WorldWideScience

Sample records for inos protein expression

  1. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Science.gov (United States)

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells stimulated with LPS/IFN-γ activated NO production; in this condition andrographolide (1–100 μM) inhibited NO production in a dose-dependent manner with an IC50 value of 17.4±1.1 μM. Andrographolide also reduces the expression of iNOS protein level but without a significant effect on iNOS mRNA. The reduction of iNOS activity is thought to be caused by decreased expression of iNOS protein.In a protein stability assay, andrographolide moderately but significantly reduced the amount of iNOS protein as suggested by accelerating degradation. Furthermore, andrographolide also inhibited total protein de novo synthesis as demonstrated by [35S]-methionine incorporation.As a whole, these data suggest that andrographolide inhibits NO synthesis in RAW 264.7 cells by reducing the expression of iNOS protein and the reduction could occur through two additional mechanisms: prevention of the de novo protein synthesis and decreasing the protein stability via a post-transcriptional mechanism. It is also possible that inhibition of iNOS protein expression and NO production under immune stimulation and/or bacteria infection may explain, in part, the beneficial effects of andrographolide as an anti-inflammatory agent. PMID:10780958

  2. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    International Nuclear Information System (INIS)

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-01-01

    enhanced iNOS protein and mRNA expression in the aorta and heart. → iNOS activity was also increased after DE exposure. → This up-regulation of iNOS may contribute to vascular dysfunction and atherogenesis.

  3. Involvement of PI3K, Akt, and RhoA in oestradiol regulation of cardiac iNOS expression.

    Science.gov (United States)

    Zafirovic, Sonja; Sudar-Milovanovic, Emina; Obradovic, Milan; Djordjevic, Jelena; Jasnic, Nebojsa; Borovic, Milica Labudovic; Isenovic, Esma R

    2018-02-12

    Oestradiol is an important regulatory factor with several positive effects on the cardiovascular (CV) system. We evaluated the molecular mechanism of the in vivo effects of oestradiol on the regulation of cardiac inducible nitric oxide (NO) synthase (iNOS) expression and activity. Male Wistar rats were treated with oestradiol (40 mg/kg, intraperitoneally) and after 24 h the animals were sacrificed. The concentrations of NO and L-Arginine (L-Arg) were determined spectrophotometrically. For protein expressions of iNOS, p65 subunit of nuclear factor-κB (NFκB-p65), Ras homolog gene family-member A (RhoA), angiotensin II receptor type 1 (AT1R), insulin receptor substrate 1 (IRS-1), p85, p110 and protein kinase B (Akt), Western blot method was used. Co-immunoprecipitation was used for measuring the association of IRS-1 with the p85 subunit of phosphatidylinositol-3-kinase (PI3K). The expression of iNOS messenger ribonucleic acid (mRNA) was measured with the quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of the tissue was used to detect localization and expression of iNOS in heart tissue. Oestradiol treatment reduced L-Arg concentration (pAkt phosphorylation at Thr308 (pregulates cardiac iNOS expression via the PI3K/Akt signaling pathway, through attenuation of RhoA and AT1R. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia.

    Science.gov (United States)

    Feng, Aiwen; Zhou, Guangrong; Yuan, Xiaoming; Huang, Xinli; Zhang, Zhengyuan; Zhang, Ti

    2013-01-01

    The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites). LPS not only increased toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor gamma (PPARγ) content, but also activated p38 and activating transcription factor 2 (ATF2) and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA) ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I) attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II) ameliorated LPS-elicited TLR4 and PPARγ production, and (III) inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV) prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I) partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II) partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways.

  5. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia.

    Directory of Open Access Journals (Sweden)

    Aiwen Feng

    Full Text Available The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS and nitric oxide (NO in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS. The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites. LPS not only increased toll-like receptor 4 (TLR4 and peroxisome proliferator-activated receptor gamma (PPARγ content, but also activated p38 and activating transcription factor 2 (ATF2 and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II ameliorated LPS-elicited TLR4 and PPARγ production, and (III inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways.

  6. Expression of leptin and iNOS in oral melanomas in dogs.

    Science.gov (United States)

    Greene, V R; Wilson, H; Pfent, C; Roethele, J; Carwile, J; Qin, Y; Grimm, E; Ellerhorst, J A

    2013-01-01

    Oral melanoma (OM) in dogs is an aggressive malignancy, with clinical behavior resembling cutaneous melanomas in humans. Melanoma in humans is promoted by an inflammatory environment that is contributed to by leptin and inducible nitric oxide synthase (iNOS). To determine if the patterns of leptin and iNOS expression are similar in OM in dogs and cutaneous melanomas in humans. Twenty client-owned dogs. Retrospective case study. Immunostaining of the OM tumors from each dog was scored for percentage and intensity of leptin and iNOS expression. Mitotic index was used as an indicator of tumor aggression. Leptin was detected in ≥75% of the tumor cells in specimens from 11 dogs. One tumor expressed leptin in ≤25% of the cells. The intensity of leptin expression was variable with 6, 9, and 5 cases exhibiting low-, moderate-, and high-intensity staining, respectively. OM with the lowest percentage of iNOS positive cells displayed the highest mitotic indices (P = .006, ANOVA). The expression of leptin is a common finding in melanomas in dogs. These data suggest that the possibility of future clinical applications, such as measuring the concentrations of plasma leptin as a screening tool or leptin as a target for therapy. The relevance of iNOS is not as clear in dogs with OM, for which other directed therapeutics might be more appropriate. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  7. Expression of beta-catenin, COX-2 and iNOS in colorectal cancer: relevance of COX-2 adn iNOS inhibitors for treatment in Malaysia.

    Science.gov (United States)

    Hong, Seok Kwan; Gul, Yunus A; Ithnin, Hairuszah; Talib, Arni; Seow, Heng Fong

    2004-01-01

    Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS. A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral. COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores. the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  8. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  9. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    Science.gov (United States)

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  10. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  11. Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression

    Science.gov (United States)

    Saldarriaga, Omar A.; Travi, Bruno L.; Choudhury, Goutam Ghosh; Melby, Peter C.

    2012-01-01

    IFN-γ/LPS-activated hamster (Mesocricetus auratus) macrophages express significantly less iNOS (NOS2) than activated mouse macrophages, which contributes to the hamster's susceptibility to intracellular pathogens. We determined a mechanism responsible for differences in iNOS promoter activity in hamsters and mice. The HtPP (1.2 kb) showed low basal and inducible promoter activity when compared with the mouse, and sequences within a 100-bp region (−233 to −133) of the mouse and hamster promoters influenced this activity. Moreover, within this 100 bp, we identified a smaller region (44 bp) in the mouse promoter, which recovered basal promoter activity when swapped into the hamster promoter. The mouse homolog (100-bp region) contained a cis-element for NF-IL-6 (−153/−142), which was absent in the hamster counterpart. EMSA and supershift assays revealed that the hamster sequence did not support the binding of NF-IL-6. Introduction of a functional NF-IL-6 binding sequence into the hamster promoter or its alteration in the mouse promoter revealed the critical importance of this transcription factor for full iNOS promoter activity. Furthermore, the binding of NF-IL-6 to the iNOS promoter (−153/−142) in vivo was increased in mouse cells but was reduced in hamster cells after IFN-γ/LPS stimulation. Differences in the activity of the iNOS promoters were evident in mouse and hamster cells, so they were not merely a result of species-specific differences in transcription factors. Thus, we have identified unique DNA sequences and a critical transcription factor, NF-IL-6, which contribute to the overall basal and inducible expression of hamster iNOS. PMID:22517919

  12. Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Jablonski, Jakub; Marcinczyk, Magdalena

    2009-01-01

    The aim of this study was to assess the influence of N-nitrosodimethylamine (NDMA) on expression of inducible nitric oxide synthase (iNOS), as well as production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by human neutrophils (PMN) and peripheral blood mononuclear cells (PBMC), and the participation of the p38 MAPK kinase in this process. Furthermore, the ability of neutrophils to release superoxide anion was determined. The influence of N-nitrosodimethylamine on iNOS expression was determined in isolated PMN and PBMC cells from peripheral blood of healthy individuals. The mononuclear cells showed higher sensitivity to NDMA. Moreover, cytotoxic effect of NDMA can be influenced in some way by the impact of this xenobiotic on nitric oxide and superoxide anion release from human leukocytes. Furthermore, increased generation of these radicals by human leukocytes suggest that neutrophils and mononuclear cells that are exposed to NDMA activity can play a key role in endogenous NDMA generation. However the relationship between iNOS expression and phospho-p38 MAPK in neutrophils and mononuclear cells shows that p38 MAPK pathway participates in induction of iNOS expression in the presence of NDMA.

  13. Expression of Beta-catenin, COX-2 and iNOS in Colorectal Cancer: Relevance of COX-2 and iNOS Inhibitors for Treatment in Malaysia

    Directory of Open Access Journals (Sweden)

    Seok Kwan Hong

    2004-01-01

    Conclusions: The accumulation of β-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  14. Qualitative and quantitative immunohistochemical evaluation of iNOS expression in the spleen of dogs naturally infected with Leishmania chagasi.

    Science.gov (United States)

    dos Santos, Fernando Rocha; Vieira, Paula Melo Abreu; Correa-Oliveira, Rodrigo; Giunchetti, Rodolfo Cordeiro; Carneiro, Claudia Martins; Reis, Alexandre Barbosa; Malaquias, Luiz Cosme Cotta

    2011-06-01

    Nitric oxide (NO), the product of the nitric oxide synthase enzymes has been detected in Leishmania-infected animals. Besides its role on the immunity to infection, the role of NO and the inducible nitric oxide synthase (iNOS) in the pathogenesis of canine visceral leishmaniasis (CVL) is not well understood. This study aimed at evaluating immunohistochemically the iNOS expression in the spleen of dogs naturally infected (ID) with Leishmania (L.) chagasi compared with non-infected dogs (NID). The ID was grouped according to the clinical form and the parasite load. Symptomatic dogs (SD) presented higher parasite load in relation to oligosymptomatic (OD) and asymptomatic (AD). The qualitative expression of iNOS was observed only in ID. SD presented strong and prominent labeling of iNOS, followed by OD and AD. Quantitatively, the results showed that the median expression of iNOS was higher in SD and OD compared to NID. Also, dog spleens with high parasitism load showed marked iNOS expression. Taken together, the results suggest that the expression of iNOS in the spleen of infected dogs with CVL was associated with clinical worsening of the disease and with high parasitism.

  15. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    Science.gov (United States)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  16. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    Science.gov (United States)

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  17. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  18. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    Science.gov (United States)

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  19. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline.

    Science.gov (United States)

    Gaspar, Maria L; Chang, Yu-Fang; Jesch, Stephen A; Aregullin, Manuel; Henry, Susan A

    2017-11-10

    In the yeast Saccharomyces cerevisiae , the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p ( scs2 Δ) and a mutant, OPI1FFAT , lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    International Nuclear Information System (INIS)

    Tsai, C.-S.; Chen, F.-H.; Wang, C.-C.; Huang, H.-L.; Jung, Shih-Ming; Wu, C.-J.; Lee, C.-C.; McBride, William H.; Chiang, C.-S.; Hong, J.-H.

    2007-01-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNA expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo

  1. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  2. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2013-01-01

    Potential role of ERK1/2 kinase in conjunction with p38 in the regulation of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and superoxide anion generation by human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was determined. Increased synthesis of NO due to the involvement of iNOS in neutrophils exposed to NDMA was observed. In addition, intensified activation of ERK1/2 and p38 kinases was determined in these cells. Inhibition of kinase regulated by extracellular signals (ERK1/2) pathway, in contrast to p38 pathway, led to an increased production of NO and expression of iNOS in PMNs. Moreover, as a result of inhibition of ERK1/2 pathway, a decreased activation of p38 kinase was observed in neutrophils, while inhibition of p38 kinase did not affect activation of ERK1/2 pathway in these cells. An increased ability to release superoxide anion by the studied PMNs was observed, which decreased after ERK1/2 pathway inhibition. In conclusion, in human neutrophils, ERK1/2 kinase is not directly involved in the regulation of iNOS and NO production induced by NDMA; however, the kinase participates in superoxide anion production in these cells.

  3. Interleukin-1β-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    International Nuclear Information System (INIS)

    Ravichandran, Kameswaran; Tyagi, Alpna; Deep, Gagan; Agarwal, Chapla; Agarwal, Rajesh

    2011-01-01

    For understanding of signaling molecules important in lung cancer growth and progression, IL-1β effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1β exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1β increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1β exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-κB and HIF-1α in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1β-induced iNOS expression involved signaling pathways in addition to JAKSTAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1β-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. (author)

  4. Effect of sildenafil citrate on interleukin-1β-induced nitric oxide synthesis and iNOS expression in SW982 cells

    Science.gov (United States)

    Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun

    2008-01-01

    The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266

  5. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  6. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Taha Salim

    Full Text Available Macrophage produced inducible nitric oxide synthase (iNOS is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS, iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ and tumor necrosis factor alpha (TNF-α. To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.

  7. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages.

    Science.gov (United States)

    Salim, Taha; Sershen, Cheryl L; May, Elebeoba E

    2016-01-01

    Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.

  8. Inhibitory Effect of Inflexinol on Nitric Oxide Generation and iNOS Expression via Inhibition of NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Jae Woong Lee

    2007-01-01

    Full Text Available Inflexinol, an ent-kaurane diterpenoid, was isolated from the leaves of Isodon excisus. Many diterpenoids isolated from the genus Isodon (Labiatae have antitumor and antiinflammatory activities. We investigated the antiinflammatory effect of inflexinol in RAW 264.7 cells and astrocytes. As a result, we found that inflexinol (1, 5, 10 μM suppressed the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as the production of nitric oxide (NO in LPS-stimulated RAW 264.7 cells and astrocytes. Consistent with the inhibitory effect on iNOS and COX-2 expression, inflexinol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus. These results suggest that inflexinol inhibits iNOS and COX-2 expression through inhibition of NF-κB activation, thereby inhibits generation of inflammatory mediators in RAW 264.7 cells and astrocytes, and may be useful for treatment of inflammatory diseases.

  9. Prodigiosin inhibits gp91phox and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia–ischemia

    International Nuclear Information System (INIS)

    Chang, Chia-Che; Wang, Yea-Hwey; Chern, Chang-Ming; Liou, Kuo-Tong; Hou, Yu-Chang; Peng, Yu-Ta; Shen, Yuh-Chiang

    2011-01-01

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen–glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 μg/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91 phox ), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood–brain barrier (BBB) by activation of nuclear factor-kappa B (NF-κB). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91 phox and iNOS via activation of the NF-κB pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91 phox and iNOS expression possibly by impairing NF-κB activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: ► Prodigiosin ameliorated brain infarction and deficits. ► Prodigiosin protected against hypoxia/reperfusion-induced brain injury. ► Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. ► Prodigiosin reduced BBB breakdown. ► Prodigiosin down-regulated gp91 phox and iNOS by inhibiting NF-κB activation.

  10. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  11. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. iNOS expression and biosynthesis of nitric oxide metabolites in the course of tumor growth of different histogenesis

    Directory of Open Access Journals (Sweden)

    V. P. Deryagina

    2016-01-01

    Full Text Available The dynamics of the production of nitric oxide (NO metabolites: nitrites, nitrates, volatile nitrosamines and iNOS expression was studied in mice with subcutaneous transplanted, spontaneous and chemical- induced tumors. Tumor growth was accompanied by increased production of nitrites + nitrates in tumors or their release with urine that not dependent on tumor histotype. The total concentration of nitrites and nitrates in tumors reached micromolar levels characteristic of nitrosative stress. The ability of peritoneal macrophages + monocytes to generates nitrites was suppressed at the stage of intensive growth of the Lewis lung carcinoma, which may indicate a decrease in the cytotoxic properties of immune cells. The possibility of formation in the Erlich carcinoma of volative N-nitrosodimethylamine and N-nitrosodiethylamine compounds with pronounced carcinogenic properties was demonstrated. A positive expression of iNOS was revealed in some areas of lung carcinoma at all investigated time points using the immunohistochemical method. The lungs metastases were not stain or weakly stained. This may indicate selection of the cells with a low activity of iNOS migrating in the lungs.

  13. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  14. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription

    International Nuclear Information System (INIS)

    Simon, Priscilla S.; Sharman, Sarah K.; Lu, Chunwan; Yang, Dafeng; Paschall, Amy V.; Tulachan, Sidhartha S.; Liu, Kebin

    2015-01-01

    Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined. iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter. We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we

  15. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-κB translocation

    International Nuclear Information System (INIS)

    Yang Yongzhen; Yang Yusong; Xu Ya; Lick, Scott D.; Awasthi, Yogesh C.; Boor, Paul J.

    2008-01-01

    Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-κB plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-κB mediated gene expression, but conflicting results on 4-HNE's effect on NF-κB have been reported. We compared the effect of 4-HNE on iNOS and the NF-κB pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a α-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-κB (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS

  16. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation.

    Science.gov (United States)

    Zhong, Hui-ming; Ding, Qian-hai; Chen, Wei-ping; Luo, Ru-bin

    2013-10-01

    Overproduction of nitric oxide (NO) and matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of osteoarthritis (OA). In present study, we investigated whether vorinostat can inhibit the catabolic effects of IL-1β in vitro, especially the inhibition of MMPs and inducible nitric oxide synthase (iNOS) through the attenuation of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase (MAPK) pathways in human chondrocytes. Human OA chondrocytes were either left untreated or treated with various concentrations of vorinostat followed by incubation with IL-1β (5ng/mL). Effects of vorinostat on IL-1β-induced gene and protein expression of iNOS, MMP-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) were verified by quantitative real time-PCR and Western blot analysis. Production of NO, MMP-1, MMP-13 and TIMP-1 released in culture supernatant was estimated using commercially available kits. The roles of NF-κB and MAPK pathways in the regulation of targeted genes and the mechanism involved in vorinostat mediated modulation of these genes were determined by Western blot using specific antibodies. We found that vorinostat down-regulated iNOS, MMP-1 and MMP-13 expression and up-regulated TIMP-1 expression in human OA chondrocytes. In addition, the release of NO, MMP-1 and MMP-13 secreted from IL-1β stimulated chondrocytes was also suppressed by vorinostat. Interestingly, vorinostat selectively inhibited IL-1β-induced p38 and ERK1/2 activation without affecting JNK activation. Furthermore, we observed that vorinostat inhibited NF-κB pathway by suppressing the degradation of I-κBα and attenuating NF-κB p65 translocation to the nucleus. These results suggest that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA. © 2013.

  17. Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X-irradiation in vitro. Is there a time dependence?

    International Nuclear Information System (INIS)

    Hildebrandt, G.; Loppnow, G.; Jahns, J.; Hindemith, M.; Kamprad, F.; Anderegg, U.; Saalbach, A.

    2003-01-01

    Background: Low radiation doses (≤ 1.25 Gy), if applied 6 h before or after stimulation, are known to inhibit the inducible nitric oxide synthase (iNOS) pathway in inflammatory macrophages in vitro. We therefore investigated the time dependence and the underlying molecular mechanism of this effect, since it may be involved in the clinically observed anti-inflammatory and analgesic efficacy of low-dose radiotherapy. Material and Methods: Metabolic activity, nitric oxide (NO) production, iNOS- and hemoxygenase 1-(HO-1-)protein and -mRNA expression by macrophages in vitro after stimulation with LPS/IFN-γ (0.1 μg ml -1 /100 U ml -1 ) were investigated. Irradiation was performed at 6, 4, 2 h before and 0, 2, 4, 6 h after stimulation with doses ranging from 0.3 to 10 Gy. For each group, three independent experiments were performed over a period of 30 h with sampling intervals of 3 h. Results: In stimulated macrophages, metabolic activity was not affected by radiation doses up to 10 Gy. A dose-dependent modulation of the cumulative NO production was observed with significant inhibition by low radiation doses (≤ 1.25 Gy) and return to control level and even higher concentrations by higher doses (≥ 5 Gy). The degree of inhibition did not show any significant time dependence within the experimental time window used. The iNOS-mRNA expression 3-18 h following stimulation and subsequent irradiation was not affected by doses ≤ 1.25 Gy. The iNOS-protein expression 6-24 h following stimulation and subsequent irradiation was reduced by doses ≤ 1.25 Gy. By contrast, neither HO-1-protein nor HO-1-mRNA expression at the same time points was influenced by these low doses. Conclusion: The inhibitory interference of low radiation doses with the iNOS pathway in inflammatory macrophages appears to be based on radiation effects on the translational and posttranslational control mechanisms of iNOS activity. However, contrary to our working hypothesis this is not related to

  18. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    Science.gov (United States)

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  19. Prodigiosin inhibits gp91{sup phox} and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Che [Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (China); Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan (China); Wang, Yea-Hwey [Department of Nursing, College of Medicine and Nursing, Hungkuang University, Taichung, Taiwan (China); Chern, Chang-Ming [Division of Neurovascular Disease, Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Liou, Kuo-Tong [Department of Chinese Martial Arts, Chinese Culture University, Taipei, Taiwan (China); Hou, Yu-Chang [Department of Chinese Medicine, Taoyuan General Hospital, Department of Health, Taiwan (China); Department of Nursing, Yuanpei University, Hsinchu, Taiwan (China); Department of Bioscience Technology, Chuan-Yuan Christian University, Taoyuan, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang, E-mail: yuhcs@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China)

    2011-11-15

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 {mu}g/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91{sup phox}), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-{kappa}B). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91{sup phox} and iNOS via activation of the NF-{kappa}B pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91{sup phox} and iNOS expression possibly by impairing NF-{kappa}B activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: Black-Right-Pointing-Pointer Prodigiosin ameliorated brain infarction and deficits. Black-Right-Pointing-Pointer Prodigiosin protected against hypoxia/reperfusion-induced brain injury. Black-Right-Pointing-Pointer Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. Black-Right-Pointing-Pointer Prodigiosin reduced BBB breakdown. Black

  20. Expression profiles of eNOS, iNOS and microRNA-27b in the corpus cavernosum of rats submitted to chronic alcoholism and Diabetes mellitus.

    Science.gov (United States)

    Cunha, Joao Paulo da; Lizarte, Fermino Sanches; Novais, Paulo Cezar; Gattas, Daniela; Carvalho, Camila Albuquerque Mello de; Tirapelli, Daniela Pretti da Cunha; Molina, Carlos Augusto Fernandes; Tirapelli, Luis Fernando; Tucci, Silvio

    2017-01-01

    To evaluate the expression of endothelial and inducible NOS in addition to the miRNA-27b in the corpus cavernosum and peripheral blood of healthy rats, diabetic rats, alcoholic rats and rats with both pathologies. Forty eight Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D) and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study protein expressions of eNOS and iNOS by immunohistochemistry and expression of miRNA-27b in the corpus cavernosum and peripheral blood. Immunohistochemistry for eNOS and iNOS showed an increase in cavernosal smooth muscle cells in the alcoholic, diabetic and alcoholic-diabetic groups when compared with the control group. Similarly, the mRNA levels for eNOS were increased in cavernosal smooth muscle (CSM) in the alcoholic, diabetic and alcoholic-diabetic groups and miRNA-27b were decreased in CSM in the alcoholic, diabetic and alcoholic-diabetic groups. The major new finding of our study was an impairment of relaxation of cavernosal smooth muscle in alcoholic, diabetic, and alcoholic-diabetic rats that involved a decrease in the nitric oxide pathway by endothelium-dependent mechanisms accompanied by a change in the corpus cavernosum contractile sensitivity.

  1. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-01-01

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  2. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. India-Based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    India-Based Neutrino Observatory (INO) · Atmospheric neutrinos – India connection · INO Collaboration · INO Project components · ICAL: The physics goals · Slide 6 · Slide 7 · INO site : Bodi West Hills · Underground Laboratory Layout · Status of activities at INO Site · Slide 11 · Slide 12 · INO-ICAL Detector · ICAL factsheet.

  4. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    Science.gov (United States)

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Ameliorative Effects of Allium sativum Extract on iNOS Gene Expression and NO Production in Liver of Streptozotocin + Nicotinamide-Induced Diabetic Rats.

    Science.gov (United States)

    Ziamajidi, Nasrin; Behrouj, Hamid; Abbasalipourkabir, Roghayeh; Lotfi, Fatemeh

    2018-04-01

    Diabetes mellitus (DM) is one of the most prevalent diseases in the world, which is strongly associated with liver dysfunction. Hyperglycemia, through an oxidative stress pathway, damages various tissues. Herbal medicine is a good candidate to ameliorate hyperglycemia and oxidative stress. In this study, the effects of aqueous Allium sativum (garlic) extract (AGE) on gene expression of inducible nitric oxide synthases (iNOS) and production of nitric oxide (NO) were evaluated in the liver tissue of diabetic rats. Four groups of rats contained normal control rats, garlic control rats (AGE), Streptozotocin (STZ) + nicotinamide-induced diabetic rats (DM), and diabetic rats treated with garlic (DM + AGE). Glucose levels and liver enzymes activities were determined by colorimetric assay in the serum. Gene expression of iNOS by real-time PCR, NO levels by Griess method, oxidative stress parameters by spectrophotometric method and histopathological examination by hematoxylin and eosin staining method were evaluated in the liver tissues. Glucose levels, activities of liver enzymes, oxidative stress markers, iNOS gene expression, and NO production increased significantly in diabetic rats in comparison with control rats, whereas after oral administration of garlic, these parameters decreased significantly, close to the normal levels. Hence, the beneficial effects of garlic on the liver injury of diabetes could be included in the hypoglycaemic and antioxidant properties of garlic via a decrease in gene expression of iNOS and subsequent NO production.

  6. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  7. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    Science.gov (United States)

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  8. [Effect of adaptation to hypoxia on expression of NO synthase isoforms in rat myocardium].

    Science.gov (United States)

    Goryacheva, A V; Terekhina, O L; Abramochkin, D V; Budanova, O P; Belkina, L M; Smirin, B V; Downey, H F; Malyshev, I Yu; Manukhina, E B

    2015-01-01

    Previously we have shown that adaptation to hypoxia (AH) is cardio- and vasoprotective in myocardial ischemic and reperfusion injury and this protection is associated with restriction of nitrosative stress. The present study was focused on further elucidation of NO-dependent mechanisms of AH by identifying specific NO synthases (NOS) that could play the major role in AH protection. AH was performed in a normobaric hypoxic chamber by breathing hypoxic gas mixture (9.5-10% O2) for 5-10 min with intervening 4 min normoxia (5-8 cycles daily for 21 days). Expression of neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) protein was measured in the left ventricular myocardium using Western blot analysis with respective antibodies. AH educed iNOS protein expression by 71% (p < 0.05) whereas eNOS protein expression tended to be reduced by 41% compared to control (p < 0.05). nNOS protein expression remained unchanged after AH. Selective iNOS inhibition can mimic the AH-induced protection. Therefore protective effects of AH could be at least partially due to restriction of iNOS and, probably, eNOS expression.

  9. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    Science.gov (United States)

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  10. Enteral intestinal alkaline phosphatase administration in newborns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Pritchard, Kirkwood; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2013-01-01

    To determine if intestinal alkaline phosphatase (IAP) decreases intestinal injury resulting from experimentally induced necrotizing enterocolitis (NEC). We hypothesized that IAP administration prevents the initial development of NEC related intestinal inflammation. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day 1 of life. Pre-term pups were exposed to intermittent hypoxia and formula containing LPS to induce NEC. Select NEC pups were given 40, 4 or 0.4 units/kg of bovine IAP (NEC+IAP40u, IAP4u or IAP0.4u) enterally, once daily. Ileal sections were evaluated by real-time PCR (qRT-PCR) for IAP, iNOS, IL-1β, IL-6, and TNF-α mRNA and immunofluorescence for 3-nitrotyrosine (3-NT). Experimentally induced NEC decreased IAP mRNA expression by 66% (p ≤ 0.001). IAP supplementation increased IAP mRNA expression to control. Supplemental enteral IAP decreased nitrosative stress as measured by iNOS mRNA expression and 3-NT staining in the NEC stressed pups (p ≤ 0.01), as well as decreased intestinal TNF-α mRNA expression. In addition, IAP decreased LSP translocation into the serum in the treated pups. We conclude that enterally administered IAP prevents NEC-related intestinal injury and inflammation. Enteral IAP may prove a useful strategy in the prevention of NEC in preterm neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  12. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  13. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  14. Inducible nitric oxide synthase (iNOS) in gingival tissues of chronic periodontitis with and without diabetes: immunohistochemistry and RT-PCR study.

    Science.gov (United States)

    Shaker, Olfat; Ghallab, Noha A; Hamdy, Ebtehal; Sayed, Safinaz

    2013-10-01

    There is few data concerning the pathogenesis and contribution of inducible nitric oxide synthase (iNOS) in the inflammatory reactions of the periodontium in the course of diabetes. This study evaluated the expression of iNOS in the gingival biopsies of periodontitis patients with and without type 2 diabetes. 80 subjects were evaluated in four groups: patients with chronic periodontitis and diabetes, patients with chronic periodontitis, periodontally healthy patients with diabetes, and systemically and periodontally healthy control subjects. Gingival biopsies were subjected to immunohistochemistry as well as reverse transcription polymerase chain reaction (RT-PCR) for determination of iNOS. All diseased gingival tissues had a significant increase in iNOS expression by immunohistochemistry (Pperiodontitis and diabetic patients regarding iNOS(+) cells. Meanwhile, these two groups had significantly increased iNOS(+) cells when compared to periodontitis patients (Pperiodontitis showed significantly higher levels of iNOS mRNA expression compared to samples from periodontitis patients and diabetic patients (Pperiodontitis, periodontitis patients and diabetic patients, the higher mRNA for iNOS observed in diabetes and periodontitis may indicate a possible involvement of this mediator in the periodontal destruction of type 2 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  16. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    Science.gov (United States)

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2011-01-01

    We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). The NM expression of NM-HLA-DR (pMRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (pMRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR pMRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  17. Abnormal Sensory Protein Expression and Urothelial Dysfunction in Ketamine-Related Cystitis in Humans

    Directory of Open Access Journals (Sweden)

    Yao Chou Tsai

    2016-09-01

    Full Text Available Purpose The aim of this study was to analyze patterns of sensory protein expression and urothelial dysfunction in ketamine-related cystitis (KC in humans. Methods Biopsies of bladder mucosa were performed in 29 KC patients during cystoscopy. Then specimens were analyzed for tryptase, zonula occludens-1 (ZO-1, E-cadherin, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL with immunofluorescence staining and quantification. In addition, 10 healthy control bladder specimens were analyzed and compared with the KC specimens. Another 16 whole bladder specimens obtained from partial cystectomy were also analyzed for the muscarinic receptors M2 and M3, endothelial nitric oxide synthase (eNOS, inducible nitric oxide synthase (iNOS, β-3 adrenergic receptors (β3-ARs, and the P2X3 receptor by western blotting. In addition, 3 normal control bladder specimens were analyzed and compared with the KC specimens. Results The KC bladder mucosa revealed significantly less expression of ZO-1 and E-cadherin, and greater expression of TUNEL and tryptase activity than the control samples. The expression of M3 and β3-AR in the KC specimens was significantly greater than in the controls. The expression of iNOS, eNOS, M2, and P2X3 was not significantly different between the KC and control specimens. Conclusions The bladder tissue of KC patients revealed significant urothelial dysfunction, which was associated with mast-cell mediated inflammation, increased urothelial cell apoptosis, and increased expression of the M3 and β3-AR.

  18. Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Özdemir, Selçuk; Altun, Serdar; Arslan, Harun

    2018-01-01

    Imidacloprid (IMI) is a neonicotinoid that is widely used for the protection of crops and carnivores from insects and parasites, respectively. It is well known that imidacloprid exposure has a harmful effect on several organisms. However, there is little information about imidacloprid toxicity in aquatic animals, particularly fish. Thus, in the current study, we assessed the histopathological changes; activation of iNOS, 8-OHdG and TNF-α; and expression levels of caspase 3, iNOS, CYP1A and MT1 genes in the common carp exposed to imidacloprid. For this purpose, fish were exposed to either a low dose (140 mg/L) or a high dose (280 mg/L) of imidacloprid for 24 h, 48 h, 72 h and 96 h. After IMI exposure, we detected hyperplasia of secondary lamellar cells and mucous cell hyperplasia in the gills, as well as hydropic degeneration in hepatocytes and necrosis in the liver. Moreover, 8-OHdG, iNOS and TNF-α activation was found particularly in the gills and liver but also moderately in the brain. Transcriptional analysis showed that caspase 3 expression was altered low dose and high doses of IMI for 72 h and 96 h exposure ( p   0.05) except with low and high doses of IMI for 96 h ( p <  0.05), and lastly, MT1 gene expression was up-regulated only in the brain with low doses of IMI for 96 h and high doses of IMI for 48 h, 72 h and 96 h exposure ( p <  0.05, p <  0.01). Our results indicated that acute IMI exposure moderately induce apoptosis in the brain but caused severe histopathological lesions, inflammation, and oxidative stress in the gills, liver, and brain of the common carp.

  19. Arctigenin exerts protective effects against myocardial infarction via regulation of iNOS, COX‑2, ERK1/2 and HO‑1 in rats.

    Science.gov (United States)

    Zhang, Yanmin; Yang, Yong

    2018-03-01

    The present study aimed to determine the protective effects of arctigenin against myocardial infarction (MI), and its effects on oxidative stress and inflammation in rats. Left anterior coronary arteries of Sprague‑Dawley rats were ligated, in order to generate an acute MI (AMI) model. Arctigenin was administered to AMI rats at 0, 50, 100 or 200 µmol/kg. Western blotting and ELISAs were performed to analyze protein expression and enzyme activity. Arctigenin was demonstrated to effectively inhibit the levels of alanine transaminase, creatine kinase‑MB and lactate dehydrogenase, and to reduce infarct size in AMI rats. In addition, the activity levels of malondialdehyde, interleukin (IL)‑1β and IL‑6 were significantly suppressed, and the levels of glutathione peroxidase, catalase and superoxide dismutase were significantly increased by arctigenin treatment. Arctigenin treatment also suppressed the protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX‑2) and heme oxygenase 1 (HO‑1), and increased the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase 1/2 (p‑ERK1/2) in AMI rats. Overall, the results of the present study suggest that arctigenin may inhibit MI, and exhibits antioxidative and anti‑inflammatory effects through regulation of the iNOS, COX‑2, ERK1/2 and HO‑1 pathways in a rat model of AMI.

  20. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta

    Directory of Open Access Journals (Sweden)

    Josiane Fernandes da Silva

    2016-09-01

    Full Text Available Background - The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process.Methods - High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS knockdown.Results - Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD than in the sedentary control animals (SS. Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS-/- animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet

  1. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  2. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Choudhury, Mahua G.; Saha, Nirmalendu

    2012-01-01

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  3. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    Science.gov (United States)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P goats.

  4. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice.

    Science.gov (United States)

    Liang, Qianqian; Ju, Yawen; Chen, Yan; Wang, Wensheng; Li, Jinlong; Zhang, Li; Xu, Hao; Wood, Ronald W; Schwarz, Edward M; Boyce, Brendan F; Wang, Yongjun; Xing, Lianping

    2016-03-12

    In this study, we sought to determine the cellular source of inducible nitric oxide synthase (iNOS) induced in lymphatic endothelial cells (LECs) in response to tumor necrosis factor (TNF), the effects of iNOS on lymphatic smooth muscle cell (LSMC) function and on the development of arthritis in TNF-transgenic (TNF-Tg) mice, and whether iNOS inhibitors improve lymphatic function and reduce joint destruction in inflammatory erosive arthritis. We used quantitative polymerase chain reactions, immunohistochemistry, histology, and near-infrared imaging to examine (1) iNOS expression in podoplanin + LECs and lymphatic vessels from wild-type (WT) and TNF-Tg mice, (2) iNOS induction by TNF in WT LECs, (3) the effects of iNOS inhibitors on expression of functional muscle genes in LSMCs, and (4) the effects of iNOS inhibitors on lymphatic vessel contraction and drainage, as well as the severity of arthritis, in TNF-Tg mice. LECs from TNF-Tg mice had eight fold higher iNOS messenger RNA levels than WT cells, and iNOS expression was confirmed immunohistochemically in podoplanin + LECs in lymphatic vessels from inflamed joints. TNF (0.1 ng/ml) increased iNOS levels 40-fold in LECs. LSMCs cocultured with LECs pretreated with TNF had reduced expression of functional muscle genes. This reduction was prevented by ferulic acid, which blocked nitric oxide production. Local injection of L-N(6)-(1-iminoethyl)lysine 5-tetrazole-amide into inflamed paws of TNF-Tg mice resulted in recovery of lymphatic vessel contractions and drainage. Treatment of TNF-Tg mice with ferulic acid reduced synovial inflammation as well as cartilage and bone erosion, and it also restored lymphatic contraction and drainage. iNOS is produced primarily by LECs in lymphatic vessel efferent from inflamed joints of TNF-Tg mice in response to TNF and inhibits LSMC contraction and lymph drainage. Ferulic acid represents a potential new therapy to restore lymphatic function and thus improve inflammatory

  5. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    Science.gov (United States)

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  6. The β3 Adrenergic Receptor Agonist BRL37344 Exacerbates Atrial Structural Remodeling Through iNOS Uncoupling in Canine Models of Atrial Fibrillation.

    Science.gov (United States)

    Wang, Xiaobing; Wang, Ruifeng; Liu, Guangzhong; Dong, Jingmei; Zhao, Guanqi; Tian, Jingpu; Sun, Jiayu; Jia, Xiuyue; Wei, Lin; Wang, Yuping; Li, Weimin

    2016-01-01

    The role of the β3-adrenergic receptor (β3-AR) agonist BRL37344 in atrial fibrillation (AF) structural remodeling and the underlying mechanisms as a therapeutic target were investigated. Four groups of dogs were evaluated: sham, pacing, β3-AR agonist BRL37344 (β3-AGO), and β3-AR antagonist L748337 (β3-ANT) groups. Dogs in the pacing, β3-AGO and β3-ANT groups were subjected to rapid atrial pacing for four weeks. Atrial structure and function, AF inducibility and duration, atrial myocyte apoptosis and interstitial fibrosis were assessed. Atrial superoxide anions were evaluated by fluorescence microscopy and colorimetric assays. Cardiac nitrate+nitrite levels were used to assess nitric oxide (NO) production. Protein and mRNA expression of β3-AR, neuronal NO synthase (nNOS), inducible NO synthase (iNOS), endothelial NO synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GCH-1) as well as tetrahydrobiopterin (BH4) levels were measured. β3-AR was up-regulated in AF. Stimulation of β3-AR significantly increased atrial myocyte apoptosis, fibrosis and atrial dilatation, resulting in increased AF induction and prolonged duration. These effects were attenuated by β3-ANT. Moreover, β3-AGO reduced BH4 and NO production and increased superoxide production, which was inhibited by the specific iNOS inhibitor, 1400w β3-AGO also increased iNOS but decreased eNOS and had no effect on nNOS expression in AF. β3-AR stimulation resulted in atrial structural remodeling by increasing iNOS uncoupling and related oxidative stress. β3-AR up-regulation and iNOS uncoupling might be underlying AF therapeutic targets. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Role of iNOS in Bystander Signaling Between Macrophages and Lymphoma Cells

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Maurya, Dharmendra Kumar; Krishna, Malini

    2008-01-01

    Purpose: The present report describes the bystander effects of radiation between similar and dissimilar cells and the role of iNOS in such communication. Materials and Methods: EL-4 and RAW 264.7 cells were exposed to 5 Gy γ-irradiation. The medium from irradiated cells was transferred to unirradiated cells. Results: Irradiated EL-4 cells as well as those cultured in the presence of medium from γ-irradiated EL-4 cells showed an upregulation of NF-κB, iNOS, p53, and p21/waf1 genes. The directly irradiated and the bystander EL-4 cells showed an increase in DNA damage, apoptosis, and NO production. Bystander signaling was also found to exist between RAW 264.7 (macrophage) and EL-4 (lymphoma) cells. Unstimulated or irradiated RAW 264.7 cells did not induce bystander effect in unirradiated EL-4 cells, but LPS stimulated and irradiated RAW 264.7 cells induced an upregulation of NF-κB and iNOS genes and increased the DNA damage in bystander EL-4 cells. Treatment of EL-4 or RAW 264.7 cells with L-NAME significantly reduced the induction of gene expression and DNA damage in the bystander EL-4 cells, whereas treatment with cPTIO only partially reduced the induction of gene expression and DNA damage in the bystander EL-4 cells. Conclusions: It was concluded that active iNOS in the irradiated cells was essential for bystander response

  8. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    Directory of Open Access Journals (Sweden)

    Chandra M Ohri

    Full Text Available BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+ macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14, or a non-cytotoxic M2 phenotype (CD163 and VEGF were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES (median 92.7 months and 20 patients with poor survival (PS (median 7.7 months. RESULTS: The NM expression of NM-HLA-DR (p<0.001, NM-iNOS (p = 0.02 and NM-MRP 8/14 (p = 0.02 was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001. There was more NM-CD163 expression (p = 0.04 but less NM-iNOS (p = 0.002 and MRP 8/14 (p = 0.01 expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001, 65.0% versus 14.6% (NM-iNOS p = 0.003, and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04, as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41 and 19.4% versus 59.0% (NM-VEGF p = 0.001. CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  9. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway.

    Science.gov (United States)

    Zhao, Feng; Wang, Lu; Liu, Ke

    2009-04-21

    Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet. To investigate the anti-inflammatory mechanism of arctigenin. Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2. Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-alpha and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin. These results indicated that potent inhibition on NO, TNF-alpha and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.

  10. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Science.gov (United States)

    Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang

    2012-01-01

    The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food

  11. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation.

    Directory of Open Access Journals (Sweden)

    Qiang-Song Wang

    Full Text Available The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO and prostaglandin E(2 (PGE(2 were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, interleukin (IL-6, and tumor necrosis factor alpha (TNF-α was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB α, Inhibitor of NF-κB Kinase (IKK α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional

  12. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  13. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook

    2006-01-01

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 μg/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects

  14. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  15. Effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells.

    Science.gov (United States)

    Zhao, Fei; Ji, Zheng; Chi, Jufang; Tang, Weiliang; Zhai, Xiaoya; Meng, Liping; Guo, Hangyuan

    2016-02-01

    The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor-α (TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF-α + rosuvastatin (10 μmol/L), (4) TNF-α + ethanol 0.5%, (5) TNF-α + yellow wine 0.5%, (6) TNF-α + ethanol 1.0%, (7) TNF-α + yellow wine 1.0%, (8) TNF-α + ethanol 1.5%, and (9) TNF-α + yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Compared with the TNF-α group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.

  16. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Neuroprotective effects of curcumin alleviate lumbar intervertebral disc degeneration through regulating the expression of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF in a rat model.

    Science.gov (United States)

    Hu, Yuan; Tang, Jin-Shu; Hou, Shu-Xun; Shi, Xiu-Xiu; Qin, Jiang; Zhang, Tie-Song; Wang, Xiao-Jing

    2017-11-01

    Curcumin is a natural product with antimutagenic, antitumor, antioxidant and neuroprotective properties. However, to the best of our knowledge, curcumin has yet to be investigated for the treatment of lumbar intervertebral disc degeneration LIDD). The aim of the present study was to investigate whether curcumin can alleviate LIDD through regulating the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, transforming growth factor (TGF)‑β1/2, matrix metalloproteinase (MMP)‑9 and brain‑derived neurotrophic factor (BDNF) in a rat model of LIDD. The results of the present study suggest that pretreatment with curcumin can prevent the development of LIDD in rats. It was revealed that treatment with curcumin significantly reduced interleukin (IL)‑1β and IL‑6, iNOS, COX‑2 and MMP‑9 levels in rats with LIDD. In addition, treatment with curcumin reduced the mRNA expression levels of TGF‑β1 and TGF‑β2, whereas it increased the mRNA expression levels of BDNF in rats with LIDD. In conclusion, the present findings indicate that curcumin may exert protective effects on LIDD development, exerting its action through the regulation of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF.

  18. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  19. Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: Evaluation of iNOS and COX-2 genes expression.

    Science.gov (United States)

    Eslami, Seyyed Majid; Ghasemi, Maryam; Bahremand, Taraneh; Momeny, Majid; Gholami, Mahdi; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2017-11-15

    This study aims to investigate the role of zolpidem in lithium-pilocarpine induced status epilepticus (SE) and probable mechanisms involved in seizure threshold alteration. In the present study, lithium chloride (127mg/kg) was administered 20h prior to pilocarpine (60mg/kg) to induce SE in adult male Wistar rats. Different doses of zolpidem (0.1, 1, 2, 5, 10mg/kg) were injected 30min before pilocarpine administration. Furthermore, to find out whether nitric oxide (NO) plays a role in the observed effect, L-arginine and L-NAME were injected 15min before zolpidem. Afterward, we identified the particular NO isoform mediating the effect of zolpidem by injecting aminoguanidine (AG) and 7-Nitroindazole (7-NI) 15min prior to zolpidem. Moreover, in both 6 and 24h after pilocarpine injection, experimental groups underwent hippocampectomy to evaluate cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes expression by quantitative reverse transcription-PCR (qRT-PCR). Pre-treatment with zolpidem significantly prevented the onset of SE in a dose-dependent manner. AG and L-NAME significantly potentiated the anticonvulsant effect of zolpidem while L-arginine inverted this effect. Our qRT-PCR exerted that there was a continuous elevation of iNOS and COX-2 genes expression over 6 and 24h after pilocarpine administration in SE and L-arginine+Zolpidem groups while in AG/L-NAME+Zolpidem and zolpidem groups this upregulation was prevented. Our study indicates that zolpidem prevents the onset of SE through inhibition of iNOS/COX-2 genes upregulation following lithium-pilocarpine administration. Consistent with our results, we suggest that iNOS activation could be probably upstream of COX-2 gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  1. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  2. Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features

    International Nuclear Information System (INIS)

    Feng, Chang Wei; Wang, Li Dong; Jiao, Lian Hua; Liu, Bin; Zheng, Shu; Xie, Xin Ji

    2002-01-01

    The growth and metastasis of tumors depend on the development of an adequate blood supply via angiogenesis. Recent studies indicate that the inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF) and the tumor suppressor p53 are fundamental play-markers of the angiogenic process. Overexpression of iNOS and VEGF has been shown to induce angiogenesis in tumors. P53 suppresses angiogenesis by down-regulating VEGF and iNOS. The correlation of expression of p53, VEGF and iNOS and clinical features in gastric carcinogenesis, however, has not been well characterized. The expression of p53, iNOS and VEGF in gastric precancerous and cancerous lesions and its relation with the clinical features was determined with immunohistochemistry (avidin-biotin-peroxidase complex method) on 55 randomly selected GC patients and 60 symptom-free subjects from the mass survey in the high-incidence area for GC in Henan, northern China. The positive immunostainig rates for p53, iNOS and VEGF in gastric carcinomas were 51%, 44% and 51%, respectively, and correlated well with TNM stages, but did not show significant difference among the groups with different degrees of gastric wall invasion depth by GC. A positive immunostaining reaction for the iNOS protein was significantly correlated with lymph node metastasis (p = 0.019; Spearman correlation coefficient). P53 protein accumulation was higher in the poorly-differentiated gastric carcinoma than in well-differentiated one. In gastric biopsies, no positive immunosatining was observed for p53, iNOS and VEGF in the histologically normal tissue and chronic superficial gastritis (CSG). However, p53, iNOS and VEGF positive immunostaining was observed in the tissues with different severities of lesions of chronic atrophic gastritis (CAG), intestinal metaplasia (IM) and dysplasia (DYS), and the positive rates increased with the lesion progression from CAG to IM to DYS. A high coincidental positive and negative immunostaining

  3. Inhibition of iNOS and DNA Oxidation by Methanol Extract of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant properties of the methanol extract of S. tenuifolia as well as its effect on inducible nitric oxide synthase (iNOS) and cycleooxygenase-2 (COX-2) expression in lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: The antioxidant activities of the plant extract ...

  4. Phosphorylation of human INO80 is involved in DNA damage tolerance

    International Nuclear Information System (INIS)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki; Aoki, Yuka; Utsugi, Takahiko; Ohtsu, Masaya; Murakami, Yasufumi

    2012-01-01

    Highlights: ► Depletion of hINO80 significantly reduced PCNA ubiquitination. ► Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. ► Western blot analyses showed phosphorylated hINO80 C-terminus. ► Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.

  5. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.

    Science.gov (United States)

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne

    2015-04-01

    Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Li, Zheng; Ma, Qian-Qian; Yan, Yan; Xu, Feng-Dan; Zhang, Xiao-Ying; Zhou, Wei-Qin; Feng, Zhi-Chun

    2016-09-01

    protein levels of HMGB1 and iNOS in the hippocampus of the mice with mild meningitis. Edaravone produces neuroprotective actions in a mouse model of pneumococcal meningitis by reducing neuronal apoptosis and HMGB1 and iNOS expression in the hippocampus via the Nrf2/HO-1 pathway. Thus, edaravone may be a promising agent for the treatment of bacterial meningitis.

  7. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates.

    Science.gov (United States)

    Roodgar, Morteza; Ross, Cody T; Kenyon, Nicholas J; Marcelino, Gretchen; Smith, David Glenn

    2015-04-01

    Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (Chlorocebus sabaeus), pig-tailed macaques (Macaca nemestrina), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Expression of IL-1β, IL-6, TNF-α, and iNOS in pregnant women with periodontal disease.

    Science.gov (United States)

    Otenio, C C M; Fonseca, I; Martins, M F; Ribeiro, L C; Assis, N M S P; Ferreira, A P; Ribeiro, R A

    2012-12-17

    Periodontal disease is one of the most prevalent oral diseases. An association between this disease and pregnancy has been suggested, but available findings are controversial. We evaluated the expression levels of interleukins (IL-1β and IL-6), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in pregnant women with and without periodontal disease in comparison with non-pregnant women with and without periodontal disease since studies have suggested a relationship between periodontitis and the expression levels of these genes. The women in the sample were distributed into four groups: pregnant and non-pregnant women, with or without periodontal disease, a total of 32 women. The periodontal condition was evaluated according to the probing depth, clinical attachment level and bleeding on probing. Analysis of gene expression was performed by real-time PCR. Comparisons were made of the level of gene expression among the four groups. Expression of IL-1β in the non-pregnant women with periodontal disease was 12.6 times higher than in the non-pregnant women without periodontal disease (P periodontal disease was 3.5 times higher than in the pregnant women with periodontal disease (P periodontal disease in comparison with expression of the same genes in non-pregnant women with and without periodontal disease, suggesting that periodontal disease is not influenced by pregnancy.

  10. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model.

    Science.gov (United States)

    Yadav, Satyndra Kumar; Rai, Sachchida Nand; Singh, Surya Pratap

    2017-03-01

    Parkinson's disease is one of the most common neurodegenerative disease found in aged peoples. Plentiful studies are being conducted to find a suitable and effective cure for this disease giving special impetus on use of herbal plants. The study aimed at investigating the effect of ethanolic extract of Mucuna pruriens (Mp) on level of nitric oxide (NO) in paraquat (PQ) induced Parkinson's disease (PD) mouse model and its subsequent contribution to lipid peroxidation. Twenty four Swiss albino mice were divided into three groups; Control, PQ and PQ+Mp. PQ doses were given intraperitoneally, twice in a week and oral dose of ethanolic extract of Mp seed was given for 9 weeks. Nitrite content and lipid peroxidation was measured in all treated groups along with respective controls. RNA was isolated from the nigrostriatal tissue of control and the treated mice and was reverse transcribed into cDNA. PCR was performed to amplify iNOS mRNA and western blot analysis was performed to check its protein level. We had also perfused the mice in all treated group and performed Tyrosine hydroxylase (TH) and iNOS immunoreactivity in substantia nigra region of mice brain. PQ-treatment increased nitrite content, expression of iNOS and lipid peroxidation compared to respective controls. Mp treatment resulted in a significant attenuation of iNOS expression, nitrite content and lipid peroxidation demonstrating that it reduces nitric oxide in PQ-induced Parkinson's disease. Interestingly; we also observed that mRNA, protein expression and immunoreactivity of iNOS was significantly decreased after Mp treatment and TH immunoreactivity was significantly improved after the treatment of Mp. Our results demonstrated that Mp protects the dopaminergic neurons from the NO injury in substantia nigra. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of IFN-β1a and IFN-β1b treatment on the expression of cytokines, inducible NOS (NOS type II), and myelin proteins in animal model of multiple sclerosis.

    Science.gov (United States)

    Lubina-Dąbrowska, Natalia; Stepień, Adam; Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Langfort, Józef; Chalimoniuk, Małgorzata

    2017-08-01

    The aim of this study was to investigate the effects of interferon (IFN)-β1a and IFN-β1b treatment on inflammatory factors and myelin protein levels in the brain cortex of the Lewis rat experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis. To induce EAE, rat were immunized with inoculums containing spinal cord guinea pig homogenized in phosphate-buffered saline and emulsified in Freund's complete adjuvant containing 110 µg of the appropriate antigen in 100 µl of an emulsion and additionally 4-mg/ml Mycobacterium tuberculosis (H37Ra). The rats were treated three times per week with subcutaneous applications of 300,000 units IFN-β1a or IFN-β1b. The treatments were started 8 days prior to immunization and continued until day 14 after immunization. The rats were killed on the 14th day of the experiment. EAE induced dramatic increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentrations and inducible nitric oxide synthase (iNOS) expression in the brain, which closely corresponded to the course of neurological symptoms and the loss of weight. Both IFN-β1b and IFN-β1a treatments inhibited the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the activation of astrocytes, increased the myelin protein level in the brain cortex, and improved the neurological status of EAE rats by different mechanisms; IFN-β1a reduced iNOS expression, at least in part, by the enhancement of IL-10, while IFN-β1b diminished IL-10 concentration and did not decrease EAE-induced iNOS expression.

  12. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  13. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    Science.gov (United States)

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  14. Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair.

    Science.gov (United States)

    Kämpfer, Heiko; Pfeilschifter, Josef; Frank, Stefan

    2003-12-01

    Within the past years, an important role for nitric oxide (NO) in skin repair has been well defined. As NO is synthesized from L-arginine by NO synthases (NOS), the availability of L-arginine might be one rate-limiting factor of NO production at the wound site. Upon injury, arginase-1 and -2 mRNA, protein, and activity were strongly induced reaching a maximum between day 3 and day 7 postwounding. Immunohistochemistry colocalized both arginases and the inducible NOS (iNOS) at epithelial sites at the margins of the wound. Notably, diabetes-impaired skin repair in leptin-deficient mice (diabetes/diabetes, db/db; and obese/obese, ob/ob) was characterized by an abnormally elevated arginase activity in wound tissue in the absence of an expression of iNOS. Expression analyses demonstrated that arginase-1 contributed to increased arginase activities in impaired repair. Interestingly, an improved healing of chronic wound situations in leptin-supplemented ob/ob mice was strongly associated with an adjustment of the dysregulated expression of L-arginine-converting enzymes: an attenuated iNOS expression was upregulated early in repair and an augmented arginase-1 expression and activity was downregulated in the presence of markedly elevated numbers of macrophages during late repair. These data suggest a coordinated consumption of L-arginine by the NOS and arginase enzymatic pathways at the wound site as a prerequisite for a balanced NO (via iNOS) and polyamine (via arginases) synthesis that drives a normal skin repair.

  15. Revisión de registros y notas de Pingüino Rey (Aptenodytes patagonicus) y el Pingüino Penacho Amarillo (Eudyptes chrysocome) en Brasil

    OpenAIRE

    Barquete, Viviane; Bugoni, Leandro; Silva-Filho, Rodolfo P.; Adornes, Andrea C.

    2006-01-01

    En este estudio se presenta una revisión de hallazgos previos y nuevos registros del Pingüino Rey (Aptenodytes patagonicus) y del Pingüino Penacho Amarillo (Eudyptes chrysocome) en la costa de Brasil. En total se registraron seis individuos de Pingüino Rey y diez de Pingüino de Penacho Amarillo. Tanto juveniles como adultos de las dos especies fueron encontrados en las playas, especialmente en Rio Grande do Sul, sur de Brasil. Los registros de Pingüino Rey están restringidos al verano, mientr...

  16. Oxide Synthase Expression by p38 MAP Kinase

    Directory of Open Access Journals (Sweden)

    Tuija Turpeinen

    2011-01-01

    Full Text Available The role of dual specificity phosphatase 1 (DUSP1 in inducible nitric oxide synthase (iNOS expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1(−/− mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.

  17. Effect of aminoguanidine and albendazole on inducible nitric oxide synthase (iNOS activity in T. spiralis-infected mice muscles

    Directory of Open Access Journals (Sweden)

    Iwona Mozer-Lisewska

    2011-08-01

    Full Text Available The aim of this study was to provide evidence for the expression of iNOS in the cells of inflammatory infiltrates around larvae in skeletal muscles of T. spiralis infected mice. The BALB/c mice (n=8 divided into subgroups, received either aminoguanidine (AMG - a specific iNOS inhibitor or albendazole (ALB - an antiparasitic drug of choice in trichinellosis treatment. Control animals (n=2 in each subgroup were either uninfected and treated or uninfected and untreated. Frozen sections of hind leg muscles from mice sacrificed at various time intervals after infection were cut and subjected to immunohistochemistry, using monoclonal anti-iNOS antibody. The ALB-treated mice revealed stronger iNOS staining in the infiltrating cells around larvae than the infected and untreated animals. On the contrary, in the AMG-treated animals, the infiltrating cells did not show any specific iNOS reaction. These data confirm the specificity of iNOS staining in the cellular infiltrates around T. spiralis larvae and shed some light on the role of nitric oxide during ALB treatment in experimental trichinellosis.

  18. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    Directory of Open Access Journals (Sweden)

    Mohamed A. Morsy

    2014-01-01

    Full Text Available Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p. for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS expression, while expression of endothelial nitric oxide synthase (eNOS was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production.

  19. Inducible nitric oxide expression correlates with the level of inflammation in periapical cysts.

    Science.gov (United States)

    Matsumoto, Mariza Akemi; Ribeiro, Daniel Araki

    2007-10-01

    In an attempt to elucidate if inducible nitric oxide expression (iNOS) is correlated with the level of inflammation in periapical cysts with accuracy, the goal of this study was to evaluate the expression of iNOS in these ones. 30 cases were included in this study being iNOS evaluated by means of immunohistochemistry. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the post-hoc Dunn's test. iNOS stain was detected throughout the epithelium, subepithelial fibroblasts and macrophages in all cases, indistinctly. Nevertheless, iNOS immunostaining in periapical cysts was different according to the levels of inflammation, being the strongest effect associated with intense inflammatory infiltrate. Taken together, our results indicate that immunoreactivity of iNOS was expressed in several cellular types present in periapical cyst, being positively correlated with the level of inflammation. Therefore, iNOS expression plays an important role in the pathogenesis of periapical cysts.

  20. Intoxicação experimental por monensina em eqüinos

    Directory of Open Access Journals (Sweden)

    Bezerra Jr Pedro Soares

    2000-01-01

    Full Text Available Sete eqüinos foram tratados experimentalmente com monensina sódica. Dois desses animais receberem 3-4 kg/eqüino/dia de uma ração comercial sabidamente implicada em surtos naturais da intoxicação por monensina em eqüinos e que continha 180 ppm±20 da droga. Um eqüino recebeu uma única dose de 5 mg/kg e um outro recebeu 4 doses diárias de 1 mg/kg de monensina sódica originária de um premix. Esses quatro eqüinos morreram ou foram sacrificados in extremis, 3-8 dias após o início da administração da droga. Um quinto eqüino recebeu dose única de 5 mg/kg de monensina, ficou levemente doente e se recuperou. Dois eqüinos não desenvolveram sinais da intoxicação. Um desses eqüinos tinha recebido 40 doses diárias de 0,5 mg/kg de monensina e o outro recebeu 3 kg/dia de uma ração da mesma marca que a usada nas fazendas onde surtos de intoxicação por monensina foram detectados (mas de uma outra partida, mais tarde determinada como contendo menos de 5 ppm de monensina. O aparecimento dos sinais clínicos ocorreu de 2 a 5 dias após a administração da droga e a duração do quadro clínico variou de 24 a 76 horas. Os sinais clínicos incluíam taquicardia, arritmia, gemidos, incoordenação, sudorese, decúbito esternal, decúbito lateral, pedaleios e morte. Em cinco dos eqüinos intoxicados observaram-se marcadas elevações da atividade plasmática de creatina fosfoquinase e, em um eqüino, houve leve aumento da atividade plasmática de aspartato aminotransferase. Os principais achados de necropsia consistiram em áreas brancas ou amarelas, focais ou focalmente extensas e bilateralmente simétricas nos músculos esqueléticos. Essas lesões eram associadas a edema gelatinoso e translúcido das fáscias intermusculares. Quadríceps femoral, adutor, pectíneo, grácil, semi-membranáceo, supra-espinhal, subescapular, braquicefálico e quadríceps femoral estavam entre os músculos esqueléticos mais afetados. Os exames histol

  1. iNOS+ macrophages: potential alternate and tool for effective tumor therapy

    International Nuclear Information System (INIS)

    Prakash, Hridayesh; KIug, Felix; Jäger, Dirk; Hammerling, Gunter; Beckhove, Philipp

    2014-01-01

    Inefficient migration of immune effector cells in the tumor is a major limitation of effective therapy against solid tumors. This is due to immunosuppressive micro environment and impermissive endothelium which protects tumors from immune attack which is attributed to massive infiltration of tumors by macrophages which are known as tumor associated macrophages which are INOS low , Arginase- 1+ , Ym- 1+ , CD206 + (known as M2 or alternatively activated or tumor associated macrophages). Accumulation of M2 has been associated with the poor prognosis in the majority of cancer patients. Radiotherapy has recently been introduced as a potential strategy to improve cancer immunotherapy and tumor immune rejection. This is the only clinically advanced approach for noninvasive, site-specific intervention in cancer patients. Majority of cancer patients are routinely irradiated with therapeutic and high doses of γ-radiations which frequently manifest severe local/systemic acute. Low dose radiation (LDR) on the other hand may provide good alternatives of HDR for avoiding such toxicities. In this line, our pioneer study demonstrated that local/systemic low dose irradiation of tumors (2 Gy) effectively modified tumor micro environment and facilitated infiltration of peripheral immune effectors cells (T-cells) in neuroendocrine tumor of pancreas called insulinoma in RIP1-Tag5 (RT5) mice and primary human pancreatic carcinoma. Such tumor infiltration of T cells remained strictly dependent on iNOS + peritumoral macrophages. Our study also explicitly revealed that adoptive transfer of iNOS expressing macrophages in unirradiated RIP1-Tag5 (RT5) also offer a promising intervention to establish those populations of macrophages in the tumor tissue that enable therapeutic efficacy of cancer immunotherapy. We here demonstrate the critical role of iNOS + macrophages in joint regulation of tumor micro environment (angiogenesis) as well as effector T cell recruitment into tumor tissue and

  2. MEMS/MOEMS foundry services at INO

    Science.gov (United States)

    García-Blanco, Sonia; Ilias, Samir; Williamson, Fraser; Généreux, Francis; Le Noc, Loïc; Poirier, Michel; Proulx, Christian; Tremblay, Bruno; Provençal, Francis; Desroches, Yan; Caron, Jean-Sol; Larouche, Carl; Beaupré, Patrick; Fortin, Benoit; Topart, Patrice; Picard, Francis; Alain, Christine; Pope, Timothy; Jerominek, Hubert

    2010-06-01

    In the MEMS manufacturing world, the "fabless" model is getting increasing importance in recent years as a way for MEMS manufactures and startups to minimize equipment costs and initial capital investment. In order for this model to be successful, the fabless company needs to work closely with a MEMS foundry service provider. Due to the lack of standardization in MEMS processes, as opposed to CMOS microfabrication, the experience in MEMS development processes and the flexibility of the MEMS foundry are of vital importance. A multidisciplinary team together with a complete microfabrication toolset allows INO to offer unique MEMS foundry services to fabless companies looking for low to mid-volume production. Companies that benefit from their own microfabrication facilities can also be interested in INO's assistance in conducting their research and development work during periods where production runs keep their whole staff busy. Services include design, prototyping, fabrication, packaging, and testing of various MEMS and MOEMS devices on wafers fully compatible with CMOS integration. Wafer diameters ranging typically from 1 inch to 6 inches can be accepted while 8-inch wafers can be processed in some instances. Standard microfabrication techniques such as metal, dielectric, and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. A stepper permits reduction of the critical dimension to around 0.4 μm. Metals deposited by vacuum deposition methods include Au, Ag, Al, Al alloys, Ti, Cr, Cu, Mo, MoCr, Ni, Pt, and V with thickness varying from 5 nm to 2 μm. Electroplating of several materials including Ni, Au and In is also available. In addition, INO has developed and built a gold black deposition facility to answer customer's needs for broadband microbolometric detectors. The gold black deposited presents specular reflectance of less than 10% in the wavelength range from 0.2 μm to 100 μm with thickness ranging from

  3. Statement on INO from the three Indian science academies: The ...

    Indian Academy of Sciences (India)

    Savitha Sekhar Nair

    such an experimental facility for its intrinsic scientific value. In addition to enabling Indian ... present around us at all times, causing no damage. The INO ... benefits are not just for the short term: the INO is one of a set of major experiments that ...

  4. Role of iNOS and eNOS expression in a group of Egyptian diabetic and nondiabetic nephropathy patients

    Directory of Open Access Journals (Sweden)

    Mayssa I. Aly

    2013-01-01

    Conclusion The presence of iNOS is associated with tubular damage resulting in renal failure. The upregulation of NO in diabetes mellitus type 2 may explain the endothelial dysfunction that is associated with almost all diabetic complications.

  5. Nicotine enhances skin necrosis and expression of inflammatory mediators in a rat pressure ulcer model.

    Science.gov (United States)

    Tsutakawa, S; Kobayashi, D; Kusama, M; Moriya, T; Nakahata, N

    2009-11-01

    Many bedridden patients develop pressure ulcers, not only in hospital but also at home. Clinical studies have indicated cigarette smoking to be a risk factor for pressure ulcers. However, the contribution of nicotine to pressure ulcer formation has not been identified. We aimed to clarify the effect of nicotine on pressure ulcer formation, and its mechanism. Ischaemia-reperfusion (I/R) was performed in rat dorsal skin to induce pressure ulcers. The extent of the resulting necrotic area was determined. To clarify the mechanism of the effect of nicotine, mRNA levels of cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6 and inducible nitric oxide synthase (iNOS) and protein expression of COX-2 and iNOS in the necrotic area were investigated by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively. Furthermore, the effects of the COX-2 inhibitor NS-398 and the iNOS inhibitor aminoguanidine on necrosis were examined. Skin necrosis in the I/R-treated area was significantly increased by intraperitoneal administration of nicotine (0.175 mg kg(-1) daily). Repeated nicotine administration had little effect on systolic and diastolic blood pressure. I/R treatment increased mRNA levels of COX-2, IL-1beta, IL-6 and iNOS, which were further augmented by nicotine in a dose-dependent manner. Correspondingly, nicotine (0.35 mg kg(-1) daily) markedly enhanced the protein expression of COX-2 and iNOS. Moreover, NS-398 and aminoguanidine showed a tendency to abrogate the increase of I/R-induced skin necrosis caused by nicotine. These results suggest that the increased risk of pressure ulcers due to cigarette smoking is mediated, in part, by nicotine. They also indicated that the effect of nicotine is not mediated by a change in blood pressure, but is elicited via an increase of inflammatory mediators in the I/R-treated skin.

  6. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation.

    Science.gov (United States)

    Gul, Anum; Kunwar, Bimal; Mazhar, Maryam; Faizi, Shaheen; Ahmed, Dania; Shah, Muhammad Raza; Simjee, Shabana U

    2018-04-18

    Numerous studies have suggested that nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) are important mediators of inflammatory response in human and animal models of arthritis. Besides, oxidative stress markers, nitric oxide (NO) and peroxide (PO) are also major contributors in the pathogenesis of rheumatoid arthritis (RA). Over expression of these inflammatory mediators leads to the extracellular matrix degradation, and excessive cartilage and bone resorption, ultimately leading to the irreversible damage to joints. The aim of the present study was to investigate the anti-arthritic mechanism of bioflavonoids, rutin and rutin-conjugated gold nanoparticles (R-AuNPs) by determining their role in the modulation of NF-κB and iNOS expression in collagen-induced arthritis (CIA) model of rats. Arthritis was induced by the subcutaneous administration of bovine type II collagen. Treatment was started with rutin, indomethacin + rutin (I + R) and R-AuNPs on the day of CIA induction. The severity of arthritis was determined by measuring the arthritic score on alternate days until mean arthritic score of 4 was observed. The NO and PO levels were also analyzed in serum samples. NF-κB and iNOS expression levels were determined in spleen tissue samples by real time RT-PCR and immunohistochemistry. Marked reduction in the arthritic score as well as in the NO and PO levels was observed in the treated groups. A significant downregulation in the NF-κB and iNOS expression levels was also observed in the treatment groups compared to the arthritic control group. Collectively, the findings suggest potential clinical role of rutin and R-AuNPs in the treatment of rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  8. ino Reinart : ma usun väärtuspõhise poliitika olemasolusse / Väino Reinart

    Index Scriptorium Estoniae

    Reinart, Väino, 1962-

    2007-01-01

    Värske Eesti suursaadik Ameerika Ühendriikides Väino Reinart väljendab oma intervjuus seisukohta, et Ameerika viib maailmaareenil ellu inimlikele väärtustele tuginevat poliitikat ja et salatehingute sõlmimine on jäänud diplomaatia ajalukku. Lisa: Curriculum Vitae

  9. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  10. Cerebral and peripheral changes occurring in nitric oxide (NO synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells.

    Directory of Open Access Journals (Sweden)

    Donia Amrouni

    Full Text Available BACKGROUND: The implication of nitric oxide (NO in the development of human African trypanosomiasis (HAT using an animal model, was examined. The manner by which the trypanocidal activity of NO is impaired in the periphery and in the brain of rats infected with Trypanosoma brucei brucei (T. b. brucei was analyzed through: (i the changes occurring in NO concentration in both peripheral (blood and cerebral compartments; (ii the activity of nNOS and iNOS enzymes; (iii identification of the brain cell types in which the NO-pathways are particularly active during the time-course of the infection. METHODOLOGY/PRINCIPAL FINDINGS: NO concentration (direct measures by voltammetry was determined in central (brain and peripheral (blood compartments in healthy and infected animals at various days post-infection: D5, D10, D16 and D22. Opposite changes were observed in the two compartments. NO production increased in the brain (hypothalamus from D10 (+32% to D16 (+71%, but decreased in the blood from D10 (-22% to D16 (-46% and D22 (-60%. In parallel with NO measures, cerebral iNOS activity increased and peaked significantly at D16 (up to +700%. However, nNOS activity did not vary. Immunohistochemical staining confirmed iNOS activation in several brain regions, particularly in the hypothalamus. In peritoneal macrophages, iNOS activity decreased from D10 (-83% to D16 (-65% and D22 (-74% similarly to circulating NO. CONCLUSION/SIGNIFICANCE: The NO changes observed in our rat model were dependent on iNOS activity in both peripheral and central compartments. In the periphery, the NO production decrease may reflect an arginase-mediated synthesis of polyamines necessary to trypanosome growth. In the brain, the increased NO concentration may result from an enhanced activity of iNOS present in neurons and glial cells. It may be regarded as a marker of deleterious inflammatory reactions.

  11. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  12. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    Science.gov (United States)

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  13. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Canhui Yi

    Full Text Available Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy.

  14. Melatonin Enhances the Anti-Tumor Effect of Fisetin by Inhibiting COX-2/iNOS and NF-κB/p300 Signaling Pathways

    Science.gov (United States)

    Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy. PMID:25000190

  15. Cytokine expression in patients with bladder pain syndrome/interstitial cystitis ESSIC type 3C.

    Science.gov (United States)

    Logadottir, Yr; Delbro, Dick; Fall, Magnus; Gjertsson, Inger; Jirholt, Pernilla; Lindholm, Catharina; Peeker, Ralph

    2014-11-01

    Bladder wall nitric oxide production in patients with bladder pain syndrome type 3C is increased compared to undetectable nitric oxide in patients with nonHunner bladder pain syndrome and healthy controls. However, the underlying mechanism/s of the increased nitric oxide production is largely unknown. We compared mRNA expression of a select group of cytokines in patients with bladder pain syndrome/interstitial cystitis type 3C and in pain-free controls. Cold cup biopsies from 7 patients with bladder pain syndrome type 3C and 6 healthy subjects were analyzed. mRNA expression of IL-4, 6, 10 and 17A, iNOS, TNF-α, TGF-β and IFN-γ was estimated by real-time polymerase chain reaction. IL-17 protein expression was determined by immunohistochemistry. Mast cells were labeled with tryptase to evaluate cell appearance and count. IL-6, 10 and 17A, and iNOS mRNA levels as well as the number of mast cells infiltrating the bladder mucosa were significantly increased in patients with bladder pain syndrome type 3C compared to healthy controls. TNF-α, TGF-β and IFN-γ mRNA levels were similar in patients and controls. IL-17A expression at the protein level was up-regulated and localized to inflammatory cells and urothelium in patients with bladder pain syndrome type 3C. Patients with bladder pain syndrome/interstitial cystitis had increased mRNA levels of IL-17A, 10 and 6, and iNOS. IL-17A might be important in the inflammatory process. To our knowledge the increase in IL-17A is a novel finding that may have new treatment implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Science.gov (United States)

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  17. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  18. CXCL12 expression in hematopoietic tissues of mice exposed to sublethal dose of ionizing radiation in the presence od iNOS inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Perez Vieira, Daniel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Hermida, Felipe Pessoa de Melo; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo, SP (Brazil). Lab. de Protozoologia

    2005-07-01

    Full text of publication follows: We study the production of CXCL12, a stem cell homing chemokine, in spleen and bone marrow of mice exposed at LD50% of {gamma}-radiation, w/wo a iNOS blocker, aminoguanidine, to test if inflammatory nitric oxide is involved in necrotic processes of stem cell death after ionizing radiation exposure. Groups of 10 male 6-week old C57Bl/6j mice were killed at specific time points after a 8Gy dose irradiation ({sup 60}Co source; 4,22kGy/h dose rate) and spleen and bone marrow samples were immersed and stored in TriZOL for total mRNA extraction. RT-PCR assays were performed to determine the production of CXCL12 as compared to murine {beta}-actin at days 2nd, 5th, 7th, 9th and 15th days after radiation in a semiquantitative way. PCR was performed after cDNA synthesis using Oligo-dT primers and specific primers for CXCL12 and {beta}-actin. Artificial optical density was determined in silver-stained PAGE resolved specific amplification products of CXCL12, using amplification of murine {beta}-actin as standard, and measurements obtained by the Image J freeware. CXCL12 production in spleen samples reached its maximum at 5th day after radiation exposure in animals not treated with aminoguanidine, but this peak was extended to at 7th day in treated animals. Non treated animals presented a decrease of CXCL12 expression up to 15th day of experiment, and aminoguanidine treated animals showed sustained increase of expression levels between 9th and 15th days. In bone marrow samples, the main difference among the two different experimental groups was a maintenance of CXCL12 mRNA expression between 7th and 9th days, persisting until the end of the experiment. Our data demonstrates that the effect of aminoguanidine appears to sustain the CXCL12 mRNA synthesis in hematopoietic tissues of irradiated mice, providing some evidences that the axis iNOS -NO - inflammation must be involved in stem cell death, aside to the direct radiation effect, suggesting

  19. Novel cellular targets of AhR underlie alterations in neutrophilic inflammation and iNOS expression during influenza virus infection

    Science.gov (United States)

    Head Wheeler, Jennifer L.; Martin, Kyle C.; Lawrence, B. Paige

    2012-01-01

    The underlying reasons for variable clinical outcomes from respiratory viral infections remain uncertain. Several studies suggest that environmental factors contribute to this variation, but limited knowledge of cellular and molecular targets of these agents hampers our ability to quantify or modify their contribution to disease and improve public health. The aryl hydrocarbon receptor (AhR) is an environment sensing transcription factor that binds many anthropogenic and natural chemicals. The immunomodulatory properties of AhR ligands are best characterized with extensive studies of changes in CD4+ T cell responses. Yet, AhR modulates other aspects of immune function. We previously showed that during influenza virus infection, AhR activation modulates neutrophil accumulation in the lung, and this contributes to increased mortality in mice. Enhanced levels of inducible nitric oxide synthase (iNOS) in infected lungs are observed during the same timeframe as AhR-mediated increased pulmonary neutrophilia. In this study, we evaluated whether these two consequences of AhR activation are causally linked. Reciprocal inhibition of AhR-mediated elevations in iNOS and pulmonary neutrophilia reveal that, although they are contemporaneous, they are not causally related. We show using Cre/loxP technology that elevated iNOS levels and neutrophil number in the infected lung result from separate, AhR-dependent signaling in endothelial and respiratory epithelial cells, respectively. Studies using mutant mice further reveal that AhR-mediated alterations in these innate responses to infection require a functional nuclear localization signal and DNA binding domain. Thus, gene targets of AhR in non-hematopoietic cells are important new considerations for understanding AhR-mediated changes in innate anti-viral immunity. PMID:23233726

  20. Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Mari Hämäläinen

    2007-01-01

    The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.

  1. An improved muon reconstruction algorithm for INO-ICAL experiment

    International Nuclear Information System (INIS)

    Bhattacharya, Kolahal; MandaI, Naba K.

    2013-01-01

    The charge current interaction of neutrino in INO-ICAL detector will be identified with a muon (μ ± ) in the detector whose kinematics is related with the kinematics of the neutrino. So, muon reconstruction is a very important step in achieving INO physics goals. The existing muon reconstruction package for INO-ICAL has poor performance in specific regimes of experimental interest: (a) for larger zenith angle (θ > 50°), (b) for lower energies (E < 1 GeV); mainly due to poor error propagation scheme insensitive to energy E, angle (θ, φ) and inhomogeneous magnetic field along the muon track. Since, a significant fraction of muons from atmospheric neutrino interactions will have initial energy < 1 GeV and almost uniform distribution in cosθ a robust package for muon reconstruction is essential. We have implemented higher order correction terms in the propagation of the state and error covariance matrices of the Kalman Iter. The algorithm ensures track element merging in most cases and also increases reconstruction efficiency. The performance of this package will be presented in comparison with the previous one. (author)

  2. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2015-07-01

    Full Text Available Neocryptotanshinone (NCTS is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS-stimulated mouse macrophage (RAW264.7 cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα, interleukin-6 (IL-6 and interleukin-1β (IL-1β. Moreover, NCTS could decrease LPS-induced nitric oxide (NO production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS, p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2. In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.

  3. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  4. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  5. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  6. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  7. Effect of dietary lipid on the growth, fatty acid composition and Δ5 Fads expression of abalone ( Haliotis discus hannai Ino) hepatopancreas

    Science.gov (United States)

    Li, Mingzhu; Mai, Kangsen; Ai, Qinghui; He, Gen; Xu, Wei; Zhang, Wenbing; Zhang, Yanjiao; Zhou, Huihui; Liufu, Zhiguo

    2015-04-01

    This study investigated the effect of dietary lipid on the growth, fatty acid composition and Δ5 fatty acyl desaturase genes ( Fads) expression of juvenile abalone ( Haliotis discus hannai Ino) hepatopancreas. Six purified diets were formulated to contain tripalmitin (TP), olive oil (OO, 72.87% 18:1n-9), grape seed oil (GO, 68.67% 18:2n-6), linseed oil (LO, 70.48% 18:3n-3), ARA oil (AO, 41.81% ARA) or EPA oil (EO, 44.09% EPA and 23.67% DAH). No significant difference in survival rate was observed among abalone fed with different diets. Weight gain rate ( WGR) and daily growth rate of shell length ( DGR SL) were significantly increased in abalone fed with diets containing OO, AO and EO, but decreased in abalone fed with LO diet ( P abalone fed with GO than those fed with TP, OO, LO and EO ( P abalone fed with LO was significantly higher than those in abalone fed with TP, OO, GO and AO ( P abalone fed with OO. The expression of Δ5 Fads in hepatopancreas of abalone was enhanced by high concentration of 18:3n-3 and suppressed by dietary LC-PUFAs; however it was not affected by dietary high concentration of 18:1n-9 or 18:2n-6. These results provided valuable information for understanding the synthesis of LC-PUFAs and nutritional regulation of Δ5 Fads expression in abalone.

  8. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  9. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    International Nuclear Information System (INIS)

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-01-01

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: → Proteomic approaches are used to identify nitrated proteins in the spleen. → Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. → Aniline exposure led to increased iNOS mRNA and protein

  10. iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Morinaga, Hironobu; Kaneki, Masao; Nishimura, Emi; Shimokado, Kentaro

    2018-07-02

    Previous studies have shown that androgenic alopecia is associated with metabolic syndrome and diabetes. However, the detailed mechanism whereby diabetes causes alopecia still remains unclear. We focused on the inflammatory response that is caused by diabetes or obesity, given that inflammation is a risk factor for hair loss. Inducible nitric oxide synthase (iNOS) is known to be upregulated under conditions of acute or chronic inflammation. To clarify the potential role of iNOS in diabetes-related alopecia, we generated obese diabetic iNOS-deficient (ob/ob; iNOS-KO mice). We observed that ob/ob; iNOS-KO mice were potentiated for the transition from telogen (rest phase) to anagen (growth phase) in the hair cycle compared with iNOS-proficient ob/ob mice. To determine the effect of nitric oxide (NO) on the hair cycle, we administered an iNOS inhibitor intraperitoneally (compound 1400 W, 10 mg/kg) or topically (10% aminoguanidine) in ob/ob mice. We observed that iNOS inhibitors promoted anagen transition in ob/ob mice. Next, we administered an NO donor (S-nitrosoglutathione, GSNO), to test whether NO has the telogen elongation effects. The NO donor was sufficient to induce telogen elongation in wild-type mice. Together, our data indicate that iNOS-derived NO plays a role in telogen elongation under the inflammatory conditions associated with diabetes in mice. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Increased nitration and carbonylation of proteins in MRL +/+ mice exposed to trichloroethene: Potential role of protein oxidation in autoimmunity

    International Nuclear Information System (INIS)

    Wang Gangduo; Wang Jianling; Ma Huaxian; Khan, M. Firoze

    2009-01-01

    Even though reactive oxygen and nitrogen species (RONS) are implicated as mediators of autoimmune diseases (ADs), little is known about contribution of protein oxidation (carbonylation and nitration) in the pathogenesis of such diseases. The focus of this study was, therefore, to establish a link between protein oxidation and induction and/or exacerbation of autoimmunity. To achieve this, female MRL +/+ mice were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 6 or 12 weeks (10 mmol/kg, i.p., every 4 th day). TCE treatment resulted in significantly increased formation of nitrotyrosine (NT) and induction of iNOS in the serum at both 6 and 12 weeks of treatment, but the response was greater at 12 weeks. Likewise, TCE treatment led to greater NT formation, and iNOS protein and mRNA expression in the livers and kidneys. Moreover, TCE treatment also caused significant increases (∼3 fold) in serum protein carbonyls (a marker of protein oxidation) at both 6 and 12 weeks. Significantly increased protein carbonyls were also observed in the livers and kidneys (2.1 and 1.3 fold, respectively) at 6 weeks, and to a greater extent at 12 weeks (3.5 and 2.1 fold, respectively) following TCE treatment. The increases in TCE-induced protein oxidation (carbonylation and nitration) were associated with significant increases in Th1 specific cytokine (IL-2, IFN-γ) release into splenocyte cultures. These results suggest an association between protein oxidation and induction/exacerbation of autoimmune response. The results present a potential mechanism by which oxidatively modified proteins could contribute to TCE-induced autoimmune response and necessitates further investigations for clearly establishing the role of protein oxidation in the pathogenesis of ADs.

  12. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  13. Transient degradation of NF-κB proteins in macrophages after interaction with mast cell granules

    Directory of Open Access Journals (Sweden)

    Noriko Ito

    1998-01-01

    Full Text Available The exposure of the macrophage cell line, J774 to mast cell granules (MCG led to the form ation of altered nuclear transcription factor proteins (NFκBx, which had faster electrophoretic mobility than the p50 homodimer of NF-κB, but retained comparable DNA binding capacity. Antibodies to N-terminal peptides of p50, p52, p65 or c-Rel supershifted only a fraction of NF-κBx. Western blot analyses revealed that nuclear p65 and c-Rel were progressively degraded after exposure to MCG, whereas nuclear p50 appeared to be unaffected. In contrast, cytoplasmic p50, p65, c-Rel as well as IkBα remained intact after MCG treatment, although p52 was clearly degraded. In comparison to J774 cells, incubation of m ouse peritoneal macrophages with MCG resulted in more extensive alterations to NF-κB proteins. The alterations in NF-κB proteins did not affect the expression of inducible nitric oxide synthase (iNOS or TNF-α mRNA in J774 cells. These data indicate that exposure of J774 cells to MCG leads to generation of altered nuclear p52, p65 and c-Rel, which retain intact N-terminal peptides, specific oligonucleotide binding and transactivating activity. On the other hand, in peritoneal macrophages, MCG induce more extensive modifications to NF-κB proteins with associated inhibition of iNOS or TNF-α mRNA expression.

  14. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  15. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  16. Equilíbrio ácido-base e hidroeletrolítico em eqüinos com cólica

    OpenAIRE

    Di Filippo,Paula Alessandra; Santana,Aureo Evangelista; Pereira,Gener Tadeu

    2008-01-01

    Foram utilizados setenta eqüinos distribuídos em três grupos experimentais, G1 (vinte eqüinos hígidos), G2 (vinte e cinco eqüinos com cólica, os quais passaram por tratamento clínico ou cirúrgico e sobreviveram) e G3 (vinte e cinco eqüinos com cólica, os quais passaram por tratamento clínico ou cirúrgico e foram a óbito ou foram sacrificados). Amostras de sangue foram obtidas em dez diferentes momentos, mediante punção da jugular, para estudo do equilíbrio ácido-base e hidroeletrolítico. Os e...

  17. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  18. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  19. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  20. Presidendi otsevalimine võib saada tegelikkuseks / Väino Linde

    Index Scriptorium Estoniae

    Linde, Väino

    2003-01-01

    Ilmunud ka Sakala (2003/Sep/18) lk. 2 ; Koit (2003/Sep/20) lk. 3 ; Vooremaa (2003/Sep/20) lk. 2 ; Pärnu Postimees (2003/Sep/20) lk. 15. Riigikogu põhiseaduskomisjoni liige Väino Linde presidendi otsevalimise seaduse eelnõust

  1. Evaluation of protein acylation agents for the radioiodination of peptides: Application to labelling octreotide

    International Nuclear Information System (INIS)

    Zalutsky, M.; Vaidyanathan, G.

    2002-01-01

    The purpose of this study was to investigate the utility of two acylation agents originally developed for protein labelling - N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate - for the radioiodination of peptides. Because of the widespread interest in imaging and treating malignancies that overexpress somatostatin receptors, octreotide was selected as the model peptide. Using these reagents, octreotide was coupled to 3-iodobenzoyl and 3-iodonicotinoyl templates, yielding [N-(3-iodobenzoyl)- D-Phe 1 ]octreotide (IBO) and [N-(3-iodonicotinoyl)-D-Phe 1 ]octreotide (INO), respectively. The IC 50 values for the binding of IBO and INO to somatostatin receptor expressing CA20948 rat pancreatic tumour membranes were 0.90 nM and 0.13 nM, respectively, compared with 0.35 nM for octreotide itself. Yields for the preparation of [ 131 I]IBO and [ 131 I]INO from N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate, were 35-50%. In vitro assays with AR42J rat pancreatic tumour cells demonstrated considerably higher receptor-specific retention of cell-internalized radioiodine activity for [ 131 I]INO compared with [ 125 I]IBO. A tissue distribution study with both conjugates revealed low levels of activity in the thyroid, consistent with a low degree of deiodination of these radioiodinated peptide conjugates. (author)

  2. Expression of IGF-1R and iNOS in nasal polyps; epithelial cell homeostasis and innate immune mechanisms in pathogenesis of nasal polyposis

    Czech Academy of Sciences Publication Activity Database

    Fundová, P.; Filipovský, T.; Funda, David P.; Hovorka, Ondřej; Holý, R.; Navara, M.; Tlaskalová, Helena

    2008-01-01

    Roč. 53, č. 6 (2008), s. 558-562 ISSN 0015-5632 R&D Projects: GA MZd NR8517 Institutional research plan: CEZ:AV0Z50200510 Keywords : nasal polyposis * igf -1r * inos Subject RIV: EC - Immunology Impact factor: 1.172, year: 2008

  3. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway

    International Nuclear Information System (INIS)

    Weng, T.I.; Chen, W.J.; Liu, S.H.

    2005-01-01

    Uropathogenic Escherichia coli is a common cause of urinary tract infection. We determined the effects of intravesical instillation of E. coli lipopolysaccharide (LPS, endotoxin) on muscle contractions, protein kinase C (PKC) translocation, and inducible nitric oxide synthase (iNOS) expression in rat urinary bladder. The contractions of the isolated rat detrusor muscle evoked by electrical field stimulations were measured short-term (1 h) or long-term (24 h) after intravesical instillation of LPS. One hour after LPS intravesical instillation, bladder PKC-α translocation from cytosolic fraction to membrane fraction and endothelial (e)NOS protein was elevated, and detrusor muscle contractions were significantly increased. PKC inhibitors chelerythrine and Ro32-0432 inhibited this LPS-enhanced contractile response. Application of PKC activator β-phorbol-12,13-dibutyrate enhanced the muscle contractions. Three hours after intravesical instillation of LPS, iNOS mRNA was detected in the bladder. Immunoblotting study also demonstrated that the induction of iNOS proteins is detected in bladder in which LPS was instilled. 24 h after intravesical instillation of LPS, PKC-α translocation was impaired in the bladder; LPS did not affect PKC-δ translocation. Muscle contractions were also decreased 24 h after LPS intravesical instillation. Aminoguanidine, a selective iNOS inhibitor, blocked the decrease in PKC-α translocation and detrusor contractions induced by LPS. These results indicate that there are different mechanisms involved in the alteration of urinary bladder contractions after short-term and long-term treatment of LPS; an iNOS-regulated PKC signaling may participate in causing the inhibition of muscle contractions in urinary bladder induced by long-term LPS treatment

  4. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  5. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  6. Dexmedetomidine attenuates neuropathic pain in chronic constriction injury by suppressing NR2B, NF-κB, and iNOS activation

    Directory of Open Access Journals (Sweden)

    Feng Liang

    2017-05-01

    Full Text Available The effective treatment of patients suffering from neuropathic pain remains challenging. Dexmedetomidine (DEX possesses anti-inflammatory activity. However, the role of DEX in neuropathic pain is still unclear. The aim of the present study was to examine DEX an α2-adrenoceptor agonist could improve pain hypersensitivity and reduce inflammatory in a chronic constriction injury (CCI model of the sciatic nerve in Sprague-Dawley rats. Dex was intrathecally administrated 1-h after operation. The paw mechanical withdrawal threshold (MWT and paw withdrawal thermal latency (PWTL were measured on day 1 before operation and on days 1, 7, 14 and 21 after operation, respectively. On day 21, all the rats were decapitated to collect the L4-6 segments of the spinal cord to examine IL-1, TNF-α, IL-6, NR2B, NF-κB, and iNOS mRNA levels using RT-PCR. The postoperative MWT and PWTL were significantly decreased in CCI, and DEX groups as compared to those before surgery and Sham group (P < 0.05. And DEX reversed this trend (P < 0.05. Interleukin 1 (IL-1, tumor necrosis factor α (TNF-α, IL-6 mRNA expression significantly increased postsurgery in CCI group as compared to that of Sham group (P < 0.05; DEX blocked increased IL-1, TNF-α, IL-6, N-methyl-D-aspartate (NMDA receptor 2B (NR2B, nuclear factor κB (NF-κB, and inducible isoform of nitric oxide synthase (iNOS mRNA levels (P < 0.05. DEX may alleviate neuropathic hypersensitivity and inflammation partially by inhibiting NR2B, NF-κB, and iNOS expression in the spinal cord of rats with neuropathic pain resulting from CCI of the sciatic nerve.

  7. Neutrino parameters with magical beta-beam at INO

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava [Harish-Chandra Research Institute, Allahabad (India)], E-mail: sanjib@hri.res.in

    2008-11-01

    We have studied the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The idea of beta-beam is based on the production of a pure, intense, collimated beam of electron neutrinos or their antiparticles via the beta decay of accelerated radioactive ions circulating in a storage ring. Interestingly, the CERN-INO distance of 7152 km happens to be tantalizingly close to the so-called 'magic' baseline where the sensitivity to the neutrino mass ordering (sign of {delta}m{sup 2}{sub 31} {identical_to} m{sup 2}{sub 3} - m{sup 2}{sub 1}) and more importantly, {theta}{sub 13}, goes up significantly, while the sensitivity to the unknown CP phase is absent. This permits such an experiment involving the golden P{sub e{mu}} channel to make precise measurements of the mixing angle {theta}{sub 13} and neutrino mass hierarchy avoiding the issues of intrinsic degeneracies and correlations which plague other baselines.

  8. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    Science.gov (United States)

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  9. Structure of extremely nanosized and confined In-O species in ordered porous materials

    International Nuclear Information System (INIS)

    Ramallo-Lopez, J.M.; Renteria, M.; Miro, E.E.; Requejo, F.G.; Traverse, A.

    2003-01-01

    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InO x species confined in the porous of the ZSM5 zeolite. This novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In 2 O 3 crystallites deposited onto the external zeolite surface

  10. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice.

    Science.gov (United States)

    Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E

    2018-04-12

    Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to

  11. ino Kaldoja - master of the Mercedes Dealership / Taivo Paju

    Index Scriptorium Estoniae

    Paju, Taivo, 1968-

    2004-01-01

    AS-i Silberauto juhi ja põhiomaniku Väino Kaldoja juhtimispõhimõtteist, ettevõtte personalipoliitikast ning kliendisuhetest. Tabel: ASi Silberauto majandustulemused. Lisa: Silberauto ettevõtete grupp. Vt. samas: Mida Silberauto müüb?

  12. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  13. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-Jin; Park, Jun-Young [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon (Korea, Republic of); Choi, Song [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Jin-Bong; Jung, Haiyoung; Kim, Tae-Don; Yoon, Suk Ran; Choi, Inpyo [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon (Korea, Republic of); Shim, Sungbo, E-mail: sungbo@ulsan.ac.kr [Department of Biomedical Sciences & Neuromarker Resource Bank (NRB), University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Park, Young-Jun, E-mail: pyj71@kribb.re.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon (Korea, Republic of)

    2015-08-07

    Ginsenoside Rg3, a specific biological effector, is well-known as a major bioactive ingredient of Panax ginseng. However, its role in the inflammasome activation process remains unclear. In this report, we demonstrate that ginsenosides 20(R)-Rg3 and 20(S)-Rg3 are capable of suppressing both lethal endotoxic shock and the S-nitrosylation of the NLRP3 inflammasome by inhibiting nitric oxide (NO) production through the regulation of inducible nitric oxide synthase (iNOS) expression. In response to lipopolysaccharide (LPS), the reducing effect of 20(S)-Rg3 and 20(R)-Rg3 on nitric oxide led to an increase in the survival time of mice after lethal endotoxin-induced shock, and excess levels of NO inhibited IL-1β production via the S-nitrosylation of the NLRP3 inflammasome. In addition, ginsenosides 20(R)-Rg3 and 20(S)-Rg3 had suppressive effects on the LPS- or UV-irradiation-induced reactive oxygen species (ROS) levels in macrophage and HaCaT cells and thereby prevented apoptosis of spleen cells in mice. Altogether, these results demonstrate that ginsenoside 20(R)-Rg3 and 20(S)-Rg3, a naturally occurring compound, might act as a dual therapeutic regulator for the treatment of inflammatory and oxidative stress-related diseases. - Highlights: • Ginsenosides Rg3 inhibits NO production through the regulation of iNOS expression. • Ginsenosides Rg3 inhibits the S-nitrosylation of the NLRP3 inflammasome. • Ginsenosides Rg3 suppress on the LPS- or UV-irradiation-induced ROS levels in cells.

  14. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  15. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  16. Inducible nitric oxide synthase, nitrotyrosine and apoptosis in gastric adenocarcinomas and their correlation with a poor survival

    Science.gov (United States)

    Li, Long-Gang; Xu, Hui-Mian

    2005-01-01

    AIM: To detect the presence of inducible nitric oxide synthase (iNOS), nitrotyrosine (NT) and apoptosis in gastric adenocarcinomas and their possible correlations with the clinicopathological characteristics and prognosis of gastric adenocarcinoma. METHODS: Sixty-six specimens of gastric adenocarcinoma and corresponding adjacent normal gastric tissues were studied. Immunohistochemistry was employed to localize iNOS and NT protein and an immunohistochemical scoring system was used. The occurrence of apoptotic cell death (apoptotic index [AI]) was analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling (TUNEL) method. RESULTS: Results showed that iNOS expression was detected at an intermediate or high level in 41 of 66 (62%) specimens of gastric adenocarcinoma. NT expression was 58%. Neither of them was found in the normal gastric tissues; there were significant positive correlations among iNOS expression, NT expression and AI. Many clinicopathologic characteristics of gastric adenocarcinoma, such as tumor size, depth of invasion, lymph node metastasis and TNM staging, were related to iNOS and NT expressions (P<0.05). In 66 surviving patients, the 5-year survival rate of 41 patients who had tumors with intermediate or high iNOS expressions and high AIs (4.09%; 19.96%) was significantly lower than that of 25 patients who had tumors with negative or low iNOS expressions and low AIs (0.79%; 47.14%) (P = 0.001). COX’s multivariate analysis revealed that the iNOS expression was identified as one of the significant independent prognostic factors predictive of a poor survival (relative risk [RR] = 2.69). CONCLUSION: NO produced by iNOS may play a stronger role in promoting gastric adenocarcinoma growth than in suppressing its growth. iNOS and NT expressions by gastric adenocarcinoma may correlate with a poor survival. PMID:15849807

  17. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    Science.gov (United States)

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  18. Predictable tuning of protein expression in bacteria

    DEFF Research Database (Denmark)

    Bonde, Mads; Pedersen, Margit; Klausen, Michael Schantz

    2016-01-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expressi...

  19. Camel Milk Attenuates Rheumatoid Arthritis Via Inhibition of Mitogen Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Hany H. Arab

    2017-09-01

    Full Text Available Background/Aims: Camel milk (CM has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. Methods: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund’s adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. Results: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. Conclusion: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.

  20. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  1. Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 Expression

    Science.gov (United States)

    Sampaio, André L. F.; Dalli, Jesmond; Brancaleone, Vincenzo; D'Acquisto, Fulvio; Perretti, Mauro; Wheatley, Carmen

    2013-01-01

    Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin's (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation. PMID:23781123

  2. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  3. Gradient formula for the O(5) is contained inO(3) chain of groups

    International Nuclear Information System (INIS)

    Castanos, O.; Frank, A.; Moshinsky, M.

    1978-01-01

    It is well known how to expand in spherical harmonics the gradient of a radial function in turn multiplied by a spherical harmonic. This expansion involves the use of the Wigner--Eckart theorem for the familiar O(3) is contained inO(2) chain of groups, and leads to Wigner coefficients in the formula together with reduced matrix elements which are simple first order differential operators in the radial variable. In the present paper we extend the above analysis to the application of the momentum operator π/sub m/ to functions of the collective coordinates α/sub m/, m=2,1,0,-1,-2 associated with quadrupole vibrations. The spherical harmonics are now replaced by the complete but nonorthonormal set of functions chi/sup lambda//sub s/LM, characterized by the irreducible representations lambda,L,M of the O(5) is contained inO(3) is contained inO(2) chain of groups as well as by an extra labelling index s, that were derived in a previous publication. The application of the gradient to a product of a function F (β), β 2 =Σ/sub m/α/sub m/α/sup m/, by chi/sup lambda//sub s/LM requires an extension of the Wigner--Eckart theorem for the nonorthonormal basis. Results similar to the ones mentioned in the previous paragraph are obtained, though, of course, now we will have Wigner coefficients in the O(5) is contained in (3) is contained inO(2) chain which have already been derived and programmed. With the help of the gradient formula we discuss the effect of the operators [π x π]/sup L//sub m/, L=0,2,4, [α x π]/sup L//sub m/, L=1,3 on basis of the O(5) is contained inO(3) chain of groups and indicate some of their applications

  4. Antiatherosclerotic Effect of Korean Red Ginseng Extract Involves Regulator of G-Protein Signaling 5

    Directory of Open Access Journals (Sweden)

    Eun Ju Im

    2014-01-01

    Full Text Available Regulator of G-protein signaling 5 (RGS5, an inhibitor of Gα(q and Gα(i activation, has been reported to have antiatherosclerosis. Previous studies showed antiatherosclerotic effect of Korean red ginseng water extract (KRGE via multiple signaling pathways. However, potential protective effect of KRGE through RGS5 expression has not been elucidated. Here, we investigated the antiatherosclerotic effect of KRGE in vivo and in vitro and its role on RGS5 mRNA expression. Elevated levels of total cholesterol, lactate dehydrogenase (LDH, and triglyceride (TG in western diet groups of low-density lipoprotein receptor deficient LDLr−/− mice were reversed by oral administration of KRGE. KRGE suppressed transcriptional activity of tumor necrotic factor alpha (TNF-α, interleukin-6 (IL-6, and leptin in adipose tissue. It also potently repressed western diet-induced atheroma formation in aortic sinus. While KRGE showed reduced mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW264.7 cells, it enhanced mRNA expression of RGS5. Moreover, RGS5 siRNA transfection of microglia cells pretreated with KRGE reversed its inhibitory effect on the expression of iNOS, COX-2, and IL-1β mRNA. In conclusion, KRGE showed antiatherosclerotic and anti-inflammatory effects in western diet fed LDLr−/− mice and this effect could partly be mediated by RGS5 expression.

  5. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  6. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  7. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  8. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  9. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  10. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  11. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    Science.gov (United States)

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  13. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  14. Parts Characterization for Tunable Protein Expression

    DEFF Research Database (Denmark)

    Klausen, Michael Schantz; Sommer, Morten Otto Alexander

    2018-01-01

    Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression. Construc......Flow-seq combines flexible genome engineering methods with flow cytometry-based cell sorting and deep DNA sequencing to enable comprehensive interrogation of genotype to phenotype relationships. One application is to study the effect of specific regulatory elements on protein expression...

  15. Differential Protein Expression in Congenital and Acquired Cholesteatomas.

    Directory of Open Access Journals (Sweden)

    Seung-Ho Shin

    Full Text Available Congenital cholesteatomas are epithelial lesions that present as an epithelial pearl behind an intact eardrum. Congenital and acquired cholesteatomas progress quite differently from each other and progress patterns can provide clues about the unique origin and pathogenesis of the abnormality. However, the exact pathogenic mechanisms by which cholesteatomas develop remain unknown. In this study, key proteins that directly affect cholesteatoma pathogenesis are investigated with proteomics and immunohistochemistry. Congenital cholesteatoma matrices and retroauricular skin were harvested during surgery in 4 patients diagnosed with a congenital cholesteatoma. Tissue was also harvested from the retraction pocket in an additional 2 patients during middle ear surgery. We performed 2-dimensional (2D electrophoresis to detect and analyze spots that are expressed only in congenital cholesteatoma and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS to separate proteins by molecular weight. Protein expression was confirmed by immunohistochemical staining. The image analysis of 2D electrophoresis showed that 4 congenital cholesteatoma samples had very similar protein expression patterns and that 127 spots were exclusively expressed in congenital cholesteatomas. Of these 127 spots, 10 major spots revealed the presence of titin, forkhead transcription activator homolog (FKH 5-3, plectin 1, keratin 10, and leucine zipper protein 5 by MALDI-TOF/MS analysis. Immunohistochemical staining showed that FKH 5-3 and titin were expressed in congenital cholesteatoma matrices, but not in acquired cholesteatomas. Our study shows that protein expression patterns are completely different in congenital cholesteatomas, acquired cholesteatomas, and skin. Moreover, non-epithelial proteins, including FKH 5-3 and titin, were unexpectedly expressed in congenital cholesteatoma tissue. Our data indicates that congenital cholesteatoma origins

  16. Evolution, diversification and expression of KNOX proteins in plants

    Directory of Open Access Journals (Sweden)

    Jie eGao

    2015-10-01

    Full Text Available The KNOX (KNOTTED1-like homeobox transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.

  17. Revisão de 26 casos clínicos de duodeno-jejunite proximal em eqüinos (1996-2000

    Directory of Open Access Journals (Sweden)

    Fernandes Wilson Roberto

    2003-01-01

    Full Text Available Os dados de 26 eqüinos com duodeno-jejunite proximal (DJP, examinados no HOVET-FMVZ-USP entre dezembro de 1996 e novembro de 2000, foram revisados. Durante esse período, foram atendidos 1555 animais, dos quais 205 apresentavam distúrbios gastrintestinais (13,2%. Os casos de DJP representaram 1,7% do total de eqüinos atendidos. A idade, os achados clínico-laboratoriais e a evolução clínica foram comparados entre eqüinos sobreviventes (grupo 1 e eqüinos não sobreviventes (grupo 2. Vinte eqüinos (76,9% sobreviveram. Todos os animais foram submetidos exclusivamente a tratamento médico. A análise dos resultados foi feita através de comparação entre médias pelo teste t de Student com significância de 5%. Houve diferença significativa entre os dois grupos em relação aos seguintes parâmetros analisados: contagem total de leucócitos no sangue, creatinina sérica e freqüência cardíaca. A principal complicação nos animais recuperados foi laminite (30,8%.

  18. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-01-01

    Highlights: ► PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. ► Metformin suppressed TNF-α-induced COX-2 and iNOS mRNA expression. ► Compound C and bpv (pic) increased iNOS and COX-2 protein expression. ► NF-κB activation was restored by inhibiting AMPK and PTEN. ► AMPK and PTEN regulated TNF-α-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK–PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the

  19. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling

    Science.gov (United States)

    Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653

  20. The proteome response to amyloid protein expression in vivo.

    Directory of Open Access Journals (Sweden)

    Ricardo A Gomes

    Full Text Available Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE. We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.

  1. Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression.

    Science.gov (United States)

    Zhong, Leilei; Schivo, Stefano; Huang, Xiaobin; Leijten, Jeroen; Karperien, Marcel; Post, Janine N

    2017-11-22

    Interleukin 1 beta (IL1β) and Wingless-Type MMTV Integration Site Family (WNT) signaling are major players in Osteoarthritis (OA) pathogenesis. Despite having a large functional overlap in OA onset and development, the mechanism of IL1β and WNT crosstalk has remained largely unknown. In this study, we have used a combination of computational modeling and molecular biology to reveal direct or indirect crosstalk between these pathways. Specifically, we revealed a mechanism by which IL1β upregulates WNT signaling via downregulating WNT antagonists, DKK1 and FRZB. In human chondrocytes, IL1β decreased the expression of Dickkopf-1 (DKK1) and Frizzled related protein (FRZB) through upregulation of nitric oxide synthase (iNOS), thereby activating the transcription of WNT target genes. This effect could be reversed by iNOS inhibitor 1400W, which restored DKK1 and FRZB expression and their inhibitory effect on WNT signaling. In addition, 1400W also inhibited both the matrix metalloproteinase (MMP) expression and cytokine-induced apoptosis. We concluded that iNOS/NO play a pivotal role in the inflammatory response of human OA through indirect upregulation of WNT signaling. Blocking NO production may inhibit the loss of the articular phenotype in OA by preventing downregulation of the expression of DKK1 and FRZB.

  2. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  3. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays.

    Science.gov (United States)

    Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Restraint stress is known to catalyse the pathogenesis of the variety of chronic inflammatory disorders. The present study was designed to evaluate the effect of repeated short-term stress (RRS) on cellular transduction apart from oxidative burden and early tumour promotional biomarkers induced due to combined exposure of trichloroethylene (TCE) and Ultra-violet radiation (UVB). RRS leads to the increase in the expression of the stress responsive cellular transduction elements NFkB-p65 and activity of iNOS in the epidermal tissues of mice after toxicant exposure. RRS augments the steep depletion of the cellular antioxidant machinery which was evidenced by the marked depletion in GSH (Glutathione and GSH dependant enzymes), superoxide dismutase and catalase activity that were observed at significance level of P stressed animals and down regulation of DT-diaphorase activity (P short-term stress in the toxic response of TCE and UVB radiation.

  4. Orthodontic force stimulates eNOS and iNOS in rat osteocytes

    NARCIS (Netherlands)

    Tan, S.D.; Xie, R.; Klein Nulend, J.; van Rheden, R.E.; Bronckers, A.L.J.J.; Kuijpers-Jagtman, A.M.; Von den Hoff, J.W.; Maltha, J.C.

    2009-01-01

    Mechanosensitive osteocytes are essential for bone remodeling. Nitric oxide, an important regulator of bone remodeling, is produced by osteocytes through the activity of constitutive endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS). We hypothesized that these

  5. Orthodontic force stimulates eNOS and iNOS in rat osteocytes.

    NARCIS (Netherlands)

    Tan, S.D.; Xie, R.; Klein-Nulend, J.; Rheden, R.E.M. van; Bronckers, A.L.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Maltha, J.C.

    2009-01-01

    Mechanosensitive osteocytes are essential for bone remodeling. Nitric oxide, an important regulator of bone remodeling, is produced by osteocytes through the activity of constitutive endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS). We hypothesized that these

  6. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  7. Intoxicação em eqüino por Ricinus communis: relato de caso.

    Directory of Open Access Journals (Sweden)

    R. Y. A. Baccarin

    2005-03-01

    Full Text Available RESUMO: A intoxicação por Ricinus communis (Euphorbiaceae geralmente ocorre após a ingestão acidental de suas folhas ou sementes, podendo causar distúrbios neuromusculares e gastrintestinais. Um eqüino da raça Mangalarga Marchador de 4 anos de idade foi atendido no setor de Clínica de Eqüinos do Hospital Veterinário (HOVET da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo (FMVZ-USP após ter ingerido e aspirado um filtrado preparado à base de frutos de mamona. O animal apresentava pleuropneumonia, alterações de comportamento, comprometimentos hepático e renal, peritonite e desidratação. PALAVRAS-CHAVE: Eqüino, Ricinus communis, pleuropneumonia. SUMMARY: The Ricinus communis (Euphorbiaceae intoxication generally occurs after accidental ingestion of its leaves or seeds, and may cause neuromuscular and gastrintestinal disturbance. An equine, Mangalarga Marchador breed, 4-year old, was attended at the section of Clínica de Eqüinos from the Hospital Veterinário (HOVET of Faculdade de Medicina Veterinária e Zootecnia of Universidade de São Paulo (FMVZ-USP after ingestion and aspiration of a R. communis fruits filtrate. The animal presented pleuropneumonia, behavioural alterations, hepatic and renal disturbances, peritonitis and dehydration. KEYWORDS: Equine, Ricinus communis, pleuropneumonia.

  8. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  9. Effects of immunosuppressive treatment on protein expression in rat kidney

    Directory of Open Access Journals (Sweden)

    Kędzierska K

    2014-09-01

    Full Text Available Karolina Kędzierska,1 Katarzyna Sporniak-Tutak,2 Krzysztof Sindrewicz,2 Joanna Bober,3 Leszek Domański,1 Mirosław Parafiniuk,4 Elżbieta Urasińska,5 Andrzej Ciechanowicz,6 Maciej Domański,1 Tomasz Smektała,2 Marek Masiuk,5 Wiesław Skrzypczak,6 Małgorzata Ożgo,6 Joanna Kabat-Koperska,1 Kazimierz Ciechanowski1 1Department of Nephrology, Transplantology, and Internal Medicine, 2Department of Dental Surgery, 3Department of Medical Chemistry, 4Department of Forensic Medicine, 5Department of Pathomorphology, Pomeranian Medical University, 6Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland Abstract: The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents' toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins' synthesis. Very slight differences

  10. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available In this study, we applied structure-based virtual screening techniques to identify natural product or natural product-like inhibitors of iNOS. The iNOS inhibitory activity of the hit compounds was characterized using cellular assays and an in vivo zebrafish larvae model. The natural product-like compound 1 inhibited NO production in LPS-stimulated Raw264.7 macrophages, without exerting cytotoxic effects on the cells. Significantly, compound 1 was able to reverse MPTP-induced locomotion deficiency and neurotoxicity in an in vivo zebrafish larval model. Hence, compound 1 could be considered as a scaffold for the further development of iNOS inhibitors for potential anti-inflammatory or anti-neurodegenerative applications.

  11. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells.

    Science.gov (United States)

    Oh, Young Taek; Lee, Jung Yeon; Lee, Jinhwa; Lee, Ju Hie; Kim, Ja-Eun; Ha, Joohun; Kang, Insug

    2010-05-03

    Oleamide (cis-9-octadecenamide) is an endogenous sleep-inducing fatty acid amide that accumulates in the cerebrospinal fluid of the sleep-deprived animals. Microglia are the major immune cells involved in neuroinflammation causing brain damage during infection, ischemia, and neurodegenerative disease. In this study, we examined the effects of oleamide on LPS-induced production of proinflammatory mediators and the mechanisms involved in BV2 microglia. Oleamide inhibited LPS-induced production of NO and prostaglandin E2 as well as expression of iNOS and COX-2. We showed that oleamide blocked LPS-induced NF-kappaB activation and phosphorylation of inhibitor kappaB kinase (IKK). We also showed that oleamide inhibited LPS-induced phosphorylation of Akt, p38 MAPK, and ERK, activation of PI 3-kinase, and accumulation of reactive oxygen species (ROS). Finally, we showed that a specific antagonist of the CB2 receptor, AM630, blocked the inhibitory effects of oleamide on LPS-induced production of proinflammatory mediators and activation of NF-kappaB. Taken together, our results suggest that oleamide shows an anti-inflammatory effect through inhibition of NF-kappaB activation in LPS-stimulated BV2 microglia. 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not.

    Science.gov (United States)

    Tao, Wen; Evans, Barbara-Graham; Yao, Jing; Cooper, Scott; Cornetta, Kenneth; Ballas, Christopher B; Hangoc, Giao; Broxmeyer, Hal E

    2007-03-01

    Validated gene transfer and expression tracers are essential for elucidating functions of mammalian genes. Here, we have determined the suitability and unintended side effects of enhanced green fluorescent protein (EGFP) and DsRed-Express fluorescent protein as expression tracers in long-term hematopoietic stem cells (HSCs). Retrovirally transduced mouse bone marrow cells expressing either EGFP or DsRed-Express in single or mixed dual-color cell populations were clearly discerned by flow cytometry and fluorescence microscopy. The results from in vivo competitive repopulation assays demonstrated that EGFP-expressing HSCs were maintained nearly throughout the lifespan of the transplanted mice and retained long-term multilineage repopulating potential. All mice assessed at 15 months post-transplantation were EGFP positive, and, on average, 24% total peripheral white blood cells expressed EGFP. Most EGFP-expressing recipient mice lived at least 22 months. In contrast, Discosoma sp. red fluorescent protein (DsRed)-expressing donor cells dramatically declined in transplant-recipient mice over time, particularly in the competitive setting, in which mixed EGFP- and DsRed-expressing cells were cotransplanted. Moreover, under in vitro culture condition favoring preservation of HSCs, purified EGFP-expressing cells grew robustly, whereas DsRed-expressing cells did not. Therefore, EGFP has no detectable deteriorative effects on HSCs, and is nearly an ideal long-term expression tracer for hematopoietic cells; however, DsRed-Express fluorescent protein is not suitable for these cells.

  13. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  14. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  15. The role of an iNOS polymorphism at the post-diagnosis diabetes development in children with Type 1 diabetes

    DEFF Research Database (Denmark)

    Johannesen, Jesper; Eriksen, Vibeke; Andersen, Marie Louise Max

    2016-01-01

    Objective: A missense polymorphism (rs2297518) of the inducible nitric oxide synthase (iNOS) gene causing a serine to leucine substitution at amino acic position 608 has previously been associated to the development of type 1 diabetes (T1DM). Activation of iNOS is a main effector pathway......: At 1 month IL-1β was detected more frequently in CC-genotype individuals as compared to CT and TT individuals, 24/168 vs. 3/75 and 0/9, respectively (p=0.03). This effect was not present at 6 and 12 months post-diagnosis. The iNOS polymorphism was not associated to diabetic ketoacidosis status...

  16. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Science.gov (United States)

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  17. Complement inhibitory proteins expression in placentas of thrombophilic women Complement inhibitory proteins expression in placentas of thrombophilic women

    Directory of Open Access Journals (Sweden)

    Przemysław Krzysztof Wirstlein

    2012-10-01

    Full Text Available Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry staining
    of inhibitors of the complement cascade, DAF and MCP proteins, in the placentas of thrombophilic women.
    Placentas were collected from eight women with inherited thrombophilia and ten with acquired thrombophilia.
    The levels of DAF and MCP transcripts were evaluated by qPCR, the protein level was evaluated by Western
    blot. We observed a higher transcript (p < 0.05 and protein (p < 0.001 levels of DAF and MCP in the placentas
    of thrombophilic women than in the control group. DAF and MCP were localized on villous syncytiotrophoblast
    membranes, but the assessment of staining in all groups did not differ. The observed higher expression level of
    proteins that control activation of complement control proteins is only seemingly contradictory to the changes
    observed for example in the antiphospholipid syndrome. However, given the hitherto known biochemical changes
    associated with thrombophilia, a mechanism in which increased expression of DAF and MCP in the placentas is
    an effect of proinflammatory cytokines, which accompanies thrombophilia, is probable.Factors controlling complement activation appear to exert a protective effect on pregnancy. This is
    particularly important in women with thrombophilia. The aim of this study was to determine the transcript and
    protein levels of complement decay-accelerating factor (DAF and membrane cofactor protein (MCP in the
    placentas of women with acquired and inherited thrombophilia. Also, we assessed immunohistochemistry

  18. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  19. AR-v7 protein expression is regulated by protein kinase and phosphatase

    Science.gov (United States)

    Li, Yinan; Xie, Ning; Gleave, Martin E.; Rennie, Paul S.; Dong, Xuesen

    2015-01-01

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked. PMID:26378044

  20. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  1. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  2. Genome-wide screens for expressed hypothetical proteins

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Durhuus, Jon Ambæk; Rasmussen, Lene Juel

    2012-01-01

    A hypothetical protein (HP) is defined as a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. HPs constitute a substantial fraction of proteomes of human as well as of other organisms. With the general belief that...... that the majority of HPs are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of HPs with a high probability of being expressed....

  3. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  4. Oscillation sensitivity with up-going muons in lCAL at India based Neutrino Observatory (INO)

    International Nuclear Information System (INIS)

    Rawat, Kanishka; Bhatnagar, Vipin; Indumathi, D.

    2013-01-01

    The proposed magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) lab is mostly sensitive to the muon neutrinos. We present preliminary results for oscillation studies with up-going muons. We have used charge-current events with Honda flux for the analysis. Honda flux is calculated for INO-Theni site where the INO-ICAl detector will be placed. For up-going muon with 2-flavour oscillation, the parameters taken are: θ 12 = 34, θ 13 = 0, θ 23 = 45, Δm 2 31 = 7.92 x 10 -5 eV 2 , Δm 2 21 = 2.4 x 10 -3 eV 2 , δ cp = 0. We generate events using the ICAL geometry in the Nuance neutrino generator and pass the produced events through the ICAl-GEANT4 simulated detector. The muon tracks are reconstructed according to this package through a Kalman filter algorithm that returns both the magnitude and direction of the muon momentum. The sensitivity of these events to oscillations in the parent neutrino flux will be studied next

  5. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  6. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  7. Protein expression analysis of inflammation-related colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2009-01-01

    Full Text Available Background: Chronic inflammation is a risk factor for colorectal cancer (CRC development. The aim of this study was to determine the differences in protein expression between CRC and the surrounding nontumorous colonic tissues in the mice that received azoxymethane (AOM and dextran sodium sulfate (DSS using a proteomic analysis. Materials and Methods: Male ICR mice were given a single intraperitoneal injection of AOM (10 mg/kg body weight, followed by 2% (w/v DSS in their drinking water for seven days, starting one week after the AOM injection. Colonic adenocarcinoma developed after 20 weeks and a proteomics analysis based on two-dimensional gel electrophoresis and ultraflex TOF/TOF mass spectrometry was conducted in the cancerous and nontumorous tissue specimens. Results: The proteomic analysis revealed 21 differentially expressed proteins in the cancerous tissues in comparison to the nontumorous tissues. There were five markedly increased proteins (beta-tropomyosin, tropomyosin 1 alpha isoform b, S100 calcium binding protein A9, and an unknown protein and 16 markedly decreased proteins (Car1 proteins, selenium-binding protein 1, HMG-CoA synthase, thioredoxin 1, 1 Cys peroxiredoxin protein 2, Fcgbp protein, Cytochrome c oxidase, subunit Va, ETHE1 protein, and 7 unknown proteins. Conclusions: There were 21 differentially expressed proteins in the cancerous tissues of the mice that received AOM and DSS. Their functions include metabolism, the antioxidant system, oxidative stress, mucin production, and inflammation. These findings may provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies to treat carcinogenesis in the inflamed colon.

  8. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  9. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  10. Microcystin-LR Induces Apoptosis via NF-κB /iNOS Pathway in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Kai Shen

    2011-07-01

    Full Text Available Cyanobacterial toxins, especially the microcystins, are found in eutrophied waters throughout the world, and their potential to impact on human and animal health is a cause for concern. Microcystin-LR (MC-LR is one of the common toxic microcystin congeners and occurs frequently in diverse water systems. Recent work suggested that apoptosis plays a major role in the toxic effects induced by MC-LR in hepatocytes. However, the roles of MC-LR in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of MC-LR on cell apoptosis in the rat insulinoma cell line, INS-1. Our results demonstrated that MC-LR promoted selectively activation of NF-κB (increasing nuclear p50/p65 translocation and increased the mRNA and protein levels of induced nitric oxide synthase (iNOS. The chronic treatment with MC-LR stimulated nitric oxide (NO production derived from iNOS and induced apoptosis in a dose dependent manner in INS-1 cells. Meanwhile, this effect was inhibited by the NF-κB inhibitor PDTC, which reversed the apoptosis induced by MC-LR. Our observations indicate that MC-LR induced cell apoptosis via an iNOS-dependent pathway. A well-known nuclear transcription factor, NF-κB, is activated and mediates intracellular nitric oxide synthesis. We suggest that the apoptosis induced by chronic MC-LR in vivo presents a possible cause of β-cell dysfunction, as a key environmental factor in the development of diabetes mellitus.

  11. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  12. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  13. Cytokines Expression and Nitric Oxide Production under Induced Infection to Typhimurium in Chicken Lines Divergently Selected for Cutaneous Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Rani Singh

    2012-07-01

    Full Text Available In the present study, the impact of Salmonella Typhimurium on cell-mediated immunity (CMI was investigated in 5 week-old immuno divergent broiler lines selected for the high and low response to phytohemagglutinin-P. The immune response was assessed in peripheral-blood mononuclear cells (PBMCs induced with Salmonella Typhimurium at different time intervals (0 h, 0.5 h, 2 h, 4 h, 6 h, 12 h and 24 h. The differential mRNA expression patterns of IFN-γ, IL-2 and iNOS were evaluated by quantitative real time PCR. In-vitro production of nitric oxide (NO was also estimated in the culture supernatant and correlated with iNOS mRNA expression. Present study showed higher production of NO in the high cell-mediated line (HCMI as compared to the low cell-mediated line (LCMI upon stimulation with Salmonella Typhimurium. Correspondingly, higher mRNA expression of iNOS and IFN-γ were observed in high response birds (HCMI; but IL-2 was down regulated in this line compared to the low response birds (LCMI. Significantly (p<0.05 higher expression of iNOS, IFN-γ and higher production of NO in high line indicated that the selection for PHA-P response might be employed for increasing the immune competence against Salmonella Typhimurium in chicken flocks.

  14. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  15. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  16. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  17. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    International Nuclear Information System (INIS)

    Yamakoshi, Takako; Makino, Teruhiko; Ur Rehman, Mati; Yoshihisa, Yoko; Sugimori, Michiya; Shimizu, Tadamichi

    2013-01-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes

  18. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps

    Directory of Open Access Journals (Sweden)

    Überla Klaus

    2007-06-01

    Full Text Available Abstract Background Proteins of human and animal viruses are frequently expressed from RNA polymerase II dependent expression cassettes to study protein function and to develop gene-based vaccines. Initial attempts to express the G protein of vesicular stomatitis virus (VSV and the F protein of respiratory syncytial virus (RSV by eukaryotic promoters revealed restrictions at several steps of gene expression. Results Insertion of an intron flanked by exonic sequences 5'-terminal to the open reading frames (ORF of VSV-G and RSV-F led to detectable cytoplasmic mRNA levels of both genes. While the exonic sequences were sufficient to stabilise the VSV-G mRNA, cytoplasmic mRNA levels of RSV-F were dependent on the presence of a functional intron. Cytoplasmic VSV-G mRNA levels led to readily detectable levels of VSV-G protein, whereas RSV-F protein expression remained undetectable. However, RSV-F expression was observed after mutating two of four consensus sites for polyadenylation present in the RSV-F ORF. Expression levels could be further enhanced by codon optimisation. Conclusion Insufficient cytoplasmic mRNA levels and premature polyadenylation prevent expression of RSV-F by RNA polymerase II dependent expression plasmids. Since RSV replicates in the cytoplasm, the presence of premature polyadenylation sites and elements leading to nuclear instability should not interfere with RSV-F expression during virus replication. The molecular mechanisms responsible for the destabilisation of the RSV-F and VSV-G mRNAs and the different requirements for their rescue by insertion of an intron remain to be defined.

  19. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  20. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  1. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense

    Directory of Open Access Journals (Sweden)

    Yuki Horiuchi

    2018-01-01

    Full Text Available Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense. We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein “ember” from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 105 M−1·cm−1. The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.

  3. A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation Studies of Benzimidazole-Quinolinone Derivatives as iNOS Inhibitors

    Directory of Open Access Journals (Sweden)

    Peixun Liu

    2012-09-01

    Full Text Available Inducible Nitric Oxide Synthase (iNOS has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR, molecular docking and molecular dynamics (MD simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R2 of 0.9356, Q2 of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1 compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R3 substituent, hydrophilic substituents near the X6 of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2 Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.

  4. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  6. Optomechanical design of TMT NFIRAOS Subsystems at INO

    Science.gov (United States)

    Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre

    2017-08-01

    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.

  7. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression.

    Science.gov (United States)

    Pontes, Flávia Sirotheau C; Pontes, Hélder A R; de Souza, Lucas L; de Jesus, Adriana S; Joaquim, Andrea M C; Miyahara, Ligia A N; Fonseca, Felipe P; Pinto Junior, Décio S

    2018-03-01

    The aim of this study was to evaluate the expression of Akt, PTEN, Mdm2 and p53 proteins in three different head and neck squamous cell carcinoma (HNSCC) cell lines (HN6, HN19 and HN30), all of them treated with epidermal growth factor (EGF) and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 protein. Immunofluorescence and western blot were performed in order to analyze the location and quantification, respectively, of proteins under the action 17-AAG and EGF. Treatment with EGF resulted in increased levels of Akt, PTEN and p53 in all cell lineages. The expression of Mdm2 was constant in HN30 and HN6 lineages, while in HN19 showed slightly decreased expression. Under the action 17-AAG, in HN6 and HN19, the expression of PTEN and p53 proteins was suppressed, while Akt and Mdm2 expression was reduced. Finally, in the HN30 cell lineage were absolute absence of expression of Akt, Mdm2 and p53 and decreased expression of PTEN. These data allow us to speculate on the particular utility of 17-AAG for HNSCC treatment through the inhibition of Akt protein expression, especially in the cases that retain the expression of PTEN protein. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  9. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  10. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  11. The protective role of nitric oxide and nitric oxide synthases in whole-body hyperthermia-induced hepatic injury in rats.

    Science.gov (United States)

    Chen, Chao-Fuh; Wang, David; Leu, Fur-Jiang; Chen, Hsing I

    2012-01-01

    The present study was designed to elucidate the role of endothelial nitric oxide (NO) synthase (eNOS), inducible NOS (iNOS)-derived NO and heat-shock protein (Hsp70) in a rat model of whole-body hyperthermia (WBH)-induced liver injury. Real-time polymerase chain reaction, immunohistochemistry and western blot were used to observe the mRNA and protein expression of eNOS, iNOS and Hsp70. Rats were exposed to hyperthermia by immersion for 60 min at a conscious state in a water bath maintained at 41°C. Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were used to assess liver injury 15 h after the hyperthermia challenge. Nitrosative and oxidative mediators, particularly NO and hydroxyl radical were measured. Plasma AST, ALT, hydroxyl radical, and NO were significantly increased after WBH. There were 4.14 ± 0.42, 2.82 ± 0.34 and 2.91 ± 0.16-fold increases in the mRNA expression of eNOS, iNOS and Hsp70. Immunohistochemistry and western blot showed up-regulation of eNOS, iNOS and Hsp70 protein. An eNOS inhibitor (N(ω)-nitro-L-arginine methyl ester (L-NAME)), or an iNOS inhibitor (aminoguanidine (AG)), significantly aggravated the liver injury. On the contrary, administration of NO precursor, L-arginine (L-ARG), attenuated the liver injury. Hsp70 inhibitor quercetin reduced Hsp70, while aggravating the WBH-induced hepatic changes. WBH induces increases in eNOS, iNOS and Hsp70 expression with increase in NO release. The deleterious effects of L-NAME and AG and the protective effects of L-ARG and Hsp70 inhibitor on the liver function and pathology suggest that NO and heat shock protein play a beneficial role in the WBH-induced hepatic injury.

  12. Effects of a selective iNOS inhibitor versus norepinephrine in the treatment of septic shock.

    Science.gov (United States)

    Su, Fuhong; Huang, Hongchuan; Akieda, Kazuki; Occhipinti, Giovanna; Donadello, Katia; Piagnerelli, Michael; De Backer, Daniel; Vincent, Jean-Louis

    2010-09-01

    Inhibition of NOS is not beneficial in septic shock; selective inhibition of the inducible form (iNOS) may represent a better option. We compared the effects of the selective iNOS inhibitor BYK191023 with those of norepinephrine (NE) in a sheep model of septic shock. Twenty-four anesthetized, mechanically ventilated ewes received 1.5 g/kg body weight of feces into the abdominal cavity to induce sepsis. Animals were randomized into three groups (each n = 8): NE-only, BYK-only, and NE + BYK. The sublingual microcirculation was evaluated with sidestream dark-field videomicroscopy. MAP was higher in the NE + BYK group than in the other groups, but there were no significant differences in cardiac index or systemic vascular resistance. Mean pulmonary arterial pressure was lower in BYK-treated animals than in the NE-only group. PaO2/FiO2 was higher and lactate concentration lower in the BYK groups than in the NE-only group. Mesenteric blood flow was higher in BYK groups than in the NE-only group. Renal blood flow was higher in the NE + BYK group than in the other groups. Functional capillary density and proportion of perfused vessels were higher in the BYK groups than in the NE-only group 18 h after induction of peritonitis. Survival times were similar in the three groups. In this model of peritonitis, selective iNOS inhibition had more beneficial effects than NE on pulmonary artery pressures, gas exchange, mesenteric blood flow, microcirculation, and lactate concentration. Combination of this selective iNOS inhibitor with NE allowed a higher arterial pressure and renal blood flow to be maintained.

  13. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  14. Energy resolution and charge identification efficiency of muons in INO ICAL detector

    International Nuclear Information System (INIS)

    Behera, S.P.; Mohanty, A.K.; Datar, V.M.; Meghna, K.K.

    2013-01-01

    The motivation for the design of the Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) is to make precise measurements of neutrino (ν) parameters using atmospheric νs. It is crucial to know the energy and direction of incoming νs

  15. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  16. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    International Nuclear Information System (INIS)

    Huang, Bor-Ren; Tsai, Cheng-Fang; Lin, Hsiao-Yun; Tseng, Wen-Pei; Huang, Shiang-Suo; Wu, Chi-Rei; Lin, Chingju; Yeh, Wei-Lan; Lu, Dah-Yuu

    2013-01-01

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE 2 production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser 536 , and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses

  17. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bor-Ren [Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan (China); Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Tsai, Cheng-Fang [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lin, Hsiao-Yun [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Tseng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua County, Taiwan (China); Huang, Shiang-Suo [Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taiwan (China); Wu, Chi-Rei [Graduate Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, Taiwan (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan (China); Yeh, Wei-Lan [Cancer Research Center, Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan (China); Lu, Dah-Yuu, E-mail: dahyuu@mail.cmu.edu.tw [Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan (China)

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  18. Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats.

    Science.gov (United States)

    Duan, Yun-Fei; An, Yong; Zhu, Feng; Jiang, Yong

    2017-08-15

    Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all Pfatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.

  19. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  20. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  1. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  2. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  3. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  4. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  5. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    Science.gov (United States)

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  6. Differential research of inflammatory and related mediators in BPH, histological prostatitis and PCa.

    Science.gov (United States)

    Huang, T R; Wang, G C; Zhang, H M; Peng, B

    2018-02-14

    Prostate cancer (PCa) is one of the most common male malignancies in the world. It was aimed to investigate differential expression of inflammatory and related factors in benign prostatic hyperplasia (BPH), prostate cancer (PCa), histological prostatitis (HP) and explore the role of Inducible nitric oxide synthase (iNOS), (VEGF) Vascular endothelial growth factor, androgen receptor (AR) and IL-2, IL-8 and TNF-α in the occurrence and development of prostate cancer. RT-PCR was used to detect the mRNA expression level of iNOS, VEGF, AR and IL-2, IL-8 and TNF-α in BPH, PCa and BPH+HP. Western blotting and immunohistochemical staining were used to detect the protein levels of various proteins in three diseases. The results showed the mRNA and protein levels of iNOS, VEGF and IL-2, IL-8 and TNF-α were significantly increased in PCa and BPH+HP groups compared with BPH group (p BPH+HP groups (p BPH+HP groups (p > .05). iNOS, VEGF, AR and IL-2, IL-8 and TNF-α are involved in the malignant transformation of prostate tissue and play an important role in the development and progression of Prostate cancer (PCa). © 2018 Blackwell Verlag GmbH.

  7. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    International Nuclear Information System (INIS)

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-01-01

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis

  8. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  9. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  10. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    Science.gov (United States)

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  11. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line.

    Science.gov (United States)

    Moeslinger, Thomas; Friedl, Roswitha; Spieckermann, Paul Gerhard

    2006-06-20

    Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of

  12. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  13. Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Hyun Kim

    2012-05-01

    Full Text Available Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells; however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinizationto predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rats, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of the corpus luteum (CL. Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggests that its expression is regulated post-transcriptionally.

  14. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  15. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  16. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Science.gov (United States)

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  18. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  19. Expression of membrane-associated proteins within single emulsion cell facsimiles.

    Science.gov (United States)

    Chanasakulniyom, Mayuree; Martino, Chiara; Paterson, David; Horsfall, Louise; Rosser, Susan; Cooper, Jonathan M

    2012-07-07

    MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB-RFP). We follow the aggregation and localisation of the fusion protein MreB-RFP in this artificial cell-like environment. The expression of MreB-RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface.

  20. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  1. Parasitization by Scleroderma guani influences protein expression in Tenebrio molitor pupae.

    Science.gov (United States)

    Zhu, Jia-Ying; Wu, Guo-Xing; Ze, Sang-Zi; Stanley, David W; Yang, Bin

    2014-07-01

    Ectoparasitoid wasps deposit their eggs onto the surface and inject venom into their hosts. Venoms are chemically complex and they exert substantial impact on hosts, including permanent or temporary paralysis and developmental arrest. These visible venom effects are due to changes in expression of genes encoding physiologically relevant proteins. While the influence of parasitization on gene expression in several lepidopterans has been reported, the molecular details of parasitoid/beetle relationships remain mostly unknown. This shortcoming led us to pose the hypothesis that envenomation by the ectoparasitic ant-like bethylid wasp Scleroderma guani leads to changes in protein expression in the yellow mealworm beetle Tenebrio molitor. We tested our hypothesis by comparing the proteomes of non-parasitized and parasitized host pupae using iTRAQ-based proteomics. We identified 41 proteins that were differentially expressed (32↑- and 9↓-regulated) in parasitized pupae. We assigned these proteins to functional categories, including immunity, stress and detoxification, energy metabolism, development, cytoskeleton, signaling and others. We recorded parallel changes in mRNA levels and protein abundance in 14 selected proteins following parasitization. Our findings support our hypothesis by documenting changes in protein expression in parasitized hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Characterization of 3 mm glass electrodes and development of RPC detectors for INO-ICAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Daljeet; Kumar, Ashok; Gaur, Ankit; Kumar, Purnendu; Hasbuddin, Md.; Mishra, Swati; Kumar, Praveen; Naimuddin, Md., E-mail: nayeem@cern.ch

    2015-02-21

    India-based Neutrino Observatory (INO) is a multi-institutional facility, planned to be built up in South India. The INO facility will host a 51 kton magnetized Iron CALorimeter (ICAL) detector to study atmospheric muon neutrinos. Iron plates have been chosen as the target material whereas Resistive Plate Chambers (RPCs) have been chosen as the active detector element for the ICAL experiment. Due to the large number of RPCs needed (∼28,000 of 2 m×2 m in size) for ICAL experiment and for the long lifetime of the experiment, it is necessary to perform a detailed R and D such that each and every parameter of the detector performance can be optimized to improve the physics output. In this paper, we report on the detailed material and electrical properties studies for various types of glass electrodes available locally. We also report on the performance studies carried out on the RPCs made with these electrodes as well as the effect of gas composition and environmental temperature on the detector performance. We also lay emphasis on the usage of materials for RPC electrodes and the suitable environmental conditions applicable for operating the RPC detector for optimal physics output at INO-ICAL experiment.

  3. Combination of Medicinal Herbs KIOM-79 Reduces Advanced Glycation End Product Accumulation and the Expression of Inflammatory Factors in the Aorta of Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Eunjin Sohn

    2011-01-01

    Full Text Available Previous studies have reported that KIOM-79 shows a strong inhibitory effect on AGE formation and inhibited a proinflammatory state in a murine macrophage cell line. In the present study, we investigated the effect of KIOM-79 on AGE accumulation and vascular inflammation in the aorta of Zucker diabetic fatty (ZDF rats, a commonly used model of type 2 diabetes. Seven-week-old male ZDF rats were treated with KIOM-79 (50 mg/kg once a day orally for 13 weeks. We examined the dissected aortas for AGE accumulation, expression of the receptor for AGEs (RAGE, and the expression of proinflammatory factors, including monocyte chemoattractant protein-1 (MCP-1, vascular endothelial growth factor (VEGF, and vascular adhesion molecule-1 (VCAM-1. Nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were also measured by Southwestern histochemistry, electrophoretic mobility shift assay (EMSA, and immunohistochemistry, respectively. KIOM-79 markedly reduced the accumulation of AGEs and the expression of RAGE in the aorta. We also found that KIOM-79 attenuated the expression of inflammatory factors including NF-κB, MCP-1, VEGF, VCAM-1, and iNOS in the aortas of ZDF rats. These data suggest that KIOM-79 may prevent or retard the development of inflammation in diabetic vascular disease.

  4. Major vault protein/lung resistance-related protein (MVP/LRP) expression in nervous system tumors.

    Science.gov (United States)

    Sasaki, Tsutomu; Hankins, Gerald R; Helm, Gregory A

    2002-01-01

    Lung resistance-related protein (LRP) was identified as the major vault protein (MVP), the main component of multimeric vault particles. It functions as a transport-associated protein that can be associated with multidrug resistance. In previous studies, expression of MVP/LRP has been documented in tumors of various types. In general, good correlations have been reported for expression of MVP/LRP and decreased sensitivity to chemotherapy and poor prognosis. MVP/LRP expression has been documented in glioblastomas, but its expression in nervous system tumors in general has not been well characterized. Immunohistochemistry using anti-human MVP/LRP antibody (LRP-56) was performed on formalin-fixed, paraffin-embedded archival tissue from 69 primary central nervous system tumors. Expression of MVP/LRP was observed in 81.2% (56/69) of primary nervous system tumors, including astrocytomas (11/13), oligodendrogliomas (1/2), oligoastrocytomas (5/5), ependymoma (1/1), meningiomas (35/45), schwannomas (2/2), and neurofibroma (1/1). Various degrees and distributions of immunoreactivity to MVP/ LRP were observed. Neither the presence nor the degree of immunoreactivity to MVP/LRP showed any correlation with either tumor grade or the presence of brain invasion.

  5. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  6. Novel leukocyte protein, Trojan, differentially expressed during thymocyte development.

    Science.gov (United States)

    Petrov, Petar; Motobu, Maki; Salmi, Jussi; Uchida, Tatsuya; Vainio, Olli

    2010-04-01

    "Trojan" is a novel cell surface protein, discovered from chicken embryonic thymocytes on the purpose to identify molecules involved in T cell differentiation. The molecule is predicted as a type I transmembrane protein having a Sushi and two fibronectin type III domains and a pair of intracellular phosphorylation sites. Its transcript expression is specific for lymphoid tissues and the presence of the protein on the surface of recirculating lymphocytes and macrophages was confirmed by immunofluorescence analysis. In thymus, about half of the double negative (CD4(-) CD8(-)) and CD8 single positive and the majority of CD4 single positive cells express Trojan with a relatively high intensity. However, only a minority of the double positive (CD4(+) CD8(+)) cells are positive for Trojan. This expression pattern, similar to that of some proteins with anti-apoptotic and function, like IL-7Ralpha, makes Trojan an attractive candidate of having an anti-apoptotic role. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  8. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  9. EMPREGO DA DETOMIDINA COMO MEDICAÇÃO PRÉ-ANESTÉSICA EM EQÜINOS ANESTESIADOS COM HALOTANO

    OpenAIRE

    Cláudio Corrêa Natalini; Rui Afonso Vieira Campello; Augusto José Savioli de Almeida Sampaio; Irene Breitsameter

    1992-01-01

    Foram investigados os efeitos do cloridrato de detomidina como medicação pré-anestésica em eqüinos anestesiados com halotano e submetidos à laparotomia mediana pré-retroumbilical. Os parâmetros de freqüência cardíaca e respiratória, tempo de reperfusão capilar, equilíbrio ácido-base, equilíbrio hidroeletrolítico e o perfil hematológico foram analisados. Os eqüinos foram tratados com detomidina e anestesiados com tiopental sódico e halotano em oxigênio a 100%. A avaliação da técnica demonstrou...

  10. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    Science.gov (United States)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-08-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P heat stress exposure in Tharparkar cattle.

  11. Marker Protein Expression Combined With Expression Heterogeneity is a Powerful Indicator of Malignancy in Acral Lentiginous Melanomas.

    Science.gov (United States)

    Cintra Lopes Carapeto, Fernando; Neves Comodo, Andréia; Germano, Andressa; Pereira Guimarães, Daiane; Barcelos, Denise; Fernandes, Mariana; Landman, Gilles

    2017-02-01

    Samples of acral lentiginous melanomas (ALMs) were obtained from the Department of Pathology at Escola Paulista de Medicina-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. Demographic, clinical, and follow-up data were obtained from the charts of Hospital São Paulo. From 2 tissue microarrays containing 60 nevi and quadruplicate samples of ≥1.0-mm of 49 ALM, sections were stained to evaluate SCF, KIT, BRAF, CYCLIND1, MYC, and PTEN immunohistochemical protein expression. Nevi and ALM from 2006 to 2010 were reviewed and collected. All specimens were in the vertical growth phase, and histopathological parameters indicated that tumors were at an advanced stage at diagnosis. Average tumor thickness was 6.95 mm, 63% were ulcerated, average mitotic index was 5 mitotic cells per mm, and 43% were at Clark's level V. Compared with nevi, the χ test showed that ALM significantly correlated with SCF protein expression (P = 0.001) and expression heterogeneity (P < 0.000). Similar findings were observed for KIT (P = 0.005, P = 0.003, respectively), MYC (P < 0.000, P < 0.000), and PTEN (P = 0.005, P < 0.000). Malignancy did not correlate with BRAF and CYCLIN D1 expression (P = 0.053 and P = 0.259, respectively), but it did significantly correlate with their heterogeneous expression (P < 0.000, P = 0.024, respectively). Combined protein expression had an odds ratio of greater malignancy when BRAF and MYC were positive and/or heterogeneously expressed (OR of 78 and 95, respectively). We show that marker protein expression, when combined with heterogeneous expression as shown by immunohistochemistry, is a powerful indicator of malignancy in ALMs, especially, when protein pairs are combined.

  12. ANESTESIA EM EQÜINOS COM DETOMIDINA E TILETAMINA-ZOLAZEPAM

    Directory of Open Access Journals (Sweden)

    Cláudio Corrêa Natalini

    1994-01-01

    Full Text Available RESUMO Seis eqüinos foram anestesiados, via intravenosa, com o cloridrato de detomidina 1% (0,03mg/kg, associado à combinação tiletamina-zolazepam 5% (1mg/kg. Foram registrados o tempo para obtenção do decúbito lateral e o tempo para retorno à posição de estação. As freqüências cardíaca e respiratória, a temperatura retal, os vaiores arteriais de pH, PCO2, PO2, HCO3, excesso de bases e SATO2, foram analisados no período anterior à sedação (valor basal, durante a anestesia e ao retorno à posição de estação. Dois eqüinos foram submetidos a procedimentos cirúrgicos. O tempo médio para a obtenção do decúbito lateral foi de 53,80 ± 9,06 segundos. O período médio em decúbito lateral foi de 28,50 ± 5,05 minutos e o tempo para retorno à estação foi de 39,16 ± 4,59 minutos. A análise hemogasométrica arterial revelou a ocorrência de hipoxemia no período anestésico. As freqüências cardíaca, respiratória e temperatura retal mantiveram-se estáveis no período estudado.

  13. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  14. Calcium affecting protein expression in longan under simulated acid rain stress.

    Science.gov (United States)

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  15. Heterogeneity of proteins expressed by Brazilian Sporothrix schenckii isolates.

    Science.gov (United States)

    Fernandes, Geisa Ferreira; Do Amaral, Cristiane Candida; Sasaki, Alexandre; Godoy, Patrício Martinez; De Camargo, Zoilo Pires

    2009-12-01

    The profiles of proteins present in the exoantigens of Brazilian Sporothrix schenckii isolates were studied and compared by electrophoresis (SDS-PAGE). Thirteen isolates from five different regions of Brazil (1,000 to 2,000 km apart) and ten from a more limited region (200 to 400 km apart within the state of São Paulo) were cultured in Sabouraud, M199 and minimum (MM) media. Qualitative and quantitative differences in the expression of proteins, which varied according to the medium and the isolate, were observed. Fractions with the same MW but varying in intensity were detected, as well as fractions present in 1 isolate but absent in others. Dendrograms were constructed and isolates grouped based on the fractions obtained, irrespective of the intensity. The results showed that Brazilian S. schenckii isolates express different protein profiles, a feature also present in isolates from a more restricted region. The exoantigens were found to have a maximum of 15 protein fractions, ranging in MW from 19-220 KDaltons depending on the medium used for the cultures. These data show the great heterogeneity of Brazilian S. schenckii protein expression.

  16. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  17. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  18. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  19. Cloning, expression, purification and characterization of Leishmania tropica PDI-2 protein

    Directory of Open Access Journals (Sweden)

    Ali Dina

    2016-01-01

    Full Text Available In Leishmania species, protein disulfide isomerase (PDI is an essential enzyme that catalyzes thiol-disulfide interchange. The present work describes the isolation, cloning, sequencing and expression of the pdI-2 gene. Initially, the gene was amplified from L. tropica genomic DNA by PCR using specific primers before cloning into the expression vector pET-15b. The construct pET/pdI-2 was transformed into BL21(DE3 cells and induced for the protein expression. SDS-PAGE and western blot analysis showed that the expressed protein is about 51 kDa. Cloned gene sequence analysis revealed that the deduced amino acid sequence showed significant homology with those of several parasites PDIs. Finally, recombinant protein was purified with a metal-chelating affinity column. The putative protein was confirmed as a thiol - disulfide oxidoreductase by detecting its activity in an oxidoreductase assay. Assay result of assay suggested that the PDI-2 protein is required for both oxidation and reduction of disulfide bonds in vitro. Antibodies reactive with this 51 kDa protein were detected by Western blot analysis in sera from human infected with L. tropica. This work describes for the first time the enzymatic activity of recombinant L. tropica PDI-2 protein and suggests a role for this protein as an antigen for the detection of leishmaniasis infection.

  20. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  1. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...

  3. Fragile X mental retardation protein expression in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Abigail J Renoux

    2014-10-01

    Full Text Available The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer’s disease (AD in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer’s autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1, we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS is an age related neurodegenerative disorder caused by expanded CGG repeats in the 5’UTR of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer’s patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer’s disease pathogenesis.

  4. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  5. L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism.

    Directory of Open Access Journals (Sweden)

    Daniel J Ham

    Full Text Available Dietary L-citrulline is thought to modulate muscle protein turnover by increasing L-arginine availability. To date, the direct effects of increased L-citrulline concentrations in muscle have been completely neglected. Therefore, we determined the role of L-citrulline in regulating cell size during catabolic conditions by depriving mature C2C12 myotubes of growth factors (serum free; SF or growth factors and nutrients (HEPES buffered saline; HBS. Cells were treated with L-citrulline or equimolar concentrations of L-arginine (positive control or L-alanine (negative control and changes in cell size and protein turnover were assessed. In myotubes incubated in HBS or SF media, L-citrulline improved rates of protein synthesis (HBS: +63%, SF: +37% and myotube diameter (HBS: +18%, SF: +29%. L-citrulline treatment substantially increased iNOS mRNA expression (SF: 350%, HBS: 750%. The general NOS inhibitor L-NAME and the iNOS specific inhibitor aminoguanidine prevented these effects in both models. Depriving myotubes in SF media of L-arginine or L-leucine, exacerbated wasting which was not attenuated by L-citrulline. The increased iNOS mRNA expression was temporally associated with increases in mRNA of the endogenous antioxidants SOD1, SOD3 and catalase. Furthermore, L-citrulline prevented inflammation (LPS and oxidative stress (H2O2 induced muscle cell wasting. In conclusion, we demonstrate a novel direct protective effect of L-citrulline on skeletal muscle cell size independent of L-arginine that is mediated through induction of the inducible NOS (iNOS isoform. This discovery of a nutritional modulator of iNOS mRNA expression in skeletal muscle cells could have substantial implications for the treatment of muscle wasting conditions.

  6. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  7. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats.

    Science.gov (United States)

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg(-1), intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg(-1) decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3.

  8. In vitro protein expression: an emerging alternative to cell-based approaches.

    Science.gov (United States)

    He, Mingyue

    2011-04-30

    Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    Science.gov (United States)

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  10. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  12. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    In response to Pb, a total of 76 proteins, out of the 95 differentially expressed proteins, were subjected to MALDI-TOF-MS Of these, 46 identities were identified by PMF and 19 identities were identified by microsequencing. Basic metabolisms such as photosynthesis, photorespiration and protein biosynthesis in C. roseus ...

  13. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  14. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  15. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  16. Hypothalamic expression of inflammatory mediators in an animal model of binge eating.

    Science.gov (United States)

    Alboni, Silvia; Micioni Di Bonaventura, Maria Vittoria; Benatti, Cristina; Giusepponi, Maria Elena; Brunello, Nicoletta; Cifani, Carlo

    2017-03-01

    Binge eating episodes are characterized by uncontrollable, distressing eating of a large amount of highly palatable food and represent a central feature of bingeing related eating disorders. Research suggests that inflammation plays a role in the onset and maintenance of eating-related maladaptive behavior. Markers of inflammation can be selectively altered in discrete brain regions where they can directly or indirectly regulate food intake. In the present study, we measured expression levels of different components of cytokine systems (IL-1, IL-6, IL-18, TNF-α and IFN-ɣ) and related molecules (iNOS and COX2) in the preoptic and anterior-tuberal parts of the hypothalamus of a validated animal model of binge eating. In this animal model, based on the exposure to both food restriction and frustration stress, binge-like eating behavior for highly palatable food is not shown when animals are exposed to the frustration stress during the estrus phase. We found a characteristic down-regulation of the IL-18/IL-18 receptor system (with increased expression of the inhibitor of the pro-inflammatory cytokine IL-18, IL-18BP, together with a decreased expression of the binding chain of the IL-18 receptor) and a three-fold increase in the expression of iNOS specifically in the anterior-tuberal region of the hypothalamus of animals that develop a binge-like eating behavior. Differently, when food restricted animals were stressed during the estrus phase, IL-18 expression increased, while iNOS expression was not significantly affected. Considering the role of this region of the hypothalamus in controlling feeding related behavior, this can be relevant in eating disorders and obesity. Our data suggest that by targeting centrally selected inflammatory markers, we may prevent that disordered eating turns into a full blown eating disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins

    Science.gov (United States)

    Rodriguez-Mesa, Evelyn; Abreu-Blanco, Maria Teresa; Rosales-Nieves, Alicia E.; Parkhurst, Susan M.

    2012-01-01

    Background Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. Results We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. Conclusion All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics. PMID:22275148

  18. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  19. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    Science.gov (United States)

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  20. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  1. Hippocampal expression of a virus-derived protein impairs memory in mice.

    Science.gov (United States)

    Bétourné, Alexandre; Szelechowski, Marion; Thouard, Anne; Abrial, Erika; Jean, Arnaud; Zaidi, Falek; Foret, Charlotte; Bonnaud, Emilie M; Charlier, Caroline M; Suberbielle, Elsa; Malnou, Cécile E; Granon, Sylvie; Rampon, Claire; Gonzalez-Dunia, Daniel

    2018-02-13

    The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.

  2. BAX protein expression and clinical outcome in epithelial ovarian cancer.

    Science.gov (United States)

    Tai, Y T; Lee, S; Niloff, E; Weisman, C; Strobel, T; Cannistra, S A

    1998-08-01

    Expression of the pro-apoptotic protein BAX sensitizes ovarian cancer cell lines to paclitaxel in vitro by enhancing the pathway of programmed cell death. The present study was performed to determine the relationship between BAX expression and clinical outcome in 45 patients with newly diagnosed ovarian cancer. BAX protein expression was analyzed by immunohistochemistry, and its relationship with clinical outcome was determined. Assessment of BAX mRNA transcript levels and mutational analysis of the BAX coding region were also performed. BAX protein was expressed at high levels (defined as > or = 50% of tumor cells positive) in tumor tissue from 60% of newly diagnosed patients. All patients whose tumors expressed high levels of BAX achieved a complete response (CR) to first-line chemotherapy that contained paclitaxel plus a platinum analogue, compared with 57% of patients in the low-BAX group (P = .036). After a median follow-up of 1.9 years, the median disease-free survival (DFS) of patients in the high-BAX group has not been reached, compared with a median DFS of 1.1 years for low-BAX expressors (P = .0061). BAX retained independent prognostic significance in multivariate analysis when corrected for stage and histology. BAX mRNA transcripts were easily detected in samples with low BAX protein expression, and no BAX mutations were identified. The correlation between high BAX levels and improved clinical outcome suggests that an intact apoptotic pathway is an important determinant of chemoresponsiveness in ovarian cancer patients who receive paclitaxel.

  3. Screening of genetic parameters for soluble protein expression in Escherichia coli

    DEFF Research Database (Denmark)

    Vernet, Erik; Kotzsch, Alexander; Voldborg, Bjørn

    2011-01-01

    Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts....... Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors...... for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth...

  4. Temporal protein expression pattern in intracellular signalling ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Protein expression dynamics observed in Experiment, Synchronous and. Asynchronous simulation. .... molecular basis for T cell suppression by IL-10: CD28-asso- ciated IL-10 receptor inhibits CD28 tyrosine ...

  5. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Science.gov (United States)

    2011-01-01

    Heat shock proteins (Hsp) perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease. PMID:21314976

  6. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Directory of Open Access Journals (Sweden)

    Serrano Carmen

    2011-01-01

    Full Text Available Abstract Heat shock proteins (Hsp perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease.

  7. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  8. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  9. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    Science.gov (United States)

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  11. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  12. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    Science.gov (United States)

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  14. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  15. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  16. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk [Biomedical Sciences Research Institute, University of Ulster, Coleraine, Co. Derry BT52 1SA (United Kingdom); Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); Patel, Daksha, E-mail: d.patel@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); McCance, Dennis J., E-mail: d.mccance@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  17. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    International Nuclear Information System (INIS)

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes

  18. Efficient Expression of Acetylcholine-Binding Protein from Aplysia californica in Bac-to-Bac System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2014-01-01

    Full Text Available The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.

  19. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  20. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees.

    Science.gov (United States)

    Bauernfeind, Amy L; Soderblom, Erik J; Turner, Meredith E; Moseley, M Arthur; Ely, John J; Hof, Patrick R; Sherwood, Chet C; Wray, Gregory A; Babbitt, Courtney C

    2015-07-10

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular

  2. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  3. Roles of HMGA proteins in cancer: Expression, pathways, and redundancies

    Directory of Open Access Journals (Sweden)

    Giancotti V

    2016-10-01

    Full Text Available The expression of the High Mobility Group A (HMGA proteins, their participation in cancer signalling pathways, and their redundant functions have been reviewed in seven types of cancer: breast, colorectal, prostate, lung, ovarian, thyroid, and brain. The analysis of cell lines and tumours revealed an elevated level of their expression in all fully transformed cancer systems, which represents a step of the main cancer signalling pathways. In breast, colorectal, prostate, and lung cancers Wnt/β-catenin pathway is a master inducer of cell transformation in which are deeply involved HMG A1 and A2 proteins. On the other hand, IL-6/Stat3 pathway is responsible for cancer transformation in breast, lung, and prostate. The expression of HMGA1 in lung and ovarian cancers is due to an active PI3K/Akt pathway. The let-7 family of microRNA represses the expression of HMGA showing specificity by its different forms: the let-7b form is able to inhibit both proteins A1 and A2, the last also inhibited by a, c, d, and g forms. Moreover, both proteins are down-regulated by the repressor couple p53/microRNA-34a. The protein A1 and A2 participate to the Epithelial-Mesenchymal Transition cooperating with the three couples of factors Twist1/2, Snai1/2, and Zeb1/2. Through a combination of pathways, there is the simultaneous presence of high levels of both A1 and A2 together with the expression of other factors: a high co-operating efficiency is reached that supplies the tumour cells with properties of self-renewal, resistance, and invasiveness.

  4. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c......EDS patients (fibronectin and MMP-2). DISCUSSION: The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared to cEDS patients....

  5. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  6. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    Science.gov (United States)

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  8. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  9. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2011-09-01

    Full Text Available Abstract Background The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. Results Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. Conclusion It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.

  10. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  11. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  12. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  13. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  14. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs encoding glycine-rich proteins (GRPs

    Directory of Open Access Journals (Sweden)

    Fusaro Adriana

    2001-01-01

    Full Text Available Since the isolation of the first glycine-rich proteins (GRPs in plants a wealth of new GRPs have been identified. The highly specific but diverse expression pattern of grp genes, taken together with the distinct sub-cellular localization of some GRP groups, clearly indicate that these proteins are involved in several independent physiological processes. Notwithstanding the absence of a clear definition of the role of GRPs in plant cells, studies conducted with these proteins have provided new and interesting insights into the molecular biology and cell biology of plants. Complexly regulated promoters and distinct mechanisms for the regulation of gene expression have been demonstrated and new protein targeting pathways, as well as the exportation of GRPs from different cell types have been discovered. These data show that GRPs can be useful as markers and/or models to understand distinct aspects of plant biology. In this paper, the structural and functional features of these proteins in sugarcane (Saccharum officinarum L. are summarized. Since this is the first description of GRPs in sugarcane, special emphasis has been given to the expression pattern of these GRP genes by studying their abundance and prevalence in the different cDNA-libraries of the Sugarcane Expressed Sequence Tag (SUCEST project . The comparison of sugarcane GRPs with GRPs from other species is also discussed.

  15. Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence.

    Science.gov (United States)

    Faratian, Dana; Christiansen, Jason; Gustavson, Mark; Jones, Christine; Scott, Christopher; Um, InHwa; Harrison, David J

    2011-10-25

    Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor(1,2), and some of these sub-clones give rise to metastatic (and therefore lethal) disease. Moreover, some proteins are measured as biomarkers because they are the targets of therapy (for instance ER and HER2 for tamoxifen and trastuzumab (Herceptin), respectively). If these proteins show variable expression within a tumor then therapeutic responses may also be variable. The widely used histopathologic scoring schemes for immunohistochemistry either ignore, or numerically homogenize the quantification of protein expression. Similarly, in destructive techniques, where the tumor samples are homogenized (such as gene expression profiling), quantitative information can be elucidated, but spatial information is lost. Genetic heterogeneity mapping approaches in pancreatic cancer have relied either on generation of a single cell suspension(3), or on macrodissection(4). A recent study has used quantum dots in order to map morphologic and molecular heterogeneity in prostate cancer tissue(5), providing proof of principle that morphology and molecular mapping is feasible, but falling short of quantifying the heterogeneity. Since immunohistochemistry is, at best, only semi

  16. Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2018-01-04

    Pichia pastoris is a well-known platform strain for heterologous protein expression. Over the past five years, different strategies to improve the efficiency of recombinant protein expression by this yeast strain have been developed; these include a patent-free protein expression kit, construction of the P. pastoris CBS7435Ku70 platform strain with its high efficiency in site-specific recombination of plasmid DNA into the genomic DNA, the design of synthetic promoters and their variants by combining different core promoters with multiple putative transcription factors, the generation of mutant GAP promoter variants with various promoter strengths, codon optimization, engineering the α-factor signal sequence by replacing the native glutamic acid at the Kex2 cleavage site with the other 19 natural amino acids and the addition of mammalian signal sequence to the yeast signal sequence, and the co-expression of single chaperones, multiple chaperones or helper proteins that aid in recombinant protein folding. Publically available high-quality genome data from multiple strains of P. pastoris GS115, DSMZ 70382, and CBS7435 and the continuous development of yeast expression kits have successfully promoted the metabolic engineering of this strain to produce carotenoids, xanthophylls, nootkatone, ricinoleic acid, dammarenediol-II, and hyaluronic acid. The cell-surface display of enzymes has obviously increased enzyme stability, and high-level intracellular expression of acyl-CoA and ethanol O-acyltransferase, lipase and d-amino acid oxidase has opened up applications in whole-cell biocatalysis for producing flavor molecules and biodiesel, as well as the deracemization of racemic amino acids. High-level expression of various food-grade enzymes, cellulases, and hemicellulases for applications in the food, feed and biorefinery industries is in its infancy and needs strengthening. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  18. Kiss-1/GPR54 protein expression in breast cancer.

    Science.gov (United States)

    Papaoiconomou, Eleni; Lymperi, Maria; Petraki, Constantina; Philippou, Anastassios; Msaouel, Pavlos; Michalopoulou, Fani; Kafiri, Georgia; Vassilakos, George; Zografos, Georgios; Koutsilieris, Michael

    2014-03-01

    Numerous studies have shown that the Kiss-1 gene countervails the metastatic aptitude of several cancer cell lines and solid-tumor neoplasias. However, there still remains ambiguity regarding its role in breast cancer and literature has arisen asserting that Kiss-1 expression may be linked to an aggressive phenotype and malignant progression. Herein, we investigated the protein expression of Kiss-1 and its receptor GPR54 in breast cancer tissues compared to non-cancerous mammary tissues. Paraffin-fixed cancer tissues from 43 women with resected breast adenocarcinomas and 11 specimens derived from women suffering from fibrocystic disease, serving as controls, were immunostained with Kiss-1 and GPR54 antibodies. Kiss-1 and GPR54 protein expression levels were significantly higher in breast cancer compared to fibrocystic tissues (pbreast cancer and fibrocystic disease specimens. Kiss-1/GPR54 expression was found to be significantly higher in breast cancer compared to non-malignant mammary tissues.

  19. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  20. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression

    DEFF Research Database (Denmark)

    Ozanne, SE; Jensen, CB; Tingey, KJ

    2005-01-01

    muscle in a human cohort and a rat model. METHODS: We recruited 20 young men with low birthweight (mean birthweight 2702+/-202 g) and 20 age-matched control subjects (mean birthweight 3801+/-99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin......-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. RESULTS: Low-birthweight subjects showed reduced muscle...... expression of protein kinase C (PKC)zeta, p85alpha, p110beta and GLUT4. PKCzeta, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. CONCLUSIONS...

  1. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  2. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  3. Dexamethasone-Induced Myeloid-Derived Suppressor Cells Prolong Allo Cardiac Graft Survival through iNOS- and Glucocorticoid Receptor-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-02-01

    Full Text Available How to induce immune tolerance without long-term need for immunosuppressive drugs has always been a central problem in solid organ transplantation. Modulating immunoregulatory cells represents a potential target to resolve this problem. Myeloid-derived suppressor cells (MDSCs are novel key immunoregulatory cells in the context of tumor development or transplantation, and can be generated in vitro. However, none of current systems for in vitro differentiation of MDSCs have successfully achieved long-term immune tolerance. Herein, we combined dexamethasone (Dex, which is a classic immune regulatory drug in the clinic, with common MDSCs inducing cytokine granulocyte macrophage colony stimulating factor (GM-CSF to generate MDSCs in vitro. Addition of Dex into GM-CSF system specifically increased the number of CD11b+ Gr-1int/low MDSCs with an enhanced immunosuppressive function in vitro. Adoptive transfer of these MDSCs significantly prolonged heart allograft survival and also favored the expansion of regulatory T cells in vivo. Mechanistic studies showed that inducible nitric oxide sythase (iNOS signaling was required for MDSCs in the control of T-cell response and glucocorticoid receptor (GR signaling played a critical role in the recruitment of transferred MDSCs into allograft through upregulating CXCR2 expression on MDSCs. Blockade of GR signaling with its specific inhibitor or genetic deletion of iNOS reversed the protective effect of Dex-induced MDSCs on allograft rejection. Together, our results indicated that co-application of Dex and GM-CSF may be a new and important strategy for the induction of potent MDSCs to achieve immune tolerance in organ transplantation.

  4. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    OpenAIRE

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  5. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  6. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  7. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2011-09-03

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  8. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Soo, Lisa; Qian, Pei-Yuan

    2011-01-01

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  9. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  10. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  11. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    Science.gov (United States)

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  12. Efficient expression of SRK intracellular domain by a modeling-based protein engineering.

    Science.gov (United States)

    Murase, Kohji; Hirano, Yoshinori; Takayama, Seiji; Hakoshima, Toshio

    2017-03-01

    S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  14. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Boqun, Xu; Xiaonan, Dai; Yugui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS.

  15. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.

    Science.gov (United States)

    Somogyi-Ganss, Eszter; Nakayama, Yohei; Iwasaki, Kengo; Nakano, Yukiko; Stolf, Daiana; McKee, Marc D; Ganss, Bernhard

    2012-01-01

    Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization. Copyright © 2011 S. Karger AG, Basel.

  16. CIP2A protein expression in high-grade, high-stage bladder cancer

    International Nuclear Information System (INIS)

    Huang, Lisa P; Savoly, Diana; Sidi, Abraham A; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-01-01

    Bladder cancer is one of the most common cancers in the United States. Numerous markers have been evaluated for suitability of bladder cancer detection and surveillance. However, few of them are acceptable as a routine tool. Therefore, there exists a continuing need for an assay that detects the presence of bladder cancer in humans. It would be advantageous to develop an assay with a protein that is associated with the development of bladder cancer. We have identified the cancerous inhibitor of PP2A (CIP2A) protein as a novel bladder cancer biomarker. In this study, Western blot analysis was used to assess the expression level of CIP2A protein in bladder cancer cell lines and bladder cancer patient tissues (n = 43). Our studies indicated CIP2A protein was abundantly expressed in bladder cancer cell lines but not in nontumor epithelial cell lines. Furthermore, CIP2A was specifically expressed in transitional cell carcinoma (TCC) of the bladder tumor tissues but not in adjacent nontumor bladder tissue. Our data showed that CIP2A protein detection in high-grade TCC tissues had a sensitivity of 65%, which is 3.4-fold higher than that seen in low-grade TCC tissues (19%). The level of CIP2A protein expression increased with the stage of disease (12%, 27%, 67%, and 100% for pTa, pT1, pT2, and pT3 tumor, respectively). In conclusion, our studies suggest that CIP2A protein is specifically expressed in human bladder tumors. CIP2A is preferentially expressed in high-grade and high-stage TCC tumors, which are high-risk and invasive tumors. Our studies reported here support the role of CIP2A in bladder cancer progression and its usefulness for the surveillance of recurrence or progression of human bladder cancer

  17. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  18. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Singh Upinder

    2009-02-01

    Full Text Available Abstract Background Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. Results An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Conclusion Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  19. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica.

    Science.gov (United States)

    Linford, Alicia S; Moreno, Heriberto; Good, Katelyn R; Zhang, Hanbang; Singh, Upinder; Petri, William A

    2009-02-17

    Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  20. Online track detection in triggerless mode for INO

    Science.gov (United States)

    Jain, A.; Padmini, S.; Joseph, A. N.; Mahesh, P.; Preetha, N.; Behere, A.; Sikder, S. S.; Majumder, G.; Behera, S. P.

    2018-03-01

    The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 106 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV-10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also

  1. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    International Nuclear Information System (INIS)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2013-01-01

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag + presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag + (10 μg L −1 ) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag + . Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag + , with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in

  2. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  3. Prospects of indirect searches for dark matter at INO

    Science.gov (United States)

    Choubey, Sandhya; Ghosh, Anushree; Tiwari, Deepak

    2018-05-01

    The annihilation of Weakly Interactive Massive Particles (WIMP) in the centre of the sun could give rise to neutrino fluxes. We study the prospects of searching for these neutrinos at the upcoming Iron CALorimeter (ICAL) detector to be housed at the India-based Neutrino Observatory (INO). We perform ICAL simulations to obtain the detector efficiencies and resolutions in order to simulate muon events in ICAL due to neutrinos coming from annihilation of WIMP in the mass range mχ = (3‑100) GeV . The atmospheric neutrinos pose a major background for these indirect detection studies and can be reduced using the fact that the signal comes only from the direction of the sun. For a given WIMP mass, we find the opening angle θ90 such that 90 % of the signal events are contained within this angle and use this cone-cut criteria to reduce the atmospheric neutrino background. The reduced background is then weighted by the solar exposure function at INO to obtain the final background spectrum for a given WIMP mass. We perform a χ2 analysis and present expected exclusion regions in the σSD‑mχ and σSI‑mχ, where σSD and σSI are the WIMP-nucleon Spin-Dependent (SD) and Spin-Independent (SI) scattering cross-section, respectively. For a 10 years exposure and mχ=25 GeV, the expected 90 % C.L. exclusion limit is found to be σSD < 6.87× 10‑41 cm2 and σSI < 7.75× 10‑43 cm2 for the τ+ τ‑ annihilation channel and σSD < 1.14× 10‑39 cm2 and σSI < 1.30× 10‑41 cm2 for the b bar b channel, assuming 100 % branching ratio for each of the WIMP annihilation channel.

  4. Evolved Escherichia coli Strains for Amplified, Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Gul, Nadia; Linares, Daniel M.; Ho, Franz Y.; Poolman, Bert

    2014-01-01

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several

  5. Differential protein expression in alligator leukocytes in response to bacterial lipopolysaccharide injection.

    Science.gov (United States)

    Merchant, Mark; Kinney, Clint; Sanders, Paige

    2009-12-01

    Blood was collected from three juvenile alligators (Alligator mississippiensis) before, and again 24h after, injection with bacterial lipopolysaccharide (LPS). The leukocytes were collected from both samples, and the proteins were extracted. Each group of proteins was labeled with a different fluorescent dye and the differences in protein expression were analyzed by two dimensional differential in-gel expressions (2D-DIGE). The proteins which appeared to be increased or decreased by treatment with LPS were selected and analyzed by MALDI-TOF to determine mass and LC-MS/MS to acquire the partial protein sequences. The peptide sequences were compared to the NCBI protein sequence database to determine homology with other sequences from other species. Several proteins of interest appeared to be increased upon LPS stimulation. Proteins with homology to human transgelin-2, fish glucose-6-phosphate dehydrogenase, amphibian α-enolase, alligator lactate dehydrogenase, fish ubiquitin-activating enzyme, and fungal β-tubulin were also increased after LPS injection. Proteins with homology to fish vimentin 4, murine heterogeneous nuclear ribonucleoprotein A3, and avian calreticulin were found to be decreased in response to LPS. In addition, five proteins, four of which were up-regulated (827, 560, 512, and 650%) and one that exhibited repressed expression (307%), did not show homology to any protein in the database, and thus may represent newly discovered proteins. We are using this biochemical approach to isolate and characterize alligator proteins with potential relevant immune function.

  6. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.

    Science.gov (United States)

    Zhang, Yunfang; Schernthaner, Johann; Labbé, Natalie; Hefford, Mary A; Zhao, Jiping; Simmonds, Daina H

    2014-06-01

    To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.

  7. High SRPX2 protein expression predicts unfavorable clinical outcome in patients with prostate cancer

    Science.gov (United States)

    Zhang, Meng; Li, Xiaoli; Fan, Zhirui; Zhao, Jing; Liu, Shuzheng; Zhang, Mingzhi; Li, Huixiang; Goscinski, Mariusz Adam; Fan, Huijie; Suo, Zhenhe

    2018-01-01

    Background Sushi repeat-containing protein X-linked 2 (SRPX2) is overexpressed in a variety of different tumor tissues and correlated with poor prognosis in patients. Little research focuses on the role of SRPX2 expression in prostate cancer (PCa), and the clinicopathological significance of the protein expression in this tumor is relatively unknown. However, our previous transcriptome data from those cancer stem-like cells indicated the role of SRPX2 in PCa. Materials and methods In this study, RT-PCR and Western blotting were firstly used to examine the SRPX2 expression in three PCa cell lines including LNCaP, DU145, and PC3, and then SRPX2 protein expression was immunohistochemically investigated and statistically analyzed in a series of 106 paraffin-embedded PCa tissue specimens. Results Significantly lower levels of SRPX2 expression were verified in the LNCaP cells, compared with the expression in the aggressive DU145 and PC3 cells, in both mRNA and protein levels. Immunohistochemically, there were variable SRPX2 protein expressions in the clinical samples. Moreover, high levels of SRPX2 expression in the PCa tissues were significantly associated with Gleason score (P=0.008), lymph node metastasis (P=0.009), and distant metastasis (P=0.021). Furthermore, higher levels of SRPX2 expression in the PCa tissues were significantly associated with shorter overall survival (OS) (P<0.001). Conclusion Our results demonstrate that SRPX2 is highly expressed in aggressive PCa cells in vitro, and its protein expression in PCa is significantly associated with malignant clinical features and shorter OS, strongly indicating its prognostic value in prostate cancers. PMID:29881288

  8. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  9. Expression of livin protein in lung cancer and its relation with the expression of pro-caspase3 protein

    Directory of Open Access Journals (Sweden)

    Hongru LI

    2008-10-01

    Full Text Available Background and objective Livin is a novel inhibitor of apoptosis protein (IAP, recent studies showed it overexpresses in a variety of carcinomas including lung cancer and contributes much to the cancerous development. The objective of this study is to explore the expression of livin in tissues of lung cancer and its relationshipwith histological types, chemotherapy, Lymph node metastasis and to study its correlation with the expression of pro-caspase3 as well. Methods Expressions of Livin and caspase3 were detected by Western blot assay in lung cancer tissues as well as in controls. Results Livin was expressed in 15 of 27 lung cancer, significantly more than those in lung para-cancerous (1/5 or benign disease lung tissues (2/12 (P 0.05. Conclusion Livin are differently expressed in different histological types of lung cancer; High levels of livin expression do not relate to chemotherapy, lymph node metastasis (P >0.05. The levels of livin tends to be positively associated with those of accordingly pro-caspase3, it is presumed that livin could bind pro-caspase3 and suppress its activation.

  10. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  11. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  12. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  13. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  14. Immunohistochemical expression of latent membrane protein 1 ...

    African Journals Online (AJOL)

    Methods: Archival formalin-fixed, paraffin-embedded NPC biopsies were evaluated in 23 Moroccan patients for the presence of LMP1 and p53 using immunohistochemistry (IHC). Results: No LMP1 expression was observed whereas 8 of 23 cases (34. 7%) had detectable p53 protein in the nuclei of tumor cells.

  15. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  16. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Altered protein expression in serum from endometrial hyperplasia and carcinoma patients

    Directory of Open Access Journals (Sweden)

    Cong Qing

    2011-04-01

    Full Text Available Abstract Background Endometrial carcinoma is one of the most common gynecological malignancies in women. The diagnosis of the disease at early or premalignant stages is crucial for the patient's prognosis. To date, diagnosis and follow-up of endometrial carcinoma and hyperplasia require invasive procedures. Therefore, there is considerable demand for the identification of biomarkers to allow non-invasive detection of these conditions. Methods In this study, we performed a quantitative proteomics analysis on serum samples from simple endometrial hyperplasia, complex endometrial hyperplasia, atypical endometrial hyperplasia, and endometrial carcinoma patients, as well as healthy women. Serum samples were first depleted of high-abundance proteins, labeled with isobaric tags (iTRAQ™, and then analyzed via two-dimensional liquid chromatography and tandem mass spectrometry. Protein identification and quantitation information were acquired by comparing the mass spectrometry data against the International Protein Index Database using ProteinPilot software. Bioinformatics annotation of identified proteins was performed by searching against the PANTHER database. Results In total, 74 proteins were identified and quantified in serum samples from endometrial lesion patients and healthy women. Using a 1.6-fold change as the benchmark, 12 proteins showed significantly altered expression levels in at least one disease group compared with healthy women. Among them, 7 proteins were found, for the first time, to be differentially expressed in atypical endometrial hyperplasia. These proteins are orosomucoid 1, haptoglobin, SERPINC 1, alpha-1-antichymotrypsin, apolipoprotein A-IV, inter-alpha-trypsin inhibitor heavy chain H4, and histidine-rich glycoprotein. Conclusions The differentially expressed proteins we discovered in this study may serve as biomarkers in the diagnosis and follow-up of endometrial hyperplasia and endometrial carcinoma.

  18. Expression of green fluorescent protein (GFPuv) in Escherichia coli ...

    African Journals Online (AJOL)

    Administrator

    The recombinant green fluorescent protein (GFPuv) was expressed by transformed cells of Escherichia coli DH5-α grown in LB/amp broth at 37oC, for 8 h and 24 h. To evaluate the effectiveness of different parameters to improve the expression of GFPuv by E. coli, four variable culturing conditions were set up for assays by ...

  19. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  20. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  1. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems.

    Science.gov (United States)

    Gagoski, Dejan; Mureev, Sergey; Giles, Nichole; Johnston, Wayne; Dahmer-Heath, Mareike; Škalamera, Dubravka; Gonda, Thomas J; Alexandrov, Kirill

    2015-02-10

    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  3. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.

    Science.gov (United States)

    Baskaran, Asweni; Chua, Kek Heng; Sabaratnam, Vikineswary; Ravishankar Ram, Mani; Kuppusamy, Umah Rani

    2017-01-13

    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H 2 O 2 )-induced inflammation on RAW 264.7 macrophages was investigated. The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. EPG (10 μg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H 2 O 2 - induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 μg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H 2 O 2 -induced iNOS and GPx expression by EPG. Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.

  4. Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis.

    Science.gov (United States)

    Bracht, Thilo; Schweinsberg, Vincent; Trippler, Martin; Kohl, Michael; Ahrens, Maike; Padden, Juliet; Naboulsi, Wael; Barkovits, Katalin; Megger, Dominik A; Eisenacher, Martin; Borchers, Christoph H; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2015-05-01

    Hepatic fibrosis and cirrhosis are major health problems worldwide. Until now, highly invasive biopsy remains the diagnostic gold standard despite many disadvantages. To develop noninvasive diagnostic assays for the assessment of liver fibrosis, it is urgently necessary to identify molecules that are robustly expressed in association with the disease. We analyzed biopsied tissue samples from 95 patients with HBV/HCV-associated hepatic fibrosis using three different quantification methods. We performed a label-free proteomics discovery study to identify novel disease-associated proteins using a subset of the cohort (n = 27). Subsequently, gene expression data from all available clinical samples were analyzed (n = 77). Finally, we performed a targeted proteomics approach, multiple reaction monitoring (MRM), to verify the disease-associated expression in samples independent from the discovery approach (n = 68). We identified fibulin-5 (FBLN5) as a novel protein expressed in relation to hepatic fibrosis. Furthermore, we confirmed the altered expression of microfibril-associated glycoprotein 4 (MFAP4), lumican (LUM), and collagen alpha-1(XIV) chain (COL14A1) in association to hepatic fibrosis. To our knowledge, no tissue-based quantitative proteomics study for hepatic fibrosis has been performed using a cohort of comparable size. By this means, we add substantial evidence for the disease-related expression of the proteins examined in this study.

  5. Expression of the Major Vault Protein (MVP) and Cellular Vault Particles in Fish.

    Science.gov (United States)

    Margiotta, Alyssa L; Bain, Lisa J; Rice, Charles D

    2017-11-01

    Cellular vaults are ubiquitous 13 mega Da multi-subunit ribonuceloprotein particles that may have a role in nucleocytoplasmic transport. Seventy percent of the vault's mass consists of a ≈100 kDa protein, the major vault protein (MVP). In humans, a drug resistance-associated protein, originally identified as lung resistance protein in metastatic lung cancer, was ultimately shown to be the previously described MVP. In this study, a partial MVP sequence was cloned from channel catfish. Recombinant MVP (rMVP) was used to generate a monoclonal antibody that recognizes full length protein in distantly related fish species, as well as mice. MVP is expressed in fish spleen, liver, anterior kidney, renal kidney, and gills, with a consistent expression in epithelial cells, macrophages, or endothelium at the interface of the tissue and environment or vasculature. We show that vaults are distributed throughout cells of fish lymphoid cells, with nuclear and plasma membrane aggregations in some cells. Protein expression studies were extended to liver neoplastic lesions in Atlantic killifish collected in situ at the Atlantic Wood USA-EPA superfund site on the southern branch of the Elizabeth River, VA. MVP is highly expressed in these lesions, with intense staining at the nuclear membrane, similar to what is known about MVP expression in human liver neoplasia. Additionally, MVP mRNA expression was quantified in channel catfish ovarian cell line following treatment with different classes of pharmacological agents. Notably, mRNA expression is induced by ethidium bromide, which damages DNA. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1981-1992, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  7. Benzoate-mediated changes on expression profile of soluble proteins in Serratia sp. DS001.

    Science.gov (United States)

    Pandeeti, E V P; Chinnaboina, M R; Siddavattam, D

    2009-05-01

    To assess differences in protein expression profile associated with shift in carbon source from succinate to benzoate in Serratia sp. DS001 using a proteomics approach. A basic proteome map was generated for the soluble proteins extracted from Serratia sp. DS001 grown in succinate and benzoate. The differently and differentially expressed proteins were identified using ImageMaster 2D Platinum software (GE Healthcare). The identity of the proteins was determined by employing MS or MS/MS. Important enzymes such as Catechol 1,2 dioxygenase and transcriptional regulators that belong to the LysR superfamily were identified. Nearly 70 proteins were found to be differentially expressed when benzoate was used as carbon source. Based on the protein identity and degradation products generated from benzoate it is found that ortho pathway is operational in Serratia sp. DS001. Expression profile of the soluble proteins associated with shift in carbon source was mapped. The study also elucidates degradation pathway of benzoate in Serratia sp. DS001 by correlating the proteomics data with the catabolites of benzoate.

  8. Effect Of N-Acetylcysteine On Biochemical And Gene Expression Changes In Guinea Pig Exposed To GAMMA Radiation And Cigarette Smoke

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.

    2010-01-01

    The environmental or silent smoke of tobacco contains a large number of components, and many of them are toxic to the epithelial cells. The environmental smoke contains reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are responsible for 50% of the global mortality, and also 56% of the disease burdens are attributed to tobacco in developing countries. The aim of the present study is to evaluate the effects of ROS and RNS on antioxidant enzymes and expression of eNOS and iNOS genes that synthesis NO in addition to the gene expression of MUC5AC that synthesis mucin. Moreover, the present study aimed also to evaluate the role of N-acetylcysteine (NAC) as antioxidant. Male guinea pigs exposed to cigarette smoke and/or gamma radiation were treated with N-acetylcysteine (NAC). The study included determination of the activities of Cu-Zn superoxide dismutase, Mn-superoxide dismutase, glutathione peroxidase in lung and heart and expressions of eNOS, iNOS and MUC5AC genes in lung tissue. The results revealed significant increase in Mn-superoxide dismutase, iNOS gene expression and MUC5AC gene expression, and significant decrease in eNOS gene expression in lung of guinea pig exposed to cigarette smoke and/or gamma radiation. The results also revealed that NAC can reduce the effects of cigarette smoke and radiation on antioxidant enzymes and the expression of genes that synthesis NO and MUC5AC that synthesis mucin. It could be concluded that NAC can ameliorate the action of the bad effects of cigarette smoke and gamma radiation.

  9. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    Science.gov (United States)

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  10. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  11. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days. Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.

  12. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab.

    Directory of Open Access Journals (Sweden)

    Kenta Mukaihara

    Full Text Available Giant cell tumors of bone (GCTB are locally aggressive osteolytic bone tumors. Recently, some clinical trials have shown that denosumab is a novel and effective therapeutic option for aggressive and recurrent GCTB. This study was performed to investigate the molecular mechanism underlying the therapeutic effect of denosumab. Comparative proteomic analyses were performed using GCTB samples which were taken before and after denosumab treatment. Each expression profile was analyzed using the software program to further understand the affected biological network. One of identified proteins was further evaluated by gelatin zymography and an immunohistochemical analysis. We identified 13 consistently upregulated proteins and 19 consistently downregulated proteins in the pre- and post-denosumab samples. Using these profiles, the software program identified molecular interactions between the differentially expressed proteins that were indirectly involved in the RANK/RANKL pathway and in several non-canonical subpathways including the Matrix metalloproteinase pathway. The data analysis also suggested that the identified proteins play a critical functional role in the osteolytic process of GCTB. Among the most downregulated proteins, the activity of MMP-9 was significantly decreased in the denosumab-treated samples, although the residual stromal cells were found to express MMP-9 by an immunohistochemical analysis. The expression level of MMP-9 in the primary GCTB samples was not correlated with any clinicopathological factors, including patient outcomes. Although the replacement of tumors by fibro-osseous tissue or the diminishment of osteoclast-like giant cells have been shown as therapeutic effects of denosumab, the residual tumor after denosumab treatment, which is composed of only stromal cells, might be capable of causing bone destruction; thus the therapeutic application of denosumab would be still necessary for these lesions. We believe that the

  13. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K

    2015-07-01

    Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  15. Expression of Insoluble Influenza Neuraminidase Type 1 (NA1 Protein in Tobacco

    Directory of Open Access Journals (Sweden)

    Teen Lee Pua

    2012-12-01

    Full Text Available The avian influenza virus, particularly H5N1 strain, is highly virulent to poultry and mankind. Several expression systems, like yeast, baculovirus and mammalian cells, have been adopted to produce vaccine candidate for this lethal disease. The present research aimed at developing a recombinant vaccine candidate, neuraminidase type 1 (NA1, for the Malaysia isolate of H5N1 in Nicotiana benthamiana. The NA1 gene was fused directly in-frame in cowpea mosaic virus (CPMV-based pEAQ-HT vector with C-terminal polyhistidine-tag incorporated to ease the subsequent purification step. The expression of the NA1 gene in tobacco was confirmed at RNA and protein levels at 6 days post-infiltration (Dpi. From the insoluble fraction of the protein, a recombinant glycosylated NA1 protein with a molecular weight of ~56 kDa was immunogenically detected by a specific anti-NA polyclonal antibody. We report for the first time the insolubility of the plant-made NA1 protein where a native sequence was used for its expression. This study signifies the necessity of the use of optimised sequences for expression work and provides great opportunity for the exploration of plant-manufactured NA1 protein as vaccine candidate.

  16. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  17. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  18. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  19. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  20. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    Science.gov (United States)

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Diversity of Histologic Patterns and Expression of Cytoskeletal Proteins in Canine Skeletal Osteosarcoma.

    Science.gov (United States)

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H

    2015-09-01

    Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.

  2. β-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-α production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages.

    Science.gov (United States)

    Xu, Xiaojuan; Yasuda, Michiko; Nakamura-Tsuruta, Sachiko; Mizuno, Masashi; Ashida, Hitoshi

    2012-01-06

    Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.

  3. Different Cells Make Different Proteins: A Laboratory Exercise Illustrating Tissue-Specific Protein Expression in Animals

    Science.gov (United States)

    Ibarguren, Izaskun; Villamarín, Antonio

    2017-01-01

    All the cells of higher organisms have the same DNA but not the same proteins. Each type of specialised cell that forms a tissue has its own pattern of gene expression and, consequently, it contains a particular set of proteins that determine its function. Here, we describe a laboratory exercise addressed to undergraduate students that aims to…

  4. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    Science.gov (United States)

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  5. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-07-19

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  6. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee; Wong, Aloysius Tze; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Christoph A

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  7. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  9. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  10. Characteristic W-ino signals in a linear collider from anomaly mediated supersymmetry breaking

    Science.gov (United States)

    Ghosh, Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov

    2001-12-01

    Though the minimal model of anomaly-mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a s=1 TeV e+e- linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral W-ino-like lightest supersymmetric particle closely degenerate in mass with a W-ino-like chargino. The pair production processes e+e--->e+/-Le-/+L, e+/-Re-/+R, e+/-Le-/+R, ν~νbar, χ~01χ~02, χ~02χ~02 are all considered at s=1 TeV corresponding to the proposed DESY TEV Energy Superconducting Linear Accelerator linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analyzed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices XD (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions.

  11. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  12. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    Directory of Open Access Journals (Sweden)

    Natalia M. Bottasso Arias

    2015-01-01

    Full Text Available Celiac disease (CD is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs: intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs’ expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa.

  13. Novel approach for transient protein expression in primary cultures of human dental pulp-derived cells.

    Science.gov (United States)

    Suguro, Hisashi; Mikami, Yoshikazu; Koshi, Rieko; Ogiso, Bunnai; Watanabe, Eri; Watanabe, Nobukazu; Honda, Masaki J; Asano, Masatake; Komiyama, Kazuo

    2011-08-01

    Transfection is a powerful method for investigating variable biological functions of desired genes. However, the efficiency of transfection into primary cultures of dental pulp-derived cells (DPDC) is low. Therefore, using a recombinant vaccinia virus (vTF7-3), which contains T7 RNA polymerase, we have established a transient protein expression system in DPDCs. In this study, we used the human polymeric immunoglobulin receptor (pIgR) cDNA as a model gene. pIgR expression by the vTF7-3 expression system was confirmed by flow cytometry analysis and Western blotting. Furthermore, exogenous pIgR protein localized at the cell surface in DPDCs and formed a secretory component (SC). This suggests that exogenous pIgR protein expressed by the vTF7-3 expression system acts like endogenous pIgR protein. These results indicate the applicability of the method for cells outgrown from dental pulp tissue. In addition, as protein expression could be detected shortly after transfection (approximately 5h), this experimental system has been used intensely for experiments examining very early steps in protein exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin

    NARCIS (Netherlands)

    Lechner, Matthias; Lirk, Philipp; Rieder, Josef

    2005-01-01

    Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological

  15. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that iNOS

  16. Membrana amniótica preservada em glicerina no reparo de feridas cutâneas de membros locomotores de eqüinos

    OpenAIRE

    Oliveira,Valdemir Alves de; Alvarenga,José de

    1998-01-01

    Neste estudo experimental, avaliou-se o uso de membrana amniótica eqüina preservada em glicerina 98%, à temperatura ambiente, em feridas com cura por segunda intenção, nos membros locomotores de eqüinos. Foram provocadas cirurgicamente feridas de 9,6cm² na face lateral da articulação metacarpo-falangeana, face medial do terço proximal do metacarpo e face lateral do terço médio do metatarso de ambos os membros locomotores de cinco eqüinos adultos, perfazendo total de trinta feridas. Foram cons...

  17. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  18. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  19. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    Science.gov (United States)

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  20. Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Guitao Zhong

    2017-06-01

    Full Text Available Chimeric fluorescent fusion proteins have been employed as a powerful tool to reveal the subcellular localizations and dynamics of proteins in living cells. Co-expression of a fluorescent fusion protein with well-known organelle markers in the same cell is especially useful in revealing its spatial and temporal functions of the protein in question. However, the conventional methods for co-expressing multiple fluorescent tagged proteins in plants have the drawbacks of low expression efficiency, variations in the expression level and time-consuming genetic crossing. Here, we have developed a novel robust system that allows for high-efficient co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving fashion. This system takes advantage of employing a single expression vector which consists of multiple semi-independent expressing cassettes for the protein co-expression thereby overcoming the limitations of using multiple independent expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in which modification and recombination of DNA molecules are easily achieved through an optimized one-step assembly reaction. By employing this effective system, we demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their perspective subcellular localizations in plants via both transient expression and stable transformation. Thus, we believed that this technical advance represents a promising approach for multi-color-protein co-expression in plant cells.

  1. VPLIV UPORABE RASTNIH HORMONOV V RAZLIČNIH RAZVOJNIH FAZAH PLODOV NA KOLIČINO IN KAKOVOST PRIDELKA ČEŠNJE (Prunus avium L.)

    OpenAIRE

    Pelc, David

    2015-01-01

    V letu 2008 smo v Sadjarskem centru Maribor – Gačnik spremljali vpliv uporabe rastnih hormonov v različnih razvojnih fazah plodov na količino in kakovost pridelka češnje (Prunus avium L.). Namen poskusa je bil ugotoviti, ali rastni hormoni (avksini, citokinini) lahko pri češnji vplivajo na kakovost, velikost in na količino pridelka. Vključenih je bilo 6 obravnavanj, od katerih so 3 obravnavanja predstavljala tretiranje z avksini (Amid-thin, Maxim), 1 obravnavanje s citokinini (CPPU), 1 obravn...

  2. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  3. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Science.gov (United States)

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  4. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  5. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  6. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  7. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta

    Directory of Open Access Journals (Sweden)

    IA Pérez-Legaspi

    Full Text Available AbstractThe organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE, by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  8. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors

    Directory of Open Access Journals (Sweden)

    Kawe Martin

    2009-01-01

    Full Text Available Abstract Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.

  9. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  10. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  11. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    Science.gov (United States)

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  13. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  14. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  16. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    Science.gov (United States)

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  17. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm.We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals.Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic

  18. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  19. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    Energy Technology Data Exchange (ETDEWEB)

    Assenberg, René [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Delmas, Olivier [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J. [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Bourhy, Hervé [UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris CEDEX 15 (France); Grimes, Jonathan M., E-mail: jonathan@strubi.ox.ac.uk [Division of Structural Biology and Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  20. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    International Nuclear Information System (INIS)

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6 1 22 or P6 5 22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress

  1. Changes in protein expression in p53 deleted spontaneous thymic lymphomas

    DEFF Research Database (Denmark)

    Honoré, Bent; Vorum, Henrik; Pedersen, Anders Elm

    2004-01-01

    with the protein expression in p53+/+ and p53-/- thymocytes. Only a minority (13 proteins) of the quantitatively changed proteins were common for the two thymic lymphoma cell lines, suggesting that the p53 deficiency mainly results in genetic dysfunctions which are individual for a given tumor. Two of the detected...... structure containing motifs of the glyoxalase-bleomycin resistance protein family (MDR) as deduced from the cDNA....

  2. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    Science.gov (United States)

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  3. Study of RPC bakelite electrodes and detector performance for INO-ICAL

    International Nuclear Information System (INIS)

    Kumar, A.; Gaur, A.; Hasbuddin, Md.; Kumar, P.; Kumar, P.; Kaur, D.; Mishra, S.; Naimuddin, Md.

    2014-01-01

    The Resistive Plate Chambers (RPCs) are going to be used as the active detectors in the India-based Neutrino Observatory (INO)-Iron Calorimeter (ICAL) experiment for the detection and study of atmospheric neutrinos. In this paper, an extensive study of structural and electrical properties for different kind of bakelite RPC electrodes is presented. RPCs fabricated from these electrodes are tested for their detector efficiency and noise rate. The study concludes with the variation of efficiency, leakage current and counting rate over the period of operation with different gas compositions and operational conditions like temperature and relative humidity

  4. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    Science.gov (United States)

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  5. Activation of M1 macrophages in sepsis-induced acute kidney injury in response to heparin-binding protein.

    Directory of Open Access Journals (Sweden)

    Li Xing

    Full Text Available In the early stage of sepsis, M1 macrophages result in the production of inflammatory mediators and AKI. Heparin-binding protein (HBP have been shown to play important roles in sepsis-induced AKI. In this study, we investigate the association of HBP with M1 macrophages in sepsis-induced AKI.Male C57BL6 mice were subjected to cecal ligation and puncture (CLP or sham surgery. Biochemical and histological renal damage was assessed. Macrophage infiltration was assessed by immunohistochemistry. RT-PCR was used to investigate the expression of heparin-binding protein (HBP, the inducible nitric oxide synthase (iNOS and arginase 1 (Arg-1 mRNAs. Western blots were performed to assay the tissue levels of HBP, tumor necrosis factor alpha (TNF-α and interleukin-6 (IL-6.High levels of HBP were obviously detected 24 h after sepsis-induced AKI. Heparin inhibited HBP expression during sepsis-induced AKI. The suppression of HBP expression by heparin injection after the establishment of sepsis-induced AKI resulted in a reduction in renal injury severity accompanied with a significant repression of M1 macrophage activation and expression of TNF-α and IL-6.HBP plays an important role in the initial inflammatory reaction associated with sepsis-induced AKI, presumably by activating M1 macrophages and suppressing TNF-α and IL-6 secretion.

  6. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  7. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    Science.gov (United States)

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. © 2016 The Authors. International Journal of Experimental Pathology © 2016

  8. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  9. [Relationship between PMI and relative expression of myocardial various RNAs in rats died of different causes].

    Science.gov (United States)

    Lü, Ye-Hui; Zhang, Heng; Pan, Hui; Ma, Kai-Jun; Li, Wen-Can; Chen, Wen-Feng; Jiang, Jie-Qing'; Xue, Ai-Min; Zhang, Ping; Wang, Hui-Jun; Chen, Long

    2014-02-01

    To observe the changes of relative expression of myocardial various RNAs in rats died of different causes and their relationship with PMI. The rat models were established in which the rats were sacrificed by broken neck, asphyxia, and hemorrhagic shock. Total RNAs were extracted from myocardium. The quantitative real time PCR was used to calculate threshold cycle values of RNAs including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, inducible nitric oxide synthase (iNOS), hypoxia-inducible factor-1 (HIF-1), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and U6 small nuclear RNA (U6 snRNA) and to study the changes of the relative expressions of various indexes with PMI. U6 snRNA with stable expression level could be used as appropriate internal control. In the early PMI, the relative expression of GAPDH, HIF-1, iNOS, TNF-alpha, and IL-6 more characteristically increased in groups of asphyxia and hemorrhagic shock than in group of broken neck, but the quantity of beta-actin decreased in all groups. In the late PMI, all the relative expressions significantly declined in correlation with the degradation of RNA. The characteristic changes of each RNA expression can be used as references to estimate PMI in deaths by different causes.

  10. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  11. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  12. Protein Kinase CK2 Expression Predicts Relapse Survival in ERα Dependent Breast Cancer, and Modulates ERα Expression in Vitro

    Directory of Open Access Journals (Sweden)

    Marlon D. Williams

    2015-12-01

    Full Text Available The heterotetrameric protein kinase CK2 has been associated with oncogenic transformation, and our previous studies have shown that it may affect estrogenic signaling. Here, we investigate the role of the protein kinase CK2 in regulating ERα (estrogen receptor α signaling in breast cancer. We determined the correlation of CK2α expression with relapse free breast cancer patient survival utilizing Kaplan Meier Plotter (kmplot.com/analysis/ to mine breast cancer microarrays repositories. Patients were stratified according to ERα status, histological grade, and hormonal therapy. Luciferase reporter assays and flow cytometry were implemented to determine the impact of CK2 inhibition on ERE-mediated gene expression and expression of ERα protein. CK2α expression is associated with shorter relapse free survival among ERα (+ patients with grade 1 or 2 tumors, as well as among those patients receiving hormonal therapy. Biochemical inhibition of CK2 activity results in increased ER-transactivation as well as increased expression among ERα (+ and ERα (− breast cancer cell lines. These findings suggest that CK2 may contribute to estrogen-independent cell proliferation and breast tumor progression, and may potentially serve as a biomarker and pharmacological target in breast cancer.

  13. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    OpenAIRE

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated...

  14. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  15. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum.

    Science.gov (United States)

    Sin, Suk-Fong; Chye, Mee-Len

    2004-10-01

    The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.

  16. Methylation status and protein expression of RASSF1A in breast cancer patients.

    Science.gov (United States)

    Hagrass, Hoda A; Pasha, Heba F; Shaheen, Mohamed A; Abdel Bary, Eman H; Kassem, Rasha

    2014-01-01

    Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.

  17. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    Science.gov (United States)

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  18. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  19. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  20. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  1. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10

    International Nuclear Information System (INIS)

    Pereira, Larissa Miranda

    2009-01-01

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813 Q M at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature. (author)

  2. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome

    International Nuclear Information System (INIS)

    Nunez, María I; Mills, Gordon B; Aldaz, C Marcelo; Rosen, Daniel G; Ludes-Meyers, John H; Abba, Martín C; Kil, Hyunsuk; Page, Robert; Klein-Szanto, Andres JP; Godwin, Andrew K; Liu, Jinsong

    2005-01-01

    The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor. We performed WWOX protein expression analyses by means of immunobloting and immunohistochemistry on normal ovaries and specific human ovarian carcinoma Tissue Microarrays (n = 444). Univariate analysis of clinical-pathological parameters based on WWOX staining was determined by χ 2 test with Yates' correction. The basic significance level was fixed at p < 0.05. Immunoblotting analysis from normal ovarian samples demonstrated consistently strong WWOX expression while 37% ovarian carcinomas showed reduced or undetectable WWOX protein expression levels. The immunohistochemistry of normal human ovarian tissue sections confirmed strong WWOX expression in ovarian surface epithelial cells and in epithelial inclusion cysts within the cortex. Out of 444 ovarian carcinoma samples analyzed 30% of tumors showed lack of or barely detectable WWOX expression. The remaining ovarian carcinomas (70%) stained moderately to strongly positive for this protein. The two histotypes showing significant loss of WWOX expression were of the Mucinous (70%) and Clear Cell (42%) types. Reduced WWOX expression demonstrated a significant association with clinical Stage IV (FIGO) (p = 0.007), negative Progesterone Receptor (PR) status (p = 0.008) and shorter overall survival (p = 0.03). These data indicate that WWOX protein expression is highly variable among ovarian carcinoma histotypes. It was also observed that subsets of ovarian tumors demonstrated loss of

  3. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  4. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  5. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  6. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  7. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  8. Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.

    Science.gov (United States)

    Guo, Jilong; Gong, Guohua; Zhang, Bin

    2017-07-01

    Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for

  9. Expression of cytokines in chicken peripheral mononuclear blood cells (PMBCs exposed to probiotic strains and Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Eva Husáková

    2015-01-01

    Full Text Available The mRNA expression of interleukin (IL-1β, LITAF, iNOS, macrophage inflammatory protein (MIP1-ß, and K60 were examined in peripheral blood mononuclear cells (PMBCs. The PMBCs were isolated from the chicken blood and in vitro exposed to the probiotic strains E. faecium AL41, E. faecium H31, L. fermentum AD1, and infected with Salmonella enterica serovar Enteritidis (SE147. The PMBCs were evaluated for mRNA expression levels at 24 h and 48 h post infection (p.i. using the reverse transcriptase polymerase chain reaction (RT-PCR. The level of expression of IL-1ß and MIP1-ß was upregulated (P S. Enteritidis + E. faecium AL41 group 48 h p.i. compared to 24 h p.i. Similarly, expression of LITAF was upregulated (P S. Enteritidis (SE group 48 h p.i. In PMBCs treated with E. faecium H31 and S. Enteritidis expression of IL-1ß (P P P E. faecium AL41 demonstrated the highest immunostimulatory effect on expression of selected cytokines by chicken PMBCs after Salmonella infection. It is supposed that the differences in cytokine induction within SE groups are related to lymphocytes isolated from different animals.

  10. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  11. Differences in IGF-axis protein expression and survival among multiethnic breast cancer patients

    International Nuclear Information System (INIS)

    Hernandez, Brenda Y; Wilkens, Lynne R; Le Marchand, Loïc; Horio, David; Chong, Clayton D; Loo, Lenora W M

    2015-01-01

    There is limited knowledge about the biological basis of racial/ethnic disparities in breast cancer outcomes. Aberrations in IGF signaling induced by obesity and other factors may contribute to these disparities. This study examines the expression profiles of the insulin-like growth factor (IGF)-axis proteins and the association with breast cancer survival across a multiethnic population. We examined the expression profiles of the IGF1, IGF1R, IGFBP2 (IGF-binding proteins), and IGFBP3 proteins in breast tumor tissue and their relationships with all-cause and breast cancer-specific survival up to 17 years postdiagnosis in a multiethnic series of 358 patients in Hawaii, USA. Native Hawaiians, Caucasians, and Japanese were compared. Covariates included demographic and clinical factors and ER/PR/HER2 (estrogen receptor/progesterone receptor/human epidermal growth factor receptor-2) status. In Native Hawaiian patients, IGFBP2 and IGFBP3 expression were each independently associated with overall and breast cancer mortality (IGFB2: HR mort = 10.96, 95% CI: 2.18–55.19 and HR mort = 35.75, 95% CI: 3.64–350.95, respectively; IGFBP3: HR mort = 5.16, 95% CI: 1.27–20.94 and HR mort = 8.60, 95% CI: 1.84–40.15, respectively). IGF1R expression was also positively associated with all-cause mortality in Native Hawaiians. No association of IGF-axis protein expression and survival was observed in Japanese or Caucasian patients. The interaction of race/ethnicity and IGFBP3 expression on mortality risk was significant. IGF-axis proteins may have variable influence on breast cancer progression across different racial/ethnic groups. Expression of binding proteins and receptors in breast tumors may influence survival in breast cancer patients by inducing aberrations in IGF signaling and/or through IGF-independent mechanisms. Additional studies to evaluate the role of the IGF-axis in breast cancer are critical to improve targeted breast cancer treatment strategies

  12. Prokineticin 1 protein expression is a useful new prognostic factor for human sporadic colorectal cancer.

    Science.gov (United States)

    Nakazawa, Toshiyuki; Goi, Takanori; Hirono, Yasuo; Yamaguchi, Akio

    2015-05-01

    Hematogenous metastasis, regarded as closely related to angiogenic growth factors, is associated with colorectal cancer prognosis. The angiogenic growth factor prokineticin 1 (PROK1) has been cloned from endocrine cells. However, its protein expression in human malignant tumors has not been studied. The current study established the anti-PROK1 monoclonal antibody (mAb) and examined the relationship between the expression of PROK1 protein and human colorectal cancer. The expression of PROK1 protein was assessed in 620 resected sporadic colorectal cancer tissue samples by immunohistochemical staining with in-house-developed human PROK1 mAb to investigate the relationship of PROK1 expression to clinicopathologic factors, recurrence, and survival rate and to evaluate its prognostic significance. The expression of PROK1 protein was detected in 36 % (223/620) of human primary colorectal cancer lesions but no in the healthy mucosa adjacent to the colorectal cancer lesions. According to the clinicopathologic examinations, the frequency of positive PROK1 expression was significantly higher in cases with serosal invasion, lymphatic invasion, venous invasion, lymph node metastasis, liver metastasis, hematogenous metastasis, and higher stage disease. The recurrence rate and prognosis for patients with PROK1 expression-positive lesions were significantly worse. In the Cox proportional hazard model, PROK1 expression was an independent prognostic factor. The expression of PROK1 protein was identified for the first time as a new prognostic factor in colorectal cancer.

  13. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    Science.gov (United States)

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  14. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  15. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  16. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  17. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  18. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...... in immunologically naive individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54...... compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION...

  19. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  20. Avaliação de solução concentrada de albumina eqüina na fluidoterapia em eqüinos com desidratação leve a moderada

    OpenAIRE

    Carla Bargi Belli

    2005-01-01

    A utilização de colóides é indicada em várias situações, mas nem sempre aplicável na clínica de eqüinos. O objetivo desse trabalho foi avaliar o uso de solução concentrada de albumina eqüina (diluída a 5%) durante fluidoterapia em eqüinos com desidratação leve a moderada, comparando-a com fluidoterapia apenas com solução fisiológica. Foram utilizados dois grupos de cinco eqüinos adultos, sem alterações clínicas. Cada animal passou pelo protocolo dos dois grupos experimentais (fluidoterapia ap...

  1. Germ Cell Proteins in Melanoma: Prognosis, Diagnosis, Treatment, and Theories on Expression

    International Nuclear Information System (INIS)

    Rosa, A. M.; Dabas, N.; Byrnes, D. M.; Eller, M. S.; Grichnik, J. M.; Grichnik, J M.; Grichnik, J M.

    2012-01-01

    Germ cell protein expression in melanoma has been shown to correlate with malignancy, severity of disease and to serve as an immunologic target for therapy. However, very little is known about the role that germ cell proteins play in cancer development. Unique germ cell pathways include those involved in immortalization, genetic evolution, and energy metabolism. There is an ever increasing recognition that within tumors there is a subpopulation of cells with stem-cell-like characteristics that play a role in driving tumor genesis. Stem cell and germ cell biology is intertwined. Given the enormous potential and known expression of germ cell proteins in melanoma, it is possible that they represent a largely untapped resource that may play a fundamental role in tumor development and progression. The purpose of this paper is to provide an update on the current value of germ cell protein expression in melanoma diagnosis, prognosis, and therapy, as well as to review critical germ cell pathways and discuss the potential roles these pathways may play in malignant transformation

  2. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  3. C-fos protein expression in central nervous system. Effects of acute whole-body irradiation

    International Nuclear Information System (INIS)

    Martin, C.; Chollat, S.; Mahfoudi, H.; Lambert, F.; Baille Le Crom, V.; Fatome, M.

    1995-01-01

    Study of c-Fos protein expression in the rat striatum after gamma or (neutron-gamma) irradiation was carried on. c-Fos protein is expressed one hour after gamma exposure at the dose of 15 Gy but specificity of the response must be verified. (author)

  4. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    Science.gov (United States)

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  5. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  6. Anti-inflammatory activities of inotilone from Phellinus linteus through the inhibition of MMP-9, NF-κB, and MAPK activation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Guan-Jhong Huang

    Full Text Available Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO production, and the inducible nitric oxide synthase (iNOS expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK [extracellular signal-regulated protein kinase (ERK, c-Jun NH(2-terminal kinase (JNK, p38], and nuclear factor-κB (NF-κB, matrix-metalloproteinase (MMP-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th and the 5(th h after Carr administration, and it increased the activities of catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx. We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA level in the edema paw at the 5(th h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α levels on serum at the 5(th h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2, NF-κB, and MMP-9 expressions at the 5(th h in the edema paw. An intraperitoneal (i.p. injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo. The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities

  7. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  8. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  9. Heat Shock Protein 90 (Hsp90 Expression and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christos A. Papadimitriou

    2012-09-01

    Full Text Available Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc. are currently under evaluation.

  10. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  12. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Ignacio M Larrayoz

    Full Text Available Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP, including RNA-binding motif protein 3 (RBM3 and cold inducible RNA-binding protein (CIRP, but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C. Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  13. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    Science.gov (United States)

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  15. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    Science.gov (United States)

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    OpenAIRE

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient productio...

  17. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.

    Science.gov (United States)

    Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui

    2018-04-01

    Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Digestão dos carboidratos de alimentos volumosos em eqüinos Digestion of carbohydrates of forages in horses

    Directory of Open Access Journals (Sweden)

    Eliane da Silva Morgado

    2009-01-01

    Full Text Available Neste estudo, foram realizados dois ensaios com os objetivos de avaliar o fracionamento dos carboidratos de alimentos volumosos e estimar a digestibilidade desses nutrientes em dois ensaios de digestão com eqüinos. No ensaio 1, foram utilizados cinco eqüinos em delineamento de blocos casualizados, com sete tratamentos - fenos de alfafa (Medicago sativa; amendoim forrageiro (Arachis pintoi; desmódio (Desmodium ovalifolium; guandu (Cajanus cajan; macrotiloma (Macrotyloma axillare; estilosantes (Stylosanthes guianensis; ou coastcross (Cynodon dactylon - avaliados pela técnica de sacos de náilon móveis. No ensaio 2, foram utilizados quatro eqüinos em delineamento quadrado latino 4 × 4, alimentados com feno de coastcross em quatro tipos de moagem com o objetivo de avaliar se a redução do tamanho de partícula interfere na digestibilidade dos carboidratos. Os resultados comprovaram que os eqüinos possuem alta eficiência na digestão dos carboidratos não-fibrosos e de suas frações hidrolisáveis e rapidamente fermentáveis. Os fenos de amendoim forrageiro, estilosantess e macrotiloma apresentaram elevada digestibilidade dos carboidratos fibrosos e não-fibrosos, enquanto a digestibilidade de todos os nutrientes do amendoim forrageiro foi superior a 70%, o que indica potencial para uso desta leguminosa em dietas para eqüinos. O processamento do feno de coastcross não influenciou a digestibilidade das frações dos carboidratos fibrosos e não-fibrosos. A análise dos carboidratos fibrosos e não-fibrosos é um bom indicativo do valor nutricional dos alimentos e pode ser incluída na avaliação da qualidade de alimentos para eqüinos.This work was carried out to evaluate the fractions of carbohydrates and estimate the apparent digestibility of these nutrients in two digestion assays with horses. In assay 1, five horses were allotted to a complete randomized blocks design and treatments were seven forages hays, alfalfa (Medicago sativa

  19. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  20. A novel protein expression system-PichiaPink™- and a protocol for ...

    African Journals Online (AJOL)

    Pichia pastoris is a eukaryote and has many of the advantages of higher eukaryotic expression systems, such as protein processing, protein folding, and the availability of posttranslational modifications. It is as easy to manipulate as Escherichia coli or Saccharomyces cerevisiae. However, some serious and unavoidable ...