WorldWideScience

Sample records for inorganic-organic rubbery scintillators

  1. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  2. Scintillator device using a combined organic-inorganic scintillator as dose ratemeter

    International Nuclear Information System (INIS)

    Kolb, W.; Lauterbach, U.

    1974-01-01

    The dose ratemeter independent of energy in the energy region 17 keV to 3 MeV consists of an organic and an inorganic scintillator. The organic scintillation material of an anthracene monocrystal is surrounded by ZnS surface coating. The coating thickness of the inorganic scintillator ZnS is measured in such a manner for gamma and X-radiation below 100 keV that the light produced due to the incident radiation compensates for the decrease of light produced in the organic scintillator. The whole energy and dose rate region of interest for radiation protection can thus be measured with a detector volume of 135 cm 3 . (DG) [de

  3. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  4. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  5. Liquid scintillation counting standardization of ''125 I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J.M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''125 I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%

  6. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-01-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs

  7. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  8. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  9. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  10. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method; Calibracion por centelleo liquido del 125I en muestras inorganicas y organicas, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs.

  11. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  12. Study of nonproportionality in the light yield of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHSE, Charles Darwin University, Darwin, Northern Territory 0909 (Australia)

    2011-07-15

    Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a {gamma}-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

  13. Study of nonproportionality in the light yield of inorganic scintillators

    International Nuclear Information System (INIS)

    Singh, Jai

    2011-01-01

    Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a γ-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

  14. Efficiency and yield spectra of inorganic scintillates

    International Nuclear Information System (INIS)

    Rodnyi, P.A.

    1998-01-01

    Recent developments in the field of energy loss in inorganic scintillators are reviewed. The main parameters, which control the fundamental limit of the scintillator energy efficiency, are determined. It is shown that together with simple cascade processes one should take into account the production of plasmons to estimate the energy efficiency of scintillators or other phosphors excited by an ionizing radiation. Core-to-valence luminescence related to 5pCs→3pCl transitions is investigated in some chlorides: CsCl, KCl, RbCl, NaCl, KCaCl 3 , RbCaCl 3 . The yield spectra of the crystals in the VUV and X-ray regions are also studied. It is shown that the 4pRb-core states are involved in the process of creation of holes in the 5pCs-core band in Rb-based crystals. The formation of holes in the potassium core band acts as a competing process and suppresses the radiative core-to-valence transitions

  15. Optimization of the light extraction from heavy inorganic scintillators

    CERN Document Server

    Kronberger, Matthias; Lecoq, P

    2008-01-01

    Inorganic scintillators are widely used in modern medical imaging modalities as converter for the X- and gamma-radiation that is used to obtain information about the interior of the body. Likewise, they are applied in high-energy physics to measure the energy of particles that are produced in particle physics experiments. Their use is motivated by the very good detection efficiency of these materials for hard radiation which allows the construction of relatively compact and finely pixelised systems with a high spatial resolution. One key problem in the development of the next generation of particle detectors and medical imaging systems is the optimisation of the energy resolution of the detectors. This parameter is influenced by the statistical fluctuations of the light output of the scintillators, i.e. by the number of photons that are detected when a particle deposits its energy in the scintillator. The light output of the scintillator depends not only on the absolute number of generated photons but also on...

  16. Physics-informed machine learning for inorganic scintillator discovery

    Science.gov (United States)

    Pilania, G.; McClellan, K. J.; Stanek, C. R.; Uberuaga, B. P.

    2018-06-01

    Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn-1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator's energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.

  17. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  18. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  19. Evaluation of New Inorganic Scintillators for Application in a Prototype Small Animal PET Scanner

    CERN Document Server

    Kuntner, C

    2003-01-01

    In the study of new pharmaceuticals as well as brain and genetic research, Positron Emission Tomography (PET) is a useful method. It has also recently entered the clinical domain in cardiology and particularly in oncology. Small animals such as mice, are often used to validate sophisticated models of human disease. High spatial resolution PET instrumentation is therefore necessary due to the reduced dimensions of the organs. Inorganic scintillators are employed in most of the diagnostic imaging devices. The ultimate performance of the PET scanner is tightly bound to the scintillation properties of the crystals. In the last years there has been an effort to develop new scintillating materials characterized by high light output, high detection efficiency and fast decay time. The most studied systems are mainly Ce3+-doped crystals such as LSO:Ce, YAP:Ce, LuAP:Ce, and recently also mixed Lux(RE3+)1-xAlO3:Ce crystals. These crystals are very attractive for medical application because of their high density (with th...

  20. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    Science.gov (United States)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  1. Synthesis and characterization of rubbery epoxy/organoclay hectorite nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The present research investigates the morphology, the mechanical, and the viscoelastic properties of rubbery epoxy/clay nanocomposites synthesized by in situ polymerisation of a prepolymer diglycidyl ether of bisphenol-A crosslinked with an aliphatic diamine based on a polyoxypropylene backbone. The inorganic phase was hectorite, exchanged with octadecylammonium ions in order to give organophilic properties to the phyllosilicate. An ultrasonicator was used to disperse the silicate clay layer into epoxy-amine matrix. The morphology of epoxy-hectorite nanocomposites examined by transmission electron microscopy (TEM showed that mixed delamination or intercalation or microdispersion could occur depending on type of organoclay. Moreover, the mechanical and viscoelastic properties were found to be improved with only the treated hectorite.

  2. Effects of Photonic Crystals on the Light Output of Heavy Inorganic Scintillators

    CERN Document Server

    Knapitsch, Arno; Fabjan, Christian W; Leclercq, Jean-Louis; Letartre, Xavier; Mazurczyk, Radoslaw; Lecoq, Paul

    2013-01-01

    Photonic crystals (PhCs) are optical materials which can affect the propagation of light in multiple ways. In recent years PhCs contributed to major technological developments in the field of semiconductor lasers, light emitting diodes and photovoltaic applications. In our case we are investigating the capabilities of photonic crystal slabs with the aim to improve the performance of heavy inorganic scintillators. To study the combination of scintillators and PhCs we use a Monte-Carlo program to simulate the light propagation inside a scintillator and a rigorous coupled wave analysis (RCWA) framework to analyse the optical PhC properties. The simulations show light output improvements of a wide range of scintillating materials due to light scattering effects of the PhC slabs. First samples have been produced on top of 1.2 × 2.6 × 5 mm LSO (cerium-doped Lutetium Oxyorthosilicate, Lu_2SiO_5:Ce^3+) scintillators using electron beam lithography and reactive ion etching (RIE). Our samples show a 30-60% light outp...

  3. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  4. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  5. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-03-13

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  6. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  7. Scintillating Organic–Inorganic Layered Perovskite-type Compounds and the Gamma-ray Detection Capabilities

    OpenAIRE

    Kawano, Naoki; Koshimizu, Masanori; Okada, Go; Fujimoto, Yutaka; Kawaguchi, Noriaki; Yanagida, Takayuki; Asai, Keisuke

    2017-01-01

    We investigated scintillation properties of organic–inorganic layered perovskite-type compounds under gamma-ray and X-ray irradiation. A crystal of the hybrid compounds with phenethyl amine (17 × 23 × 4 mm) was successfully fabricated by the poor-solvent diffusion method. The bulk sample showed superior scintillation properties with notably high light yield (14,000 photons per MeV) under gamma-rays and very fast decay time (11 ns). The light yield was about 1.4 time higher than that of common...

  8. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  9. Electron response of some low-Z scintillators in wide energy range

    International Nuclear Information System (INIS)

    Swiderski, L; Marcinkowski, R; Moszynski, M; Czarnacki, W; Szawlowski, M; Szczesniak, T; Pausch, G; Plettner, C; Roemer, K

    2012-01-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF 2 :Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF 2 :Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  10. Electron response of some low-Z scintillators in wide energy range

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  11. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  12. Basic processes and scintillator and semiconductor detectors

    International Nuclear Information System (INIS)

    Bourgeois, C.

    1994-01-01

    In the following course, the interaction of heavy charged particles, electrons and Γ with matter is represented. Two types of detectors are studied, organic and inorganic scintillators and semiconductors. The signal formation is analysed. (author). 13 refs., 48 figs., 5 tabs

  13. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  14. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime...... component on the order of 20 μs was estimated for the custom-made organic scintillator, while the commercial scintillator exhibited a fast component of approximately 5 ns lifetime (7 ns as stated by the manufacturer) and an approximate 10 μs lifetime slow component. Although these lifetimes are not long...

  15. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  16. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  17. Study on time properties of newly type inorganic scintillator cerium fluoride (CeF3)

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    CeF 3 is a newly fast time response inorganic scintillator, the time characteristics of which, developed in recent country in nearly year were studied in our works. The time characteristics are rise time, FWHM time and fall time for fast pulse radiation source. As the same time, authors have calculated and used the formula of pulse method gain to the decay time constant of crystal shining, the decay time constant measured is the same to the results of foreign references

  18. Development of an X-ray imaging system within 10-30 keV spectral range based on organic or inorganic scintillator

    International Nuclear Information System (INIS)

    Turk, G.

    2011-01-01

    This thesis aims at developing an x-ray imaging system intended for the Laser Mega Joule, within the framework of Inertial Confinement Fusion (ICF) experiments. ICF aims at yielding thermonuclear energy through laser-driven fusion of a deuterium-tritium mix. The operational function of our system is to acquire an image of the 10-30 keV x-rays emitted by the maximally compressed micro-balloon, with spatial resolution better than 10 μm. The presented system is only a part of a complete diagnostic system, which normally includes an x-ray optical subsystem. Our system conception largely takes vulnerability into account. The ignition phase of ICF yields 10 16 neutrons, with energies scaling up to 14 MeV. The neutrons generate such a hard surrounding with effects scaling down from image degradation up to instrumentation destruction. The presented system consists in a scintillator which is focused on a CCD camera through a catadioptric image transport system. An innovation work has been lead on scintillators to provide an answer to specifications greatly influenced by vulnerability. Those thesis works lead to an imaging system allowing to deport the CCD camera by 4 meters from the scintillator, with 100 μm spatial resolution in the scintillator plane. Those works have paved the way to outlooks such as enhancement of organic loaded scintillators compositions and improvement of optical relay system. (author) [fr

  19. Scintillation properties of (C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons

    CERN Document Server

    Shibuya, K; Takeoka, Y; Asai, K

    2002-01-01

    We report a new type of scintillator especially suitable for pulse-radiation detection. Thin films of organic/inorganic perovskite compound (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 , which is characterized by a multiple quantum well structure, were bombarded by 2.0 MeV protons, and their radiation-induced emission spectra were obtained. A single and sharp emission peak due to an exciton was observed at the wavelength of 524 nm. This emission was clearly detected even at room temperature, and its quantum efficiency was very high. The line shape of this emission did not change, retaining its sharpness, and no other emissions appeared throughout the irradiation. The optical response of (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 is very fast. (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 is a promising scintillator material, meeting requirements not satisfied by conventional scintillators.

  20. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  1. Study on time characteristics of fast time response inorganic scintillator CeF3

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    The cerium fluoride (CeF 3 ) is a kind of new fast time response inorganic scintillator. The physical characteristics of CeF 3 are well suitable for detection of domestic pulse γ-rays. The time response of detector composed by phototube with CeF 3 are measured by use of the pulse radiation source with rise time about 0.8 ns, and FWHM time 1.5-2.2 ns. Experiment results show that the rise time is less than 2 ns, FWHM time is about 10 ns, fall time is about 60 ns, average decay time constant is 20-30 ns, respectively for CeF 3

  2. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  3. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Aprahamian, A.; Back, H. O.; Casarella, C.; Fang, X.; Gupta, Y. K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-08-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of $^{10}$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $^{10}$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $\\chi^2$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  4. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    International Nuclear Information System (INIS)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Back, H.O.; Aprahamian, A.; Casarella, C.; Fang, X.; Gupta, Y.K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-01-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10 B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10 B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE / dx best describes the measurements, with χ 2 /NDF=1.6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  5. Holographic patterning of organic-inorganic photopolymerizable nanocomposites

    Science.gov (United States)

    Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.

    2009-09-01

    We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.

  6. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. WE-DE-201-10: Pitfalls When Using Ruby as An Inorganic Scintillator Detector for Ir-192 Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, G; Beddar, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety of experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.

  8. Final rubbery state characterization using a hollow cylinder dynamic shear sample on DMA7

    Directory of Open Access Journals (Sweden)

    Vilaiporn Luksameevanish

    2004-09-01

    Full Text Available Dynamic properties of raw natural rubber were examined using a hollow cylinder shaped samplesubjected to shear deformation on a laboratory Dynamic Mechanical Analyser. According to Cox-Merz’s study, dynamic complex viscosity obtained by this method showed a good agreement with shear flow viscosity measured by capillary rheometer. A master curve derived from the dynamic properties were then characterized. A crossing point of storage modulus (G’ and loss modulus (G’’ curves in the master curves was used to identify the final rubbery state, which indicated the transition of rubbery state and molten state. The position of this point depends on quantities and types of reinforcing or non-reinforcing fillers. The final rubbery state was shifted to higher frequency or lower temperature. It was found that the final rubbery state of CaCO3-filled rubber compounds was shifted to higher frequency or lower temperature by approximately 4 decades, while the translation of carbon black-filled rubber compounds was lower than unfilled rubber by about 1 decade. This phenomenon can be used to explain rubber elasticity, i.e. a decreasing of die swell of CaCO3 filled compounds at any high processing temperature. On the other hand, high magnitude of die swell for carbon black filled compound was still obtained.

  9. Apparatus Tests Peeling Of Bonded Rubbery Material

    Science.gov (United States)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  10. Generation of organic scintillators response function for fast neutrons using the Monte Carlo method

    International Nuclear Information System (INIS)

    Mazzaro, A.C.

    1979-01-01

    A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author) [pt

  11. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    Science.gov (United States)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  13. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Intrinsic Evaluation of n/γ Discrimination in Organic Plastic Scintillators

    International Nuclear Information System (INIS)

    Blanc, Pauline; Hamel, Matthieu; Rocha, Licinio; Normand, Stephane; Pansu, Robert; Gobert, Fabrice; Lampre, Isabelle

    2013-06-01

    This paper is devoted to characterizing plastic scintillators with neutron/gamma (n/γ) discrimination abilities and understanding experimentally the photophysical processes downstream. This experimental work is divided into two main studies, neutron sources irradiations and optical photoionization on a range of organic scintillators. The commercial liquid and plastic scintillators, respectively BC-501A from Bicron and EJ-200 from Eljen, are used as references in term of respectively extremely high [1] and poor n/γ discrimination efficiency, or more precisely Triplet-Triplet Annihilation rate probabilities after nuclear irradiations. We have characterized a range of organic plastic scintillators including one developed in our laboratory that shows good discrimination efficiency when compared to plastics that discriminate from literature. For that purpose we use the well known charge comparison as a pulse shape discrimination (PSD) method. We have also studied raw wave forms acquired after neutron irradiation before any kind of treatment was applied and managed to separate two light components, prompt and delayed, thus two particle families. We have demonstrated that by exciting with a 70 femto-seconds pulsed Laser at the femtosecond up to 50 μJ at 260 nm, photoionization was achieved for a range of organic scintillators by observing a delayed light emission in the time decay fluorescence when the Laser energy deposited in the materials was increased. This work is ongoing at CEA in collaboration with the nuclear measurement industry Canberra and the Laboratoire de Chimie Physique from Orsay University. (authors)

  15. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  16. Effect of Poisson's loss factor of rubbery material on underwater sound absorption of anechoic coatings

    Science.gov (United States)

    Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong

    2018-06-01

    Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.

  17. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  18. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    Science.gov (United States)

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  19. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  20. Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Kourkoutsaki, T.; Logakis, E.; Kroutilová, Irena; Matějka, Libor; Nedbal, J.; Pissis, P.

    2009-01-01

    Roč. 113, č. 4 (2009), s. 2569-2582 ISSN 0021-8995 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposites * dielectric properties * rubbery epoxy networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.203, year: 2009

  1. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator...... performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements....

  2. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    Science.gov (United States)

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  3. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  4. A comparative study of 19-iodocholesterol-''125I 3-acetate and Na''125I in liquid scintillation measurements

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J.M.; Grau Carles, A.

    1994-01-01

    A comparative study of performance of 19-iodocholesterol-''125I 3-acetate and sodium iodine samples labelled with ''125 I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I''-concentration of 0-90 ug and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol-''125I 3-acetate samples in Toluene-alcohol and 0.04% for Na''125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs

  5. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  6. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  7. Study and understanding of n/γ discrimination processes in organic plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Blanc, Pauline; Rocha, Licinio; Normand, Stephane; Pansu, Robert

    2013-01-01

    For 50 years, it was assumed that unlike liquid scintillators or organic crystals, plastic scintillators were not able to discriminate fast neutrons from gamma. In this work, we will demonstrate that triplet-triplet annihilations (which are responsible of n/γ discrimination) can occur even in plastic scintillators, following certain conditions. Thus, the presentation will deal with the chemical preparation, the characterization and the comparison of n/γ pulse shape discrimination of various plastic scintillators. To this aim, scale-up of the process allowed us to prepare a O 100 mm x*110 mm thick. (authors)

  8. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  9. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  10. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Hoffmann, L.; Andersen, C.E.

    2013-01-01

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF 1 ) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic scintillators. The presented data exhibit high accuracy and precision when compared with data obtained using commercial dosimetry methods, and agree well with results published in the literature. -- Highlights: •A dosimetry system based on fibre-coupled organic scintillators is presented. •The system is used for radiotherapy beams with and without flattening filter. •Measurements show good agreement with various commercial dosimeters

  11. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  12. Recipe for attaining optimal energy resolution in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai; Koblov, Alexander [School of Engineering and IT, B-purple-12, Faculty of EHSE, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    Using an approximate form of the density of excitation created within the track initiated by an incident {gamma} - photon on a scintillator, the light yield is derived as a function of linear, bimolecular and Auger radiative and quenching recombination rates. The non-proportionality in the yield is analysed as a function of the bimolecular and Auger quenching rates and also its dependence on the track radius is studied. An optimal combination of these quenching rates and track radius is presented to obtain a recipe for inventing a scintillator material with optimal energy resolution. The importance of the mobility of charge carriers in minimising the non-proportionality in a scintillator is also discussed (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Recipe for attaining optimal energy resolution in inorganic scintillators

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    Using an approximate form of the density of excitation created within the track initiated by an incident γ - photon on a scintillator, the light yield is derived as a function of linear, bimolecular and Auger radiative and quenching recombination rates. The non-proportionality in the yield is analysed as a function of the bimolecular and Auger quenching rates and also its dependence on the track radius is studied. An optimal combination of these quenching rates and track radius is presented to obtain a recipe for inventing a scintillator material with optimal energy resolution. The importance of the mobility of charge carriers in minimising the non-proportionality in a scintillator is also discussed (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Ion induced scintillation in organic solids: development of an average track model,degradation of the scintillation intensity and dosimetric applications

    International Nuclear Information System (INIS)

    Broggio, D.

    2004-12-01

    This work deals with a specific aspect of the ion-matter interaction: the scintillation induced by ions in organic materials. In the first chapter we tackle the issue in a theoretical way by proposing a method to compute the radial doses within the framework of the mean track model. We have developed a model based on the Lewis transport equation and on the Spencer distribution of the loss energy in order to take into account the transport of secondary electrons in a more realistic way. In the second chapter we study the physical mechanisms that trigger ion-induced scintillation. Ion-induced scintillation is featured by the dependence in charge number of the intensity of scintillation for ions with same energy loss and by the saturation of the scintillation efficiency for ions with high stopping-power. We have applied our model of radial doses to ion-induced scintillation. In the third chapter we study the gradual degradation of the scintillation intensity and ion-induced chemical damages. In the last chapter we propose a prototype of dosimeters based on the combination of scintillators and optical fibers that allows the real-time measurement of the dose delivered by a carbon ion beam in therapeutical use conditions. This dosimeter gives the relationship between the dose and the scintillation intensity but its accuracy is not yet sufficient for uses in radiotherapy. (A.C.)

  15. New heavy scintillating materials for precise heterogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.; Ryzhikov, V.D.

    2001-01-01

    This investigation shows some optical and scintillation properties of new scintillating media, based on heavy composite materials and an inorganic crystal CsI:Br, intended for the creation of precise heterogeneous EM-calorimeters with the energy resolution σ/E congruent with 4-5% E-radical. The possibility to use cheap heavy scintillating plates based on optical ceramics as active media in heterogeneous EM-calorimeters is considered

  16. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Science.gov (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Zachary S., E-mail: hartwig@psfc.mit.edu [Department of Nuclear Science and Engineering, MIT, Cambridge MA (United States); Gumplinger, Peter [TRIUMF, Vancouver, BC (Canada)

    2014-02-11

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0–20 MeV and 0.511–1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination. -- Highlights: • New capabilities enable the modeling of organic scintillation detectors in Geant4. • Detector modeling of complex scintillators, geometries, and light readout. • Enables particle- and energy-dependent production of scintillation photons. • Provides ability to generate response functions with precise optical physics. • Provides ability to computationally evaluate pulse shape discrimination.

  18. A comparative study of 19-iodo cholesterol-125I 3-acetate and Na 125I in liquid scintillation measurements

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-01-01

    A comparative study of performance of 19-iodo cholesterol 1 25I 3-acetate and sodium iodide samples labeled with 125I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I concentration of 0-90 μg and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol 1 I 3-acetate samples in Tolue ne-alcohol and 0 .04% for Na 125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs

  19. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, C.F.; Hoffmann, L.

    2013-01-01

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-reso...

  20. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  1. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanxin, E-mail: xiongsx@xust.edu.cn; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-07-15

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  2. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Yin, Siyuan; Wang, Yuyun; Kong, Zhenzhen; Lan, Jinpeng; Zhang, Runlan; Gong, Ming; Wu, Bohua; Chu, Jia; Wang, Xiaoqin

    2017-01-01

    Highlights: • We review the effects of interfacial interactions in electrochromic nanocomposites. • Interfacial interactions are useful for film fabrication and property-enhancement. • The strong interaction can enhance the electron conduction and structural strength. • The weak interactions exist widely between organic and inorganic phases. • Multiple weak interactions can provide various performance-adjusting approaches. - Abstract: Electrochromic properties of organic or inorganic materials can be improved through preparing organic/inorganic electrochromic nanocomposites. In electrochromic nanocomposites, the interfacial interactions between the organic and inorganic phases play three important roles in preparation and application of the nanocomposites. Firstly, the interfacial interactions result in stable molecular structures. Secondly, they also improve the electron conduction and ion transport process in the nanocomposites. Thirdly, they enhance the electrochemical and electrochromic properties of the nanocomposites. In this paper, we review the common interfacial interactions including covalent bond, coordination bond, electrostatic interaction, hydrogen bond and π-π stacking interaction between the organic and inorganic phases in the electrochromic nanocomposites. The preparation method, the relationship between the structure and properties, and the mechanism of modulation of electrochromic effect in the nanocomposites with various interfacial interactions are surveyed. The strong interfacial interaction, e.g., covalent bond, is helpful for obtaining electrochromic nanocomposites with high electron conduction and high structural strength. However it is very complicated to construct covalent bond between the organic and inorganic phases. Another strong interfacial interaction, the coordination bond is mainly confined to preparation of electrochromic complex of metal ion and pyridine derivative. While, the weak interfacial interactions, e

  3. First-principles studies of Ce and Eu doped inorganic scintillator gamma ray detectors

    Science.gov (United States)

    Canning, Andrew; Chaudhry, Anurag; Boutchko, Rostyslav; Derenzo, Stephen

    2011-03-01

    We have performed DFT based band structure calculations for new Ce and Eu doped wide band gap inorganic materials to determine their potential as candidates for gamma ray scintillator detectors. These calculations are based on determining the 4f ground state level of the Ce and Eu relative to the valence band of the host as well as the position of the Ce and Eu 5d excited state relative to the conduction band of the host. Host hole and electron traps as well as STEs (self trapped excitons) can also limit the transfer of energy from the host to the Ce or Eu site and therefore limit the light output. We also present calculations for host hole traps and STEs to compare the energies to the Ce and Eu excited states. The work was supported by the U.S. Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02- 05CH11231.

  4. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...... and inorganic components. Before turning to the physicochemical discussion of interfacial interactions, the chapter outlines some central parts of the biology and biotechnology of organic osmolytes. It reviews the central relationships in preferential interaction theory, which we use in subsequent paragraphs...

  5. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  6. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  7. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    Science.gov (United States)

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  8. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  9. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  10. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  11. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  12. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  13. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  14. Calorimetry using organic scintillators, 'a sideways perspective'.

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.

    1999-09-10

    Over the last two decades, calorimetry baaed on organic scintillators has developed into an excellent technology for many experimental situations in high energy physics. The primary difficulty, that of extracting the light signals, has benefited from two milestone innovations. The first was the use of wavelength-shifting bars to allow light to be efficiently collected from large areas of scintillator and then readily piped to a readout device. The second of these was the extension of this approach to plastic wavelength-shifting optical fibers whose great flexibility and small diameter allowed a minimum of detector volume to be compromised by the read-out. These two innovations coupled with inventiveness have produced many varied and successful calorimeters. Equal response to both hadronic and electromagnetic showers can be realized in scintillator-based calorimeters. However, in general this is not the case and it is likely that in the search for greater performance, in the future, combined tracking and calorimeter systems will be required.

  15. An organic scintillator neutron spectrometer suitable for in-phantom studies

    International Nuclear Information System (INIS)

    Harrison, K.G.

    1981-07-01

    A transportable organic scintillator spectrometry system based on a 1 cm high x 1 cm dia. cylindrical stilbene scintillator with a 30 cm light-pipe has been developed for neutron spectrometry inside anthropomorphic phantoms in order to improve knowledge of dose and dose-equivalent distributions in the body. Electronic pulse-shape discrimination is used to discriminate between neutron and gamma-ray events in the scintillator. The spectrometer is shown to give excellent results in the range of neutron energies from 1.5 to 7 MeV when used with an unfolding program based on differentiation of the pulse-height distribution. Below 1 MeV problems are experienced with pulse-shape discrimination, and below 2 MeV there are found to be some shortcomings in the differentiation method for this size of scintillator. Above about 9 MeV more sophisticated unfolding methods are shown to be desirable. Problems of stability of the system, difficulties in the measurement and calculation of the response functions, and disadvantages of using stilbene are discussed. (author)

  16. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  17. Search for Erzion nuclear catalysis chains from cosmic ray Erzions stopping in organic scintillator

    International Nuclear Information System (INIS)

    Bazhutov, Yu.N.; Pletnikov, E.V.

    2006-01-01

    In the framework of Erzion model, charged cosmic ray Erzions stopping in organic substance begin to create Erzion nuclear catalysis chains with frequency of ∼ 100 MHz during ∼ 10-100 ms. Using an organic substance (plastic) scintillator we can observe long and flat (10-100 ms) pulses of large amplitude (∼100 MeV). No elementary particle can imitate such pulses. It is expected that such pulses in a plastic scintillator with mass of 100 kg will appear at the sea level every week. Such pulses can be observed every day with the Spectrometric Scintillation Super-Telescope (SSTIS) built at IZMIRAN for cosmic rays monitoring. (authors)

  18. Preparation of manganese salts of carboxylic acids labelled with ''54Mn and comparison with ''54 MnCl2 in liquid scintillation counting

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Arcos Merino, J. M. los; Grau Malonda, A.

    1992-01-01

    Procedures for liquid scintillation sample preparation of manganese dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene. HISafe II. PCS, instagel. Dioxane-naphtalene and Toluene-alcohol. For comparison, Inorganic 54 MnCl-2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (Author)

  19. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  20. New fast organic scintillators using intramolecular bromine quenching

    International Nuclear Information System (INIS)

    Berlman, I.B.; Lutz, S.S.; Flournoy, J.M.; Ashford, C.B.; Franks, L.A.

    1984-01-01

    Organic scintillator solutions with decay times as fast as 500 ps and with relatively high conversion efficiencies have been developed. The intramolecular quenching was achieved through the novel approach of adding a bromine atom to the 3- or 4-position of para-oligophenylenes, the fluorescent solutes in these binary solutions. The bromine serves to enhance singlet-to-triplet intersystem crossing in the chromophore, causing a reduction in the scintillation yield and a concomitant reduction in the decay time. The very fast value given above probably also involves some intermolecular self-quenching at high concentration. In addition, the bromine reduces the symmetry of the molecules, thereby increasing their solubility. Finally, an alkyl chain on the opposite para position further increases the solubility and also increases the immunity of the chromophore to quenching. The decay times for binary liquid solutions in toluene (at the indicated concentrations) were 0.51 ns for 4-BHTP (0.14 M), 0.75 ns for 3-BHTP (0.14 M), 0.57 ns for 3-BTP (0.14 M), and 1.3 ns for 4-BHQP (0.06 M). Binary plastics with 4-BHTP as the solute in concentrations up to 0.14 M were cast in polystyrene. The shortest decay time, 0.40 ns, was measured for the 0.14 M concentration. A plastic scintillator containing 3-BTP (0.11 M in polystyrene) had a decay time of 0.85 ns. These results compare favorably with the plastic scintillator BC-422 whose decay time is about 1.4 ns. (orig./HSI)

  1. Radioluminescence of organic compounds: specific luminescence of condensed aromatic scintillators

    International Nuclear Information System (INIS)

    Lopes da Silva, J.

    1978-01-01

    The influence of the nature of ionizing particles on the radioluminescence yield of aromatic scintillators is studied. Both prompt and delayed scintillation components are considered. An expression giving the specific luminescence dS/dx as a function of the charge number z and of the incident particle specific energy loss have been derived, following a track model published before, that is consistent with recent conclusions about the nature, evolution and distribution of the primary excitations created by an ionizing particle in the organic scintillator. The good agreement between the theoretical curves derived in this paper and the experimental ones previously reported provided us with a means of evaluating the different parameters included in the proposed expressions. The numerical values of these parameters included in the proposed expressions. The numerical values of these parameters agree with those of other authors and are theoretically discussed and justified [fr

  2. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  3. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  4. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    Science.gov (United States)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  5. Fundamental study of inorganic-organic hybrid scintillator using Pr:Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. and plastic scintillator

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Kurosawa, S.; Yokota, Y.; Yanagida, T.; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 53, č. 4 (2014), "04EH10-1"-"04EH10-4" ISSN 0021-4922 Institutional support: RVO:68378271 Keywords : scintillators * Pr:LuAG * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.127, year: 2014

  6. Pulse-shape Discrimination in Organic Scintillators Using the Rising Edge

    International Nuclear Information System (INIS)

    Jones, A.; Joyce, M.J.

    2013-06-01

    The possibility of discriminating between neutrons and γ rays on the basis of differences in the rising edge of corresponding pulses from organic scintillation detectors is described. It has long been known that radiation type can be discerned on the basis of subtle differences in pulse shape from a variety of detection materials, but discrimination in fast organic scintillators has long been reliant on the separation in decay face of the pulse. This can constrain pulse-shape discrimination techniques to follow after the peak amplitude of the event and they can thus be more susceptible to the effects of pile up. Furthermore, discrimination in the decay face places a fundamental limit on the time relative to the evolution of the event when discrimination can be performed and thus this can be a significant constraint on the event processing rate for high pulse-rate applications. In this paper the correspondence between established mathematical models of organic pulse shape and real events in the rising edge part of the event is investigated, and the potential for rise-time based pulse-shape discrimination in mixed-field data from organic scintillators is explored. Special nuclear materials (SNM) are of particular interest to security surveillance and based on active interrogation. Active interrogation involves neutrons hitting a material that is fissile, and detecting the emitted γ rays and neutrons to try and classify materials. Faster, more efficient and more transportable devices are being sought to help in the prevention of illicit transport of nuclear materials. SNM are difficult to detect due to high-flux γ emissions, and very low neutron signatures (authors)

  7. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    Science.gov (United States)

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  8. Liquid organic scintillator in a polymerizable emulsion, its application to radioactive counting and process for its destruction

    International Nuclear Information System (INIS)

    O'Brien, R.E.; Krieger, J.K.

    1981-01-01

    Scintillation organic liquid mixture for performing very efficient counts on compound solutions labelled with a radioactive indicator containing up to 10% water by volume and which is easily polymerizable into a solid substance, in order to facilitate its elimination. The mixture includes a polymerizable organic solvent, a solubilizing agent, an intermediate solvent and an organic scintillator [fr

  9. Preparatory on manganose salts of carboxilic acids labelled with 54Mn and comparison with 54MnCl2 in liquid scintillation counting

    International Nuclear Information System (INIS)

    Rodriguez, L.; Los Arcos, J.M.; Grau, A.

    1992-01-01

    Procedures for scintillation sample preparation of manganose dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. Their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene, HlSafe II, PCS, Instagel, Dioxane-naphtalene and Toluene-alcohol. For comparison, inorganic 54 MnCl 2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (author) 14 fig. 15 ref

  10. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  11. Development of TOF-PET using Compton scattering by plastic scintillators

    International Nuclear Information System (INIS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-01-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  12. Development of TOF-PET using Compton scattering by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2017-02-11

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  13. Development of TOF-PET using Compton scattering by plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  14. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  15. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Science.gov (United States)

    Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-08-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  16. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  17. Influence of Organic and Inorganic Sources of Fertilizer on Growth ...

    African Journals Online (AJOL)

    Influence of Organic and Inorganic Sources of Fertilizer on Growth and Leaf Yield of Kale ... Journal of Agriculture, Science and Technology ... fertilizer gave leaf yields comparable to those applied with exclusively inorganic sources of fertilizer.

  18. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the laser Mega Joule

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Normand, Stephane; Turk, Gregory; Darbon, Stephane

    2012-01-01

    The scope of this project intends to record spatially resolved images of core shape and size of a deuterium-tritium micro-balloon during inertial confinement fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an x-ray imaging system which can operate in the hard radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties. Most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low x-ray photoelectric absorption in the 10 to 40 keV range. This does not enable the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12 wt% Pb. Thus, incorporation ratio up to 27 wt% Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z(eff) close to 50. X-rays in the 10 to 40 keV range can thus interact with a higher probability of photoelectric effect than for classic organic scintillators, such as NE-102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by gamma-ray absorption in glass parts of the imaging system. Characteristic decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  19. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    Science.gov (United States)

    Pate, Ryan; Lantz, Kevin R.; Dhawan, Anuj; Vo-Dinh, Tuan; Stiff-Roberts, Adrienne D.

    2010-10-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate) (PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  20. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-01-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  1. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  2. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Olesen, Jørgen E; Porter, John

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  3. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    Science.gov (United States)

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  4. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  5. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    Science.gov (United States)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  6. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  7. Effect of organic and inorganic fertilizer applied together on N and P absorption and soil fertility

    International Nuclear Information System (INIS)

    Wang Kuibo; Yu Meiyan; Shen Xiuzhen; Wang Tongyan; Chen Xueliu; Wang Zhifen

    1994-01-01

    15 N trace experiments show that organic and inorganic fertilizer applied together promotes organic N mineralization and absorption. Base fertilizer is mainly for nutrition organs and spring fertilizer for reproduction organs. Organic and inorganic fertilizer applied together obtained the highest production efficiency of total N. Total P amount in wheat plant is slightly higher than that of inorganic N applied only, but P distribution in nutrition organs was slightly lower than that of inorganic N applied only. Organic and inorganic fertilizer applied together, not only promoted the production but also increased fertility of soil, so it is an important measure for wheat to obtain high production continuously

  8. Studies of light collection in depolished inorganic scintillators using Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Altamirano, A.; Salinas, C. J. Solano; Wahl, D.

    2009-01-01

    Scintillators are materials which emit light when energetic particles deposit energy in their volume. It is a quasi-universal requirement that the light detected in scintillator setups be maximised. The following project aims to study how the light collection is affected by surface depolishing using the simulation programs GEANT4 and LITRANI.

  9. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    International Nuclear Information System (INIS)

    Kaminska, D.; Gajos, A.; Czerwinski, E.; Alfs, D.; Bednarski, T.; Bialas, P.; Dulski, K.; Glowacz, B.; Gupta-Sharma, N.; Korcyl, G.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedzwiecki, Sz.; Pawlik-Niedzwiecka, M.; Rudy, Z.; Wieczorek, A.; Zielinski, M.; Moskal, P.; Curceanu, C.; Silarski, M.; Gorgol, M.; Jasinska, B.; Zgardzinska, B.; Hiesmayr, B.C.; Kowalski, P.; Raczynski, L.; Wislicki, W.; Krzemien, W.

    2016-01-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps → 3γ decays with angular and energy resolution equal to σ(θ) ∼ 0.4 circle and σ(E) ∼ 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities. (orig.)

  10. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kaminska, D.; Gajos, A.; Czerwinski, E.; Alfs, D.; Bednarski, T.; Bialas, P.; Dulski, K.; Glowacz, B.; Gupta-Sharma, N.; Korcyl, G.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedzwiecki, Sz.; Pawlik-Niedzwiecka, M.; Rudy, Z.; Wieczorek, A.; Zielinski, M.; Moskal, P. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Krakow (Poland); Curceanu, C.; Silarski, M. [INFN, Laboratori Nazionali di Frascati, CP 13, Frascati (Italy); Gorgol, M.; Jasinska, B.; Zgardzinska, B. [Maria Curie-Sklodowska University, Department of Nuclear Methods, Institute of Physics, Lublin (Poland); Hiesmayr, B.C. [University of Vienna, Faculty of Physics, Vienna (Austria); Kowalski, P.; Raczynski, L.; Wislicki, W. [Swierk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk (Poland); Krzemien, W. [National Centre for Nuclear Research, High Energy Department, Otwock-Swierk (Poland)

    2016-08-15

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps → 3γ decays with angular and energy resolution equal to σ(θ) ∼ 0.4 {sup circle} and σ(E) ∼ 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities. (orig.)

  11. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  12. Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus Erik; Beierholm, Anders Ravnsborg

    2013-01-01

    Fiber-coupled organic plastic scintillators have potential applications in medical dosimetry related to, for example, brachytherapy and external beam radiotherapy with MV photons. As medical dosimetry generally strives for high accuracy, we designed a study to assess if the light yield from...... commonly used scintillating fibers would change with temperature in the clinical range (15–40 °C). The study showed that the light yield in the peak regions of the scintillators studied decreases linearly with increasing temperature. For the blue BCF-12 and the green BCF-60 from Saint-Gobain, France we...

  13. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Paff, Marc Gerrit, E-mail: mpaff@umich.edu; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-21

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  14. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Science.gov (United States)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  15. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  16. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  17. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    Energy Technology Data Exchange (ETDEWEB)

    Kaddami, H. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France); Cuney, S. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France)]|[BSN Emballage-Centre de Recherche de Saint-Romain-en-Gier, 69700 Givors Cedex (France); Pascault, J.P. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France); Gerard, J.F. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France)

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic{emdash}inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed {ital in} {ital situ} during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings. {copyright} {ital 1996 American Institute of Physics.}

  18. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  19. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  20. Resistive switching characteristics of solution-processed organic-inorganic blended films for flexible memory applications

    Science.gov (United States)

    Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    We developed a hybrid organic-inorganic resistive random access memory (ReRAM) device that uses a solution-process to overcome the disadvantages of organic and inorganic materials for flexible memory applications. The drawbacks of organic and inorganic materials are a poor electrical characteristics and a lack of flexibility, respectively. We fabricated a hybrid organic-inorganic switching layer of ReRAM by blending HfOx or AlOx solution with PMMA solution and investigated the resistive switching behaviour in Ti/PMMA/Pt, Ti/PMMA-HfOx/Pt and Ti/PMMA-AlOx/Pt structures. It is found that PMMA-HfOx or PMMA-AlOx hybrid switching layer has a larger memory window, more stable durability and retention characteristics, and a better set/reset voltage distribution than PMMA layer. Further, it is confirmed that the flexibility of the PMMA-HfOx and PMMA-AlOx blended films was almost similar to that of the organic PMMA film. Thus, the solution-processed organic-inorganic blended films are considered a promising material for a non-volatile memory device on a flexible or wearable electronic system.

  1. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    Science.gov (United States)

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  2. Improved organic scintillation detectors; Possibilites de perfectionnement des detecteurs organiques a scintillations; Usovershenstvovannye organicheskie stsintillyatsionnye detektory; Detectores organicos de centelleo perfeccionados

    Energy Technology Data Exchange (ETDEWEB)

    Birks, J B [University of Manchester, Manchester (United Kingdom)

    1962-04-15

    Equations have been derived for the practical scintillation efficiency (photo-electrons/MeV) of organic crystals and solutions in terms of molecular parameters and these have been applied to the more important scintillator systems, for photomultipliers with S11 (glass window) and S13 (quartz window) responses. The results suggest several improvements in current organic scintillation detector practice: the use of binary rather than ternary solutions; the use of quartz rather than glass windows; and the reconsideration of mixed crystal scintillators based on naphthalene. Improvements by factors of 2 or more in the figure of merit (practical efficiency/decay time) for fast-scintillation counting can be obtained. (author) [French] L'auteur a etabli des equations pour determiner le rendement de scintillation (photoelectrons/MeV) de cristaux et solutions organiques, en faisant intervenir des parametres moleculaires. Il a applique ces equations a des appareils a scintillations plus importantes pour determiner la reponse des photomultiplicateurs a fenetre en verre (S11) et a fenetre en quartz (S13). Les resultats obtenus ont fait apparaitre la possibilite d'ameliorer, a plusieurs egards, les detecteurs organiques a scintillations du type courant, par exemple en remplacant les solutions ternaires par des solutions binaires, les fenetres en verre par des fenetres en quartz, ou en reexaminant les possibilites offertes par les scintillateurs a cristaux mixtes a base de naphtalene. L'introduction de ces perfectionnements conduirait a une amelioration, du simple au double ou plus, du facteur de qualite (efficacite/temps de decroissance) des dispositifs de comptage a scintillations. (author) [Spanish] Se han establecido ecuaciones que permiten calcular el rendimiento practico de centelleo (fotoelectrones/MeV) de los cristales y soluciones organicos en funcion de parametros moleculares; estas ecuaciones han sido aplicadas a los sistemas de centelleo mas importantes, para

  3. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  4. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    Science.gov (United States)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  5. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  6. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  7. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  8. Current trends in scintillator detectors and materials

    International Nuclear Information System (INIS)

    Moses, W.W.

    2002-01-01

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO 4 ) has been developed for high-energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu 2 SiO 5 :Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr 3 :Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency

  9. Response of food organisms to inorganic nitrogen availability ...

    African Journals Online (AJOL)

    Influence of inorganic N2 forms on pond food organisms was investigated. Seven identified plankton taxa comprising four phytoplankton: Desmidiaceae (desmids), Bacillariophyceae (diatoms), Cyanophyceae (blue-green algae) and Chlorophyceae (green algae) and three zooplankton: Protozoa, Cladocera and Rotifera ...

  10. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  11. Organic-inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics

    International Nuclear Information System (INIS)

    Forrest, S R

    2003-01-01

    The demonstration, over 20 years ago, of an organic-inorganic heterojunction (OI HJ) device along with investigations of the growth and physical properties of the archetypal crystalline molecular organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride are discussed. Possible applications of OI HJ devices are introduced and the dramatic change in conductive properties of these materials when exposed to high-energy ion beams is described. The past and future prospects for hybrid organic-on-inorganic semiconductor structures for use in electronic and photonic applications are also presented

  12. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  13. Tailoring rice flour structure by rubbery milling for improved gluten-free baked goods.

    Science.gov (United States)

    Brütsch, Linda; Tribolet, Liliane; Isabettini, Stéphane; Soltermann, Patrick; Baumann, Andreas; Windhab, Erich J

    2018-05-10

    Ever-growing demand for gluten-free products calls for the development of novel food processing techniques to widen the range of existing baked goods. Extensive research has been targeted towards recipe optimization, widely neglecting the tailoring potential of process-induced structuring of gluten-free raw materials. Herein, we address this shortcoming by demonstrating the potential of rubbery milling for the generation of structure and techno-functionality in breads obtained from a variety of rice flour types. Moisture and temperature induced state transitions during milling were exploited to tailor the physicochemical properties of the flour. Moisture addition during conditioning of the different rice varieties and milling in the rubbery state considerably decreased starch damage due to more gentle disintegration. The degree of starch damage dictated the water absorption capacity of the rice flour types. Flour types with reduced starch damage upon milling offered lower dough densities, yielding bread loafs with a higher volume and better appearance. The choice of rice variety enables fine-tuning of the final product quality by influencing the dough viscoelasticity, which defines the final loaf volume. Whole grain rice flour dramatically increased the loaf volume, whilst simultaneously offering nutritional benefits. Combining the proposed functionalised flour types with current and future advances in product recipes paves the way towards optimised gluten-free goods.

  14. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  15. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  16. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  17. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  18. O5S, Calibration of Organic Scintillation Detector by Monte-Carlo

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Nature of physical problem solved: O5S is designed to directly simulate the experimental techniques used to obtain the pulse height distribution for a parallel beam of mono-energetic neutrons incident on organic scintillator systems. Developed to accurately calibrate the nominally 2 in. by 2 in. liquid organic scintillator NE-213 (composition CH-1.2), the programme should be readily adaptable to many similar problems. 2 - Method of solution: O5S is a Monte Carlo programme patterned after the general-purpose Monte Carlo neutron transport programme system, O5R. The O5S Monte Carlo experiment follows the course of each neutron through the scintillator and obtains the energy-deposits of the ions produced by elastic scatterings and reactions. The light pulse produced by the neutron is obtained by summing up the contributions of the various ions with the use of appropriate light vs. ion-energy tables. Because of the specialized geometry and simpler cross section needs O5S is able to by-pass many features included in O5R. For instance, neutrons may be followed individually, their histories analyzed as they occur, and upon completion of the experiment, the results analyzed to obtain the pulse-height distribution during one pass on the computer. O5S does allow the absorption of neutrons, but does not allow splitting or Russian roulette (biased weighting schemes). SMOOTHIE is designed to smooth O5S histogram data using Gaussian functions with parameters specified by the user

  19. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  20. Dissolved organic and inorganic matter in bulk deposition of a coastal urban area: an integrated approach.

    Science.gov (United States)

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2014-12-01

    Bulk deposition can remove atmospheric organic and inorganic pollutants that may be associated with gaseous, liquid or particulate phases. To the best of our knowledge, few studies have been carried out, which simultaneously analyse the presence of organic and inorganic fractions in rainwater. In the present work, the complementarity of organic and inorganic data was assessed, through crossing data of some organic [DOC (dissolved organic carbon), absorbance at 250 nm (UV250nm), integrated fluorescence] and inorganic [H(+), NH4(+), NO3(-), non sea salt sulphate (NSS-SO4(2-))] parameters measured in bulk deposition in the coastal urban area of Aveiro. The organic and inorganic parameters analysed were positively correlated (pCDOM) came from anthropogenic sources. Furthermore, the inverse correlations observed for the organic and inorganic parameters with the precipitation amount suggest that organic and inorganic fractions were incorporated into the rainwater partially by below-cloud scavenging of airborne particulate matter. This is in accordance with the high values of DOC and NO3(-) found in samples associated with marine air masses, which were linked in part to the contribution of local emissions from vehicular traffic. DOC of bulk deposition was the predominant constituent when compared with the constituents H(+), NH4(+), NO3(-) and NSS-SO4(2-), and consequently bulk deposition flux was also highest for DOC, highlighting the importance of DOC and of anthropogenic ions being simultaneously removed from the atmosphere by bulk deposition. However, it was verified that the contribution of anthropogenic sources to the DOC of bulk deposition may be different for distinct urban areas. Thus, it is recommended that organic and inorganic fractions of bulk deposition are studied together. Copyright © 2014. Published by Elsevier Ltd.

  1. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  2. Self-organization of a tetrasubstituted tetrathiafulvalene (TTF) in a silica based hybrid organic-inorganic material.

    Science.gov (United States)

    Cerveau, Geneviève; Corriu, Robert J P; Lerouge, Frédéric; Bellec, Nathalie; Lorcy, Dominique; Nobili, Maurizio

    2004-02-21

    A hybrid organic inorganic nanostructured material containing a TTF core substituted by four arms exhibited a high level of both condensation at silicon (96%) and self-organization as evidenced by X-ray diffraction and an unprecedented birefringent behaviour.

  3. Mixtures of organic and inorganic substrates, particle size and proportion

    International Nuclear Information System (INIS)

    Morales-Maldonado, Emilio Raymundo; Casanova-Lugo, Fernando

    2015-01-01

    The mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion and their response in plant were reviewed. Agricultural wastes are considered a pollutant reservoir in Mexico; however, for another perspective this represent an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. The production of compost and vermicompost is an option that minimize the risk of contamination and improve quality. Both processes are an alternative for organic production. The efficiency of irrigation and fertilization are affected for the reducing the volumen of an organic material incresase compaction and compression of roots. The mixtures with inorganic materials are used in the development of a new material to obtain better growing conditions for the plant. (author) [es

  4. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  5. Liquid emulsion scintillators which solidify for facile disposal

    International Nuclear Information System (INIS)

    O'Brien, R.E.; Krieger, J.K.

    1981-01-01

    A liquid organic scintillation cocktail is described which counts solutions of radiolabelled compounds containing up to ten % by volume of water with high efficiency and is readily polymerizable to a solid for easy disposal. The cocktail comprises a polymerizable organic solvent, a solubilizing agent, an intermediate solvent, and an organic scintillator. A method of disposing of liquid organic scintillation cocktail waste and a kit useful for practising the method are also described. (U.K.)

  6. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  7. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  8. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  9. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  10. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2008-01-01

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...

  11. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René

    2011-01-01

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse w...... and quality assurance of complex radiotherapy treatments.......A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse....... No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm...

  12. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  13. Neutron spectrometry with the NE-213 organic scintillator detector

    International Nuclear Information System (INIS)

    Silva, A.A. da.

    1980-12-01

    A neutron spectrometer with the NE-213 organic scintillator detector (5,08cm x 5,08cm) was mounted, tested, and calibrated at the Argonaut Reactor Laboratory of the Instituto de Engenharia Nuclear, to measure and study spectra of available fast neutron sources. The time zero-crossover technique was employed to discriminate the pulse of neutrons and gammas. The neutron spectrum from a 241 Am-Be source was determined experimentally in the range 1,0 MeV to 12,0 MeV and good agreement with other researchers was obtained. (Author) [pt

  14. Inorganic and organic trace mineral supplementation in weanling pig diets

    Directory of Open Access Journals (Sweden)

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  15. Investigations of inorganic and hybrid inorganic-organic nanostructures

    Science.gov (United States)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  16. A comparative study of 19-iodo cholesterol-125I 3-acetate and Na 125I in liquid scintillation measurements; Estudio comparativo del acetato de 19-iodocolesterol- -125I con Nal25I en medidas por centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    A comparative study of performance of 19-iodo cholesterol {sup 1}25I 3-acetate and sodium iodide samples labeled with 125I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I concentration of 0-90 {mu}g and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol 1 I 3-acetate samples in Tolue ne-alcohol and 0 .04% for Na 125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs.

  17. Energy-effective Grinding of Inorganic Solids Using Organic Additives.

    Science.gov (United States)

    Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J

    2017-08-09

    We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.

  18. Organic scintillators response function modeling for Monte Carlo simulation of Time-of-Flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-15

    In neutron Time-of-Flight (TOF) measurements performed with fast organic scintillation detectors, both pulse arrival time and amplitude are relevant. Monte Carlo simulation can be used to calculate the time-energy dependant neutron flux at the detector position. To convert the flux into a pulse height spectrum, one must calculate the detector response function for mono-energetic neutrons. MCNP can be used to design TOF systems, but standard MCNP versions cannot reliably calculate the energy deposited by fast neutrons in the detector since multiple scattering effects must be taken into account in an analog way, the individual recoil particles energy deposit being summed with the appropriate scintillation efficiency. In this paper, the energy response function of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime liquid scintillation BC-501 A (Bicron) detectors to fast neutrons ranging from 20 keV to 5.0 MeV is computed with GEANT4 to be coupled with MCNPX through the 'MCNP Output Data Analysis' software developed under ROOT (). - Highlights: Black-Right-Pointing-Pointer GEANT4 has been used to model organic scintillators response to neutrons up to 5 MeV. Black-Right-Pointing-Pointer The response of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime BC501A detectors has been parameterized with simple functions. Black-Right-Pointing-Pointer Parameterization will allow the modeling of neutron Time of Flight measurements with MCNP using tools based on CERN's ROOT.

  19. Performances and stability of a 2.4 ton Gd organic liquid scintillator target for ν-bar e detection

    International Nuclear Information System (INIS)

    Barabanov, I R; Bezrukov, L B; Danilov, N A; Krilov, Yu S; Yanovich, E A; Malguin, A S; Cattadori, C M; Vacri, A di; Ioannucci, L; Bruno, G; Aglietta, M; Bonardi, A; Fulgione, W; Porta, A; Kemp, E; Selvi, M

    2010-01-01

    In this paper we report the performance and the chemical and physical properties of a 2 x 1.2 ton organic liquid scintillator target doped with Gd up to ∼ 0.1%, and the results of a 3 year long stability survey of the target. In particular we have measured and monitored the optical and fluorescent properties of the Gd-doped liquid scintillator (LS), the amount of both Gd and primary fluor in solution, and the performance of the two Gd doped targets as neutron detectors, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the targets being continuously monitored. From the spectrophotometric measurements performed on samples periodically extracted along the three years, we can exclude, at 99% C.L. level, a degradation of the light transmittance of the Gd-doped liquid scintillator larger than 1% y -1 ; from the in-tank measurements no significant decrease of the neutron capture efficiency and neutron capture time is observed. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period.

  20. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  1. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  2. Hybrid organic photodetectors for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, Patric [Light Technology Institute, Karlsruhe Institute of Technology. Karlsruhe (Germany); Siemens AG. Corporate Technologies. Erlangen (Germany); Schmidt, Oliver; Tedde, Sandro; Hartmann, David [Siemens AG. Corporate Technologies. Erlangen (Germany); Richter, Moses [Institute for Materials for Electronics and Energy Technology, Friedrich-Alexander University. Erlangen (Germany); Lemmer, Uli [Light Technology Institute, Karlsruhe Institute of Technology. Karlsruhe (Germany)

    2013-07-01

    Most of todays X-ray detectors are using an indirect conversion mechanism. The X-ray radiation is converted into visible light within a thick scintillator layer. The visible light is then absorbed by standard thin-film photodetectors. The isotropic propagation of light in the scintillator reduces the resolution of the x-ray imager. This work avoids the stacked structure by integration of inorganic PbS quantum dots directly into the bulk hetero junction (BHJ) of an organic photodetector. X-ray photons are immediately converted into charge carriers and travel in direction of the electrical field towards the electrodes. However, this concept demands much thicker organic layers than known from conventional OLED and OPV processing. We demonstrate that thick diodes can be achieved with a spray coating process and the influence of spraying parameters on device performance is discussed.

  3. Inorganic and organic contaminants in Alaskan shorebird eggs.

    Science.gov (United States)

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  4. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    Science.gov (United States)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  5. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  6. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  7. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  8. Mixtures of organic and inorganic substrates, particle size and proportion.

    Directory of Open Access Journals (Sweden)

    Emilio Raymundo Morales-Maldonado

    2015-06-01

    Full Text Available The objective of this paper was to review the mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion, and their response in plant. In Mexico, agricultural waste is considered as a pollutant reservoir; however, from another perspective, this represents an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. An option that minimizes the risk of contamination and improves its quality is the production of compost and vermicompost. Both processes are an alternative to organic production. A material by itself does not meet the optimum conditions. Reducing the volume of an organic material increases compaction and compression of roots, affecting the efficiency of irrigation and fertilization, so it is necessary to make mixtures with inorganic materials, that is used in the development of a new material for better growing conditions of the plant.

  9. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  10. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.

    2007-01-01

    Single crystals of [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 (H 2 O)](H 2 SeO 4 ) 0.85 (H 2 O) 2 (1), [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 ] (H 2 SeO 4 ) 0.50 (H 2 O) (2), and [C 8 H 20 N] 2 [(UO 2 )(SeO 4 ) 2 (H 2 O)] (H 2 O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO 7 and SeO 4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO 2 (SeO 4 ) 2 (H 2 O)] 2- chains are separated by mixed organic-inorganic layers comprising from [NH 3 (CH 2 ) 10 NH 3 ] 2+ molecules, H 2 O molecules, and disordered electroneutral (H 2 SeO 4 ) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO 2 (SeO 4 ) 2 ] 2- sheet. The structure of 3 does not contain disordered (H 2 SeO 4 ) groups but is based upon alternating [UO 2 (SeO 4 ) 2 (H 2 O)] 2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH 3 (CH 2 ) 7 CH 3 ] + . The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into

  11. [Effects of organic and inorganic fertilizers on emission and sources of N2O in vegetable soils.

    Science.gov (United States)

    Lin, Wei; Ding, Jun Jun; Li, Yu Zhong; Xu, Chun Ying; Li, Qiao Zhen; Zheng, Qian; Zhuang, Shan

    2018-05-01

    To clarify the microbial pathway of the N 2 O production and consumption under different fertilizers and provide theoretical basis for the reduction of N 2 O emission and rational management of fertilization in vegetable soils, we examined dynamics of N 2 O flux and isotope signatures under different fertilizer treatments in the vegetable soils of Beijing, by setting up four treatments (organic-acetylene, organic-nonacetylene, inorganic-acetylene, inorganic-nonacetylene) and using the stable isotope technique of natural N 2 O abundance. The results showed that the cumulative N 2 O emission from organic-acetylene group, organic-nonacetylene group, inorganic-acetylene group and inorganic-nonacetylene group was (374±37), (283±34), (458±36), (355±41) g·m -2 in cabbage growing season, respectively. N 2 O fluxes were significantly lower in treatments with organic fertilizer than those with inorganic fertilizer and significantly higher in acetylene group than nonacetylene group. The degree of N 2 O reduction were similar in both fertilizer treatments, and higher nitrification was found in inorganic fertilizer than organic fertilizer treatments. Acetylene only inhibited partial nitrification and partial N 2 O reduction at the peak of N 2 O emission. When the emission was reduced, N 2 O reduction could be completely suppressed. Therefore, the inorganic fertilizer might trigger nitrification and promote higher N 2 O emission. The high concentration of N 2 O could withstand that acetylene to inhibite N 2 O reduction. Hence, using organic fertilizers instead of some inorganic ones could effectively reduce N 2 O emission in vegetable soils of Beijing. The N 2 O concentration threshold should be considered when we identify N 2 O source by acetylene inhibition method.

  12. A digital gain stabilizer for large volume organic scintillation detectors

    International Nuclear Information System (INIS)

    Braunsfurth, J.; Geske, K.

    1976-01-01

    A digital gain stabilizer is described, optimized for use with photomultipliers mounted on large volume organic scintillators, or other radiation detectors, which exhibit no prominent peaks in their amplitude spectra. As applications of this kind usually involve many phototubes or detectors, circuit simplicity, production reproduceability, and the possibility of computer controlled operation were major design criteria. Two versions were built, the first one using standard TTL-SSI and MSI circuitry, the second one - to reduce power requirements - using a mixture of TTL- and CMOS-LSI circuits. (Auth.)

  13. A hybrid organic-inorganic perovskite dataset

    Science.gov (United States)

    Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi

    2017-05-01

    Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.

  14. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  15. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  16. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  17. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunxing, E-mail: lishunxing@fjzs.edu.cn [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou (China); Zheng Fengying; Huang Yang [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou (China); Ni Jiancong [Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2011-02-15

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 {mu}g L{sup -1} and 50.0 {mu}g L{sup -1}, respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 {mu}g L{sup -1}) and the permitted discharge limit of wastewater (10.0 {mu}g L{sup -1}) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  18. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    International Nuclear Information System (INIS)

    Li Shunxing; Zheng Fengying; Huang Yang; Ni Jiancong

    2011-01-01

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L -1 and 50.0 μg L -1 , respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L -1 ) and the permitted discharge limit of wastewater (10.0 μg L -1 ) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  19. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Starkenburg, Daken J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Johns, Paul M. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611, USA; Detection Systems Group, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Baciak, James E. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611, USA; Nino, Juan C. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA; Xue, Jiangeng [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

    2017-12-14

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  20. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    Science.gov (United States)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; Nino, Juan C.; Xue, Jiangeng

    2017-12-01

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.18 μGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  1. Temporal characteristics and saturation effects of organic scintillators to low-energy X-rays

    International Nuclear Information System (INIS)

    Pronko, J.G.; Chase, L.F.

    1979-01-01

    Rise time, short and long term decay characteristics and possible saturation effects of the fluorescence of NE102, NE111, and doped NE111 organic scintillators were investigated using low-energy X-rays from a laser produced plasma. The laser system consisted of a pulsed Nd:glass facility operating at a pulse width of 0.2 ns at levels up to 10 J. The NE111 samples consisted of a matrix of scintillators with benzophenone, acetophenone, and piperidine each at concentrations of 0, 1, 2, 5, and 10 percent. The rise time of NE102 was measured at (640+-50) ps while that of both the doped and undoped NE111 was 2 ns) of irradiance used in this investigation. (Auth.)

  2. [Effect of inorganic fluorine on living organisms of different phylogenetic level].

    Science.gov (United States)

    Agalakova, N I; Gusev, G P

    2011-01-01

    The presented review summarizes literature data on pathways of the inorganic fluoride intake into the plant, animal, and human organisms, on its metabolism, distribution, and accumulation in the organism, forms of fluoride in biological tissues, toxic effects of fluoride on physiological and reproductive functions of living organisms of various phylogenetic groups, as well as clinical symptoms of deficient and excessive fluoride intake into the human organism.

  3. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    This work represents the investigations in imagine properties of inorganic scintillation screens as diagnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y{sub 3}Al{sub 5}O{sub 12}) and polycrystalline aluminum oxides (pure and chromium-doped Al{sub 2}O{sub 3}). Out of these groups, a selection of seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium), that were extracted from SIS18 in fast (1 μs) and slow (300-400 ms) extraction mode at a specific energy of E{sub spec}=300 MeV/u. The number of irradiating particles per pulse was varied between 10{sup 7} and 2.10{sup 10} ppp and the scintillation response was recorded by a complex optical system. The records served on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations in variations of the material structure. A data analysis was performed based on a dedicated Python script. Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman fluorescence spectroscopy) were performed after the beam times for investigations in the material structure. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation, were proven within the accuracy range of the used instrumentation and the given ion fluences. Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow extracted Nickel pulses at 2.10{sup 9} ppp and a specific energy around E{sub spec}∼300 MeV/u were performed and the

  5. Advances in Organic and Organic-Inorganic Hybrid Polymeric Supports for Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Pia Salvo

    2016-09-01

    Full Text Available In this review, the most recent advances (2014–2016 on the synthesis of new polymer-supported catalysts are reported, focusing the attention on the synthetic strategies developed for their preparation. The polymer-supported catalysts examined will be organic-based polymers and organic-inorganic hybrids and will include, among others, polystyrenes, poly-ionic liquids, chiral ionic polymers, dendrimers, carbon nanotubes, as well as silica and halloysite-based catalysts. Selected examples will show the synthesis and application in the field of organocatalysis and metal-based catalysis both for non-asymmetric and asymmetric transformations.

  6. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    Energy Technology Data Exchange (ETDEWEB)

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  7. Evaluation of inorganic and organic light-emitting diode displays for signage application

    Science.gov (United States)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the

  8. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    International Nuclear Information System (INIS)

    Zhang Bin; Chen Xudong; Ma Shaohua; Yang Jin; Zhang Mingqiu; Chen Yujie

    2010-01-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  9. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  10. Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Mayes, Melanie A.; Heal, Katherine R.; Brice, Deanne J.; Wullschleger, Stan D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200–800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r 2 = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra. - Highlights: • This research has successfully identified the organic and inorganic carbon in soil. • Multivariate analysis was used to show success in building a statistical model. • Can be used to

  11. Performance of different tomato cultivars under organic and inorganic regimes

    International Nuclear Information System (INIS)

    Ali, I.; Khattak, A. M.; Ali, M.; Ullah, K.

    2015-01-01

    To study the performance of different tomato cultivars under organic and inorganic regimes an experiment was conducted at New Developmental Farm, The University of Agriculture, Peshawar, Pakistan during the summer 2013-14. The experiment was laid out in RCBD with split plot arrangement having four replications. Organic regimes (FYM, poultry manure and mushroom compost) and inorganic (NPK) regimes were allotted to main plot, while cultivars (Roma VF, Roma, Super Classic, Bambino and Rio Grande) were subjected to sub plots. Organic and Inorganic regimes significantly (P ≤ 0.01) influenced all the studied attributes of tomato cultivars. Among different cultivars, Roma gave maximum plant survival (93.8 percentage), number of leaves plant (84.1), number of flower inflorescence (5.4), number of fruits inflorescence (4.3), number of fruit plant (25.4), fruit size (63.9 cm) fruit weight plant (9.1 kg) and total yield (22.9 t ha). However, it was closely followed by cultivar Rio Grande for number of leaves plant (79.6), number of flower inflorescence (5.1), number of fruits inflorescence (4.0) and number of fruits plant (24.9). Cultivar Super Classic produced minimum number of leaves plant (67.7), flower inflorescence (4.8), fruit size (60.6 cm), fruit weight plant (8.6 kg) and total yield (21.7 t ha). Similarly, highest plant survival (90.0 percentage), number of flower inflorescence (5.1), number of fruits inflorescence (4.0), number of fruit plant (25.4), fruit size (62.4 ml), fruit weight plant (8.90 kg) and total yield (22.9 t ha) were recorded in plants provided with organic conditions Roma cultivar performed better than other cultivars under the agro climatic condition of Peshawar followed by cultivar Rio Grande. Therefore, organic tomato production, and these two cultivars are recommended to be grown in Peshawar area. (author)

  12. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  13. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    Ravnsborg Beierholm, A.

    2011-05-01

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  14. Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites

    Science.gov (United States)

    Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard

    Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.

  15. Optical and scintillation properties of Sr7%:Ce15%:GdF.sub.3./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Kamada, K.; Yanagida, T.; Chani, V.; Aoki, K.; Yokota, Y.; Maeo, S.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 318, č. 1 (2011), s. 1175-1178 ISSN 0022-0248. [International Conference on Crystal Growth (ICCG16) /16./ and International Conference on Vapor Growth and Epitaxy (ICVGE14) /14./. Beijing, 08.08.2010-13.08.2010] Institutional research plan: CEZ:AV0Z10100521 Keywords : radiation * inorganic compounds * scintillator materials * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.726, year: 2011

  16. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  17. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J. A.; Goldblum, B. L., E-mail: bethany@nuc.berkeley.edu; Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Wender, S. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  18. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  19. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  20. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  1. Hybrid inorganic-organic membranes: Tuning pore properties by sequential grafting

    NARCIS (Netherlands)

    Sripathi, V.G.P.

    2014-01-01

    In this thesis, the synthesis of inorganic - polymeric hybrid membranes by sequential grafting is discussed, for application in gas separation. At high pressures and temperatures, organic (olymer) membranes may suffer from swelling and plasticization. Generally, this causes a reduced molecular

  2. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  3. Isotope dilution mass spectrometry of inorganic and organic substances

    International Nuclear Information System (INIS)

    Heumann, K.G.

    1986-01-01

    The aim of this short review of IDMS is to provide an introduction into the principles of this analytical method and to show possible applications of this accurate technique, e.g. negative thermal ionization IDMS for inorganic anion analysis or the analysis of organic compounds in the field of clinical chemistry. (orig./RB)

  4. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  5. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  6. High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors

    Science.gov (United States)

    Liu, Chao

    An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high

  7. Evaluation of Pollutant Loads: Organic and Inorganic in River ...

    African Journals Online (AJOL)

    This study was carried out to determine the organic and inorganic pollutant loads in River Ukoghor of the Lower Benue Basin. Grab water samples were collected from the outlet of the River into River Benue, twice a month in three replications for a period of eight months (April November, 2002) using sterilized one-litre ...

  8. Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Mushak, P.; Hall, L.L.

    1987-01-01

    Adult male and female Long Evans rats received 1 mumole of methyl ( 203 Hg) mercuric chloride per kilogram sc. Whole-body retention of mercury and excretion of organic and inorganic mercury in urine and feces were monitored for 98 days after dosing. Females cleared mercury from the body more rapidly than did males. The major route of mercury excretion was feces. By 98 days after dosing, cumulative mercury excretion in feces accounted for about 51% of the dose in males and about 54% of the dose in females. For both sexes, about 33% of the dose was excreted in feces as inorganic mercury. Cumulative excretion of organic mercury in feces accounted for about 18 and 21% of the dose in males and females, respectively. Urinary excretion of mercury was quantitatively a smaller route for mercury clearance but important sexual differences in loss by this route were found. Over the 98-day experimental period, males excreted in urine about 3.2% of the dose and females excreted 7.5%. Cumulative organic Hg excretion in urine accounted for 1.8% of the dose in males and 5.3% of the dose in females. These sexual differences in urinary and fecal excretion of organic and inorganic mercury following methyl mercury treatment were consistent with previous reports of sexual differences in mercury distribution and retention in methyl mercury-treated rats, particularly sexual differences in organic mercury uptake and retention in the kidney. Relationships between body burdens of organic or inorganic Hg and output of these forms of Hg in urine and feces were also found to be influenced by the interval after MeHg treatment and by sex. Relationship between concentration of Hg in liver and feces and in kidney and urine differed for organic and inorganic Hg and depended upon sexual status and interval after MeHg treatment

  9. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  10. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  11. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  12. Inorganic-organic nanocomposites for optical coatings

    Science.gov (United States)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  13. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  14. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  15. The First Organic-Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3.

    Science.gov (United States)

    Zhang, Yi; Liao, Wei-Qiang; Fu, Da-Wei; Ye, Heng-Yun; Liu, Cai-Ming; Chen, Zhong-Ning; Xiong, Ren-Gen

    2015-07-08

    A hybrid organic-inorganic compound, (pyrrolidinium)MnBr3 , distinguished from rare earth (RE)-doped inorganic perovskites, is discovered as a new member of the ferroelectrics family, having excellent luminescent properties and relatively large spontaneous polarization of 6 μC cm(-2) , as well as a weak ferromagnetism at about 2.4 K. With a quantum yield of >28% and emission lifetime >0.1 ms, such multiferroic photoluminescence is a suitable candidate for future applications in luminescence materials, photovoltaics, and magneto-optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of manganese salts of carboxylic acids labelled with ''54Mn and comparison with ''54 MnCl{sub 2} in liquid scintillation counting; Preparacion de sales manganosas de acidos alifaticos monocarboxilicos marcados con ''54 MnCl{sub 2} en medidas por centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Arcos Merino, J. M. los; Grau Malonda, A.

    1992-07-01

    Procedures for liquid scintillation sample preparation of manganese dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene. HISafe II. PCS, instagel. Dioxane-naphtalene and Toluene-alcohol. For comparison, Inorganic 54 MnCl-2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (Author)

  17. Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Hall, L.L.; Mushak, P.

    1988-01-01

    Seven-day-old Long Evans rats received one mumol of 203 Hg-labeled methyl mercury/kg sc and whole body retention and tissue distribution of organic and inorganic mercury were examined for 32 days postdosing. Neonates cleared mercury slowly until 10 days postdosing when the clearance rate abruptly increased. During the interval when whole body clearance of mercury was extremely slow, methyl mercury was metabolized to inorganic mercury. Peak concentration of mercury in kidney occurred at 2 days postdosing. At 32 days postdosing, 8% of mercury in kidney was in an organic from. Liver mercury concentration peaked at 2 days postdosing and organic mercury accounted for 38% at 32 days postdosing. Brain concentrations of mercury peaked at 2 days postdosing. At 10 days postdosing, organic mercury accounted for 86% of the brain mercury burden, and, at 32 days postdosing, for 60%. The percentage of mercury body burden in pelt rose from 30 to 70% between 1 and 10 days postdosing. At 32 days postdosing pelt contained 85% of the body burden of mercury. At all time points, about 95% of mercury in pelt was in an organic form. Compartmental analysis of these data permitted development of a model to describe the distribution and excretion of organic and inorganic mercury in methyl mercury-treated neonatal rats

  18. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  19. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    International Nuclear Information System (INIS)

    Bruckbauer, Jochen; Brasser, Catherine; Edwards, Paul R; Martin, Robert W; Findlay, Neil J; Skabara, Peter J; Wallis, David J

    2016-01-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs. (paper)

  20. Organic and Inorganic Fertilizers Application on NPK Uptake and Production of Sweet Corn in Inceptisol Soil of Lowland Swamp Area

    Directory of Open Access Journals (Sweden)

    Marlina Neni

    2017-01-01

    Full Text Available This study objective was to determine the dose of organic and inorganic fertilizers which can increase N, P and K nutrients uptake as well as the growth and yield of sweet corn on inceptisol soil of lowland swamp. Inceptisol soil has low soil fertility and relatively low to moderate levels of organic matter content. Application of organic fertilizer on inceptisol soil of lowland swampis expected capable to increase N, P and K nutrients as well as yield of sweet corn. This research was conducted from April to July 2014 at Experimental Farm Area of Pulau Semambu Village, Indralaya Utara Subdistrict, Ogan Ilir District, South Sumatra Province. The method used in this research was randomized block design consisting treatments as follows: 75% inorganic fertilizer + 5 ton.ha−1organic fertilizer, 50% inorganic fertilizer + 5 ton.ha−1organic fertilizer, 25% inorganic fertilizer + 5 ton.ha−1 organic fertilizer, 0% inorganic fertilizer + 5 ton.ha−1organic fertilizer with six replications. The recommended dose of inorganic fertilizerswas 200 kg.ha−1 urea, 100 kg.ha−1 SP-36 and 100 kg. ha−1 KCl. The results showed that treatment of 75% of inorganic fertilizer + 5 ton.ha−1organic fertilizer had produced N, P and K nutrients uptake with magnitude of 1.850, 0.418 and 2.374 g.plant−1 respectively as well as good growth and yield of sweet corn with magnitude of 356.36 g. plant−1or 15.21 ton ha−1.

  1. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    Directory of Open Access Journals (Sweden)

    Ratajczak Tomasz

    2017-01-01

    Full Text Available Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl and organic reagents (ethylamine, propylamine as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tension of the aqueous solution of salt and inversely proportional to the height of the foam. On the other hand, for organic reagents solutions (short chain amines, a reverse effect has been observed in relation to the inorganic compounds studied, that is the yield of copper-bearing shale flotation and the foam height were inversely proportional to the surface tension of the amine solution.

  2. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  3. Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators.

    Science.gov (United States)

    Wang, Yaxing; Yin, Xuemiao; Liu, Wei; Xie, Jian; Chen, Junfeng; Silver, Mark A; Sheng, Daopeng; Chen, Lanhua; Diwu, Juan; Liu, Ning; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2018-06-25

    The combination of high atomic number and high oxidation state in U VI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U VI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Marcus, A.H.; Mushak, P.; Hall, L.L.

    1986-01-01

    At 56 days of age, male and female Long-Evans rats received 1 μmole of 203 Hg-labeled mercuric chloride per kilogram sc and total, organic, and inorganic mercury contents and concentrations in tissues were determined for up to 98 days postdosing. When expressed on a concentration basis, the only significant sexual difference was in the higher average concentration of organic mercury in the kidneys of females. When expressed on a tissue content basis, significant male-female differences in the kinetics (sex x time interactions) of organic mercury retention were found in kidney, brain, skeletal muscle, pelt, and whole body. Significant sex x time interactions in the concentrations of organic mercury were found in kidney, skeletal muscle, and whole body. Kinetics of retention and concentration of inorganic Hg in the pelt differed significantly for males and females. Discordance of degree of statistical significance of differences in mercury contents and concentrations reflected in part differences in relative body composition of males and females. Differences in integrated exposure were estimated by the female-to-male ratio of areas under retention curves. Reconstruction of whole body organic and inorganic mercury burdens from constituent tissues indicated that integrated exposures of males and females to inorganic mercury were equal but females had a lower integrated exposure to organic mercury. Integrated exposure of liver to either form of mercury was about equal in males and females. However, the integrated exposure of the brain of females to inorganic mercury was 2.19 times that of males suggest'ing a sexual difference in accumulation or retention of inorganic mercury in the nervous system

  5. Charge-density matching in organic-inorganic uranyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krivovichev, S.V. [Saint Petersburg State Univ., Dept. of Crystallography, Faculty of Geology (Russian Federation); Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F. [Russian Academy of Sciences, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow (Russian Federation)

    2007-10-15

    Single crystals of [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}SeO{sub 4}){sub 0.85}(H{sub 2}O){sub 2} (1), [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}] (H{sub 2}SeO{sub 4}){sub 0.50}(H{sub 2}O) (2), and [C{sub 8}H{sub 20}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (H{sub 2}O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO{sub 7} and SeO{sub 4} polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} chains are separated by mixed organic-inorganic layers comprising from [NH{sub 3}(CH{sub 2}){sub 10}NH{sub 3}]{sup 2+} molecules, H{sub 2}O molecules, and disordered electroneutral (H{sub 2}SeO{sub 4}) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO{sub 2}(SeO{sub 4}){sub 2}]{sup 2-} sheet. The structure of 3 does not contain disordered (H{sub 2}SeO{sub 4}) groups but is based upon alternating [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH{sub 3}(CH{sub 2}){sub 7}CH{sub 3}]{sup +}. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in

  6. Spatio-temporal variability of inorganic and organic nutrients in five Galician rias (NW Spain

    Directory of Open Access Journals (Sweden)

    María Dolores Doval

    2013-01-01

    Full Text Available The spatial variability of inorganic (nitrate, nitrite, ammonium, phosphate and silicate and organic (dissolved organic carbon nutrients in five Galician rias (Vigo, Pontevedra, Arousa, Muros and Ares-Betanzos was assessed by considering average values for the upwelling and downwelling periods. Inner stations were significantly different from middle and outer stations, especially during the downwelling period. Spatial differences between the five rías, tested by means of a multivariate analysis, were found in both periods. The behaviour of inorganic and organic nutrient variables was also significantly different between periods with and without shellfish harvesting closures due to the occurrence of toxic phytoplankton species.

  7. Timing performance of ZnO:Ga nanopowder composite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Turtos, Rosana M. [Universita degli Studi di Milano-Bicocca, Milano (Italy); Gundacker, Stefan; Lucchini, Marco T.; Lecoq, Paul; Auffray, Etiennette [CERN, Geneva (Switzerland); Prochazkova, Lenka; Cuba, Vaclav [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Buresova, Hana [Nuvia a.s, Kralupy nad Vltavou (Czech Republic); Mrazek, Jan [Institute of Photonics and Electronics AS CR, Prague (Czech Republic); Nikl, Martin [Institute of Physics of the AS CR, Prague (Czech Republic)

    2016-11-15

    The implementation of nanocrystal-based composite scintillators as a new generation of ultrafast particle detectors is explored using ZnO:Ga nanopowder. Samples are characterized with a spectral-time resolved photon counting system and pulsed X-rays, followed by coincidence time resolution (CTR) measurements under 511 keV gamma excitation. Results are comparable to CTR values obtained using bulk inorganic scintillators. Bringing the ZnO:Ga nanocrystal's timing performance to radiation detectors could pave the research path towards sub-20 ps time resolution as shown in this contribution. However, an efficiency boost when placing nanopowders in a transparent host constitutes the main challenge in order to benefit from sub-nanosecond recombination times. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles.

    Science.gov (United States)

    Satoh, H; Saito, Y; Yabu, H

    2014-12-07

    We describe a method for creating robust and stable core-shell polymer microspheres decorated with inorganic (IO) nanoparticles (NPs) by a self-organization process and heterocoagulation using a mussel-inspired polymer adhesive layer between the IO NPs and the microspheres.

  9. Nutrient uptake of NPK and result of some rice varieties in tidal land by using combination of organic and inorganic fertilizer

    Science.gov (United States)

    Marlina, Neni; Rompas, Joni Phillep; Marlina, Musbik

    2017-09-01

    Rice planting in tidal land has two main problems: iron (Fe) which has the potential to poison rice and low nutrient availability. Azospirillum enriched chicken manure and phosphate solvent bacteria (Biological Organic Fertilizer = BOF) is an option to overcome iron toxicity and as a source of nutrition. The objective of the study was to obtain a combination of biological organic fertilizers and balanced inorganic fertilizers in reducing doses of inorganic fertilizers, increasing NPK nutrient uptake and yield of several rice varieties in tidal land. This research used Factorial RAK with 25 treatment combinations that were repeated three times. Factor I is a combination of BOF and anorganic fertilizer with 5 levels of treatment (no inorganic fertilizers, BOF 400 kg / ha with inorganic fertilizer 25% NPK, BOF 400 kg / ha with inorganic fertilizer 50% NPK and BOF 400 kg / ha with fertilizer Inorganic 75% NPK). Factor II is several rice varieties (IPB 4S, Martapura, Margasari, Inpara 5, Inpara 7). The results showed that organic fertilizer 400 kg / ha can reduce the use of inorganic fertilizer by 75% of NPK fertilizer. The highest NPK nutrient absorption is in the treatment of organic fertilizer 400 kg / ha and inorganic fertilizer 25% of NPK fertilizer. Production of biological organic fertilizer 400 kg / ha with inorganic fertilizer 25% NPK and 4B IPB varieties 727.77% higher when compared with without the provision of organic fertilizer with Inpara 5 varieties.

  10. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    David Domínguez

    2017-10-01

    Full Text Available Substituting fishmeal (FM with vegetable meal (VM can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was either not supplemented with these minerals or supplemented with inorganic, organic, or encapsulated inorganic forms of minerals in triplicate and compared to a FM-based diet. Our results showed that mineral delivery form significantly affected the biochemical composition and morphology of posterior vertebrae. Supplementation of VM-based diets with inorganic forms of the target minerals significantly promoted growth, increased the vertebral weight and content of ash and Zn, enhanced bone mineralization and affected the vertebral shape. Conversely, encapsulation of inorganic minerals reduced fish growth and vertebral mineral content, whereas supplementation of organic minerals, enhanced bone osteogenesis by upregulating bone morphogenetic protein 2 (bmp2 gene and produced vertebrae with a larger length in relation to height. Furthermore, organic mineral forms of delivery downregulated the expression of oxidative stress related genes, such as Cu/Zn superoxide dismutase (Cu/Zn sod and glutathione peroxidase 1 (gpx-1, suggesting thus that dietary minerals supplemented in the organic form could be reasonably considered more effective than the inorganic and encapsulated forms of supply.

  11. Studying the properties of the new class of organic scintillators-salicylic acid derivatives

    International Nuclear Information System (INIS)

    Mandzhukov, I.G.; Mandzhukova, B.V.; Bonchev, Ts.V.; Lazarova, G.I.

    1981-01-01

    Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, Al, Sn, NH 4 salicylates are synthesized. Their relative scintillation efficiency during irradiation with α-particles of 5.156 MeV energy (sup(239)Pu) is determined. Scintillation efficiency of salicylates has been evaluated by comparing amplitude of scintillation pulse from salicylate with pulse amplitude from anthracene and other classical scintillators. Amplitude analysis has been conducted by standard methods. The analysis of the results obtained shows that sodium salicylate has the highest relative scintillation efficiency comparable with naphthalene efficiency. Salicylates of alkali Li and K metals as well as Ca and Cd salicylates have high relative scintillation efficiency. It is concluded that the investigated salicylates can be used for detection of (n, α), (n, p) and other reactions accompanying neutron capture not only during their reactions but by measuring activity induced in the scintillator [ru

  12. New inorganic scintillation materials development for medical imaging

    CERN Document Server

    Lecoq, P

    2002-01-01

    As already advertised for several years, Lu-based compounds doped with trivalent Ce seem to be the most promising scintillators for a new generation of positron emission tomography scanners. Two crystals, namely LSO: Ce and LuAP : Ce, are under intensive study, but there is still an interest in searching for materials with a better combination of price/performance. In the study reported in this paper, we paid attention to the compounds containing rare earth and Ba, Hf. Another motivation was an increase of the effective charge of the host matrix and a decrease of the Lu fraction in compound. In this paper, we discuss spectroscopic properties of several new heavy compounds such as Lu/sub 2/Hf/sub 2/O/sub 7/, La /sub 2/Hf/sub 2/O/sub 7/ and Ba/sub 3/Lu/sub 4/O/sub 9/ doped with Ce. (22 refs).

  13. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  14. Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties

    Directory of Open Access Journals (Sweden)

    R. H. Aguirresarobe

    2017-04-01

    Full Text Available Aromatic disulfide dynamic structures were incorporated as chain extenders in waterborne organic-inorganic polyurethane hybrids in order to provide autonomic healable characteristics. The synthesis was carried out following the acetone process methodology and the influence of the introduction of the healing agents in the polymer dispersion stability was analyzed. After the crosslinking process at room temperature, organic-inorganic hybrid films, which presented autonomic healing characteristics, were obtained. These features were evaluated by means of stress-strain tests and the films showed repetitive healing abilities. Thus, the optimum healing time at room temperature (25 °C as well as the influence of different parameters in the healing efficiency, such the aromatic disulfide concentration or the physical properties of the polymer matrix were analyzed.

  15. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals.

    Science.gov (United States)

    Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei

    2018-05-09

    Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

  16. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  17. Excitonic processes and their contribution to non-proportionality observed in the light yield of inorganic scintillators

    International Nuclear Information System (INIS)

    Singh, J.; Koblov, A.

    2013-01-01

    Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the non-proportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator, remains mainly excitonic, then non-proportionality can be minimized by inventing a scintillator material with linear radiative rate > 10 7 s -1 , linear quenching rate 6 s -1 and track radius ≥ 70 nm along with maintaining the rates of other non-linear processes as discovered earlier. If one can increase the linear radiative rate to 10 9 s -1 , then the non-proportionality can be eliminated at a track radius > 20 nm. (authors)

  18. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    Science.gov (United States)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  19. Effect of organic and inorganic fertilizer on yield and chlorophyll ...

    African Journals Online (AJOL)

    The effects of amending soil with organic (poultry manure) and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolour (L.) Moench) was carried out at the Teaching and Research (T&R) Farm of the Obafemi Awolowo University, (O.A.U.) Ile - Ife, Nigeria. The experiment ...

  20. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  1. Growth and yield of onion as influenced by organic and inorganic ...

    African Journals Online (AJOL)

    Growth and yield of onion as influenced by organic and inorganic fertilizer in ... the effect of NPK 15:15:15 and poultry manure on the growth and yield of onion plant (Allium cepa L.). ... Keywords: onion, manure, harvest index, crop growth rate, ...

  2. TH-CD-201-03: A Real-Time Method to Simultaneously Measure Linear Energy Transfer and Dose for Proton Therapy Using Organic Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Alsanea, F; Therriault-Proulx, F; Sawakuchi, G; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The light generated in organic scintillators depends on both the radiation dose and the linear energy transfer (LET). The LET dependence leads to an under-response of the detector in the Bragg peak of proton beams. This phenomenon, called ionization quenching, must be corrected to obtain accurate dose measurements of proton beams. This work exploits the ionization quenching phenomenon to provide a method of measuring LET and auto correcting quenching. Methods: We exposed simultaneously four different organic scintillators (BCF-12, PMMA, PVT, and LSD; 1mm in diameter) and a plane parallel ionization chamber in passively scattered proton beams to doses between 32 and 43 cGy and fluence averaged LET values from 0.47 to 1.26 keV/µm. The LET values for each irradiation condition were determined using a validated Monte Carlo model of the beam line. We determined the quenching parameter in the Birk’s equation for scintillation in BCF-12 for dose measurements. One set of irradiation conditions was used to correlate the scintillation response ratio to the LET values and plot a scintillation response ratio versus LET calibration curve. Irradiation conditions independent from the calibration ones were used to validate this method. Comparisons to the expected values were made on both the basis of dose and LET. Results: Among all the scintillators investigated, the ratio of PMMA to BCF-12 provided the best correlation to LET values and was used as the LET calibration curve. The expected LET values in the validation set were within 2%±6%, which resulted in dose accuracy of 1.5%±5.8% for the range of LET values investigated in this work. Conclusion: We have demonstrated the feasibility of using the ratio between the light output of two organic scintillators to simultaneously measure LET and dose of therapeutic proton beams. Further studies are needed to verify the response in higher LET values.

  3. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  4. Characterisation of a LSO scintillation crystal for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Elftmann, Robert; Grunau, Jan; Kulkarni, Shrinivasrao; Martin, Cesar; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    Inorganic scintillation crystals coupled with semiconductor detectors are often used in space applications as gamma ray detectors or high energy particle calorimeters. Currently BGO (Bi{sub 4}Ge{sub 3}O{sub 12}) is widely used for this purpose because of its high stopping power, the non hygroscopy and its ruggedness, which is favorable in space applications. Cerium doped LSO (Lu{sub 2}SiO{sub 5}) offers the same benefits with higher light output capabilites and a shorter decay time. In this work a cerium doped LSO scintillation crystal coupled with a photo diode is investigated. The light yield and resolution studies for two different radioactive sources, {sup 207}Bi and {sup 60}Co, are presented. To increase the light collection and consequently the energy resolution, scintillation crystals are wrapped in highly reflective material. The increase in light collection depending on the amount of layers for the LSO crystal along with investigations of quenching effects with alpha particles and the background spectrum, which arises from radioactive cerium isotopes, are also included in this work.

  5. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  6. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Science.gov (United States)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  7. Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts

    Directory of Open Access Journals (Sweden)

    M. Song

    2017-09-01

    Full Text Available Particles containing secondary organic material (SOM are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS occurs at high relative humidity (RH (greater than  ∼  95 % in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than  ∼  95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  8. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  9. Hybrid organic-inorganic materials based on hydroxyapatite structure

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Sana Ben; Bachouâ, Hassen [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia); Gruselle, Michel, E-mail: michel.gruselle@upmc.fr [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Beaunier, Patricia [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris (France); Flambard, Alexandrine [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Badraoui, Béchir [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia)

    2017-04-15

    The present article details the formation of calcium hydroxyapatite synthesized by the hydrothermal way, in presence of glycine or sarcosine. The presence of these amino-acids during the synthetic processes reduces the crystalline growthing through the formation of hybrid organic-inorganic species The crystallite sizes are decreasing and the morphology is modified with the increase of the amino-acid concentration. - Graphical abstract: Formation of Ca carboxylate salt leading to the grafting of glycine and sarcosine on the Ca=Hap surface (R= H, CH3).

  10. Polystyrene-Core, Silica-Shell Scintillant Nanoparticles for Low-Energy Radionuclide Quantification in Aqueous Media.

    Science.gov (United States)

    Janczak, Colleen M; Calderon, Isen A C; Mokhtari, Zeinab; Aspinwall, Craig A

    2018-02-07

    β-particle emitting radionuclides are useful molecular labels due to their abundance in biomolecules. Detection of β-emission from 3 H, 35 S, and 33 P, important biological isotopes, is challenging due to the low energies (E max ≤ 300 keV) and short penetration depths (≤0.6 mm) in aqueous media. The activity of biologically relevant β-emitters is usually measured in liquid scintillation cocktail (LSC), a mixture of energy-absorbing organic solvents, surfactants, and scintillant fluorophores, which places significant limitations on the ability to acquire time-resolved measurements directly in aqueous biological systems. As an alternative to LSC, we developed polystyrene-core, silica-shell nanoparticle scintillators (referred to as nanoSCINT) for quantification of low-energy β-particle emitting radionuclides directly in aqueous solutions. The polystyrene acts as an absorber for energy from emitted β-particles and can be loaded with a range of hydrophobic scintillant fluorophores, leading to photon emission at visible wavelengths. The silica shell serves as a hydrophilic shield for the polystyrene core, enabling dispersion in aqueous media and providing better compatibility with water-soluble analytes. While polymer and inorganic scintillating microparticles are commercially available, their large size and/or high density complicates effective dispersion throughout the sample volume. In this work, nanoSCINT nanoparticles were prepared and characterized. nanoSCINT responds to 3 H, 35 S, and 33 P directly in aqueous solutions, does not exhibit a change in scintillation response between pH 3.0 and 9.5 or with 100 mM NaCl, and can be recovered and reused for activity measurements in bulk aqueous samples, demonstrating the potential for reduced production of LSC waste and reduced total waste volume during radionuclide quantification. The limits of detection for 1 mg/mL nanoSCINT are 130 nCi/mL for 3 H, 8 nCi/mL for 35 S, and <1 nCi/mL for 33 P.

  11. Optimization of detection system based on inorganic scintillation crystal coupled with a long lightguide

    CERN Document Server

    Globus, M; Ratner, M

    2002-01-01

    Operation characteristics of a scintillation crystal, linked with the photomultiplier by a long transparent lightguide, are considered (such detection systems are used for monitoring the seawater pollution, scintillation measurements in magnetic field, etc.). This system is optimized with respect to the refractive index of the liquid, coupling the crystal with the lightguide, and the roughness degree of the crystal surface. It is shown that the energy resolution of the system can be significantly improved by using the coupling liquid with a refractive index somewhat less than that of the lightguide (a difference of about 0.2 is optimal). Light output and especially energy resolution becomes better with an increase of the roughness degree of the reflecting surface.

  12. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode

    International Nuclear Information System (INIS)

    Zhang Yan-Fei; Zhao Su-Ling; Xu Zheng; Kong Chao

    2012-01-01

    In order to take advantage of organic and inorganic materials, we chose the polymer MEH-PPV as the luminous layer and ZnS as the electron transporting layer to prepare hybrid organic-inorganic light-emitting diodes (HOILEDs): ITO/MEH-PPV(∼70 nm)/ZnS(20 nm)/Al by thermal evaporation and spin coating. Compared with the single-layer device ITO/MEH-PPV(∼70 nm)/Al, spectral broadening and a slightly red shift are observed. Compared with the pure organic device ITO/MEH-PPV(∼70 nm)/BCP (20 nm)/Al and combined with the energy level structure diagram, it is concluded that the spectral broadening and red shift are due to the exciplex luminescence at the interface between MEH-PPV and ZnS or BCP. In addition, the hybrid inorganic-organic device shows a lower turn-on voltage, but the current efficiency is lower than that of the pure organic device with the same structure

  13. Silica scintillating materials prepared by sol-gel methods

    International Nuclear Information System (INIS)

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-01-01

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons

  14. An organic dye in a polymer matrix – A search for a scintillator with long luminescent lifetime

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Beierholm, Anders Ravnsborg; Andersen, Claus Erik

    2010-01-01

    Fiber-coupled organic plastic scintillators enable dose rate monitoring in conjunction with pulsed radiation sources like linear medical accelerators. The accelerator, however, generates a significant amount of stray ionizing radiation. This radiation excites the long optical fiber cable (15–20 m...

  15. Electrochemical growth of highly oriented organic-inorganic superlattices using solid-supported multilamellar membranes as templates.

    Science.gov (United States)

    Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming

    2006-02-08

    Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.

  16. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  17. Fluorescent organic dyes as radiation converters in scintillation counting and laser techniques

    International Nuclear Information System (INIS)

    Guesten, H.

    1989-01-01

    PMP (1-phenyl-3-mesityl-2-pyrazoline) was selected as color quenching from the category of the sterically hindered 1,3-diphenyl-2-pyrazoline by means of comparative optimization between photo-physical and scintillation-spectroscopic and chemical properties and the costs of synthesis. It is applied in liquid scintillation detectors for the detection of β (T, C-14) and in large-volume liquid scintillators for the detection of neutrinos (Rutherford Lab.). (HP) [de

  18. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  19. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  20. Plastic Scintillators for Pulse Shape Discrimination of Particle Types in Radiation Detection

    Science.gov (United States)

    Hajagos, Tibor Jacob

    Organic scintillators have a long history in the field of radiation detection, dating back to some of the earliest studies of organic photophysics and optoelectronic properties. In particular, plastics have come to dominate the commercial market for organic scintillators, due to their low cost and ease of use and manufacturing, and more notably in spite of their poorer performance in many metrics. While there has been decades of active research since their inception, little progress has been made to improve upon the now well established compositions of commercial plastics, a notable exception being the recent development of plastic scintillators capable of pulse shape discrimination (PSD) of n/gamma radiation, which is of particular interest among governments and industry for the detection of illicit nuclear material and weapons. In recent years, much attention has been paid towards the study of luminescent organic materials, in particular due to the invention and widespread adoption of organic light emitting diode (OLED) based electronic devices, and the knowledge and lessons that have been fundamental to such fields have recently begun to be adopted by the organic scintilator community. In this work, new approaches to the design of both plastic scintillator components, and of the materials as a whole, are described, with particular emphasis paid towards the design and synthesis of small molecule scintillating dyes that are specifically tailored towards the development of PSD-capable plastic scintilators. In the first of these approaches, the design and synthesis of a highly soluble and polymerizable derivative of 9,10-diphenylanthracene is described, and the properties of plastic scintilators fabricated from this dye when copolymerized with poly(vinyl toluene) were investigated. This particular approach was used to demonstrate a proof-of-concept of PSD in highly loaded plastics stabilized through copolymerization of the primary dye, a strategy conceived to

  1. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    OpenAIRE

    Ratajczak Tomasz

    2017-01-01

    Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl) and organic reagents (ethylamine, propylamine) as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tensio...

  2. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Bober, Patrycja; Kotek, Jiří; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1020-1027 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626; GA AV ČR(CZ) IAAX08240901 Institutional support: RVO:61389013 Keywords : polyaniline * montmorillonite * organic-inorganic composite Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  3. R&D on scintillation materials for novel ionizing radiation detectors for High Energy Physics, medical imaging and industrial applications

    CERN Multimedia

    Chipaux, R; Rinaldi, D; Boursier, Y M; Vasilyev, A; Tikhomirov, V; Morel, C; Choi, Y; Tamulaitis, G

    2002-01-01

    The Crystal Clear Collaboration (CCC) was approved by the Detector R&D Committee as RD18 in 1990 with the objective of developing new inorganic scintillators suitable for crystal electromagnetic calorimeters of LHC experiments. From 1990 to 1994, CCC made an intensive investigation for the quest of the most adequate ideal scintillator for the LHC; three main candidates were identified and extensively studied : CeF$_{3}$, PbWO$_{4}$ and heavy scintillating glasses. Lead tungstate was chosen by CMS and ALICE as the most cost effective crystal compliant to LHC conditions. Today 76648 PWO crystals are installed in CMS and 17920 in ALICE. After this success Crystal clear has continued its investigation on new scintillators and the understanding of scintillation mechanisms and light transfer properties in particular : The understanding of cerium ion as activator, The development of LuAP, LuYAP crystals for medical imaging applications, (CERN patent) Investigation of Ytterbium based scintillators for solar ne...

  4. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  5. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors

    International Nuclear Information System (INIS)

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-01-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/ 6 LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/ 6 LiF configurations reliably identify 6 Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  6. Liquid scintillation counting techniques for the determination of some alpha emitting actinides: a review

    International Nuclear Information System (INIS)

    Mirashi, N.N.; Chander, Keshav; Aggarwal, S.K.

    2000-12-01

    The present report is a review of the work on liquid scintillation counting techniques, for the determination of alpha emitting actinides like uranium, plutonium, americium etc; for the last three decades (1970-1999). It covers the progress that has taken place in conventional liquid scintillation counting employing various solvents, scintillators and extractants. There is gradual development in instrumentation from integral counting of alpha emitters to alpha liquid scintillation spectrometry to resolve and identify different alpha emitters. These advancements have led to Pulse Shape Analysis (PSA) and Photon Electron Rejecting Alpha Liquid Scintillation Spectrometry (PERALS) techniques for the determination of the alpha emitters in the presence of beta and gamma activity. These techniques allow the determination of actinides at very low levels which has increased their applications to almost all the fields of chemistry; be it biomedical, environmental, geological or process chemistry of nuclear fuels. The development of biphasic technique using various extractants to separate different elements and counting in presence of one another has been made possible. Inorganic scintillators have been recently developed which have the advantage of eliminating effects of quenching and presence of beta/gamma emitting actinides. This review will serve as a reference to those who want to carry out work in the field of determination of actinides using liquid scintillation counting techniques. (author)

  7. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  8. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells

    Science.gov (United States)

    Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung

    2018-02-01

    The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.

  9. Comparative effect of organic and inorganic selenium supplementation on selenium status in camel

    Directory of Open Access Journals (Sweden)

    B. Faye

    2014-04-01

    Full Text Available Selenium deficiency is widely described in livestock from the Arabian Peninsula, notably in the camel, and selenium supplementation is based on cattle or horse requirements, usually with sodium selenite product. In order to test the effect of organic Se supplementation vs inorganic Se, 24 pregnant camels were subjected to 3 treatment groups starting one month before delivery (control without Se, non-organic bolus, organic Se. Blood, milk and feces samples were collected from one month before delivery to 3 months of lactation. At delivery, the organic group had a significant higher Se concentration (P < 0.01 in serum (8.21 ± 1.38 μg/100 mL and in colostrum (7.27 ± 2.89 μg/100 mL than in inorganic group (3.90 ± 0.68 and 3.72 ± 0.71, respectively and than in control group (5.45 ± 2.38 and 2.70 ± 0.66, respectively. In calf serum, the Se concentration was significantly higher (P < 0.001 in the two supplemented groups (6.32 ± 2.81 and 5.99 ± 3.31 μg/100 mL in organic and inorganic groups, respectively than in control (3.42 ± 1.41 μg/100 mL. The Se in mother serum decreased after parturition but was highly correlated to Se serum in calf and to Se fecal excretion. Se in milk was lower than in colostrum in all groups (P < 0.01. Treatments had no significant effect on somatic cell count. This study revealed that organic supplementation in camel appeared more efficient.

  10. Inorganic Nitrogen Leaching from Organic and Conventional Rice Production on a Newly Claimed Calciustoll in Central Asia

    DEFF Research Database (Denmark)

    Meng, Fanqiao; Olesen, Jørgen E; Sun, Xiangping

    2014-01-01

    flooded organic and conventional paddies, and inorganic N (NH4-N+NO3-N) was analyzed. Two high-concentration peaks of NH4-N were observed in all treatments: one during early tillering and a second during flowering. A third peak at the mid-tillering stage was observed only under conventional fertilization....... NO3-N concentrations were highest at transplant and then declined until harvest. At the 50 cm soil depth, NO3-N concentration was 21–42% higher than NH4-N in percolation water from organic paddies, while NH4-N and NO3-N concentrations were similar for the conventional and control treatments....... At the depth of 180 cm, NH4-N and NO3-N were the predominant inorganic N for organic and conventional paddies, respectively. Inorganic N concentrations decreased with soil depth, but this attenuation was more marked in organic than in conventional paddies. Conventional paddies leached a higher percentage...

  11. Crosslinked plastic scintillators: A new detection system for radioactivity measurement in organic and aggressive media

    International Nuclear Information System (INIS)

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F.

    2014-01-01

    Highlights: • A crosslinked plastic scintillatior for radioactivity measurement was developed. • The effect of C-PS composition in the detection efficiency was evaluated. • C-PS permits the measurement of radioactivity in organic and aggressive media. • C-PS exhibits high detection efficiency in water and even higher in organic media. • C-PS exhibits good reproducibility under different polymerisations with elevated yield. - Abstract: The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values

  12. Reactivity III: An Advanced Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jakubowski, Henry V.

    2017-01-01

    Reactivity III is a new course that presents chemical reactions from the domains of organic, inorganic, and biochemistry that are not readily categorized by electrophile-nucleophile interactions. Many of these reactions involve the transfer of a single electron, in either an intermolecular fashion in the case of oxidation/reduction reactions or an…

  13. Effect of salt stress on growth and contents of organic and inorganic ...

    African Journals Online (AJOL)

    Effect of salt stress on growth and contents of organic and inorganic compounds in noni ( Morinda citrifolia L.) ... seedlings at 1, 10, 20, 30 and 40 days of salt stress in a 5 x 2 completely randomized experimental design. ... from 32 Countries:.

  14. Effect of combined application of organic P and inorganic N ...

    African Journals Online (AJOL)

    A study was undertaken to assess the effect of combined application of organic-P and inorganic-N fertilizers on post harvest quality of carrot (Daucus carota l.) stored at 1°C and ambient conditions (8.6 - 24.8°C). For the fertilizer treatments, 309 kg orga ha-1 (for P) in combination with each of six rates of urea (0, 68.5, 267.2, ...

  15. Recent R&D trends in inorganic single crystal scintillator materials for radiation detection

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Yoshikawa, A.

    2015-01-01

    Roč. 3, č. 4 (2015), s. 463-481 ISSN 2195-1071 R&D Projects: GA MŠk(CZ) LH14266; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * single crystal * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.359, year: 2015

  16. Polyurea-Based Aerogel Monoliths and Composites

    Science.gov (United States)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  17. Three inorganic-organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with charaterizations of diffuse reflectance spectra

    International Nuclear Information System (INIS)

    Liu Bing; Xu Ling; Guo Guocong; Huang Jinshun

    2006-01-01

    The reactions of two kinds of substituted 1,2,4-triazoles with BiI 3 yielded three inorganic-organic hybrids: [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1) (L1=3-(1,2,4-triazole-4-yl)-1H-1,2,4-triazole); [HL2] 4 [Bi 6 I 22 ].6H 2 O (2); [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) (L2=(m-phenol)-1,2,4-triazole). Both 1 and 2 have polynuclear anions of [Bi 6 I 22 ] 4- to build up the inorganic layers and substituted 1,2,4-triazoles as the organic layers. Hybrid 3 consists of two BiI 5 square pyramids as inorganic layers. There exist hydrogen bondings and I...;I interactions in the structures of 1, 2 and 3. Optical absorption spectra of 1, 2 and 3 reveal the presence of sharp optical gaps of 1.77, 1.77 and 2.07 eV, respectively, suggesting that these materials behave as semiconductors. - Graphical abstract: The reactions of two kinds of the substituted 1,2,4-triazoles with BiI 3 yielded three layered inorganic-organic hybrids [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1), [HL2] 4 [Bi 6 I 22 ].6H 2 O (2), [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) with optical gaps of 1.77, 1.77 and 2.07 eV, respectively. The structures of 1-3 are constructed from inorganic layers of polynuclear anions of bismuth iodine and organic layers of the substituted 1,2,4-triazoles

  18. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    Science.gov (United States)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  19. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  20. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  1. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  2. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  3. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4

    Science.gov (United States)

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.

    2013-02-01

    Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.

  4. Measurements of the proton light output function of the organic liquid scintillator NE213 in several detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Adams, J.M.; Bond, D.S.; Croft, S; Jarvis, O.N. E-mail: onj@jet.uk; Watkins, N

    2002-01-01

    When using an organic liquid scintillator such as NE213 for neutron spectrometry, the light output as a function of proton energy is needed in order to unfold the neutron spectrum from the scintillator's pulse height distribution. We have measured this function for several detectors over the range 1.5-16 MeV approximately, using monoenergetic neutrons from the Harwell 5 MV Van de Graaff accelerator. Results were obtained for a wide variety of sizes and shapes of the scintillator cell, and were found to be essentially in agreement within errors. The results were also compared with those of several other workers (amongst whom there is considerable disagreement). Below 10 MeV, there is excellent agreement with one worker and moderate or poor agreement with others; above 10 MeV, agreement is moderate in all cases. We conclude that workers wishing to unfold neutron spectra from NE213 pulse height distributions would be advised to make measurements with their own particular detector configuration, rather than use published functions.

  5. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    Science.gov (United States)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  6. Radioactivity measurement of barium carbonate [14C] by liquid scintillation counting

    International Nuclear Information System (INIS)

    Kobayashi, Katsutoshi; Hoizumi, Kiyoshi

    1985-03-01

    Two methods of sample preparation for the measurement of specific activity of BaCO 3 [ 14 C] by external standard method in liquid scintillation counting were studied. BaCO 3 [ 14 C] was decomposed by perchloric acid solution and generated CO 2 [ 14 C] was absorbed by ethylene glycol monomethyl ether solution of monoethanolamine as the method 1 or aqueous sodium hydroxide as the method 2. In order to prepare the sample solution of adequate radioactivity concentration, these carbonate solutions by the methods 1 and 2 were diluted with the suitable organic solvent and distilled water respectively. One tenth millilitre of these sample solutions was added into 10 ml of PPO-toluene scintillator containing 0.1 ml of monoethanolamine in a counting vial and homogeneously dissolved with ethyl alcohol. The results of the radioactivity measurement of BaCO 3 [ 14 C] based on the different method agreed within 5 % and the counting rate was found to be stable for as long as 7 deays or more. Both methods of preparation are suitable for the routine measurement because of their simplicity and feasibility. In the case of method 2, the liquid radioactive waste is almost inorganic solution and recovery in the form of BaCO 3 [ 14 C] is easily performed, so that this method is very advantageous from the view point of the radioactive waste treatement. (author)

  7. Role of microbes associated with organic and inorganic substrates in phosphorus spiralling in a woodland stream

    International Nuclear Information System (INIS)

    Elwood, J.W.; Newbold, J.D.; O'Neill, R.V.; Stark, R.W.; Singley, P.T.

    1980-01-01

    Laboratory and field experiments were conducted to determine if nutrient spiralling is primarily a biological process. The experiments were conducted to examine the role of microbial uptake and abiotic sorption onto organic and inorganic substrates in the uptake of PO 4 -P in Walker Branch, a small, first-order woodland stream in east Tennessee, to estimate the total, microbial, and adsorptive pool sizes of exchangeable phosphorus associated with five particulate organic matter from this stream, and to measure the turnover rate of PO 4 -P by live and sterile inorganic substrates in Walker Branch

  8. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  9. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  10. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  11. Role of surfactant on thermoelectric behaviors of organic-inorganic composites

    Science.gov (United States)

    Shin, Sunmi; Roh, Jong Wook; Kim, Hyun-Sik; Chen, Renkun

    2018-05-01

    Hybrid organic/inorganic composites have recently attracted intensive interests as a promising candidate for flexible thermoelectric (TE) devices using inherently soft polymers as well as for increasing the degree of freedom to control TE properties. Experimentally, however, enhanced TE performance in hybrid composites has not been commonly observed, primarily due to inhomogeneous mixing between the inorganic and organic components which leads to limited electrical conduction in the less conductive component and consequently a low power factor in the composites compared to their single-component counterparts. In this study, we investigated the effects of different surfactants on the uniformity of mixing and the TE behaviors of the hybrid composites consisting of Bi0.5Sb1.5Te3 (BST) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We found that compared to dimethyl sulfoxide, which is the most widely used surfactant, Triton X-100 (TX-100) can lead to homogenous dispersion of BST in PEDOT:PSS. By systematically studying the effects of the surfactant concentration, we can attribute the better mixing capability of TX-100 to its non-ionic property, which results in homogenous mixing with a lower critical micelle concentration. Consequently, we observed simultaneous increase in electrical conductivity and Seebeck coefficient in the BST/PEDOT:PSS composites with the TX-100 surfactant.

  12. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ibrahim Abdullah; Eda Yuhana Ariffin

    2009-01-01

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  13. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  14. Scintillating fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  15. Photostabilisation of the 'wood-clearcoatings' systems with UV absorbers: correlation with their effect on the glass transition temperature

    International Nuclear Information System (INIS)

    Aloui, F; Ahajji, A; Irmouli, Y; George, B; Charrier, B; Merlin, A

    2006-01-01

    In an application-oriented study, the effective transition temperature T g of organic wood-clearcoatings between a hard, glassy state and a viscoelastic and rubbery state is measured. The value of T g is important in the eventual development of cracks and a thermomechanical analysis is used to study the photostabilisation performance of some UV absorbers. A weathering exposure test suggests that certain organic UV absorbers have quite a low T g and may inhibit the crack formation, in contrast with inorganic UV absorbers

  16. Photostabilisation of the 'wood-clearcoatings' systems with UV absorbers: correlation with their effect on the glass transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aloui, F [Laboratoire d' Etude et de Recherches sur le Materiau Bois LERMAB UMR-A1093 INRA/ENGREF/UHP - Faculte des Sciences et Techniques, BP 239 - 54506 Vandoeuvre les Nancy (France); Ahajji, A [Laboratoire d' Etude et de Recherches sur le Materiau Bois LERMAB UMR-A1093 INRA/ENGREF/UHP - Faculte des Sciences et Techniques, BP 239 - 54506 Vandoeuvre les Nancy (France); Irmouli, Y [Laboratoire d' Etude et de Recherches sur le Materiau Bois LERMAB UMR-A1093 INRA/ENGREF/UHP - Faculte des Sciences et Techniques, BP 239 - 54506 Vandoeuvre les Nancy (France); George, B [Laboratoire d' Etude et de Recherches sur le Materiau Bois LERMAB UMR-A1093 INRA/ENGREF/UHP - Faculte des Sciences et Techniques, BP 239 - 54506 Vandoeuvre les Nancy (France); Charrier, B [IUT des Pays de l' Adour, Departement SGM-Bois, 371, rue du ruisseau, 40004 Mont de Marsan (France); Merlin, A [Laboratoire d' Etude et de Recherches sur le Materiau Bois LERMAB UMR-A1093 INRA/ENGREF/UHP - Faculte des Sciences et Techniques, BP 239 - 54506 Vandoeuvre les Nancy (France)

    2006-05-15

    In an application-oriented study, the effective transition temperature T{sub g} of organic wood-clearcoatings between a hard, glassy state and a viscoelastic and rubbery state is measured. The value of T{sub g} is important in the eventual development of cracks and a thermomechanical analysis is used to study the photostabilisation performance of some UV absorbers. A weathering exposure test suggests that certain organic UV absorbers have quite a low T{sub g} and may inhibit the crack formation, in contrast with inorganic UV absorbers.

  17. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  18. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  19. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  20. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  1. High-Z organic-scintillation solution

    International Nuclear Information System (INIS)

    Berlman, I.B.; Fluornoy, J.M.; Ashford, C.B.; Lyons, P.B.

    1983-01-01

    In the present experiment, an attempt is made to raise the average Z of a scintillation solution with as little attendant quenching as possible. Since high-Z atoms quench by means of a close encounter, such encounters are minimized by the use of alkyl groups substituted on the solvent, solute, and heavy atoms. The aromatic compound 1,2,4-trimethylbenzene (pseudocumene) is used as the solvent; 4,4''-di(5-tridecyl)-p-terphenyl (SC-180) as the solute; and tetrabutyltin as the high-Z material. To establish the validity of our ideas, various experiments have been performed with less protected solvents, and heavy atoms. These include benzene, toluene, p-terphenyl, bromobutane, and bromobenzene

  2. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    International Nuclear Information System (INIS)

    Ahmad, Shahab; Vijaya Prakash, G.; Baumberg, Jeremy J.

    2013-01-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C 12 H 25 NH 3 ) 2 PbI 4(1−y) Br 4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices

  3. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  4. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  5. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Science.gov (United States)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  6. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  7. Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.

    2018-01-01

    We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.

  8. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  9. Scintillating fibres

    International Nuclear Information System (INIS)

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  10. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  11. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  12. Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

    CERN Document Server

    Kamae, T; Isobe, N; Kokubun, M; Kubota, A; Osone, S; Takahashi, T; Tsuchida, N; Ishibashi, H

    2002-01-01

    Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cmx4.5phi cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5x5x5 mm sup 3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtaine...

  13. A comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars

    2008-01-01

    Radioluminescence (RL) from aluminium oxide (Al2O3:C) crystals and organic scintillators such as the blue-emitting BCF-12 can be used for precise real-time dose rate measurements during radiation therapy of cancer patients. Attaching the dosimeters to thin light-guiding fiber cables enables in vivo...... use. The light signal is detected by a photomultiplier tube (PNIT). Unfortunately Cerenkov light and fluorescence are also generated in the fiber cable itself during irradiation, and this so-called stem effect can be significant compared with the dosimeter signal. In the case of Al2O3:C, this problem...... can be circumvented for pulsed beams due to the long life-time of the main luminescence center. In contrast, chromatic removal seems to be the most effective method for organic scintillators, but is found to yield some experimental complexities. In this paper, we report on dose rate measurements using...

  14. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    Science.gov (United States)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  15. Productivity analysis of sesame (Sesamum indicum L.) production under organic and inorganic fertilizers applications in Doma Local Government Area, Nasarawa State, Nigeria

    OpenAIRE

    Umar, H. S.; Okoye, C. U.; Agwale, A. O

    2011-01-01

    The study assessed productivity levels of sesame farms under organic and inorganic fertilizers applications in Doma Local Government Area of Nasarawa State. Multi-stage random sampling was used in selecting 96 sesame farmers; made up of 48 organic and 48 inorganic fertilizers users. Data were collected through structured questionnaire and analyzed using Total Factor Productivity Analysis, OLS Regression Analysis and Gross Margin Analysis. Results show that sesame farmers who applied inorganic...

  16. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

    International Nuclear Information System (INIS)

    Baburin, I.A.; Blatov, V.A.; Carlucci, L.; Ciani, G.; Proserpio, D.M.

    2005-01-01

    Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi-Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined

  17. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  18. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Directory of Open Access Journals (Sweden)

    Nayoung Park

    2018-04-01

    Full Text Available We demonstrate thermally assisted hopping (TAH as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  19. Hybrid Organic-Inorganic Perovskite Photodetectors.

    Science.gov (United States)

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic phase transition in layered inorganic-organic hybrid (C12H25NH3)2CuCl4

    Science.gov (United States)

    Bochalya, Madhu; Kumar, Sunil; Kanaujia, Pawan K.; Prakash, G. Vijaya

    2018-05-01

    Inorganic-organic (IO) hybrids are material systems which have become an interesting theme of research for physicist and chemists recently due to the possibility of engineering specific magnetic, thermal or optoelectronic properties by playing around with the transition metal, halides and the organic components. Our experiments on (C12H25NH3)2CuCl4 show that the system exhibits a long range ferromagnetic order below ˜11 K. In such an inorganic-organic hybrid system, Jahn-Teller distortion of the copper ions results into a weak ferromagnetic order as compared to the antiferromagnetic spin-spin exchange in the pure inorganic CuCl2 compound. Moreover, this particular hybrid system also exhibits photoluminescence when excited below absorption maximum related to charge transfer peak though the effect is much weaker as compared to that in extensively studied other MX4-based (M = Sn, Pb; X = Cl, Br, I) counterparts.

  1. Hygroscopic properties of organic and inorganic aerosols[Dissertation 17260

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, N O Staffan

    2007-07-01

    The atmosphere contains gases and particulate matter (aerosol). Organic material is present both in the gas phase and in the aerosol phase. Biogenic sources such as vegetation and anthropogenic sources such as biomass burning, fossil fuel use and various industries contribute to their emissions. The study of organic compounds in aerosol particles is of importance because they affect the water uptake (hygroscopicity) of inorganic aerosol, and hence the radiation budget of the Earth through the direct and indirect aerosol effects. The hygroscopicity of mixed organic/inorganic aerosol particles produced in the laboratory was characterized. This work reports on the following substances, and mixtures of them with ammonium sulfate (AS): adipic acid (AA), citric acid (CA), glutaric acid (GA) and humic acid sodium salt (NaHA). The AA and NaHA mixtures with AS were found to require up to tens of seconds for equilibrium water content to be reached. Therefore, measurements carried out on timescales shorter than a few seconds underestimate the hygroscopic growth factor (GF) with up to 10%, for samples containing a solid phase. Conversely, the GA and CA mixtures with AS were found to take up water readily and were well described by the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The distinct deliquescence and efflorescence points of AS could be seen to gradually disappear as the CA content was increased. Furthermore mineral dust (standard Arizona test dust) was investigated, as well as the influence of nitric acid (HNO{sub 3}) uptake thereon. Mineral dust is hydrophobic, but after processing with HNO{sub 3} turns slightly hygroscopic. Large amounts of dust are injected to the atmosphere (largely from the Sahara and the Gobi deserts, but also from human land-use). Mineral dust is important as ice nuclei, and due to its larger sizes it can also contribute as cloud condensation nuclei. Mineral dust also offers surface for heterogeneous chemistry, and can play an important role

  2. Control of the interphase interaction and morphology in the organic-inorganic polymer nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Matějka, Libor; Murias, Piotr

    2010-01-01

    Roč. 4, č. 10 (2010), s. 45-50 ISSN 1934-8959 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic polymer * interphase interaction * nanocomposite Subject RIV: CD - Macromolecular Chemistry http://www.davidpublishing.com

  3. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  4. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new

  5. Hybrid-organic photodetectors for radiography. Final report

    International Nuclear Information System (INIS)

    Schmidt, Oliver; Bonrad, Klaus; Adam, Jens; Kraus, Tobias; Gimmler, Christoph

    2016-02-01

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  6. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    Science.gov (United States)

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  7. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  8. Photostability of 2D Organic-Inorganic Hybrid Perovskites

    Directory of Open Access Journals (Sweden)

    Yi Wei

    2014-06-01

    Full Text Available We analyze the behavior of a series of newly synthesized (R-NH32PbX4 perovskites and, in particular, discuss the possible reasons which cause their degradation under UV illumination. Experimental results show that the degradation process depends a lot on their molecular components: not only the inorganic part, but also the chemical structure of the organic moieties play an important role in bleaching and photo-chemical reaction processes which tend to destroy perovskites luminescent framework. In addition, we find the spatial arrangement in crystal also influences the photostability course. Following these trends, we propose a plausible mechanism for the photodegradation of the films, and also introduced options for optimized stability.

  9. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  10. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  11. Laser microprobe mass spectrometry: Potential and limitations for inorganic and organic micro-analysis. Pt. 2

    International Nuclear Information System (INIS)

    Vaeck, I. van; Gijbels, R.

    1990-01-01

    Laser microprobe mass spectrometry (LMMS) employs a highly focused UV laser beam to ionise a microvolume in the order of 1 μm 3 . The produced ions are then mass-separated in a time-of-flight (TOF) or a Fourier Transform (FT) mass spectrometer. The technique allows element localisation, detailed speciation of inorganic substances and structural information of organic molecules. Inorganic applications are treated in the preceding part. This paper will focus on the organic aspects. Selected examples illustrate that TOF LMMS can achieve structural characterisation of molecules, untractable by conventional mass spectrometric techniques. Applicability to the analysis with high spatial resolution is shown and the need for surface availability of organic target molecules is discussed. The recently developed FT LMMS may fulfil the need for better mass resolution. However, the comparability of FT LMMS results with TOF LMMS data is not yet obvious. (orig.)

  12. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

    Science.gov (United States)

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun

    2017-07-18

    Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

  13. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-09-01

    Full Text Available Positive matrix factorization (PMF was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA and cooking OA (COA factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69. Two semi-volatile oxygenated OA (OOA factors, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA, were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox(= O3 + NO2. The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both

  14. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  15. Method for determination of radon-222 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Suomela, J.

    1993-06-01

    The procedure for the determination of radon-222 by liquid scintillation counting is quite specific for this radionuclide. Radon-222 is extracted readily from the water sample by an organic scintillant. The decay products of radon-222 will remain in the water phase whilst radon-222 will be extracted into the organic phase. Before measurement the sample is stored for three hours until equilibrium is reached between radon-222 and its alpha emitting decay products. The alpha activity from radon-222 and its decay products is measured in a liquid scintillation counter

  16. Laser microprobe mass spectrometry: Potential and limitations for inorganic and organic micro-analysis. Pt. 1

    International Nuclear Information System (INIS)

    Vaeck, I. van; Gijbels, R.

    1990-01-01

    Laser microprobe mass spectrometry (LMMS) employs a highly focused UV laser beam to ionise a microvolume in the order of 1 μm 3 . The ions produced are then mass-separated in a time-of-flight (TOF) or a Fourier Transform (FT) mass spectrometer. TOF LMMS allows element localisation, detailed speciation of inorganic substances and structural information of organic molecules. Quantitation is difficult. This paper focuses on instrumental aspects and inorganic analysis. Organic applications are treated in part II of this series. Selected examples illustrate that TOF LMMS is a valuable tool for the qualitative characterisation of micro-samples. Also, the applicability to the analysis with high spatial resolution is shown. The current technology and the prospects from the recent FTMS development are discussed. (orig.)

  17. Influence of sampling properties of fast-waveform digitizers on neutron−gamma-ray, pulse-shape discrimination for organic scintillation detectors

    International Nuclear Information System (INIS)

    Flaska, Marek; Faisal, Muhammad; Wentzloff, David D.; Pozzi, Sara A.

    2013-01-01

    One of the most important questions to be answered with regard to digital pulse-shape discrimination (PSD) systems based on organic scintillators is: What sampling properties are required for a fast-waveform digitizer used for digitizing neutron/gamma-ray pulses, while an accurate PSD is desired? Answering this question is the main objective of this paper. Specifically, the paper describes the influence of the resolution and sampling frequency of a waveform digitizer on the PSD performance of organic scintillators. The results presented in this paper are meant to help the reader choosing a waveform digitizer with appropriate bit resolution and sampling frequency. The results presented here show that a 12-bit, 250-MHz digitizer is a good choice for applications that require good PSD performance. However, when more accurate PSD performance is the main requirement, this paper presents PSD figures of merit to qualify the impact of further increasing either sampling frequency or resolution of the digitizer

  18. Reactivity II: A Second Foundation-Level Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; McIntee, Edward J.; Jones, T. Nicholas; Johnson, Brian J.

    2016-01-01

    A foundation-level course is described that integrates material related to reactivity in organic, inorganic, and biochemistry. Designed for second-year students, the course serves majors in chemistry, biochemistry, and biology, as well as prehealth-professions students. Building on an earlier course that developed concepts of nucleophiles and…

  19. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  20. Organic and inorganic selenium in Aseel chicken diets: Effect on hatching traits.

    Science.gov (United States)

    Khan, M T; Mahmud, A; Zahoor, I; Javed, K

    2017-05-01

    A study was conducted to evaluate the effect of dietary selenium (Se) sources (organic and inorganic Se at 0.30 ppm and basal diet at 0 ppm level of supplemented Se) on hatching traits in four varieties of Aseel chicken, Lakha, Mushki, Peshawari, and Mianwali. In total, 84 adult molted hens (50 wk old), 21 from each variety, were randomly assigned to 12 treatment groups in a 3 (Se diets) × 4 (Aseel varieties) factorial arrangement under a randomized complete block design. Each treatment was replicated 7 times with individual hens in each. Settable egg, fertility, hatch of fertile eggs, hatchability, A-grade chick, and embryonic mortality parameters were evaluated. The results indicated that the birds fed an organic Se supplemented diet had greater (P < 0.05) settable eggs, fertility, hatch of fertile eggs, hatchability, and A-grade chicks and reduced embryonic mortality than those fed inorganic or no Se. Among varieties, Mushki had lower (P < 0.05) fertility, hatch of fertile eggs, hatchability, and A-grade chicks than rest of three varieties. Interaction of Se sources and varieties indicated that dietary organic Se supplementation improved (P < 0.05) hatch of fertile eggs in Peshawari and Mianwali, whereas hatchability only in Peshawari variety and reduced embryonic mortality in Mianwali. It was concluded that dietary supplementation of organic Se could be used to improve hatching traits as well as reduce embryonic mortality in native Aseel chicken. © 2016 Poultry Science Association Inc.

  1. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    Science.gov (United States)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  2. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  3. Inorganic elements and organic compounds degradation studies by gamma irradiation in used lubricating oils

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio

    2008-01-01

    The automotive lubricating oils have partial degradation of organic compounds and addition of undesirable inorganic elements, during its use. These substances classify the used lubricating oils as dangerous and highly toxic. According to global consensus, concerning the environmental conservation, the best is to perform a reuse treatment of these lubricating oils. For this purpose, the uses of an alternative and effective technology have been sought. In this work, the efficacy and technical feasibility of the advanced oxidation process (AOP), by gamma radiation, for used automotive lubricating oil treatment has been studied. Different quantities of hydrogen peroxide and water Milli-Q were added to oil samples. They were submitted to the Cobalt-60 irradiator, type Gammacell, with 100, 200 and 500 kGy absorbed doses. The inorganic analysis by X-ray fluorescence (WDXRF) showed inorganic elements removal, mainly to sulphur, calcium, iron and nickel elements at acceptable levels by environmental protection law for oils reusing. The gas chromatography (GC/MS) analysis showed that the advanced oxidation process promotes the organic compounds degradation. The main identified compounds were tridecane, 2-methyl-naphthalene, and trietilamina-tetramethyl urea, which have important industrial applications. The multivariate analysis, Cluster Analysis, showed that advanced oxidation process application is a viable and promising treatment for used lubricating oil reusing. (author)

  4. Use of liquid scintillation counting for quantitative analysis of volatile organic compounds in batch isotherm analysis

    International Nuclear Information System (INIS)

    Wickman, D.C.

    1987-01-01

    An estimate of how rapidly hazardous wastes move through subsurface soils via ground water is important to predict the location and concentration of the contaminant plume vs. time. The contaminated ground water system may be viewed as an HPLC column with the organic components of the waste in adsorption/desorption equilibrium with the subsurface soil. The batch isotherm method was chosen to determine the equilibrium constant between trichloroethylene, o-dichlorobenzene, 1-methyl naphthalene and aquifer materials obtained from various locations around the country. Liquid Scintillation counting has been found to be an excellent technique for batch isotherm analysis; using 14C labeled compounds, it affords unattended analysis, accuracy at very low concentrations and rapid data reduction. Ten ml serum containing about 5 ml water and a known weight of soil (approximately 2 grams) were spiked with the labeled solution to yield organic solute concentrations in the range of 0.02-1.0 mg/1. Six different concentrations were used. After spiking, the bottles were filled to the top with water and crimp sealed with teflon coated septa. All soil containing bottles were then rotated at 50 rpm and 22 degrees Celsius. Twenty-four hours later the bottles were uncapped and a 1.4 ml aliquot was removed and placed in scintillation cocktail and counted

  5. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  6. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  7. Absorption and retention of inorganic and organically incorporated technetium-95 by rats and guinea pigs

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Graham, T.M.; Cataldo, D.A.; Schreckhise, R.G.

    1978-01-01

    Transport of /sup 95m/Tc, administered in both an inorganic and organically incorporated form, was measured across the gastrointestinal tracts of rats and guinea pigs. Absorption of Tc incorporated in animal tissue was about half that of inorganic pertechnitate administered by gavage. The form in which it was administered did not alter elimination rates. When Tc was administered to newborn rats by gavage, 50% remained in carcasses at 1 wk, mostly associated with the pelt, whereas only about 10% was retained by adults

  8. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  9. Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

    International Nuclear Information System (INIS)

    Nie Shanshan; Zhang Yaobin; Liu Bin; Li Zuoxi; Hu Huaiming; Xue Ganglin; Fu Feng; Wang Jiwu

    2010-01-01

    Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C 22 H 18 N 3 S] 2 Mo 6 O 19 2DMF (1) and [C 22 H 18 N 3 S] 2 W 6 O 19 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations. Display Omitted

  10. Scintillation trigger system of the liquid argon neutrino detector

    International Nuclear Information System (INIS)

    Belikov, S.V.; Gurzhiev, S.N.; Gutnikov, Yu.E.; Denisov, A.G.; Kochetkov, V.I.; Matveev, M.Yu.; Mel'nikov, E.A.; Usachev, A.P.

    1994-01-01

    This paper presents the organization of the Scintillation Trigger System (STS) for the Liquid Argon Neutrino Detector of the Tagged Neutrino Facility. STS is aimed at the effective registration of the needed neutrino interaction type and production of a fast trigger signal with high time resolution. The fast analysis system of analog signal from the trigger scintillation planes for rejection of the trigger signals from background processes is described. Real scintillation trigger planes characteristics obtained on the basis of the presented data acquisition system are shown. 10 refs., 12 figs., 3 tabs

  11. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Digital silicon photomultiplier readout of a new fast and bright scintillation crystal (Ce:GFAG)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong-Seok [Department of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Leem, Hyun-Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kamada, Kei [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); C& A corporation, Sendai (Japan); Yoshikawa, Akira [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); C& A corporation, Sendai (Japan); Institute for Material Research, Tohoku University, Sendai (Japan); Park, Sang-Geon [Department of Electrical & Electronics, Silla University, Pusan (Korea, Republic of); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-10-01

    A new Gadolinium Fine Aluminum Gallate (Ce:GFAG) scintillation crystal with both high energy resolution and fast timing properties has successfully been grown. Compared to Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), this new inorganic scintillation crystal has a high luminosity similar to and a faster decay time. In this paper, we report on the timing and energy performance results of the new GFAG scintillation crystal read out with digital silicon photomultipliers (dSiPM) for positron emission tomography (PET) application. The best coincidence resolving time (FWHM) of polished 3×3×5 mm{sup 3} crystals was 223±6 ps for GFAG crystals compared to 396±28 ps for GAGG crystals and 131±3 ps for LYSO crystals respectively. An energy resolution (511 keV peak of Na-22) of 10.9±0.2% was attained with GFAG coupled to dSiPM after correcting for saturation effect, compared to 9.5±0.3% for Ce:GAGG crystals and 11.9±0.4% for LYSO crystals respectively. It is expected that this new scintillator may be competitive in terms of overall properties such as energy resolution, timing resolution and growing (raw material) cost, compared to existing scintillators for positron emission tomography (PET).

  13. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  14. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  15. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  16. Ionospheric scintillation monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Mariusz Pozoga

    2009-06-01

    Full Text Available

    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups

    involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and

    high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.


  17. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  18. Investigations on renal organic and inorganic solutes, in vivo

    International Nuclear Information System (INIS)

    Wolff, S.D.

    1989-01-01

    A basic question in renal physiology is how do the cells of the renal medulla survive the high concentrations of sodium chloride and urea which occur with antidiuresis. The problem is two-fold: (1) urea, being highly permeable to cell membranes, should enter the cell and adversely affect protein function; and (2) inorganic ions, being in much higher concentration extracellularly than intracellularly should dehydrate the cell. If these organic solutes exist in response to high concentrations of sodium chloride and urea, then their content should vary with diuretic state. Two protocols were developed to test the validity of this hypothesis. The first protocol used 31 P-NMR in vivo to monitor GPC content before, during, and after acute diuresis in an exteriorized rabbit kidney model. Changes in sodium distribution and tissue structure were monitored dynamically with 23 Na- and 1 H-NMR imaging, respectively. The second protocol used HPLC to quantitate each of the four organic solutes in renal inner medullary homogenates. Here, the effect of diuretic state and acute diuresis on organic solute content was assessed

  19. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  20. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  1. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    Science.gov (United States)

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Veronica; Lopes, Isabel [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rocha-Santos, Teresa [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Santos, Ana L. [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Rasteiro, Graca M.; Antunes, Filipe [CIEPQPF, Department of Chemical Engineering, Faculty of Science and Technology, Polo II, University of Coimbra, 3030-290 Coimbra (Portugal); Goncalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Gomes, Newton N.C.M., E-mail: gomesncm@ua.pt [Department of Biology, University of Aveiro, Campus Universitario de Santiago, P-3810-193 Aveiro (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal); Pereira, Ruth [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago 3810-193 Aveiro (Portugal)

    2012-05-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6-V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO{sub 2}), titanium silicon oxide (TiSiO{sub 4}), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO{sub 2}, CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: Black-Right-Pointing-Pointer Organic and inorganic nanomaterials on soil microbial community. Black-Right-Pointing-Pointer Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. Black-Right-Pointing-Pointer All the organic nanomaterials, TiO{sub 2} and gold nanorods significantly affected the structural diversity.

  3. Comparative Use of Soil Organic and Inorganic Amendments in Heavy Metals Stabilization

    Directory of Open Access Journals (Sweden)

    Agustina Branzini

    2012-01-01

    Full Text Available Remediation strategies are capable to mitigate negative effects of heavy metals (HMs on soils. The distribution of cooper (Cu, zinc (Zn, and chromium (Cr was evaluated in a contaminated soil after adding biosolid compost (BC and phosphate fertilizer (PF. A greenhouse assay and sequential extraction procedure were performed to determine the fractionation of HM in contaminated and remediated soil. In BC treatment, among 4 to 6% of Cu was associated with soil humic substances. Without amendments and with fertilizer application, Zn solubility increased by 15.4 and 8.4%, respectively, with experiment time. Although Cr was significantly adsorbed to the inorganic fraction, with compost application there was a transfer to organic fraction. A single amendment application is not suitable for immobilizing all metals of concern, because there are diverse union’s behaviors between HM and soil matrix. As the organic matter and phosphate fertilizer were effective in reducing mobility of Cu, the organic matter was more effective in the immobilization of Cr, and inorganic amendment induced the Zn precipitation, results from this pilot study suggest a combined use of these two amendments for soil remediation strategies. However, liming may be further needed to prevent soil acidification on longer time scales. Also, we propose the use of chemical and biological remediation strategies for potential improvement of effectiveness.

  4. Impact of organic and inorganic nanomaterials in the soil microbial community structure

    International Nuclear Information System (INIS)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Santos, Ana L.; Rasteiro, Graça M.; Antunes, Filipe; Gonçalves, Fernando; Soares, Amadeu M.V.M.; Cunha, Angela; Almeida, Adelaide; Gomes, Newton N.C.M.; Pereira, Ruth

    2012-01-01

    In this study the effect of organic and inorganic nanomaterials (NMs) on the structural diversity of the soil microbial community was investigated by Denaturing Gradient Gel Electrophoresis, after amplification with universal primers for the bacterial region V6–V8 of 16S rDNA. The polymers of carboxylmethyl-cellulose (CMC), of hydrophobically modified CMC (HM-CMC), and hydrophobically modified polyethylglycol (HM-PEG); the vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) and of monoolein/sodium oleate (Mo/NaO); titanium oxide (TiO 2 ), titanium silicon oxide (TiSiO 4 ), CdSe/ZnS quantum dots, gold nanorods, and Fe/Co magnetic fluid were the NMs tested. Soil samples were incubated, for a period of 30 days, after being spiked with NM suspensions previously characterized by Dynamic Light Scattering (DLS) or by an ultrahigh-resolution scanning electron microscope (SEM). The analysis of similarities (ANOSIM) of DGGE profiles showed that gold nanorods, TiO 2 , CMC, HM-CMC, HM-PEG, and SDS/DDAB have significantly affected the structural diversity of the soil bacterial community. - Highlights: ► Organic and inorganic nanomaterials on soil microbial community. ► Structural diversity was investigated by Denaturing Gradient Gel Electrophoresis. ► All the organic nanomaterials, TiO 2 and gold nanorods significantly affected the structural diversity.

  5. Investigation on neutron/gamma discrimination phenomena in plastic scintillators

    International Nuclear Information System (INIS)

    Blanc, Pauline

    2014-01-01

    This PhD topic was born from misunderstandings and incomplete knowledge of the mechanism and relative effectiveness of neutron and gamma-ray (n/γ) discrimination between plastic scintillators compared to liquid scintillators. The shape of the light pulse these materials generate following interaction with an ionizing particle (predominantly recoil protons in the case of neutrons and electrons in the case of gamma-rays) is different in time in a way that depends on the detected particle (nature and energy). It is this fact that enables separation (PSD). The behavior in liquid scintillators has been extensively studied experimentally for practical applications. Only recently has it been shown that a weak separation can also be achieved using specially prepared plastics. The study of this system presents an open field and the understanding of both liquids and plastics with respect to their PSD properties is far from complete. This work is dedicated to exploring the fundamental photophysical phenomena at play in the generation of luminescence emission, following the interaction of ionizing radiation with organic scintillators. For this purpose, firstly a detailed literature review of the state-of-the-art has been conducted extending from 1960 to the present day. Secondly a complete characterization of the main scintillating materials has been conducted to define their fluorescence properties and the characteristics of their scintillation under irradiation. Thirdly a proton beam has been used to simulate recoil protons to quantify under controlled laboratory conditions their specific energy deposition in a plastic scintillator with PSD properties. The fourth part of this thesis is devoted to the study of PSD efficiency of scintillators as a function of their molecular structure. This investigation has led to a plastic scintillator prepared in our laboratory with good PSD properties and a patent submission. Finally, photophysical experiments were performed using a

  6. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  7. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  8. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  9. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Ribot, F.; Matějka, Libor; Whelan, P.; Starovoytova, Larisa; Pleštil, Josef; Steinhart, Miloš; Šlouf, Miroslav; Hromádková, Jiřina; Kovářová, Jana; Špírková, Milena; Strachota, Beata

    2012-01-01

    Roč. 45, č. 1 (2012), s. 221-237 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701; GA ČR GAP108/11/2151 Institutional research plan: CEZ:AV0Z40500505 Keywords : stannoxane * organic-inorganic hybrid * epoxy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  10. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  11. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    Science.gov (United States)

    Kong, H. J.; Park, J. W.; Kim, Y. M.

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m-2, the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system.

  12. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    International Nuclear Information System (INIS)

    Kong, H J; Kim, Y M; Park, J W

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m –2 , the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system. (paper)

  13. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  14. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  15. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  16. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  17. Inorganic/organic hybrid nanocomposite coating applications: Formulation, characterization, and evaluation

    Science.gov (United States)

    Eyassu, Tsehaye

    Nanotechnology applications in coatings have shown significant growth in recent years. Systematic incorporation of nano-sized inorganic materials into polymer coating enhances optical, electrical, thermal and mechanical properties significantly. The present dissertation will focus on formulation, characterization and evaluation of inorganic/organic hybrid nanocomposite coatings for heat dissipation, corrosion inhibition and ultraviolet (UV) and near infrared (NIR) cut applications. In addition, the dissertation will cover synthesis, characterization and dispersion of functional inorganic fillers. In the first project, we investigated factors that can affect the "Molecular Fan" cooling performance and efficiency. The investigated factors and conditions include types of nanomaterials, size, loading amount, coating thickness, heat sink substrate, substrate surface modification, and power input. Using the optimal factors, MF coating was formulated and applied on commercial HDUs, and cooling efficiencies up to 22% and 23% were achieved using multi-walled carbon nanotube and graphene fillers. The result suggests that molecular fan action can reduce the size and mass of heat-sink module and thus offer a low cost of LED light unit. In the second project, we report the use of thin organic/inorganic hybrid coating as a protection for corrosion and as a thermal management to dissipate heat from galvanized steel. Here, we employed the in-situ phosphatization method for corrosion inhibition and "Molecular fan" technique to dissipate heat from galvanized steel panels and sheets. Salt fog tests reveal successful completion of 72 hours corrosion protection time frame for samples coated with as low as ~0.7microm thickness. Heat dissipation measurement shows 9% and 13% temperature cooling for GI and GL panels with the same coating thickness of ~0.7microm respectively. The effect of different factors, in-situ phosphatization reagent (ISPR), cross-linkers and nanomaterial on corrosion

  18. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    Science.gov (United States)

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-05-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3-), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43-), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3- and NH4+) and phosphorus (PO43-). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea.

  19. Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries

    Science.gov (United States)

    Sheibley, D. W.

    1979-01-01

    Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described.

  20. Low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    Oktar, O.; Ari, G.; Guenduez, O.; Demirel, H.; Demirbas, A.

    2009-01-01

    Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matri10. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared by an extruder in SANAEM. Molds suitable for extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and pressure were obtained. Plastic blocks prepared were optically and mechanically tested and its response against various radioactive sources was measured.This study has shown that plastic scintillators imported can be produced in SANAEM domestically and be used for detection of radioactive materials within the country or border gates.

  1. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer.

    Science.gov (United States)

    Mitzi, D B

    2000-12-25

    Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.

  2. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  3. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    Science.gov (United States)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  4. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  5. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    Science.gov (United States)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  6. Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors

    Directory of Open Access Journals (Sweden)

    Sanjun Zhang

    2010-05-01

    Full Text Available This article reviews the synthesis, structural and optical characterizations of some novel luminescent two dimensional organic-inorganic perovskite (2DOIP semiconductors. These 2DOIP semiconductors show a self-assembled nano-layered structure, having the electronic structure of multi-quantum wells. 2DOIP thin layers and nanoparticles have been prepared through different methods. The structures of the 2DOIP semiconductors are characterized by atomic force microscopy and X-ray diffraction. The optical properties of theb DOIP semiconductors are characterized from absorption and photoluminescence spectra measured at room and low temperatures. Influences of different components, in particular the organic parts, on the structural and optical properties of the 2DOIP semiconductors are discussed.

  7. Test of tissue-equivalent scintillation detector for dose measurement of megavoltage beams

    International Nuclear Information System (INIS)

    Geso, M.; Ackerly, T.; Clift, M.A.

    2000-01-01

    Full text: The measurement of depth doses and profiles for a stereotactic radiotherapy beam presents special problems associated with the small beam size compared to the dosimeter's active detection area. In this work a locally fabricated organic plastic scintillator detector has been used to measure the depth dose and profile of a stereotactic radiotherapy beam. The 6MV beam is 1.25 cm diameter at isocentre, typical of small field stereotactic radiosurgery. The detector is a water/tissue equivalent plastic scintillator that is accompanied by Cerenkov subtraction detector. In this particular application, a negligible amount of Cerenkov light was detected. A photodiode and an electronic circuit is used instead of a photomultiplier for signal amplification. Comparison with data using a diode detector and a small size ionization chamber, indicate that the organic plastic scintillator detector is a valid detector for stereotactic radiosurgery dosimetry. The tissue equivalence of the organic scintillator also holds the promise of accurate dosimetry in the build up region. Depth doses measured using our plastic scintillator agree to within about 1% with those obtained using commercially available silicon diodes. Beam profiles obtained using plastic scintillator presents correct field width to within 0.35 mm, however some artifacts are visible in the profiles. These artifacts are about 5% discrepancy which has been shown not to be a significant factor in stereotactic radiotherapy dosimetry. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  8. Oxidative desulphurization study of gasoline and kerosene. Role of some organic and inorganic oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Shakirullah, M.; Ahmad, Waqas; Ahmad, Imtiaz; Ishaq, M.

    2010-11-15

    Desulphurization of gasoline and kerosene was carried out using organic and inorganic oxidants. Among the organic oxidants used were hydrogen peroxide in combination with acetic acid, formic acid, benzoic acid and butyric acid, while inorganic oxidants used included potassium permanganate and sodium perchlorate. The oxidation of each petroleum oil was carried out in two steps; the first step consisted of oxidation of the feed at moderate temperature and atmospheric pressure while in the second step, the oxidized mixture was extracted with azeotropic mixture of acetonitrile-water. A maximum desulphurization has occurred with NaClO{sub 4} and hydrogen peroxide and acetic acid, which are 68% and 61%, respectively in case of gasoline and 66% and 63%, respectively in case of kerosene oil. The FTIR study of the whole and variously desulphurized gasoline and kerosene was also carried out. The results indicate considerable desulphurization by absence of bands that corresponds to sulphur moieties in NaClO{sub 4} and hydrogen peroxide treated samples. (author)

  9. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  10. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  11. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA).

    Science.gov (United States)

    Moussas, P A; Zouboulis, A I

    2009-08-01

    Currently, research is focused on the synthesis of new composite coagulants, which are constituted of both inorganic and organic materials. In this paper, the development of relevant reagents was investigated, by combining the inorganic pre-polymerised iron-based coagulant Polyferric Sulphate (PFS) with an organic, non-ionic polymer (Polyacrylamide, PAA) under different PAA/Fe (mg/l) and OH/Fe molar ratios. Moreover, the new reagents were characterised in terms of typical properties, stability and morphological analysis (XRD, FTIR, SEM). Their coagulation performance, when treating low or high turbid kaolin-humic acid suspensions, was also investigated, whereas the applied coagulation mechanisms were discussed by using the Photometric Dispersion Analysis (PDA) analysis. The results show that the new coagulation reagents present improved properties, including increased effective polymer species concentration, and they exhibit very good stability. The respective tests using PDA confirmed that the predominant coagulation mechanism of PFS-PAA is the bridge formation mechanism. Coagulation experiments in low or high turbid kaolin-humic acid suspensions reveal that the novel composite reagent PFS-PAA exhibits better coagulation performance, when compared with simple PFS, in terms of zeta-potential reduction, turbidity and organic matter removal and residual iron concentration.

  12. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  13. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  14. Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.-H. [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)], E-mail: jenhow.huang@uni-bayreuth.de; Matzner, Egbert [Department of Soil Ecology, University of Bayreuth, D-95440 Bayreuth (Germany)

    2007-09-15

    To identify the role of the forest floor in arsenic (As) biogeochemistry, concentrations and fluxes of inorganic and organic As in throughfall, litterfall and forest floor percolates at different layers were investigated. Nearly 40% of total As{sub total} input (5.3 g As ha{sup -1} yr{sup -1}) was retained in Oi layer, whereas As{sub total} fluxes from Oe and Oa layers exceeded the input by far (10.8 and 20 g As ha{sup -1} yr{sup -1}, respectively). Except dimethylarsinic acid (DMA), fluxes of organic As decreased with depth of forest floor so that <10% of total deposition (all <0.3 g As ha{sup -1} yr{sup -1}) reached the mineral soil. All forest floor layers are sinks for most organic As. Conversely, Oe and Oa layers are sources of As{sub total}, arsenite, arsenate and DMA. Significant correlations (r {>=} 0.43) between fluxes of As{sub total}, arsenite, arsenate or DMA and water indicate hydrological conditions and adsorption-desorption as factors influencing their release from the forest floor. The higher net release of arsenite from Oe and Oa and of DMA from Oa layer in the growing than dormant season also suggests microbial influences on the release of arsenite and DMA. - The forest floor layers are generally a source for inorganic arsenic species but a sink for most organic arsenic species under the present deposition rate.

  15. Chemical sensors of benzene and toluene based on inorganic and hybrid organic-inorganic polymers elaborated by a sol-gel process

    International Nuclear Information System (INIS)

    Calvo Munoz, Maria Luisa

    2000-01-01

    As mono-cyclic aromatic hydrocarbons (MAH) are a matter of concern in terms of pollution, and are to be monitored due to new regulations regarding air quality control, this research thesis first aims at explaining why these compounds are to be monitored, at recalling their sources, at outlining what we know about their negative impact on health and how this impact is determined, which are the means implemented to monitor these compounds and which are their drawbacks, and at recalling which requirements are defined by European directives. The author then reports a literature survey of the current technology regarding chemical sensors, and identifies the required characteristics of an ideal sensor. The author proposes a review of studied performed on sol-gel process and of inorganic polymer synthesis methods based on sol-gel process. He reports the synthesis and characterization of inorganic or hybrid organic-inorganic host matrices, monolithic or in thin layers, used to produce MAH sensors. A matrix pore local polarity study is reported. Benzene and toluene trapping is studied with respect to the polarity and thickness of the host matrix. Pollutant trapping is directly monitored by their absorption in the near-UV and visible range. The author finally reports the study of interactions between fluorescent probe molecules and pollutants, as well as the effect of an interfering gas (oxygen) on the fluorescence of probe molecules [fr

  16. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    Science.gov (United States)

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  17. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  18. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  19. A hybrid organic-inorganic electrode for enhanced charge injection or collection in organic optoelectronic devices

    International Nuclear Information System (INIS)

    Yilmaz, Omer F; Chaudhary, Sumit; Ozkan, Mihrimah

    2006-01-01

    Here we report a novel hybrid organic-inorganic anode for organic light-emitting diodes (LEDs) and photovoltaic (PV) cells. This hybrid anode structure is realized from a composite of poly(3,4-ethylene dioxythiophene) doped with polystyrenesulfonic acid (PEDOT:PSS) and indium tin oxide (ITO) nanoparticles. Owing to the phase separation, this anodic structure leads to a graded work function from patterned ITO to the photoactive polymer, which in turn reduces the barrier height for holes by ∼70%. The resulting devices based on this design show up to 67% reduction in turn-on voltage (for polymer LEDs) and up to 40% increase in short-circuit current and power conversion efficiency (for PV cells). Current-voltage characteristics, Fowler-Nordheim analysis, SEM imaging and energy band diagram analysis are employed to characterize the improved performance of our devices. The reported approach is expected to be immensely useful for the molecular design of next-generation efficient organic devices

  20. Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Joshua D; Burwood, Ryan P; Tang, Min; Mikhailovsky, Alexander A; Cheetham, Anthony K [Cambridge; (UCSB)

    2011-11-17

    Five novel inorganic-organic framework compounds containing the organic chromophore ligand anthraquinone-2,3-dicarboxylic acid (abbreviated H2AQDC) and calcium (CaAQDC), zinc (ZnAQDC), cadmium (CdAQDC), manganese (MnAQDC), and nickel (NiAQDC), respectively, have been synthesized. The photoluminescence of these materials is only visible at low temperatures and this behaviour has been evaluated in terms of ligand rigidity. It is proposed that the 2,3 position bonding sites result in luminescence-quenching ligand motion, as supported by X-ray diffraction and temperature-dependent luminescence studies.

  1. Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.

    Science.gov (United States)

    Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi

    2011-02-01

    A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. C-14 measurements in organic sediments

    International Nuclear Information System (INIS)

    Vagner, Irina; Varlam, Carmen; Stefanescu, Ioan; Faurescu, Ionut; Bogdan, Diana; Faurescu, Denisa; Cuna, Stela

    2009-01-01

    Full text: The CO 2 direct absorption method of preparing samples for radiocarbon analysis by liquid scintillation counting has been successfully applied in many laboratories primarily for 'dating' the groundwater. Even if the method follows the similar principle as by the benzene synthesis method, time less consuming by the direct absorption method is a strong motivation enhancing the type of samples that can be prepared by this method. The samples used to settle the procedure were various types of soil and slurry from the bottom sediments in rivers and lakes. The carbon occurring in those samples can be inorganic or organic carbon. Inorganic carbon can be analyzed by direct absorption method rather easy by sample acidification and CO 2 capture. In this work it has been investigated a hybrid method that connects the wet oxidation of organic carbon with direct absorption method. The wet oxidation with potassium dichromate 1N solution, in presence of concentrated sulphuric acid and silver sulphate was applied to samples, prior acidification to release inorganic carbon as CO 2 . To overcome the concern of incomplete digestion of organic matter, the procedure was conducted by extensive heating of the sample during wet oxidation process. Possibilities of occurrence of isotopic fractionation during CO 2 production from raw material were investigated by measuring δ 13 C from sample and the CO 2 obtained. Special attention was paid to sample preparation technique and the 'direct absorption method' has been used with few 'home-made' improvements in order to increase the reproducibility and accuracy of this simple and less-time consuming method. (authors)

  3. Organic and inorganic ion exchangers as catalysts for the heterogeneous alkylation of aromatics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J; Widdecke, H [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Chemische Technologie

    1979-06-01

    Ion exchangers have advantages over low molecular for use in industrial alkylation reactions. The reactivity and selectivity behaviour of the polymeric catalysts was found to be markedly influenced by the structure of the polymeric matrix as well as the type and number of the functional groups. In this connection many similarities between inorganic ion exchangers (zeolites) and organic ion exchange resins were detected.

  4. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  5. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  6. Methyl bromide residues in fumigated cocoa beans with particular reference to inorganic bromide

    International Nuclear Information System (INIS)

    Adomako, D.

    1976-01-01

    Inorganic bromide residues and 14 C-labelled methylated products (expressed as CH 3 Br equivalent) in cocoa beans fumigated with [ 14 C]-methyl bromide have been determined by radiometric and chemical methods. Determination of 14 C by direct combustion in an oxygen chamber followed by liquid scintillation counting confirmed previous findings with respect to the magnitude, distribution and chemical nature of the residues. Although recovery of added bromide was good, the values of total bromide obtained by the chemical method were only half of those estimated from the total residual 14 C-activity. This is attributed to loss of organic (presumably, protein-bound) bromide. In agreement with the total 14 C-labelled residue contents, total bromide in shells was 20 times greater than that in nibs. The low levels of residues in the nib (12ppm as CH 3 Br equivalent, 10ppm Br) and the further reduction of organic residues by roasting suggest that no toxicological and nutritional hazards may be expected from fumigation of cocoa beans with methyl bromide. (author)

  7. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  8. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  9. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  10. Hybrid metal organic scintillator materials system and particle detector

    Science.gov (United States)

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  11. Standarization of Mn-54 by liquid scintillation counting using organic samples of (C8H15 O2)2 Mn-54

    International Nuclear Information System (INIS)

    1990-01-01

    A new method of standardization of Mn 54 by liquid scintillation counting with an organic sample of (C 8 H 15 O 2 ) 2 Mn 54 is described. This procedure shows a good long term stability of samples, over 20 days, and counting efficiencies between 10% and 24% for PCS e INSTAGEL and 10% 32% for a toluene-based scintillator. The discrepancies between experimental and computed values are less that 0,9% for PCS and INSTAGEL and less than 1,2% for Toluene, in the 5-2,5 interval of quenching parameter. The global uncertainty on the activity concentrat-ion of a sample standardized by this method has been lower than 3% (Author)

  12. {pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Lemus-Santana, A.A. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Rodriguez-Hernandez, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Knobel, M. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, SP (Brazil); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2013-01-15

    The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method. The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based

  13. Fabrication of InP-pentacene inorganic-organic hybrid heterojunction using MOCVD grown InP for photodetector application

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Pal, B.; Banerji, P.

    2018-04-01

    We fabricated inorganic-organic hybrid heterojunction between indium phosphide (InP) and pentacene for photodetector application. InP layer was grown on n-Si substrate by atmospheric pressure metal organic chemical vapour deposition (MOCVD) technique. Morphological properties of InP and pentacene thin film were characterized by atomic force microscopy (AFM). Current-voltage characteristics were investigated in dark and under illumination condition at room temperature. During illumination, different wavelengths of visible and infrared light source were employed to perform the electrical measurement. Enhancement of photocurrent was observed with decreasing in wavelength of incident photo radiation. Ideality factor was found to be 1.92. High rectification ratio of 225 was found at ± 3 V in presence of infrared light source. This study provides new insights of inorganic-organic hybrid heterojunction for broadband photoresponse in visible to near infrared (IR) region under low reverse bias condition.

  14. Reliable measurement of the Seebeck coefficient of organic and inorganic materials between 260 K and 460 K

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, D.; Lanzani, G. [Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (MI) (Italy); Dipartimento di Fisica, P.zza Leonardo da Vinci 32, Politecnico di Milano, 20133 Milano (MI) (Italy); Bruno, P.; Caironi, M., E-mail: mario.caironi@iit.it [Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (MI) (Italy)

    2015-07-15

    A new experimental setup for reliable measurement of the in-plane Seebeck coefficient of organic and inorganic thin films and bulk materials is reported. The system is based on the “Quasi-Static” approach and can measure the thermopower in the range of temperature between 260 K and 460 K. The system has been tested on a pure nickel bulk sample and on a thin film of commercially available PEDOT:PSS deposited by spin coating on glass. Repeatability within 1.5% for the nickel sample is demonstrated, while accuracy in the measurement of both organic and inorganic samples is guaranteed by time interpolation of data and by operating with a temperature difference over the sample of less than 1 K.

  15. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  16. Preparation of plastic scintillator detectors and physicochemical parameter characterization

    International Nuclear Information System (INIS)

    Hamada, M.M.; Mesquita, C.H. de.

    1988-10-01

    The development of plastic scintillators for use in the nuclear radiation detection is described. The detectors were fabricated by the polymerization of styrene with organic fluors. The organic fluors used were PPO (1,4 diphenyl-oxazol) and POPOP 1,4-di-2-(5-phenyl-oxazolil) - benzene in proportions of 0,5 and 0,05% respectively. Physicochemical parameters related to the quality of this detector are investigated at this laboratory. The evaluation of its fluorescence characteristics, density, melting softening, refractive index, molecular weight, gamma and alpha spectrometry characteristics and finally the comparative pulse height analysis indicate that the plastic scintillator produced at this laboratory is comparable with others already described. (author)

  17. Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic-Inorganic Hybrid

    NARCIS (Netherlands)

    Polyakov, Alexey O.; Arkenbout, Anne H.; Baas, Jacob; Blake, Graeme R.; Meetsma, Auke; Caretta, Antonio; van Loosdrecht, Paul H. M.; Palstra, Thomas T. M.

    2012-01-01

    We investigate the structural, magnetic, and dielectric properties of the organic-inorganic hybrid material CuCl4(C6H5CH2CH2NH3)(2) and demonstrate that spontaneous ferroelectric order sets in below 340 K, which coexists with ferromagnetic ordering below 13 K. We use X-ray diffraction to show that

  18. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation

    International Nuclear Information System (INIS)

    Moreno-Jiménez, Eduardo; Clemente, Rafael; Mestrot, Adrien; Meharg, Andrew A.

    2013-01-01

    Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems. Highlights: ► Organic and inorganic amendments were added to a mine soil in flooding conditions. ► Olive mill waste compost (OMWC) provoked As, Se and Cu solubilisation. ► Dimethylarsenic acid (DMA) was the predominant As species in pore water. ► Selenium volatilisation from soils was intense. - The addition of organic amendment and/or inorganic fertiliser to a trace element contaminated soil in flooded conditions led to As, Cu and Se solubilisation.

  19. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  20. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2010-08-01

    Full Text Available Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008. This model allows the reliable computation of the liquid-liquid coexistence curve (binodal, corresponding tie-lines, the limit of stability/metastability (spinodal, and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six

  1. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  2. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens.

    Science.gov (United States)

    Frederiksen, Trine-Maria; Finster, Kai

    2004-02-01

    The physiology of the sulfur disproportionator Desulfocapsa sulfoexigens was investigated in batch cultures and in a pH-regulated continuously flushed fermentor system. It was shown that a sulphide scavanger in the form of ferric iron was not obligatory and that the control of pH allowed production of more biomass than was possible in carbonate buffered but unregulated batch cultures. Small amounts of sulphite were produced during disproportionation of elemental sulfur and thiosulphate. In addition, it was shown that in the presence of hydrogen, a respiratory type of process is favored before the disproportionation of sulphite, thiosulphate and elemental sulfur. Sulphate reduction was not observed. D. sulfoexigens assimilated inorganic carbon even in the presence of organic carbon sources. Inorganic carbon assimilation was probably catalyzed by the reverse CO-dehydrogenase pathway, which was supported by the constitutive expression of the gene encoding CO-dehydrogenase in cultures grown in the presence of acetate and by the high carbon fractionation values that are indicative of this pathway.

  3. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  4. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography

    Science.gov (United States)

    Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J.

    2003-07-01

    Perovskite-type organic/inorganic hybrid layered compound (C 6H 5C 2H 4NH 3) 2PbI 4 was synthesized. The patterning of (C 6H 5C 2H 4NH 3) 2PbI 4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 μm) have been obtained. The structure and optical properties of (C 6H 5C 2H 4NH 3) 2PbI 4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C 6H 5C 2H 4NH 3) 2PbI 4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.

  5. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  6. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  8. Tritium activity in milk by liquid scintillation counting

    International Nuclear Information System (INIS)

    Zheng Huang

    1993-01-01

    This paper estimates the total tritium content of both the organic and aqueous fractions simultaneously. To fulfill these conditions, the chosen scintillator should be able to accept large sample loadings and display the same counting efficiency for the organic as well as aqueous fractions of the whole milk. In an attempt to establish this method, samples from four different brands of milk were analysed using the pseudocumence based Picofluor 30 (Canberra Packard) and the di-isopropyl naphthalene based Aquasafe 500 (Zinser Analytic) scintillator solution. Glass vials were used thus enabling visual observation to be made. The tritium activities of four different brands of milks were estimated to be very low and at, or near, the detection level of the system

  9. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    Science.gov (United States)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  10. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  11. Developing a Macroscopic Mechanistic Model for Low Molecular Weight Diffusion through Polymers in the Rubbery State

    DEFF Research Database (Denmark)

    Martinez-Lopez, Brais; Huguet, P.; Gontard, N.

    2016-01-01

    Raman microspectroscopy was used to determine the Fickian diffusivity of two families of low molecular weight molecules through amorphous polystyrene in the rubbery state. Different effects of the temperature on diffusivity for each of the families suggested that molecular mobility is controlled...... by both the volume and flexibility of the diffusing substance when the movement of polymer chains can generate stress induced deformation of molecules. The diffusing molecules were represented as Newtonian spring–bead systems, which allowed us to quantify their flexibility, in function of the vibration...... frequency of their bonds by reconstructing their theoretical spectra. Results showed that the use of molecular descriptors that take into account flexibility rather than the most stable conformation of the diffusing molecules may improve the description of the diffusion behavior caused by variations...

  12. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture.

    Science.gov (United States)

    Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin

    2010-01-13

    Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.

  13. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  14. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  15. Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Berntssen, M H G; Sundal, T K; Olsvik, P A; Amlund, H; Rasinger, J D; Sele, V; Hamre, K; Hillestad, M; Buttle, L; Ørnsrud, R

    2017-11-01

    Depending on its chemical form, selenium (Se) is a trace element with a narrow range between requirement and toxicity for most vertebrates. Traditional endpoints of Se toxicity include reduced growth, feed intake, and oxidative stress, while more recent finding describe disturbance in fatty acid synthesis as underlying toxic mechanism. To investigate overall metabolic mode of toxic action, with emphasis on lipid metabolism, a wide scope metabolomics pathway profiling was performed on Atlantic salmon (Salmo salar) (572±7g) that were fed organic and inorganic Se fortified diets. Atlantic salmon were fed a low natural background organic Se diet (0.35mg Se kg -1 , wet weight (WW)) fortified with inorganic sodium selenite or organic selenomethionine-yeast (SeMet-yeast) at two levels (∼1-2 or 15mgkg -1 , WW), in triplicate for 3 months. Apparent adverse effects were assessed by growth, feed intake, oxidative stress as production of thiobarbituric acid-reactive substances (TBARS) and levels of tocopherols, as well as an overall metabolomic pathway assessment. Fish fed 15mgkg -1 selenite, but not 15mgkg -1 SeMet-yeast, showed reduced feed intake, reduced growth, increased liver TBARS and reduced liver tocopherol. Main metabolic pathways significantly affected by 15mgkg -1 selenite, and to a lesser extent 15mgkg -1 SeMet-yeast, were lipid catabolism, endocannabinoids synthesis, and oxidant/glutathione metabolism. Disturbance in lipid metabolism was reflected by depressed levels of free fatty acids, monoacylglycerols and diacylglycerols as well as endocannabinoids. Specific for selenite was the significant reduction of metabolites in the S-Adenosylmethionine (SAM) pathway, indicating a use of methyl donors that could be allied with excess Se excretion. Dietary Se levels to respectively 1.1 and 2.1mgkg -1 selenite and SeMet-yeast did not affect any of the above mentioned parameters. Apparent toxic mechanisms at higher Se levels (15mgkg -1 ) included oxidative stress and

  16. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  17. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  18. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  19. Organic Scintillator Detector Response Simulations with DRiFT

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Madison Theresa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Jr., Clell Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sood, Avneet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  20. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  1. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  2. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  3. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  4. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    Science.gov (United States)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.

  5. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  6. The use of fast and thermal neutron detectors based on oxide scintillators in inspection systems for prevention of illegal transportation of radioactive substances

    International Nuclear Information System (INIS)

    Ryzhikov, V. D.; Grinyov, B. V.; Piven, L. A.; Pochet, T.; Onyshchenko, G. M.; Lysetska, O. K.; Nagornaya, L. L.

    2009-01-01

    We present results of our studies aimed at practical application of an efficient method for detection of fast and thermal neutrons, which uses the process of inelastic scattering on atom nuclei present in inorganic scintillators. Due to energy transformation in inelastic scattering, the main fraction of gamma-radiation energy falls into the low-energy range (below 0.3 MeV). Detection in this range ensures efficiency that reaches up to 70% (as compared with 1% using conventional LiI(E)-techniques) and depends on the effective atomic number of the scintillator. The most evident practical application field for this method is inspection systems for prevention of illegal transportation of radioactive substances. Especially promising is the creation of a small-sized neutron detector for portable radioactive materials detection systems using the 'scintillator-avalanche photodiode' technology

  7. Scintillating fiber detection development for the SSC

    International Nuclear Information System (INIS)

    Ruchti, R.

    1993-01-01

    SSC Detector Program at Notre Dame has been concentrating on the development of scintillating fiber detectors for tracking applications. Initial work has focused on the development of new scintillation materials for micro-tracking and central tracking detectors based on organic plastics and liquids, This effort has included studies of solvents, solutes and waveguides. Techniques capable of providing the detection of single photons from fibers, are also being developed, leading to a collaboration with Rockwell, UCLA, and UTexas-Dallas groups on the development and application of the Solid State Photomultiplier (SSPM). This initial collaboration has been strengthened and expanded to the formation of a larger collaboration whose goal is to develop a fiber tracking subsystem for SSC, incorporating scintillating fibers and solid state photodetectors. The major subsystem proposal submitted to SSCL by this new collaboration, known at the Fiber Tracking Group (FTG), has been approved and funding is being put in place. The collaboration consists of 12 institutions and Notre Dame is a spokesman group

  8. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    Science.gov (United States)

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated.

  9. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  10. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  11. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, G., E-mail: gregkeefer@llnl.gov [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Grant, C. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Piepke, A. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Ebihara, T.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kishimoto, Y. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Mauger, C.; Zhang, C. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Schweitzer, G. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Berger, B.E. [Department of Physics, Colorado State University, Fort Collins, CO 80523 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Dazeley, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Decowski, M.P. [Physics Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583 (Japan); Detwiler, J.A. [Physics Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Djurcic, Z. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); and others

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  12. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  13. Characterization of plastic scintillators for detection of radioactivity: Light yield, Time decay measurements and Neutron/γ Pulse Shape Discrimination

    International Nuclear Information System (INIS)

    Montbarbon, E.; Pansu, R.B.; Hamel, M.; Coulon, R.

    2015-07-01

    Since Helium-3 shortage, organic scintillators play a major role in neutron detection. CEA LIST decided to focus on plastic scintillators. By definition, a plastic scintillator is a radio-luminescent polymer; this means that it emits light after interaction with an ionizing radiation. A platform was developed to characterize lab-made prepared scintillators and to compare them with commercial scintillators. Three physicochemical criteria are determined with this unique platform. (authors)

  14. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    Science.gov (United States)

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  15. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  16. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  17. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    Science.gov (United States)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  18. Scintillation hodoscopes on the basis of hodoscopic photomultipliers using scintillation fibers

    International Nuclear Information System (INIS)

    Alimova, T.V.; Vasil'chenko, V.G.; Vechkanov, G.N.

    1986-01-01

    Scintillation hodoscopes characteristics and their design features have been considered. The space resolution for hodoscopes consisting of 4 layers of scintillation fibres 200 mm long and 1 mm in diameter is 0.4-0.6 mm. With 2 fibres layer 1 m long and 3.8 mm in diameter the space resolution 3 mm has been obtained. A possibility to construct 0.1 mm resolution scintillation hodoscopes is discussed

  19. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  20. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  2. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  3. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  4. Fabrication and electrical properties of organic-on-inorganic Schottky devices

    International Nuclear Information System (INIS)

    Guellue, Oe; Biber, M; Tueruet, A; Cankaya, M

    2008-01-01

    In this paper, we fabricated an Al/new fuchsin/p-Si organic-inorganic (OI) Schottky diode structure by direct evaporation of an organic compound solution on a p-Si semiconductor wafer. A direct optical band gap energy value of the new fuchsin organic film on a glass substrate was obtained as 1.95 eV. Current-voltage (I-V) and capacitance-voltage (C-V) measurements of the OI device were carried out at room temperature. From the I-V characteristics, it was seen that the Al/new fuchsin/p-Si contacts showed good rectifying behavior. An ideality factor value of 1.47 and a barrier height (BH) value of 0.75 eV for the Al/new fuchsin/p-Si contact were determined from the forward bias I-V characteristics. A barrier height value of 0.78 eV was obtained from the capacitance-voltage (C-V) characteristics. It has been seen that the BH value of 0.75 eV obtained for the Al/new fuchsin/p-Si contact is significantly larger than that of conventional Al/p-Si Schottky metal-semiconductor (MS) diodes. Thus, modification of the interfacial potential barrier for Al/p-Si diodes has been achieved using a thin interlayer of the new fuchsin organic semiconductor; this has been ascribed to the fact that the new fuchsin interlayer increases the effective barrier height because of the interface dipole induced by passivation of the organic layer

  5. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  6. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, G [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Barbosa-Stancioli, E F [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Piscitelli Mansur, A A [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Vasconcelos, W L [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Mansur, H S [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil)

    2006-12-01

    The purpose of this study was to develop novel hybrid organic-inorganic materials based on poly(vinyl alcohol) (PVA) polymer chemically crosslinked network to be tested as solid support on bovine herpesvirus immunoassay. Hybrids were synthesized by reacting PVA with three different alkoxysilanes modifying chemical groups: tetraethoxysilane (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). PVA-derived hybrids were also modified by chemically crosslinking with glutaraldehyde (GA) during the synthesis reaction. In order to investigate the structure in the nanometer-scale, PVA-derived hybrids were characterized by using small-angle x-ray scattering synchrotron radiation (SAXS) and x-ray diffraction (XRD). PVA hybrids' chemical functionalities and their interaction with herpesviruses were also characterized by Fourier transform infrared spectroscopy (FTIR). The bioactivity assays were tested through enzyme linked immunosorbent assay (ELISA). SAXS results have indicated nano-ordered disperse domains for PVA hybrids with different x-ray scattering patterns for PVA polymer and PVA-derived hybrids. FTIR spectra have shown major vibration bands associated with organic-inorganic chemical groups present in the PVA, PVA-derived by silane modifier and PVA chemically crosslinked by GA. The immunoassay results have shown that PVA hybrids with chemically functionalized structures regulated to some extent the specific bioimmobilization of herpesvirus onto solid phase. We think that it is due to the overall balance of forces associated with van der Waals interaction, hydrophilic and hydrophobic forces and steric hindrance acting at the surface. PVA and PVA-derived hybrid materials were successfully produced with GA crosslinking in a nanometer-scale network. Also, such a PVA-based material could be advantageously used in immunoassays with enhanced specificity for diagnosis.

  7. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, G [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Barbosa-Stancioli, E F [Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, PO Box 486, 31270.901, Belo Horizonte, MG (Brazil); Piscitelli Mansur, A A [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Vasconcelos, W L [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Mansur, H S [Department of Metallurgical and Materials Engineering, Biomaterials and Tissue Engineering Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil)

    2006-12-01

    The purpose of this study was to develop novel hybrid organic-inorganic materials based on poly(vinyl alcohol) (PVA) polymer chemically crosslinked network to be tested as solid support on bovine herpesvirus immunoassay. Hybrids were synthesized by reacting PVA with three different alkoxysilanes modifying chemical groups: tetraethoxysilane (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). PVA-derived hybrids were also modified by chemically crosslinking with glutaraldehyde (GA) during the synthesis reaction. In order to investigate the structure in the nanometer-scale, PVA-derived hybrids were characterized by using small-angle x-ray scattering synchrotron radiation (SAXS) and x-ray diffraction (XRD). PVA hybrids' chemical functionalities and their interaction with herpesviruses were also characterized by Fourier transform infrared spectroscopy (FTIR). The bioactivity assays were tested through enzyme linked immunosorbent assay (ELISA). SAXS results have indicated nano-ordered disperse domains for PVA hybrids with different x-ray scattering patterns for PVA polymer and PVA-derived hybrids. FTIR spectra have shown major vibration bands associated with organic-inorganic chemical groups present in the PVA, PVA-derived by silane modifier and PVA chemically crosslinked by GA. The immunoassay results have shown that PVA hybrids with chemically functionalized structures regulated to some extent the specific bioimmobilization of herpesvirus onto solid phase. We think that it is due to the overall balance of forces associated with van der Waals interaction, hydrophilic and hydrophobic forces and steric hindrance acting at the surface. PVA and PVA-derived hybrid materials were successfully produced with GA crosslinking in a nanometer-scale network. Also, such a PVA-based material could be advantageously used in immunoassays with enhanced specificity for diagnosis.

  8. Diffusion of radioactively tagged penetrants through rubbery polymers. II. Dependence on molecular length of penetrant

    International Nuclear Information System (INIS)

    Rhee, C.K.; Ferry, J.D.; Fetters, L.J.

    1977-01-01

    The diffusion of radioactively tagged n-hexadecane, n-dotriacontane, and a polybutadiene oligomer with molecular weight 1600 has been studied in 12 rubbery polymers. Diffusion coefficients were obtained from the theory for the thin smear method: for n-hexadecane and for n-dotriacontane (with one exception), in the form appropriate for a completely miscible polymer-penetrant pair, and for the oligomer in the form appropriate for slow entry of the pentrant across the penetrant-polymer interface. For the four flexible linear penetrants, n-dodecane, n-hexadecane, n-dotriacontane, and oligomer, the ratios of diffusion coefficients (or translational friction coefficients) are nearly the same in every polymer. It is concluded that these penetrants travel with similar segmentwise motions, although that is not the case with bulkier, more rigid penetrants. For the three normal paraffins, the friction coefficient is approximately proportional to molecular weight, but that for the oligomer is smaller than would be predicted on this basis

  9. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    Science.gov (United States)

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  10. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., 0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.

  11. Liquid scintillation counting analysis of cadmium-109

    International Nuclear Information System (INIS)

    Robinson, M.K.; Barfuss, D.W.

    1991-01-01

    Recently the authors have used radiolabled cadmium-109 to measure the transport of inorganic cadmium in renal proximal tubules. An anomaly discovered in the liquid scintillation counting analysis of Cd-109 which is not attributable to normal decay; it consists of a significant decrease in the measured count rate of small amounts of sample. The objective is to determine whether the buffer solution used in the membrane transport studies is causing precipitation of the cadmium or whether cadmium is being adsorbed by the glass. It was important to determine whether the procedure could be modified to correct this problem. The problem does not appear to be related to the use of the buffer or to adsorption of Cd onto glass. Correction based on using triated L-glucose in all of these experiments and calculating a correction factor for the concentration of cadmium

  12. Scintillation detectors, applications in ambient dose rate measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Harja, C.

    1997-01-01

    For the task of developing an ambient dose rate measuring probe, the company MAB decided for a design combining an organic plastic scintillator and a secondary electron multiplier. MAB tested a range of available plastic scintillators suitable for this task, and one proved to be particularly good for the intended purpose. This scintillator is a product of the British company NE Technology Ltd. and was specially developed for dosimetry applications, offering the following advantages: The response within the range from 33 keV to 1.3 MeV (Co-60) is much more constant than with combined-design types; there is no afterglow under conditions of excessive load. (orig./CB) [de

  13. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  14. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  15. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  16. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra.

    Science.gov (United States)

    Mitzi, D B; Brock, P

    2001-04-23

    Two organic-inorganic bismuth iodides of the form (H3N-R-NH3)BiI5 are reported, each containing long and relatively flexible organic groups, R. The norganic framework in each case consists of distorted BiI6 octahedra sharing cis vertexes to form zigzag chains. Crystals of (H3NC18H24S2NH3)BiI5 were grown from a slowly cooled ethylene glycol/2-butanol solution containing bismuth(III) iodide and AETH.2HI, where AETH = 1,6-bis[5'-(2' '-aminoethyl)-2'-thienyl]hexane. The new compound, (H2AETH)BiI5, adopts an orthorhombic (Aba2) cell with the lattice parameters a = 20.427(3) A, b = 35.078(5) A, c = 8.559(1) A, and Z = 8. The structure consists of corrugated layers of BiI5(2-) chains, with Bi-I bond lengths ranging from 2.942(3) to 3.233(3) A, separated by layers of the organic (H2AETH)(2+) cations. Crystals of the analogous (H3NC12H24NH3)BiI5 compound were also prepared from a concentrated aqueous hydriodic acid solution containing bismuth(III) iodide and the 1,12-dodecanediamine (DDDA) salt, DDDA.2HI. (H2DDDA)BiI5 crystallizes in an orthorhombic (Ibam) cell with a = 17.226(2) A, b = 34.277(4) A, c = 8.654(1) A, and Z = 8. The Bi-I bonds range in length from 2.929(1) to 3.271(1) A. While the inorganic chain structure is nearly identical for the two title compounds, as well as for the previously reported (H3NC6H12NH3)BiI5 [i.e., (H2DAH)BiI5] structure, the packing of the chains is strongly influenced by the choice of organic cation. Optical absorption spectra for thermally ablated thin films of the three organic-inorganic hybrids containing BiI5(2-) chains are reported as a function of temperature (25-290 K). The dominant long-wavelength feature in each case is attributed to an exciton band, which is apparent at room temperature and, despite the similar inorganic chain structure, varies in position from 491 to 541 nm (at 25 K).

  17. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  18. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  19. Hybrid-organic photodetectors for radiography. Final report; Hybrid organische Photodetektoren fuer die Radiographie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Oliver [Siemens Healthcare GmbH, Erlangen (Germany); Bonrad, Klaus [Merck KGaA, Darmstadt (Germany); Adam, Jens; Kraus, Tobias [INM - Leibniz-Institut fuer Neue Materialien gGmbH, Saarbruecken (Germany); Gimmler, Christoph [CAN GmbH, Hamburg (Germany)

    2016-02-15

    HOP-X aimed to combine the advantages of nanotechnology and organic electronics for application in medical X-ray imaging in order to enable more cost-effective imaging at lower dose. Solution-processing of organic semiconductors enables easy hybridization with X-ray absorbers and processing on large areas. In this project, nano-sized scintillators and quantum dots have been synthesized and characterized as X-ray absorbers. Organic semiconductor materials have been identified which allow charge carrier extraction from layers with a thickness of up to 200 μm. Hybrid-organic photodiodes have been processed and the ideal mixture of organic semiconductor and inorganic X-ray absorber was determined. This mixture provide a high X-ray absorption and an efficient charge carrier extraction at the same time. Photodiodes have been integrated on TFT-matrix backplanes in order to demonstrate the concept in X-ray imagers.

  20. Recycling as a Pedagogical Strategy for the Reutilization of Organic and Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Dulce Aranel Gonzalez Orozco

    2017-02-01

    Full Text Available The objective of the present study is to establish recycling as a pedagogical strategy for the reuse of organic and inorganic material with the students of the National Basic School "Sebastián Araujo Briceño" of the Pedraza Municipality Barinas State; The researcher, through a direct approach to the study reality, has been able to verify firsthand that the subject of recycling is not being given due treatment, since it has been approached as a topic of more content, without being given due importance , Especially from the use of organic and inorganic materials, which makes this study an element of great importance in terms of the contribution that can be generated from it to the institution and to conscious formation. The informants of the present study will be made up of people from the "Sebastián Araujo Briceño" National Basic School of the Pedraza Municipality of Barinas, where the research will be carried out. Specifically, two (02 teachers and two (02 students of the institution, collaborators of the different activities that take place in the same. The technique used is the semi-structured interview, and the instrument is the interview guide. The analysis of the information will be done through the codification, categorization, triangulation and structuring of theories.