neodymium doped waveguide, at 1029 nm in an ytterbium doped waveguide, with a 1W diode bar pump. A slope efficiency of 80% has also been measured in an ytterbium doped waveguided emitting at 1048nm

  9. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  10. Spectroscopic ellipsometry analysis of GaAs1-xNx layers grown by molecular beam epitaxy

    Ben Sedrine, N.; Rihani, J.; Stehle, J.L.; Harmand, J.C.; Chtourou, R.

    2008-01-01

    In this work, we present the effect of nitrogen incorporation on the dielectric function of GaAsN samples, grown by molecular beam epitaxy (MBE) followed by a rapid thermal annealing (for 90 s at 680 deg. C). The GaAs 1-x N x samples with N content up to 1.5% (x = 0.0%, 0.1%, 0.5%, 1.5%), are investigated using room temperature spectroscopic ellipsometry (SE). The optical transitions in the spectral region around 3 eV are analyzed by fitting analytical critical point line shapes to the second derivative of the dielectric function. It was found that the features associated with E 1 and E 1 + Δ 1 transitions are blue-shifted and become less sharp with increasing nitrogen incorporation, in contrast to the case of E 0 transition energy in GaAs 1-x N x . An increase of the split-off Δ 1 energy with nitrogen content was also obtained, in agreement to results found with MOVPE GaAs 1-x N x grown samples

  11. Antireflection coating on InP for semiconductor detectors

    Hantehzadeh, M.R. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of)]. E-mail: hanteh@sr.iau.ac.ir; Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of); Sari, A.H. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of); Sahlani, F. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokuhi, A. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of); Shariati, M. [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2006-10-25

    Aluminum nitride thin film by RF magnetron sputtering is used to produce antireflection coating on InP. The index of refection variation of aluminum nitride for different thickness at different wavelength in the range of 400 to 1500 nm is investigated using reflection spectroscopy. Subsequent Ar+ ion implantation at 30 keV with different doses on these coated layers has been performed. The morphology of aluminum nitride after ion implantation is characterized using atomic force microscopy AFM.

  12. Antireflection coating on InP for semiconductor detectors

    Hantehzadeh, M.R.; Ghoranneviss, M.; Sari, A.H.; Sahlani, F.; Shokuhi, A.; Shariati, M.

    2006-01-01

    Aluminum nitride thin film by RF magnetron sputtering is used to produce antireflection coating on InP. The index of refection variation of aluminum nitride for different thickness at different wavelength in the range of 400 to 1500 nm is investigated using reflection spectroscopy. Subsequent Ar+ ion implantation at 30 keV with different doses on these coated layers has been performed. The morphology of aluminum nitride after ion implantation is characterized using atomic force microscopy AFM

  13. Quantum Nanostructures by Droplet Epitaxy

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  14. Electronic and magnetic properties of digitally Ti doped InP: A first principles study

    Rahman, Gul; Cho, Sunglae; Hong, Soon Cheol

    2008-01-01

    Using the full-potential linearized augmented plane wave method within the generalized gradient approximation, we study the electronic and the magnetic properties of digitally Ti doped InP. It is quite interesting that digitally Ti-doped InP system shows half metallic ferromagnetism even though both bulk zinc blende TiP and InP are paramagnetic. We also investigate the electronic and the magnetic properties as a function of spacer layer thickness. Their properties such as exchange coupling constant and atomic projected density of states are more or less independent of the InP thickness. Spin density contour maps indicate that the spin-polarization is confined within the TiP plane. The system may show a highly anisotropic property in spin-polarized transport. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Influence of interface-included disorder on classical quantum conductivity of CdTe:In epitaxial layers

    Lusakowski, J.; Karpierz, K.; Grynberg, M.; Karczewski, G.; Wojtowicz, T.; Contreras, S.; Callen, O.

    1997-01-01

    An influence of disorder originated from the substrate/layer interface on electrical properties of CdTe:In layers was investigated by means of the Hall effect and magnetoresistance measurements at low temperatures. An estimation of a scattering rate due to interface induced disorder is given. Characteristic features of a magnetic field dependence of magnetoresistance are explained by an influence of quantum interference of scattered electron waves both in the hopping and the free electron conductivity regimes. (author)

  16. A nitride-based epitaxial surface layer formed by ammonia treatment of silicene-terminated ZrB{sub 2}

    Wiggers, F. B., E-mail: F.B.Wiggers@utwente.nl; Van Bui, H.; Schmitz, J.; Kovalgin, A. Y.; Jong, M. P. de [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Friedlein, R.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2016-04-07

    We present a method for the formation of an epitaxial  surface layer involving B, N, and Si atoms on a ZrB{sub 2}(0001) thin film on Si(111). It has the potential to be an insulating growth template for 2D semiconductors. The chemical reaction of NH{sub 3} molecules with the silicene-terminated ZrB{sub 2}  surface was characterized by synchrotron-based, high-resolution core-level photoelectron spectroscopy and low-energy electron diffraction. In particular, the dissociative chemisorption of NH{sub 3} at 400 °C leads to surface  nitridation, and subsequent annealing up to 830 °C results in a solid phase reaction with the ZrB{sub 2} subsurface layers. In this way, a new nitride-based epitaxial  surface layer is formed with hexagonal symmetry and a single in-plane crystal orientation.

  17. Performance, defect behavior and carrier enhancement in low energy, proton irradiated p+nn+ InP solar cells

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.

  18. Upper atmosphere research at INPE

    Clemesha, B.R.

    1984-01-01

    Upper atmosphere research at INPE is mainly concerned with the chemistry and dynamics of the stratosphere, upper mesosphere and lower thermosphere, and the middle thermosphere. Experimental work includes lidar observations of the stratospheric aerosol, measurements of stratospheric ozone by Dobson spectrophotometers and by balloon and rocket-borne sondes, lidar measurements of atmospheric sodium, and photometric observations of O, O 2 , OH and Na emissions, including interferrometric measurements of the OI6300 emission for the purpose of determing thermospheric winds and temperature. The airglow observations also include measurements of a number of emissions produced by the precipitation of energetic neutral particles generated by charge exchange in the ring current. Some recent results of INPE's upper atmosphere program are presented. (Author) [pt

  19. A high-coverage nanoparticle monolayer for the fabrication of a subwavelength structure on InP substrates.

    Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung

    2011-08-01

    Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.

  20. InAs nanowire formation on InP(001)

    Parry, H. J.; Ashwin, M. J.; Jones, T. S.

    2006-01-01

    The heteroepitaxial growth of InAs on InP(001) by solid source molecular beam epitaxy has been studied for a range of different growth temperatures and annealing procedures. Atomic force microscopy images show that nanowires are formed for deposition in the temperature range of 400-480 deg. C, and also following high temperature annealing (480 deg. C) after deposition at 400 deg. C. The wires show preferential orientation along and often exhibit pronounced serpentine behavior due to the presence of kinks, an effect that is reduced at increasing growth temperature. The results suggest that the serpentine behavior is related to the degree of initial surface order. Kinks in the wires appear to act as nucleation centers for In adatoms migrating along the wires during annealing, leading to the coexistence of large three-dimensional islands

  1. Evidence for Space Charge in Atomic Layer Epitaxy ZnS:Mn Alternating- Current Thin-Film Electroluminescent Devices,

    1993-01-01

    exists wior with ra hho agop io model within the bulk portion of the phosphor layer. Although tAon to obtin alteratinbilarplses with mp del this...field region within the ZnS. emission with a peak at 460 nm and which exhibited ther- Postulating the existence of such a low-field region mal

  2. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  3. Investigation of electronic states of infinite-layer SrFeO2 epitaxial thin films by X-ray photoemission and absorption spectroscopies

    Chikamatsu, Akira; Matsuyama, Toshiya; Hirose, Yasushi; Kumigashira, Hiroshi; Oshima, Masaharu; Hasegawa, Tetsuya

    2012-01-01

    Highlights: ► Electronic states of infinite-layer SrFeO 2 films have been experimentally observed. ► Fe 3d states have higher densities of states in the valence-band region. ► Three peaks derived from Fe 3d states were observed in the conduction-band region. ► Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO 2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d xy , 3d xz + 3d yz , and 3d x 2 –y 2 . In addition, the indirect bandgap value of the SrFeO 2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  4. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  5. Metal-organic-vapor-phase-epitaxy and characterization of homoepitaxial ZnO-layers; Metallorganische Gasphasenepitaxie und Charakteriesierung homoepitaktischer ZnO-Schichten

    Heinze, Soeren

    2009-03-30

    ZnO is a direct semiconductor with a band gap of 3.37 eV and an exciton binding energy of about 60 meV. By alloying with cadmium or magnesium the band gap can be varied between 2.9 eV and 4 eV, which makes the realization of for instance quantum pot structures. Therefore ZnO is a promising material for optoelectronic applications in the blue and near-ultraviolet spectral range. In spite of world-wide numerous research activities over the last years the realization of p-type ZnO could indeed not sufficiently (i.e. reproduceable and long-time stably) be solved. The ZnO layers of this thesis were fabricated by means of metalorganic gas-phase epitaxy. By means of the studies on heteroepitactically deposed, undoped layers I show the limits of the heteroepitaxy. Although in doping attempts no p-type ZnO could be fabricated. By introduction of a three-stage growth procedure physical properties (morphology, luminescence, crystallographic and electric properties) of the upper ZnO layer could be distinctly improved. On the other hand it was proved that during the fabrication process an electrically high-conductive intermediate layer in the neighbourhood of the substrate/ZnO interface is formed, the formation of which cannot be avoided in the heteroepitaxy. Since about three years ZnO substrates with very good quality are commercially available. Therefore the essential part of this thesis tracts my works on the homoepitaxy of ZnO. For a successful homoepitactical growth a thermal pre-treatment (annealing) of the substrate is necessary. Thereby the substrate is located in a surrounding of ZnO powder and an oxygen atmosphere. The optimal tempering conditions were determined and the influence of these pre-treatment on the physical properties of the substrated were detailedly studied. After the annealing the substrates are suited for the epitaxy. The experiences from the heteroepitaxy could not without more ado be transferred to the homoepitaxy. The quality of the homoepitactical

  6. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE

    Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.

    2015-02-01

    We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.

  7. Optical and magnetic resonance studies of Mg-doped GaN homoepitaxial layers grown by molecular beam epitaxy

    Glaser, E.R.; Murthy, M.; Freitas, J.A.; Storm, D.F.; Zhou, L.; Smith, D.J.

    2007-01-01

    Low-temperature photoluminescence (PL) and optically detected magnetic resonance (ODMR) at 24 GHz have been performed on a series of MBE-grown Mg-doped (10 17 -10 20 cm -3 ) GaN homoepitaxial layers. High-resolution PL at 5 K revealed intense bandedge emission with narrow linewidths (0.2-0.4 meV) attributed to annihilation of excitons bound to shallow Mg acceptors. In contrast to many previous reports for GaN heteroepitaxial layers doped with [Mg]>3x10 18 cm -3 , the only visible PL observed was strong shallow donor-shallow acceptor recombination with zero phonon line at 3.27 eV. Most notably, ODMR on this emission from a sample doped with [Mg] of 1x10 17 cm -3 revealed the first evidence for the highly anisotropic g-tensor (g parallel ∼2.19, g perpendicular ∼0) expected for Mg shallow acceptors in wurtzite GaN. This result is attributed to the much reduced dislocation densities (≤5x10 6 cm -3 ) and Mg impurity concentrations compared to those characteristic of the more conventional investigated Mg-doped GaN heteroepitaxial layers

  8. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    Mattiazzo, S., E-mail: serena.mattiazzo@pd.infn.it [Università degli Studi di Padova, Padova IT 35131 (Italy); Aimo, I. [Politecnico di Torino and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Torino IT 10129 (Italy); Baudot, J. [Universitè de Strasbourg, IPHC, Strasbourg F67037 (France); CNRS, MMR7178, Strasbourg F67037 (France); Bedda, C. [Politecnico di Torino and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Torino IT 10129 (Italy); La Rocca, P. [Università di Catania and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Catania, Catania IT 95123 (Italy); Perez, A. [Universitè de Strasbourg, IPHC, Strasbourg F67037 (France); CNRS, MMR7178, Strasbourg F67037 (France); Riggi, F. [Università di Catania and Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Catania, Catania IT 95123 (Italy); Spiriti, E. [Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Frascati and Sezione di Roma 3, Roma IT 00146 (Italy)

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018–2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  9. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-01-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018–2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV

  10. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  11. Thermal stability of atom configurations around Er atoms doped in InP by OMVPE

    Ofuchi, Hironori; Ito, Takashi; Kawamoto, Takeshi; Tabuchi, Masao; Fujiwara, Yasufumi; Takeda, Yoshikazu

    1999-01-01

    It has been found that there is a threshold growth temperature between 550 deg C and 580 deg C for the change of local structure around Er atoms in InP doped Er atoms grown by organometallic vapor phase epitaxy (OMVPE). To understand whether the structure change is induced at the growing surface or during the growth as an in situ annealing, the thermal stability of the local structures around the Er atoms doped in InP by the OMVPE at 530 deg C has been investigated by the extended X-ray absorption fine structure (EXAFS). The EXAFS analysis revealed that the local structure around the Er atoms, which existed substitutionally on In sites in the InP lattice, was stable against the post-growth annealing even for 1 h at 650 deg C. Therefore, it is concluded that the local structures are formed on the growth front, and not in the volume of InP by thermal annealing during or after the growth. (author)

  12. 1.0 MeV irradiation of OHMIC, MS, MIS contacts to InP

    Warren, C.E.; Wagner, B.F.; Anderson, W.A.

    1986-01-01

    The radiation effects of 1.0 MeV electrons with a dose of 10/sup 15/cm/sup -2/ to MS and MIS Schottky diodes on InP have been compared to the radiation effects of MIS diodes on GaAs and Si. The radiation effects to ohmic contacts were also investigated. The metal for the diodes on the InP was gold. Au/Ti/Al was used for the GaAs diodes and Cr for the silicon diodes. Oxide layers on InP were grown by anodization in 0.1 N KOH. Oxides to GaAs and Si were grown thermally. Ohmic contacts to InP were formed using AuGe/Ni and AuSn alloys, followed by annealing in N/sub 2//H/sub 2/ (85%/15%). Metal Semiconductor diodes on InP were found to be at least sensitive to the irradiation. The InP MS and MIS diodes showed only small changes in the current voltage (I-V) characteristic, whereas the GaAs and Si devices showed a decrease in reverse current after irradiation. The ohmic contact resistance was increased by a factor of 2 to 5 after irradiation

  13. Surface photovoltage study of InP and Zn3P2

    Thurgate, S.M.; Lacuesta, T.D.; Huck, N.R.

    1989-01-01

    The surface photovoltage spectra of InP and Zn 3 P 2 were measured using a Kelvin probe to determine the contact potential difference between the sample and the probe as a function of the wavelength of illuminating light. The features in the resulting spectra were found to be sensitive to ion bombardment. The photovoltage spectra obtained from the InP differed from previously reported SPC spectra in that it showed clear evidence of surface states (or interfacial states) at 0.86 eV and 0.68 eV above VBM. It was found that the features in the spectrum of Zn 3 P 2 were reduced by ion bombardment, but not removed completely, whereas the features in the InP spectra were completely removed. Exposure of the ion bombarded urface to air restored the features of Zn 3 P 2 but only produced a small change in the spectrum of the InP. The loss of features in the InP spectra can be attributed to damage in the substrate caused by the ion bombardment even though the oxide layer was not removed before the damage occurred. Zn 3 P 2 was not as sensitive to ion damage as InP. (orig.)

  14. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  15. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  16. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  17. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  18. Structural properties of layers of HgCdTe, grown by the laser epitaxy method on silicon substrates

    Plyatsko, S.V.; Vergush, M.M.; Litvin, P.M.; Kozirjev, Yu.M.; Shevlyakov, S.A.

    2001-01-01

    Thin films (0.1-1.5 μm) of HgCdTe on substrates Si (100) and Si (111) from monocrystal and pressed sources Hg 1-x Cd x Te (x=0.22) sprayed by laser IR radiation were grown and are investigated. The concentration of macro defects (drops) on the surface of films is determined by the relation of the diameter of a laser beam and depth of the crater, formed by laser irradiation. The size of crystal grains almost does not depend on the temperature of a substrate and power densities of a laser radiation and increases with the thickness of a layer

  19. Electrical properties of cubic InN and GaN epitaxial layers as a function of temperature

    Fernandez, J.R.L.; Chitta, V.A.; Abramof, E.

    2000-01-01

    Carrier concentration and mobility were measured for intrinsic cubic InN and GaN, and for Si-doped cubic GaN as a function of temperature. Metallic n-type conductivity was found for the InN, while background p-type conductivity was observed for the intrinsic GaN layer. Doping the cubic GaN with Si two regimes were observed. For low Si-doping concentrations, the samples remain p-type. Increasing the Si-doping level, the background acceptors are compensated and the samples became highly degenerated n-type. From the carrier concentration dependence on temperature, the activation energy of the donor and acceptor levels was determined. Attempts were made to determine the scattering mechanisms responsible for the behavior of the mobility as a function of temperature

  20. Epitaxial growth of mixed conducting layered Ruddlesden–Popper La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) phases by pulsed laser deposition

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk

    2013-10-15

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.

  1. MBE growth and design of II-VI heterostructures for epitaxial lift-off

    Davidson, Ian A.; Vallance, Erin C.; Prior, Kevin A. [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh (United Kingdom); Moug, Richard T.; Tamargo, Maria C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    Epitaxial lift-off (ELO) is a post-growth process that allows the active part of a semiconductor structure to be transferred from its growth substrate to a new one. This is a well established technique for III-V semiconductors, and has previously been demonstrated for ZnSe-based alloys grown on GaAs using a metastable MgS sacrificial layer, taking advantage of the huge difference in etch rates of MgS and ZnSe. We report here the first successful extension of this process to II-VI layers grown on InP by using a MgSe sacrificial layer. By using the correct etching conditions, MgSe has been found to work effectively as a sacrificial layer. 5 x 5 mm{sup 2} square pieces of material can be lifted and deposited on glass substrates without any deterioration in the structural or optical properties; as confirmed by optical microscopy and photoluminescence (PL) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effects of Be doping on InP nanowire growth mechanisms

    Yee, R. J.; Gibson, S. J.; LaPierre, R. R. [Department of Engineering Physics, Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Dubrovskii, V. G. [St. Petersburg Academic University, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Ioffe Physical Technical Institute RAS, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2012-12-24

    Be-doped InP nanowires were grown by the gold-assisted vapour-liquid-solid mechanism in a gas source molecular beam epitaxy system. The InP nanowire length versus diameter [L(D)] dependence revealed an unexpected transition with increasing Be dopant concentration. At Be dopant concentration below {approx}10{sup 18} cm{sup -3}, nanowires exhibited the usual inverse L(D) relationship, indicating a diffusion-limited growth regime. However, as dopant concentration increased, the nanowire growth rate was suppressed for small diameters, resulting in an unusual L(D) dependence that increased before saturating in height at about 400 nm. The cause of this may be a change in the droplet chemical potential, introducing a barrier to island nucleation. We propose a model accounting for the limitations of diffusion length and monolayer nucleation to explain this behaviour.

  3. Highly doped InP as a low loss plasmonic material for mid-IR region

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  4. Formation of quantum wires and dots on InP(001) by As/P exchange

    Yang, Haeyeon; Ballet, P.; Salamo, G. J.

    2001-01-01

    We report on the use of in situ scanning tunneling microscopy to study As/P exchange on InP(001) surfaces by molecular beam epitaxy. Results demonstrate that the exchange process can be controlled to selectively produce either quantum wires or quantum dots. 15 nm wide self-assembled nanowires are observed, and they are elongated along the dimer row direction of the InP(001)-2x4 surface with a length of over 1 μm and flat top 2x4 surfaces. In addition, when the nanowires are annealed with no arsenic overpressure, the surface reconstruction transforms from 2x4 to 4x2 and the nanowires transform into dots with a rectangular base and flat top. [copyright] 2001 American Institute of Physics

  5. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  6. Charged particle detection performances of CMOS pixel sensors produced in a 0.18μm process with a high resistivity epitaxial layer

    Senyukov, S., E-mail: serhiy.senyukov@cern.ch; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz0.18μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 10{sup 13}n{sub eq}/cm{sup 2} was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz0.18μm CMOS process for the ALICE ITS upgrade.

  7. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    Lounis, Z; Bouslama, M; Hamaida, K; Abdellaoui, A; Ouerdane, A; Ghaffour, M; Berrouachedi, N; Jardin, C

    2012-01-01

    We give the great interest to characterise the InP and InPO 4 /InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO 4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In 2 O 3 . We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  8. Fabrication of current confinement aperture structure by transforming a conductive GaN:Si epitaxial layer into an insulating GaOx layer.

    Lin, Chia-Feng; Lee, Wen-Che; Shieh, Bing-Cheng; Chen, Danti; Wang, Dili; Han, Jung

    2014-12-24

    We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact. The fibrous texture of NP GaN with an average wall thickness of less than 100 nm dramatically increases the surface-to-volume ratio and facilitates a rapid oxidation process of GaN into GaOX. The GaOX aperture was formed on the n-side of the LED between the active region and the n-type GaN layer. The wavelength blueshift phenomena of electroluminescence spectra is observed in the treated aperture-emission LED structure (441.5 nm) when compared to nontreated LED structure (443.7 nm) at 0.1 mA. The observation of aperture-confined electroluminescence from an InGaN LED structure suggests that the NP GaN based oxidation will play an enabling role in the design and fabrication of III-nitride photonic devices.

  9. Orientation-dependent physical properties of layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films

    Niu, Li-Wei; Guo, Bing; Chen, Chang-Le, E-mail: chenchl@nwpu.edu.cn; Luo, Bing-Cheng; Dong, Xiang-Lei; Jin, Ke-Xin

    2017-04-01

    In this paper, the resistivity and magnetization of orientation-engineered layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films have been investigated. Epitaxial thin films were deposited on single-crystalline LaAlO{sub 3} (LAO) (001), (110) and (111) substrates by pulse laser deposition (PLD) technique. It is found that only the (100)-oriented thin film performs insulator behavior, whereas the (110) and (111)-oriented thin films exhibit obvious metal-insulator transition at 70 K and between 85 and 120 K, respectively. Moreover, the same spin freezing temperature and different spin-glass-like transition temperatures have been observed in various oriented films. The observed experimental results were discussed according to the electron-transport mechanism and spin dynamics.

  10. Oxidation of InP nanowires: a first principles molecular dynamics study.

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  11. Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy

    Young, E. C.; Grandjean, N.; Mates, T. E.; Speck, J. S.

    2016-01-01

    Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It is found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ∼1012 cm−2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperature is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 1018 cm−3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.

  12. Investigation of electronic states of infinite-layer SrFeO{sub 2} epitaxial thin films by X-ray photoemission and absorption spectroscopies

    Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Matsuyama, Toshiya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Hirose, Yasushi [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, Hiroshi; Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan); Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Electronic states of infinite-layer SrFeO{sub 2} films have been experimentally observed. Black-Right-Pointing-Pointer Fe 3d states have higher densities of states in the valence-band region. Black-Right-Pointing-Pointer Three peaks derived from Fe 3d states were observed in the conduction-band region. Black-Right-Pointing-Pointer Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO{sub 2} epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p-3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3-5 eV and 5-8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d{sub xy}, 3d{sub xz} + 3d{sub yz}, and 3d{sub x}{sup 2}{sub -y}{sup 2}. In addition, the indirect bandgap value of the SrFeO{sub 2} film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  13. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  14. Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy

    Young, E. C.

    2016-11-23

    Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It is found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ∼1012 cm−2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperature is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 1018 cm−3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.

  15. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  16. ESCA and electron diffraction studies of InP surface heated under As molecular beam exposure

    Sugiura, Hideo; Yamaguchi, Masafumi; Shibukawa, Atsushi

    1983-01-01

    Chemical composition of InP substrate surface heattreated under As molecular beam exposure in an ultrahigh vacuum chamber was studied with ESCA, and surface reconstruction of the substrate was examined by in-situ electron diffraction. The InP substrate heated under the exposure of As molecular beam has mirror surface up to 590 0 C while the surface of InP heated above 400 0 C in vacuum is roughened. The ESCA study shows that thin InAs layer (thickness 0 C under the exposure of As. The electron diffraction study indicates that the InP is cleaned at about 500 0 C in As pressures of 10 -7 - 10 -5 Torr. The InP surface is prevented from thermally decomposing by the coverage of the InAs layer, which may be formed through the following process: 2InPO 4 + As 4 → 2InAs + P 2 O 5 + As 2 O 3 . (author)

  17. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  18. X-ray diffraction analysis of multilayer porous InP(001) structure

    Lomov, A. A.; Punegov, V. I.; Vasil'ev, A. L.; Nohavica, Dušan; Gladkov, Petar; Kartsev, A. A.; Novikov, D. V.

    2010-01-01

    Roč. 55, č. 2 (2010), s. 182-190 ISSN 1063-7745 Institutional research plan: CEZ:AV0Z20670512 Keywords : silicon layers * INP Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.644, year: 2010

  19. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  20. Electrode interface controlled electrical properties in epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown on Si substrates with SrTiO{sub 3} buffer layer

    Boni, Andra Georgia, E-mail: andra.boni@infim.ro [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); University of Bucharest, Faculty of Physics, Magurele 077125 (Romania); Chirila, Cristina; Pasuk, Iuliana; Negrea, Raluca; Trupina, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); Le Rhun, Gwenael [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Vilquin, Bertrand [Université de Lyon, Ecole Centrale de Lyon, INL, CNRS UMR5270, 36 avenue Guy de Collongue, F-69134 Ecully cedex (France); Pintilie, Ioana; Pintilie, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania)

    2015-10-30

    Electrical properties of ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films grown by pulsed laser deposition on silicon substrate with SrTiO{sub 3} buffer layer grown by molecular beam epitaxy were studied. A SrRuO{sub 3} layer was deposited as bottom electrode also by pulse laser deposition and Pt, Ir, Ru, SrRuO{sub 3} were used as top contacts. Electrical characterization comprised hysteresis and capacitance–voltage measurements in the temperature range from 150 K to 400 K. It was found that the macroscopic electrical properties are affected by the electrode interface, by the choice of the top electrode. However, even for metals with very different work functions (e.g. Pt and SrRuO{sub 3}) the properties of the top and bottom electrode interfaces remain fairly symmetric suggesting a strong influence from the bound polarization charges located near the interface. - Highlights: • Ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} were deposited on Si substrate. • The structural characterization proved the epitaxial growth of the layers. • Macroscopic electrical properties are affected by the choice of the top electrode. • The difference on imprint field, dielectric constant are analyzed depending on the electrode-ferroelectric interface.

  1. m-plane GaN layers grown by rf-plasma assisted molecular beam epitaxy with varying Ga/N flux ratios on m-plane 4H-SiC substrates

    Armitage, R.; Horita, M.; Suda, J.; Kimoto, T.

    2007-01-01

    A series of m-plane GaN layers with the Ga beam-equivalent pressure (BEP) as the only varied parameter was grown by rf-plasma assisted molecular beam epitaxy on m-plane 4H-SiC substrates using AlN buffer layers. The smoothest growth surfaces and most complete film coalescence were found for the highest Ga BEP corresponding to the Ga droplet accumulation regime. However, better structural quality as assessed by x-ray rocking curves was observed for growth at a lower Ga BEP value below the droplet limit. The variation of rocking curve widths for planes inclined with respect to the epilayer c axis followed a different trend with Ga BEP than those of reflections parallel to the c axis. The GaN layers were found to exhibit a large residual compressive strain along the a axis

  2. Effect of Al/N ratio during nucleation layer growth on Hall mobility and buffer leakage of molecular-beam epitaxy grown AlGaN/GaN heterostructures

    Storm, D.F.; Katzer, D.S.; Binari, S.C.; Shanabrook, B.V.; Zhou Lin; Smith, David J.

    2004-01-01

    AlGaN/GaN high electron mobility transistor structures have been grown by plasma-assisted molecular beam epitaxy on semi-insulating 4H-SiC utilizing an AlN nucleation layer. The electron Hall mobility of these structures increases from 1050 cm 2 /V s to greater than 1450 cm 2 /V s when the Al/N flux ratio during the growth of the nucleation layer is increased from 0.90 to 1.07. Buffer leakage currents increase abruptly by nearly three orders of magnitude when the Al/N ratio increases from below to above unity. Transmission electron microscopy indicates that high buffer leakage is correlated with the presence of stacking faults in the nucleation layer and cubic phase GaN in the buffer, while low mobilities are correlated with high dislocation densities

  3. Metastability of the phosphorus antisite defect in low-temperature InP

    Mikucki, J.; Baj, M.; Wasik, D.; Walukiewicz, W.; Bi, W. G.; Tu, C. W.

    2000-01-01

    We report on the transport properties of low-temperature (LT) InP/In x Ga 1-x As/InP heterostructures and LT InP thin films. Hall effect measurements performed at hydrostatic pressure up to 1.5 GPa and temperatures ranging from 4.2 K to 250 K on both types of samples as well as Shubnikov-de Haas experiments made on heterostructures clearly reveal the metastable character of phosphorus antisite defects present in LT InP layers. (c) 2000 The American Physical Society

  4. Experimental-statistical model of liquid-phase epitaxy for InP/InGaAsP/InP heterostructures

    Vasil'ev, M.G.; Selin, A.A.; Shelyakin, A.A.

    1985-01-01

    A mathematic model of the process of liquid-phase epitaxy for double InP/InGaAsP/InP heterostructures is constructed using statistical methods of experiment planning. The analysis of the model shows that the degree of In-P system melt supercooling affects considerably the characteristics of double heterostructures

  5. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.

  6. Post deposition annealing effect on the properties of Al2O3/InP interface

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2018-02-01

    Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.

  7. Surface protection during plasma hydrogenation for acceptor passivation in InP

    Lopata, J.; Dautremont-Smith, W.C.; Pearton, S.J.; Lee, J.W.; Ha, N.T.; Luftman, H.S.

    1990-01-01

    Various dielectric and metallic films were examined as H-permeable surface protection layers on InP during H 2 or D 2 plasma exposure for passivation of acceptors in the InP. Plasma deposited SiN x , SiO 2 , and a-Si(H) films ranging in thickness from 85 to 225 angstrom were used to protect p-InP during d 2 plasma exposure at 250 degrees C. Optimum protective layer thicknesses were determined by a trade-off between the effectiveness of the layer to prevent P loss from the wafer surface and the ability to diffuse atomic H or D at a rate greater than or equal to that in the underlying InP. SIMS and capacitance-voltage depth profiling were used to determine the extent of D in-diffusion and acceptor passivation respectively. Sputter deposited W and e-beam evaporated Ti films ∼100 Angstrom thick were also evaluated. The W coated sample yielded similar results to those with dielectric films in that acceptors in p-InP were passivated to a similar depth for the same plasma exposure. The 100 Angstrom Ti film, however, did not allow the D to diffuse into the InP substrate. It is surmised that the Ti film trapped the D, thus preventing diffusion into the substrate

  8. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  9. Selective-area vapour-liquid-solid growth of InP nanowires

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J

    2009-01-01

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO 2 mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO 2 mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  10. Selective-area vapour-liquid-solid growth of InP nanowires

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J, E-mail: dan.dalacu@nrc-cnrc.gc.c [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6 (Canada)

    2009-09-30

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO{sub 2} mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO{sub 2} mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  11. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Itoi, Takaomi [Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan)

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  12. Growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi; Itoi, Takaomi; Yoshikawa, Akihiko

    2016-01-01

    The growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)_1/(GaN)_4 SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  13. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  14. Growth and magnetotransport properties of epitaxial films of the layered perovskite La2-2xSr1+2xMn2O7

    Philipp, J.B.; Alff, L.; Gross, R.; Klein, J.; Recher, C.

    2002-01-01

    Epitaxial thin films of the bilayered perovskite La 2-2x Sr 1+2x Mn 2 O 7 (x=0.3, 0.4) have been grown by laser molecular beam epitaxy on NdGaO 3 substrates. Magnetotransport measurements with the current in the ab-plane and along the c-axis direction showed an intrinsic c-axis tunneling magnetoresistance effect associated with nonlinear current-voltage-characteristics for the x=0.3 compound. Besides the colossal magnetoresistance effect around the Curie temperature T C , at temperatures below about 40 K an additional high-field magnetoresistance was found most likely due to a strain and disorder induced re-entrant spin glass state in both the x=0.3 and 0.4 compounds. Our experiments show that the substrate induced coherency strain in the high quality epitaxial films results in magnetotransport properties that show markedly different behavior from those of single crystals. (orig.)

  15. Incorporation of La in epitaxial SrTiO{sub 3} thin films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si (001) substrates

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G., E-mail: ekerdt@utexas.edu [University of Texas at Austin, Department of Chemical Engineering, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [University of Texas at Austin, Department of Physics, Austin, Texas 78712 (United States); Karako, Christine M. [University of Dallas, Department of Chemistry, Irving, Texas 75062 (United States); Bruley, John; Frank, Martin M.; Narayanan, Vijay [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-06-14

    Strontium titanate, SrTiO{sub 3} (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5–25 nm. Atomic layer deposition (ALD) is used to grow the La{sub x}Sr{sub 1−x}TiO{sub 3} (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (∼225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ∼2.0 × 10{sup −2} Ω cm for 20-nm-thick La:STO (x ∼ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO{sub 3} integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  16. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  17. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  18. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  19. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  20. Growth of c-plane ZnO on γ-LiAlO2 (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy

    Yan, T.; Lu, C.-Y.J.; Schuber, R.; Chang, L.; Schaadt, D.M.; Chou, M.M.C.; Ploog, K.H.; Chiang, C.-M.

    2015-01-01

    Highlights: • ZnO epilayers were grown on LiAlO 2 (1 0 0) substrate with a GaN buffer layer by MBE. • A high Zn/O flux ratio is beneficial for reducing the density of screw dislocations. • Reciprocal space maps demonstrate that the misfit strain in ZnO has been relaxed. • No interfacial layer is formed at ZnO/GaN interface using a Zn pre-exposure strategy. - Abstract: C-plane ZnO epilayers were grown on LiAlO 2 (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy. Both the X-ray rocking curves and the transmission electron microscopy analyses indicate that the ZnO epilayers exhibit a lower threading dislocation density (∼1 × 10 10 cm −2 ) as compared to those grown on LiAlO 2 substrate without the buffer layer. A high Zn/O flux ratio is beneficial for reducing the density of screw-type dislocations. Reciprocal space maps demonstrate that the misfit strain has been relaxed. No interfacial layer is formed at the ZnO/GaN interface by using a Zn pre-exposure strategy. The ZnO epilayers exhibit a strong near band edge emission at 3.28 eV at room temperature with a negligible green band emission

  1. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge{sub 1−x}Sn{sub x} layer on Ge(0 0 1) substrate

    Wang, Wei; Li, Lingzi; Zhou, Qian [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Pan, Jisheng; Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-12-01

    Highlights: • Ge{sub 0.915}Sn{sub 0.085} was grown on Ge (0 0 1) by molecular beam epitaxy (MBE). • The impact of annealing on surface morphology and Sn composition was studied. • Sn is found to preferentially segregate towards the surface at 200 °C. • A Sn-rich layer would form on the Ge{sub 1−x}Sn{sub x} surface after annealing at 300 °C. • Sn desorption and formation of Sn-rich islands were found when T > 300 °C. - Abstract: Annealing of strained Ge{sub 1−x}Sn{sub x} epitaxial layers grown on Ge(0 0 1) substrate results in two distinctive regimes marked by changes in composition and morphology. Annealing at low temperatures (200–300 °C or Regime-I) leads to surface enrichment of Sn due to Sn segregation, as indicated by X-ray photoelectron spectroscopy (XPS) results, while the bulk Sn composition (from X-ray diffraction (XRD)) and the surface morphology (from atomic force microscopy (AFM)) do not show discernible changes as compared to the as-grown sample. Annealing at temperatures ranging from 300 °C to 500 °C (Regime-II) leads to a decrease in the surface Sn composition. While the Ge{sub 1−x}Sn{sub x} layer remains fully strained, a reduction in the bulk Sn composition is observed when the annealing temperature reaches 500 °C. At this stage, surface roughening also occurs with formation of 3D islands. The island size increases as the annealing temperature is raised to 600 °C. The decrease in the Sn composition at the surface and in the bulk in Regime-II is attributed to additional thermally activated kinetic processes associated with Sn desorption and formation of Sn-rich 3D islands on the surface.

  2. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  3. Enhanced performance of solution-processed broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1-x quantum dots as the active layer

    Sulaman, Muhammad; Yang, Shengyi; Jiang, Yurong; Tang, Yi; Zou, Bingsuo

    2017-12-01

    Organic-inorganic hybrid photodetectors attract more and more interest, since they can combine the advantages of both organic and inorganic materials into one device, and broadband photodetectors are widely used in many scientific and industrial fields. In this work, we demonstrate the enhanced-performance solution-processed broadband photodiodes by epitaxially blending organo-lead halide perovskite (MAPbBr3) colloidal quantum dots (CQDs) with ternary PbSxSe1-x CQDs as the active layer. As a result, the interfacial features of the hetero-epitaxial nanocomposite MAPbBr3:PbSxSe1-x enables the design and perception of functionalities that are not available for the single-phase constituents or layered devices. By combining the high electrical transport properties of MAPbBr3 QDs with the highly radiative efficiency of PbS0.4Se0.6 QDs, the photodiodes ITO/ZnO/PbS0.4Se0.6:MAPbBr3/Au exhibit a maximum photoresponsivity and specific detectivity of 21.48 A W-1 and 3.59 × 1013 Jones, 22.16 A W-1 and 3.70 × 1013 Jones at room temperature under 49.8 μW cm-2 532 nm laser and 62 μW cm-2 980 nm laser, respectively. This is higher than that of the layered photodiodes ITO/ZnO/PbS0.4Se0.6/MAPbBr3/Au, pure perovskite (MAPbBr3) (or PbS0.4Se0.6) QD-based photodiodes reported previously, and it is also better than the traditional inorganic semiconductor-based photodetectors. Our experimental results indicate that epitaxially-aligned nanocomposites (MAPbBr3:PbSxSe1-x) exhibit remarkable optoelectronic properties that are traceable to their atomic-scale crystalline coherence, and one can utilize the excellent photocarrier diffusion from PbSxSe1-x into the perovskite to enhance the device performance from the UV-visible to infrared region.

  4. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  5. Characterization of InAs quantum wires on (001)InP: toward the realization of VCSEL structures with a stabilized polarization

    Lamy, J.M.; Levallois, C.; Nakhar, A.; Caroff, P.; Paranthoen, C.; Piron, R.; Le Corre, A.; Loualiche, S. [UMR C6082 FOTON - INSA de Rennes, 20 Avenue des Buttes de Coesmes, 35043 Rennes (France); Ramdane, A. [Laboratoire de Photonique et Nanostructures, CNRS UPR20, Route de Nozay, 91460 Marcoussis (France)

    2007-06-15

    We propose a new type of long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of quantum wires (QWires) layers of InAs/InGaAsP grown on InP(001) and dielectrics Bragg mirrors, in order to control the in plane polarization of output power. QWires and quantum wells growth are performed by molecular beam epitaxy. QWires present a strong photoluminescence dependence to the polarization in contrast to the quantum wells, a polarization rate of 33% is measured. The optically pumped VCSEL is fabricated by metallic bonding, which allows the deposition of two dielectrics Bragg mirrors. The VCSEL with an active region based on InGaAs/InGaAsP quantum wells exhibits a lasing emission at 1.578 {mu}m at room temperature under continuous wave operation. The VCSEL with an active region based on quantum wires shows a luminescence at 1.53 {mu}m strongly polarized along the direction [1 anti 10] which is promising for the stabilization of in plane polarization of VCSEL emission. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Characterization of InAs quantum wires on (001)InP: toward the realization of VCSEL structures with a stabilized polarization

    Lamy, J.M.; Levallois, C.; Nakhar, A.; Caroff, P.; Paranthoen, C.; Piron, R.; Le Corre, A.; Loualiche, S.; Ramdane, A.

    2007-01-01

    We propose a new type of long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of quantum wires (QWires) layers of InAs/InGaAsP grown on InP(001) and dielectrics Bragg mirrors, in order to control the in plane polarization of output power. QWires and quantum wells growth are performed by molecular beam epitaxy. QWires present a strong photoluminescence dependence to the polarization in contrast to the quantum wells, a polarization rate of 33% is measured. The optically pumped VCSEL is fabricated by metallic bonding, which allows the deposition of two dielectrics Bragg mirrors. The VCSEL with an active region based on InGaAs/InGaAsP quantum wells exhibits a lasing emission at 1.578 μm at room temperature under continuous wave operation. The VCSEL with an active region based on quantum wires shows a luminescence at 1.53 μm strongly polarized along the direction [1 anti 10] which is promising for the stabilization of in plane polarization of VCSEL emission. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-12-17

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.

  8. InP Devices For Millimeter-Wave Monolithic Circuits

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  9. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  10. Photoluminescence of heterostructures with GaP1−xNx and GaP1−x−yNxAsy layers grown on GaP and Si substrates by molecular-beam epitaxy

    Lazarenko, A. A.; Nikitina, E. V.; Sobolev, M. S.; Pirogov, E. V.; Denisov, D. V.; Egorov, A. Yu.

    2015-01-01

    The structural and optical properties of heterostructures containing GaP 1−x N x ternary and GaP 1−x−y N x As y quaternary alloy layers are discussed. The heterostructures are grown by molecular-beam epitaxy on GaP and Si substrates. The structures are studied by the high-resolution X-ray diffraction technique and photoluminescence measurements in a wide temperature range from 10 to 300 K. In the low-temperature photoluminescence spectra of the alloys with a low nitrogen fraction (x < 0.007), two clearly resolved narrow lines attributed to the localized states of nitrogen pairs and the phonon replicas of these lines are observed

  11. Budker INP in the LHC Machine (2)

    2001-01-01

    The main BINP contributions to the LHC machine are magnets for transfer lines (26 MCHF) and bus- bar sets (23 MCHF). Budker INP is also responsible for construction of some other LHC magnets and vacuum parts. In total, the contribution to the LHC machine will reach about 90 MCHF.

  12. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.

    Dionízio Moreira, M; Venezuela, P; Miwa, R H

    2010-07-16

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  13. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  14. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  15. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties

    Dionizio Moreira, M; Venezuela, P; Miwa, R H

    2010-01-01

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic As↔P swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  16. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O22d

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2012-01-01

    -plane ionic conductivity in CGO epitaxial thin films. The ionic conductivity is found to increase with decrease in buffer layer thickness. The tailored ionic conductivity enhancement is explained in terms of close relationships among epitaxy, strain, and ionic conductivity....

  17. Passivation effect on optical and electrical properties of molecular beam epitaxy-grown HgCdTe/CdTe/Si layers

    Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.

    2006-06-01

    The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.

  18. Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping.

    Dalapati, Goutam Kumar; Shun Wong, Terence Kin; Li, Yang; Chia, Ching Kean; Das, Anindita; Mahata, Chandreswar; Gao, Han; Chattopadhyay, Sanatan; Kumar, Manippady Krishna; Seng, Hwee Leng; Maiti, Chinmay Kumar; Chi, Dong Zhi

    2012-02-02

    Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

  19. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  20. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    Soltani, S.; Bouzidi, M.; Chine, Z.; Toure, A.; Halidou, I.; El Jani, B.; Shakfa, M. K.

    2017-01-01

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  1. Luminescence properties of In/sub 1-x/PGa/sub x/ layers (0,6 (<=) x (<=) 0. 7) produced by liquid epitaxy on GaAs/sub 1-y/P/sub y/ substrates

    Ermakov, O N; Ignatkina, R S; Sushkov, V P; Chukichev, M V

    1977-06-01

    Photoluminescence (PL) and cathodoluminescence (CL) of Insub(1-x)Gasub(x)P (0.6 <=) x (<=) 0.7) layers grown by the method of liquid epitaxy on GaAssub(1-y)Psub(y) (0.2 (<=) y (<=) 0.4) substrates oriented in the (111)-B plane have been investigated. Spectral distribution of PL and CL of the n- and p-type Insub(1-x)Gasub(x)P layers has been studied over the temperature range from 300 to 65 K and at different excitation levels. Radiative ''band-band'' recombination has been shown to participate in formation of the A line. The B line in the luminescence spectra of specially nondoped Insub(1-x)Gasub(x)P is related to recombination through an uncontrolled acceptor centre. The arising of the C band in the CL spectra of Insub(1-x)Gasub(x)P doped with zinc and tellurium is ascribed to donor-acceptor recombination. The external yield of CL of the Insub(0.33)Gasub(0.67)P n-type (specially nondoped) and p-type (doped with Zn adn Te) layers has been determined at 300 K.

  2. Experimental studies on the surface confined quiescent plasma at INPE

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-06-01

    Quiescent plasma machines are being used in several experiments at the Associated Plasma Laboratory in INPE. The research activities comprises particle simulation studies on ion acoustic double Layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  3. Experimental studies on the surface confined quiescent plasma at INPE

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-01-01

    The quiescent plasma machines used in several experiments at the Associated Plasma Laboratory in INPE are presented. The research activities comprise particle simulation studies on ion acoustic double layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  4. Epitaxial growth of rhenium with sputtering

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  5. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    Morozov, A.N.; Mikryukova, E.V.; Bublik, V.T.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Effect of alloying with donor (S,Ge) and acceptor (Zn) impurities on the concentration of proper point defects in monocrystals InP grown up from equiatomic (relative to In and P) melts by the Czochralski method under flux layer is investigated. Changes in boundary positions of the InP homogeneity region caused by alloying are analysed on the basis of experimental results according to the precision measurement of the lattice parameter and crystal density, as well as measurements of the Hall concentration of charge carriers and their mobility. The concentrations of Frenkel nonequilibrium (V in -In i ) defects formed in the initial stage of indium solid solution decomposition in InP are estimated

  6. Fabrication of InP-pentacene inorganic-organic hybrid heterojunction using MOCVD grown InP for photodetector application

    Sarkar, Kalyan Jyoti; Pal, B.; Banerji, P.

    2018-04-01

    We fabricated inorganic-organic hybrid heterojunction between indium phosphide (InP) and pentacene for photodetector application. InP layer was grown on n-Si substrate by atmospheric pressure metal organic chemical vapour deposition (MOCVD) technique. Morphological properties of InP and pentacene thin film were characterized by atomic force microscopy (AFM). Current-voltage characteristics were investigated in dark and under illumination condition at room temperature. During illumination, different wavelengths of visible and infrared light source were employed to perform the electrical measurement. Enhancement of photocurrent was observed with decreasing in wavelength of incident photo radiation. Ideality factor was found to be 1.92. High rectification ratio of 225 was found at ± 3 V in presence of infrared light source. This study provides new insights of inorganic-organic hybrid heterojunction for broadband photoresponse in visible to near infrared (IR) region under low reverse bias condition.

  7. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  8. Study of carrier concentration in single InP nanowires by luminescence and Hall measurements

    Lindgren, David; Hultin, Olof; Heurlin, Magnus; Storm, Kristian; Borgström, Magnus T; Samuelson, Lars; Gustafsson, Anders

    2015-01-01

    The free electron carrier concentrations in single InP core–shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi–Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement. (paper)

  9. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  10. Transmission electron microscopy and image simulation study of CuAu domains in CuInS{sub 2} epitaxial layers

    Barcones, B.; Romano-Rodriguez, A.; Arbiol, J.; Alvarez-Garcia, J.; Perez-Rodriguez, A.; Morante, J.R.; Scheer, R

    2003-05-01

    In this work the occurrence of two polytypic structures, chalcopyrite (CH) and cationic fcc CuAu-ordering (CA), in epitaxial CuInS{sub 2} samples on Si (1 1 1) oriented substrates has been studied. Samples with different Cu-to-In ratios and grown at 500 and 575 deg. C, respectively, have been analysed. Cross-section Transmission electron microscopy (TEM) samples have been prepared and studied in two directions normal to the growth direction [2 2 1]{sub CH}, namely, [1-1 0]{sub CH}, which is parallel to [1 0 0]{sub CA}, and [1 1-1]{sub CH} that is parallel to [0 1-1]{sub CA}. Electron diffraction and high resolution TEM images corroborate the existence of both polytypes and give the orientation relationship between them, namely, [1-1 0]{sub CH} parallel [1 0 0]{sub CA} and (1 1 2){sub CH} parallel (0 1 1){sub CA}. Cu-rich samples have good crystalline quality with large grains and sharp interfaces between both polytypes, the most important being between the (1 1 2){sub CH} and (0 1 1){sub CA} planes. On the contrary, the crystalline quality of Cu-poor samples is minor, no clear interfaces can be observed, and a high density of twins in the (0 1-1){sub CA} planes can be observed. The results on the crystalline quality are in agreement with previous results on polycrystalline CuInS{sub 2} films.

  11. Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires.

    Tedeschi, D; De Luca, M; Granados Del Águila, A; Gao, Q; Ambrosio, G; Capizzi, M; Tan, H H; Christianen, P C M; Jagadish, C; Polimeni, A

    2016-10-12

    The effective mass of electrons and holes in semiconductors is pivotal in determining the dynamics of carriers and their confinement energy in nanostructured materials. Surprisingly, this quantity is still unknown in wurtzite (WZ) nanowires (NWs) made of III-V compounds (e.g., GaAs, InAs, GaP, InP), where the WZ phase has no bulk counterpart. Here, we investigate the magneto-optical properties of InP WZ NWs grown by selective-area epitaxy that provides perfectly ordered NWs featuring high-crystalline quality. The combined analysis of the energy of free exciton states and impurity levels under magnetic field (B up to 29 T) allows us to disentangle the dynamics of oppositely charged carriers from the Coulomb interaction and thus to determine the values of the electron and hole effective mass. By application of B⃗ along different crystallographic directions, we also assess the dependence of the transport properties with respect to the NW growth axis (namely, the WZ ĉ axis). The effective mass of electrons along ĉ is m e ∥ = (0.078 ± 0.002) m 0 (m 0 is the electron mass in vacuum) and perpendicular to ĉ is m e ⊥ = (0.093 ± 0.001) m 0 , resulting in a 20% mass anisotropy. Holes exhibit a much larger (∼320%) and opposite mass anisotropy with their effective mass along and perpendicular to ĉ equal to m h ∥ = (0.81 ± 0.18) m 0 and m h ⊥ = (0.250 ± 0.016) m 0 , respectively. While no full consensus is found with current theoretical results on WZ InP, our findings show trends remarkably similar to the experimental data available in WZ bulk materials, such as InN, GaN, and ZnO.

  12. Synthesis and properties of ultra-long InP nanowires on glass.

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  13. Thermal diffusion in nanostructured porous InP

    Srinivasan, R.; Ramachandran, K.

    2008-01-01

    Nanostructured porous InP samples were prepared by electrochemical anodic dissolution of InP for various current densities and etching periods. The samples were characterized by SEM and photoluminescence (PL) where a blue shift was observed in PL. Thermal properties studies by photoacoustic (PA) spectroscopy revealed one order decrease in thermal conductivity of porous InP compared to the bulk. Further it is shown that the thermal conductivity of porous InP decreases with decrease in size of the particles. (author)

  14. High resistivity in InP by helium bombardment

    Focht, M.W.; Macrander, A.T.; Schwartz, B.; Feldman, L.C.

    1984-01-01

    Helium implants over a fluence range from 10 11 to 10 16 ions/cm 2 , reproducibly form high resistivity regions in both p- and n-type InP. Average resistivities of greater than 10 9 Ω cm for p-type InP and of 10 3 Ω cm for n-type InP are reported. Results are presented of a Monte Carlo simulation of helium bombardment into the compound target InP that yields the mean projected range and the range straggling

  15. InP Solar Cells and their Flight Experiments

    TAKAHASHI, Keiji; YAMAGUCHI, Masafumi; TAKAMOTO, Tatsuya; IKEGAMI, Shingo; OHNISHI, Akira; HAYASHI, Tomonao; USHIROKAWA, Akio; KOHBATA, Masahiko; ARAI, Hidetoshi; HASHIMOTO, Katsumasa; ORH, Takeshi; OKAZAKI, Hitoshi; TAKAMURA, Hideto; URA, Mitsuru; OHMORI, Masamichi

    1992-01-01

    We have developed high-efficiency homojunction 1 cm × 2 cm InP space solar cells by diffusing In_2S_3 into p type InP substrates and investigated their fundamental characteristics such as electrical and mechnical characteristics and thermal properties. On the radiation resistant mechanism of InP cells, we have studied InP cells fabricated at NTT Laboratories and found superior properties such as room temperture annealing and minority carrier injection enhanced annealing phenomena for radiatio...

  16. Effect of sulphur-doping on the formation of deep centers in n-type InP under irradiation

    Kol'chenko, T.I.; Lomako, V.M.; Moroz, S.E.

    1988-01-01

    Effect of sulfur-doping on the efficiency of electron trap formation in InP under irradiation was studied using deep level capacity nonstationary spectroscopy method (DLCNS). Structures with Schottky barrier based on epitaxial InP films with ∼10μm thickness (n 0 =8x10 14 -6x10 17 cm -3 ) were irradiated with 60 Co γ-quanta at 40 deg C; the particle flux intensity made up ∼10 12 cm -2 xs -1 . Experimental results presented allow one to conclude that InP doping with sulfur up to n 0 =6x10 17 cm -3 in contrast to the case of silicon doping does not produce a notable effect on the electron trap formation efficiency under irradiation. The observed reduction of configuration-bistable M-center introduction rate in samples with n 0 >10 16 cm -3 is explained by the change of filling of E c -0.12 eV level belonging to unknown X defect

  17. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    Li, Peng; Xia, Chuan; Zhu, Zhiyong; Wen, Yan; Zhang, Qiang; Alshareef, Husam N.; Zhang, Xixiang

    2016-01-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin

  18. Ion beam induced epitaxy in Ge- and B- coimplanted silicon

    Hayashi, N.; Hasegawa, M.; Tanoue, H.; Takahashi, H.; Shimoyama, K.; Kuriyama, K.

    1992-01-01

    The epitaxial regrowth of amorphous surface layers in and Si substrate has been studied under irradiation with 400 keV Ar + ions at the temperature range from 300 to 435degC. The amorphous layers were obtained by Ge + implantation, followed by B + implantation. The ion beam assisted epitaxy was found to be sensitive to both the substrate orientation and the implanted Ge concentration, and the layer-by-layer epitaxial regrowth seemed to be precluded in Si layers with high doses of Ge implants, e.g., 2.5 x 10 15 ions/cm 2 . Electrical activation of implanted dopant B was also measured in the recrystallized Si layer. (author)

  19. Epitaxial Graphene: A New Material for Electronics

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  20. Characterization of low-frequency noise in molecular beam epitaxy-grown GaN epilayers deposited on double buffer layers

    Fong, W.K.; Ng, S.W.; Leung, B.H.; Surya, Charles

    2003-01-01

    We report the growth of high-mobility Si-doped GaN epilayers utilizing unique double buffer layer (DBL) structures, which consist of a thin buffer layer and a thick GaN intermediate-temperature buffer layer (ITBL). In this study, three types of DBL were investigated: (i) thin GaN low-temperature buffer layer/GaN ITBL (type I); (ii) nitridated Ga metal film/GaN ITBL (type II); and (iii) thin AlN high-temperature buffer layer/GaN ITBL (type III). Systematic measurements were conducted on the electron mobilities and the low-frequency noise over a wide range of temperatures. It is found that the electron mobilities of the GaN films are substantially improved with the use of DBLs, with the sample using type III DBL which exhibits the highest low-temperature mobility. Furthermore, the same sample also demonstrates the elimination of deep levels at 91 and 255 meV below the conduction band. This is believed to result from the relaxation of tensile stress during growth with the use of type III DBLs

  1. Indium phosphide (InP) for optical interconnects

    Lebby, M.; Ristic, S.; Calabretta, N.; Stabile, R.; Tekin, T.; Pitwon, R.; Håkansson, A.; Pleros, N.

    2016-01-01

    We present InP as the incumbent technology for data center transceiver and switching optics. We review the most popular InP monolithic integration approaches in light of photonic integration being recognized as an increasingly important technology for data center optics. We present Multi-Guide

  2. Peptides for functionalization of InP semiconductors.

    Estephan, Elias; Saab, Marie-belle; Larroque, Christian; Martin, Marta; Olsson, Fredrik; Lourdudoss, Sebastian; Gergely, Csilla

    2009-09-15

    The challenge is to achieve high specificity in molecular sensing by proper functionalization of micro/nano-structured semiconductors by peptides that reveal specific recognition for these structures. Here we report on surface modification of the InP semiconductors by adhesion peptides produced by the phage display technique. An M13 bacteriophage library has been used to screen 10(10) different peptides against the InP(001) and the InP(111) surfaces to finally isolate specific peptides for each orientation of the InP. MALDI-TOF/TOF mass spectrometry has been employed to study real affinity of the peptide towards the InP surfaces. The peptides serve for controlled placement of biotin onto InP to bind then streptavidin. Our Atomic Force Microscopy study revealed a total surface coverage of molecules when the InP surface was functionalized by its specific biotinylated peptide (YAIKGPSHFRPS). Finally, fluorescence microscopy has been employed to demonstrate the preferential attachment of the peptide onto a micro-patterned InP surface. Use of substrate specific peptides could present an alternative solution for the problems encountered in the actually existing sensing methods and molecular self-assembly due to the unwanted unspecific interactions.

  3. Thermal diffusion in nanostructured porous InP

    Nanostructured porous InP samples were prepared by electrochemical anodic dissolution of InP for various current densities and etching periods. The samples were characterized by SEM and photoluminescence (PL) where a blue shift was observed in PL. Thermal properties studied by photoacoustic (PA) spectroscopy ...

  4. Synchrotron radiation excited silicon epitaxy using disilane

    Akazawa, Housei; Utsumi, Yuichi

    1995-01-01

    Synchrotron radiation (SR) excited chemical reactions provide new crystal growth methods suitable for low-temperature Si epitaxy. The growth kinetics and film properties were investigated by atomic layer epitaxy (ALE) and photochemical vapor deposition (CVD) modes using Si 2 H 6 . SR-ALE, isolating the surface growth channel mediated by photon stimulated hydrogen desorption, achieves digital growth independent of gas exposure time, SR irradiation time, and substrate temperature. On the other hand in SR-CVD, photolysis of Si 2 H 6 is predominant. In the nonirradiated region, Eley-Rideal type reaction between the photofragments and the surface deposit Si adatoms in a layer-by-layer fashion. In the irradiated region, however, multi-layer photolysis and rebounding occurs within the condensed Si 2 H 6 layer. The pertinent elementary processes were identified by using the high-resolution time-of-flight mass spectroscopy. The SR-CVD can grow a uniform and epitaxial Si film down to 200degC. The surface morphology is controlled by the surfactant effect of hydrogen atoms. (author)

  5. Strain-Modulated Epitaxy

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  6. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Y. J. Ma

    2017-07-01

    Full Text Available We report structural properties as well as electrical and optical behaviors of beryllium (Be-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm−3, and for Be densities below 9.5×1017 cm−3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm−3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  7. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  8. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-01-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH 3 :Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH 3 :Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of ∼1.0 nm over 2x2 μm 2 atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 μm/h were achieved. TD densities in the buffers as low as 3x10 9 cm -2 were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz

  9. Thin epitaxial silicon detectors

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  10. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  11. Integration of epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO{sub 2} buffer layers

    Elibol, K. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Nguyen, M.D. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522NB Enschede (Netherlands); International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi 10000 (Viet Nam); Hueting, R.J.E. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Gravesteijn, D.J. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); NXP Semiconductors Research, High Tech Campus 46, 5656AE Eindhoven (Netherlands); Koster, G., E-mail: g.koster@utwente.nl [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Rijnders, G. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-09-30

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction between PZT and GaN, and to obtain PZT with a preferred orientation and phase. Here, we study pulsed laser deposited (100) rutile titanium oxide (R-TiO{sub 2}) as a potential buffer layer candidate for ferroelectric PZT. For this purpose, the growth, morphology and the surface chemical composition of R-TiO{sub 2} films were analyzed by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We find optimally (100) oriented R-TiO{sub 2} growth on GaN (0002) using a 675 °C growth temperature and 2 Pa O{sub 2} deposition pressure as process conditions. More importantly, the R-TiO{sub 2} buffer layer grown on GaN/Si substrates prevents the unwanted formation of the PZT pyrochlore phase. Finally, the remnant polarization and coercive voltage of the PZT film on TiO{sub 2}/GaN/Si with an interdigitated-electrode structure were found to be 25.6 μC/cm{sup 2} and 8.1 V, respectively. - Highlights: • Epitaxial rutile TiO{sub 2} films were grown on GaN layer buffered Si substrate using pulsed laser deposition. • The rutile-TiO{sub 2} layer suppresses the formation of the pyrochlore phase in the epitaxial PZT film grown on GaN/Si. • An epitaxial PZT film on GaN/Si substrate with rutile TiO{sub 2} buffer layer exhibits good ferroelectric properties.

  12. Conductive and robust nitride buffer layers on biaxially textured substrates

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  13. Studies on semiconductors based on InP with sub-ps response times; Untersuchungen an auf InP basierenden Halbleitern mit sub-ps Responsezeiten

    Biermann, K.

    2007-06-28

    The present work describes investigation of new material concepts accomplished using molecular-beam-epitaxy (MBE) growth for application in ultra-fast photonic components. Nominally undoped and Be doped GaInAs/AlInAs multiple-quantumwell structures (MQW) were grown by MBE at growth temperatures down to 100 C (LT-MBE) on semi-insulating InP substrates. Crystalline, electric and optical properties of as-grown and annealed structures were investigated. Energy states near the conduction band of GaInAs determine the electrical and optical properties of LT-MQWs. The dynamics of charge carrier relaxation was studied by means of pump and probe experiments. Measurements of the differential transmission when excited by an additional cw laser and measurements utilizing two closely sequenced pump pulses support the capability of Be doped as-grown (annealed) LT GaInAs/AlInAs MQW structures for use in optical switches at switching frequencies in the 1 Tbit/s (250 Gbit/s) range. The voltage-induced change of interband transmission of InP based quantumcascade-lasers (QCL) during pulsed mode operation was analyzed by means of 8 band k.p calculations. The impacts of varying charge carrier distributions and of electrically heated samples can be neglected compared to the dominating effect of the electrical field on the interband transmission. The impact of MBE growth parameters on the interface quality of AlAsSb/ GaInAs heterostructures were determined by means of Hall measurements, temperature- and intensity-dependent PL measurements and spectral measurements of the interband- and intersubband-absorption. The impact of In segregation and Sb diffusion on the intersubband absorption was analyzed on the basis of bandstructure calculations. Intersubband transitions at wavelengths of about 1.8 {mu}m (1.55 {mu}m) were successfully achieved in MQW (coupled QW) structures. (orig.)

  14. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  15. Point defect balance in epitaxial GaSb

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  16. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  17. Aqueous bromine etching of InP: a specific surface chemistry

    Causier, A.; Bouttemy, M.; Gerard, I.; Aureau, D.; Vigneron, J.; Etcheberry, A. [Institut Lavoisier de Versailles, Versailles-Saint-Quentin University, UMR CNRS 8180, 45 Av. des Etats-Unis, 78035 Versailles (France)

    2012-06-15

    The n -InP behaviour in HBr (0.1-1.0 M)/Br{sub 2} (1.25 x 10{sup -2}M) aqueous solutions is studied by AAS, XPS and SEM-FEG. Indium AAS-titrations of the HBr/Br{sub 2} solutions demonstrate that InP undergoes an etching mechanism whatever the HBr/Br{sub 2} formulation. The etching process is always linear with time but its rate depends on the HBr concentration. XPS analyses permit to link the apparent slow-down of the dissolution process when decreasing the HBr molarity from 1.0 M to 0.1 M to the presence of a mixed (In,P){sub ox} oxide layer on the surface. Therefore, the dissolution process of InP in HBr/Br{sub 2} solution appears to be ruled by the surface chemical state (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  19. Growth of epitaxial thin films by pulsed laser ablation

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  20. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.