WorldWideScience

Sample records for inorganic carbon pump

  1. Assessment of the sea-ice carbon pump

    DEFF Research Database (Denmark)

    Grimm, R.; Notz, D.; Glud, Ronnie N.

    2016-01-01

    -induced oceanic CO2 uptake ranges from 2 to 14 Tg C yr−1, which is up to 7% of the simulated net CO2 uptake in polar regions, but far less than 1% of the cur-rent global oceanic CO2 uptake. Hence, while we find that the SICP plays a minor role in the modern global carbon cycle, it is of importance......It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total...... for the regional carbon cycle at high latitudes....

  2. Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone

    Science.gov (United States)

    Salter, Ian; Schiebel, Ralf; Ziveri, Patrizia; Movellan, Aurore; Lampitt, Richard; Wolff, George A.

    2014-12-01

    The production of organic carbon in the ocean's surface and its subsequent downward export transfers carbon dioxide to the deep ocean. This CO2 drawdown is countered by the biological precipitation of carbonate, followed by sinking of particulate inorganic carbon, which is a source of carbon dioxide to the surface ocean, and hence the atmosphere over 100-1,000 year timescales. The net transfer of CO2 to the deep ocean is therefore dependent on the relative amount of organic and inorganic carbon in sinking particles. In the Southern Ocean, iron fertilization has been shown to increase the export of organic carbon, but it is unclear to what degree this effect is compensated by the export of inorganic carbon. Here we assess the composition of sinking particles collected from sediment traps located in the Polar Frontal Zone of the Southern Ocean. We find that in high-nutrient, low-chlorophyll regions that are characterized by naturally high iron concentrations, fluxes of both organic and inorganic carbon are higher than in regions with no iron fertilization. However, the excess flux of inorganic carbon is greater than that of organic carbon. We estimate that the production and flux of carbonate in naturally iron-fertilized waters reduces the overall amount of CO2 transferred to the deep ocean by 6-32%, compared to 1-4% at the non-fertilized site. We suggest that an increased export of organic carbon, stimulated by iron availability in the glacial sub-Antarctic oceans, may have been accompanied by a strengthened carbonate counter pump.

  3. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  4. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  5. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  6. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  7. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  8. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. The exchange of inorganic carbon on the Canadian Beaufort Shelf

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Hu, Xianmin; Myers, Paul G.

    2017-04-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is an area that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds and resulting cross-shelf Ekman transport. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries water high in dissolved inorganic carbon (DIC) and nutrients from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore and cross-shelf transport of inorganic carbon is quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) model. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of aragonite and pH levels, is investigated. TA and δ18O are used to examine water mass distributions in the study area and analyze the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key in order to quantify the importance of Arctic shelf regions to the global carbon cycle and to provide a basis for understanding how its role will respond to the aforementioned changes in the regional marine system.

  12. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  13. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    Science.gov (United States)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  14. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species

    NARCIS (Netherlands)

    Buitenhuis, Erik T.; Baar, Hein J.W. de; Veldhuis, Marcel J.W.

    1999-01-01

    To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are

  16. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  17. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.H.; Leu, J.Y.; Lan, C.R.; Lin, P.H.P.; Chang, F.L. [Development Center for Biotechnology, Taipei (Taiwan). Dept. for Environmental Program

    2003-11-01

    A kinetic model was developed to describe inorganic carbon utilization by microalgae biofilm in a flat plate photoreactor. The model incorporates the fundamental mechanisms of diffusive mass transport and biological reaction of inorganic carbon by microalgal biofilm. An advanced numerical technique, the orthogonal collocation method and Gear's method, was employed to solve this kinetic model. The model solutions included the concentration profiles of inorganic carbon in the microalgal biofilm, the growths of suspended microalgae and microalgal biofilm, the effluent concentrations of inorganic carbon, and the flux of inorganic carbon from bulk liquid into biofilm. The batch kinetic test was independently conducted to determine biokinetic parameters used in the microalgal biofilm model simulation while initial thickness of microalgal biofilm were assumed. A laboratory-scale flat plate photoreactor with a high recycle flow rate was set up and conducted to verify the model. The volume of photoreactor is 60 l which yields a hydraulic retention time of 1.67 days. The model-generated inorganic carbon and the suspended microalgae concentration curves agreed well with those obtained in the laboratory-scale test. The fixation efficiencies of HCO{sub 3}{sup -} and CO{sub 2} are 98.5% and 90% at a steady-state condition, respectively. The concentration of suspended microalgal cell reached up to 12 mg/l at a maximum growth rate while the thickness of microalgal biofilm was estimated to be 104 pm at a steady-state condition. The approaches of experiments and model simulation presented in this study could be employed for the design of a flat plate photoreactor to treat CO{sub 2} by microalgal biofilm in a fossil-fuel power plant.

  18. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  19. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic.

    Science.gov (United States)

    Jónasdóttir, Sigrún Huld; Visser, André W; Richardson, Katherine; Heath, Michael R

    2015-09-29

    Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material ("biological pump") is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal "lipid pump," which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a "lipid shunt," and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.

  20. Autonomous observations of the ocean biological carbon pump

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  1. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria.

    Science.gov (United States)

    Gaudana, Sandeep B; Zarzycki, Jan; Moparthi, Vamsi K; Kerfeld, Cheryl A

    2015-10-01

    Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.

  2. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  3. Modelling the inorganic ocean carbon cycle under past and future climate change

    International Nuclear Information System (INIS)

    Ewan, T.L.

    2004-01-01

    This study used a coupled ocean-atmosphere-sea ice model with an inorganic carbon component to examine the inorganic ocean carbon cycle with particular reference to how climate feedback influences future uptake. In the last 150 years, the increase in atmosphere carbon dioxide (CO 2 ) concentrations have been higher than any time during the Earth's history. Although the oceans are the largest sink for carbon dioxide, it is not know how the ocean carbon cycle will respond to increasing anthropogenic carbon dioxide concentrations in the future. Climate feedbacks could potentially reduce further uptake of carbon by the ocean. In addition to examining past climate transitions, including both abrupt and glacial-interglacial climate transitions, this study also examined the sensitivity of the inorganic carbon cycle to increased atmospheric carbon dioxide. Atmospheric carbon dioxide levels were also projected under a range of global warming scenarios. Most simulations identified a transient weakening of the North Atlantic and increased sea surface temperatures (SST). These positive feedbacks act on the carbon system to reduce uptake. However, the ocean has the capacity to take up 65 to 75 per cent of the anthropogenic carbon dioxide increases. An analysis of climate feedback on future carbon uptake shows that oceans store 7 per cent more carbon when there are no climate feedbacks acting on the system. Sensitivity experiments using the Gent McWilliams parameterization for mixing associated with mesoscale eddies show a further 6 per cent increase in oceanic uptake. Inclusion of sea ice dynamics resulted in a 2 per cent difference in uptake. This study also examined changes in atmospheric carbon dioxide concentration that occur during abrupt climate change events. Changes in ocean circulation and carbon solubility cause significant increases in atmospheric carbon dioxide concentrations when melt water episodes are simulated in both hemispheres. The response of the carbon

  4. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  5. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  6. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  7. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    International Nuclear Information System (INIS)

    Goyal, A.; Tolbert, N.E.

    1989-01-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by 14 C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO 2 , in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO 2 and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO 3 - were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO 2 concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H + gradients or transporters associated with the DIC-pump

  8. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  9. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Krisanova, Natalia; Nazarova, Anastasia; Borisova, Tatiana

    2017-02-01

    Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

  10. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  11. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  12. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  13. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  14. Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans

    Science.gov (United States)

    White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.

    2008-12-01

    In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.

  15. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  16. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens.

    Science.gov (United States)

    Frederiksen, Trine-Maria; Finster, Kai

    2004-02-01

    The physiology of the sulfur disproportionator Desulfocapsa sulfoexigens was investigated in batch cultures and in a pH-regulated continuously flushed fermentor system. It was shown that a sulphide scavanger in the form of ferric iron was not obligatory and that the control of pH allowed production of more biomass than was possible in carbonate buffered but unregulated batch cultures. Small amounts of sulphite were produced during disproportionation of elemental sulfur and thiosulphate. In addition, it was shown that in the presence of hydrogen, a respiratory type of process is favored before the disproportionation of sulphite, thiosulphate and elemental sulfur. Sulphate reduction was not observed. D. sulfoexigens assimilated inorganic carbon even in the presence of organic carbon sources. Inorganic carbon assimilation was probably catalyzed by the reverse CO-dehydrogenase pathway, which was supported by the constitutive expression of the gene encoding CO-dehydrogenase in cultures grown in the presence of acetate and by the high carbon fractionation values that are indicative of this pathway.

  17. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.

    2012-01-01

    . Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and return temperatures of the heat sink (condenser or gas cooler) of the heat pump are most important......This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures...... conclusion is that ammonia heat pumps are best at heat sink inlet temperatures above 28°C and CO2 is best below 24°C, independent of other parameters....

  18. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  19. Safe recycling of materials containing persistent inorganic and carbon nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Njuguna, J.; Pielichowski, K.; Zhu, H.

    2014-01-01

    For persistent inorganic and carbon nanomaterials, considerable scope exists for a form of recycling called ‘resource cascading’. Resource cascading is aimed at the maximum exploitation of quality and service time of natural resources. Options for resource cascading include engineered nanomaterials

  20. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Irwan Ramadhan Ritonga

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Inorganic carbon is closely related to the calcification process (CaCO3, which is the main constituent of coral reefs or microorganisms that exist in the oceans such as foraminifera and cocolitoporit. Inorganic carbon is also closely linked to the chemical processes that occur when carbon dioxide gas (CO2 dissolved in water. The research of inorganic carbon in the waters of Beras Basah was carried out in January, February and March 2012. The purpose of this study was to understand the distribution and concentration of total inorganic carbon (CT in coral reef and seagrass ecosystems as well as the correlation of Beras Basah. The results showed that the concentration of total inorganic carbon (CT in January average 1166.503 μmol/kgSW, February average 1115.599 μmol/kgSW, and then in March the average 987.443 μmol/kgSW. Distribution patterns of total inorganic carbon (CT is vectoral, where in January, the concentration of total inorganic carbon (CT was highest in the Southeast region, was in February in the South and Southeast, while in March shifted to North region of Beras Basah Island. The concentration difference is thought to be influenced by pH and the seasons, tides, biochemical processes, and biological activity. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.5.1.1-5 [How to cite this article: Ritonga, I.R., Supriharyono, and Henderarto, B. (2013. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan. International Journal of Science and Engineering, 5(1,1-6. Doi: 10.12777/ijse.5.1.1-5] 

  1. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  2. The Mechanisms of Calcification in Coccolithophores - The molecular basis of calcium and inorganic carbon transport in Emiliania huxleyi

    OpenAIRE

    Mackinder, Luke

    2012-01-01

    Coccolithophores are calcifying marine phytoplankton that through the fixation of inorganic carbon into calcite and particulate organic carbon play a fundamental role in global carbon cycles. As the CO2 concentration of the surface ocean increases through the anthropogenic release of CO2 by burning fossil fuels both a decrease in pH (ocean acidification) and a increase in dissolved inorganic carbon (ocean carbonation) are taking place. To understand the impact of these ocean changes on coccol...

  3. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    OpenAIRE

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.; Reinholdt, Lars; Elmegaard, Brian

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures. Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and...

  4. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  5. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  6. Involvement of H(+)-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis.

    Science.gov (United States)

    Furla, P; Allemand, D; Orsenigo, M N

    2000-04-01

    Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.

  7. The Biological carbon pump in the North Atlantic

    DEFF Research Database (Denmark)

    Sanders, Richard; Henson, Stephanie A.; Koski, Marja

    2014-01-01

    Mediated principally by the sinking of organic rich particles from the upper ocean, the Biological Carbon Pump (BCP) is a significant component of the global carbon cycle. It transfers roughly 11 Gt C yr−1 into the ocean’s interior and maintains atmospheric carbon dioxide at significantly lower......, including both the magnitude of the downward flux and the ecological, chemical and physical processes by which it is sustained and controlled. Our lack of detailed mechanistic understanding has also hindered modelling attempts to quantify and predict changes to the BCP. In this paper, we assess current...

  8. Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.

    1981-04-01

    Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

  9. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  10. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  11. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  12. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  13. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean

    OpenAIRE

    Aarnos, Hanna; Gélinas, Yves; Kasurinen, Ville; Gu, Yufei; Puupponen, Veli-Mikko; Vähätalo, Anssi

    2018-01-01

    When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoprod...

  14. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  16. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  17. Instrumentation and analytical methods in carbon balance studies - inorganic components in a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Skjelvan, I.; Johannessen, T.; Miller, L.; Stoll, M.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Substantial amounts of anthropogenic CO{sub 2} enters the atmosphere. The land biota acts as a sink for CO{sub 2}, with uncertain consequences. About 30% of the anthropogenic CO{sub 2} added to the atmosphere is absorbed by the ocean and how the ocean acts as a sink is central in understanding the carbon cycle. In their project the authors investigate the inorganic carbon in the ocean, especially total dissolved inorganic carbon, alkalinity, and partial pressure of CO{sub 2} (pCO{sub 2}) in surface ocean and atmosphere. To determine total dissolved inorganic carbon, coulometric analysis is used in which an exact amount of sea water is acidified and the amount of carbon extracted is determined by a coulometer. Alkalinity is determined by potentiometric titration. In the pCO{sub 2} measurement, a small amount of air is circulated in a large amount of sea water and when after some time the amount of CO{sub 2} in the air reflects the CO{sub 2} concentration in the water, the pCO{sub 2} in the gas phase is determined by infra-red detection. The atmospheric pCO{sub 2} is also determined, and the difference between the two partial pressures gives information about source or sink activities. Total carbon and alkalinity measurements are done on discrete samples taken from all depths in the ocean, but for partial pressure detection an underway system is used, which determines the pCO{sub 2} in the surface ocean continuously

  18. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  19. Studies of cryocooler based cryosorption pump with activated carbon panels operating at 11K

    International Nuclear Information System (INIS)

    Kasthurirengan, S; Behera, Upendra; Gangradey, Ranjana; Udgata, Swarup; Krishnamoorthy, V

    2012-01-01

    Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about ∼50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

  20. Inorganic carbon turnover caused by digestion of carbonate sands and metabolic activity of holothurians

    Science.gov (United States)

    Schneider, Kenneth; Silverman, Jacob; Kravitz, Ben; Rivlin, Tanya; Schneider-Mor, Aya; Barbosa, Sergio; Byrne, Maria; Caldeira, Ken

    2013-11-01

    Recent measurements have shown that holothurians (sea cucumbers) may play an important role in the cycling of CaCO3 in tropical coral reef systems through ingestion and processing of carbonate sediment. In this report, we present estimates of inorganic carbon turnover rates determined from laboratory incubations of Holothuria atra, Holothuria leucospilota and Stichopus herrmanni. The pH values of the gut lumen ranged from 7.0 to 7.6 when digestive tracts were filled with sediment compared with 6.1-6.7 in animals with empty digestive tracts. Empty gut volume estimates for H. atra and S. herrmanni were 36 ± 4 mL and 151 ± 14 mL, respectively. Based on these measurements and the density and porosity of carbonate sediments of coral reefs, it is estimated that these species process 19 ± 2 kg and 80 ± 7 kg CaCO3 sand yr-1 per individual, respectively. The annual CaCO3 dissolution rates per H. atra and S. herrmanni individual are estimated to be 6.5 ± 1.9 g and 9.6 ± 1.4 g, respectively, suggesting that 0.05 ± 0.02% and 0.1 ± 0.02% of the CaCO3 processed through their gut annually is dissolved. During incubations the CaCO3 dissolution of the fecal casts was 0.07 ± 0.01%, 0.04 ± 0.01% and 0.21 ± 0.05% for H. atra, H. leucospilota and S. herrmanni, respectively. The CaCO3 saturation state in the incubation seawater decreased markedly due to a greater increase in dissolved inorganic carbon (DIC) relative to total alkalinity (AT) as a result of respiration by the animals. Our results support the hypothesis that deposit feeders such as sea cucumbers play an important ecological role in the coral reef CaCO3 cycle.

  1. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  2. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  3. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  4. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  5. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  7. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    Science.gov (United States)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  8. Influence of diatom diversity on the ocean biological carbon pump

    Science.gov (United States)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  9. Inorganic Carbon Turnover caused by Digestion of Carbonate Sands and Metabolic Activity of Holothurians

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kenneth; Silverman, Jacob; Kravitz, Benjamin S.; Rivlin, Tanya; Schneider-Mor, Aya; Barbosa, Sergio; Byrne, Maria; Caldeira, Ken

    2013-11-20

    Recent measurements have shown that holothurians (sea cucumbers) play an important role in the cycling of CaCO3 in tropical coral reef systems through ingestion and processing of carbonate sediment. In this study inorganic additional aspects of carbon turnover were determined in laboratory incubations of Holothuria atra, H. leucospilota and Stichopus herrmanni from One Tree Reef, Great Barrier Reef. The pH values of the gut lumen ranged from 6.1 to 6.7 in animals with empty digestive tracts as opposed to 7.0 to 7.6 when digestive tracts were filled with sediment. Empty gut volume estimates for H. atra and S. herrmanni were 36 ± 4 mL and 151 ± 14 mL, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni of 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. The CaCO3 saturation state for both aragonite and calcite minerals during laboratory incubations decreased markedly due to a greater increase in dissolved inorganic carbon (DIC) relative to total alkalinity (AT) as a result of respiration by the animals. Our results support the hypothesis that deposit feeders such as sea cucumbers play an important ecological role in the coral reef CaCO3 cycle.

  10. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies : evaluation and alternatives

    Science.gov (United States)

    Hassan, Afifa Afifi

    1982-01-01

    The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)

  11. Variation in the carbon cycle of the Sevastopol Bay (Black Sea)

    Science.gov (United States)

    Orekhova, N. A.; Konovalov, S. K.

    2018-01-01

    Continuous increase in CO2 inventory in the ocean results in dramatic changes in marine biogeochemistry, e.g. acidification. That is why temporal and spatial variabilities in atmospheric pCO2 and dissolved inorganic carbon, including CO2, pH and alkalinity in water, as well as organic and inorganic carbon in bottom sediments have to be studied together making possible to resolve the key features of the carbon cycle transformation. A 30% increase of pCO2 in the Sevastopol Bay for 2008 - 2016 evidences changes in the DIC components ratios and a significant decrease in the ability to absorb atmospheric CO2 by surface waters. High organic carbon content in the bottom sediments and predominance of organic carbon production in the biological pump at inner parts of the bay reveal ongoing transformation of the carbon cycle. This has negative consequences for recreation, social and economic potentials of the Sevastopol region.

  12. Studies on sorption of plutonium on inorganic exchangers from sodium carbonate medium

    Energy Technology Data Exchange (ETDEWEB)

    Pius, I C; Charyulu, M M; Sivaramakrishnan, C K [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Venkataramani, B [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sorption of Pu(IV) from sodium carbonate medium has been investigated by using different inorganic exchangers alumina, silica gel and hydrous titanium oxide. Distribution ratios of Pu(IV) for its sorption on these exchangers from sodium carbonate medium were found to be sufficiently high indicating the suitability of these exchangers for the removal of Pu(IV). The presence of uranium and dibutyl phosphate do not have any effect on distribution ratio. The 10% Pu(IV) breakthrough capacities for above exchangers have been determined with 5 ml bed at a flow rate of 30 ml/hour. (author). 4 refs., 2 tabs.

  13. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  14. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  15. Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application

    Science.gov (United States)

    Lentz, R. D.; Lehrsch, G. A.

    2014-12-01

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.

  16. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    Science.gov (United States)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent

  17. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  18. Quantification of the lithogenic carbon pump following a dust deposition event

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2013-08-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  19. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  20. Coulometric precise analysis of total inorganic carbon in seawater and measurements of radiocarbon for the carbon dioxide in the atmosphere and for the total inorganic carbon in seawater

    International Nuclear Information System (INIS)

    Ishii, Masao; Inoue, Hisayuki Y.; Matsueda Hidekazu

    2000-01-01

    Climate change is one of the biggest issues on the earth, and the research on the climate system has been paid much attention today. The behavior of carbon dioxide (Co 2 ), one of the major green house gases, and its related substances within and among the atmosphere, the ocean and the land biosphere is playing a key role in regulating the climate. The ocean contains ca. 4x10 19 g of carbon, which is about 50 times of that in the atmosphere. The change in carbon cycle in the ocean is considered to have a crucial impact on the concentration of CO 2 in the atmosphere. However, little has been quantitatively known about the variability of CO 2 in the ocean and its controlling physical, chemical and biological processes. The observations of the concentration and carbon isotopic ratio of total dissolved inorganic carbon (TCO 2 ) in seawater occupy important part of the research on the behavior of carbon in the ocean. In the first part of this report, we describe the fundamental knowledge of CO 2 system in seawater and the method to precisely measure TCO 2 including sampling method, the structure and the operation of the instrument we developed, and the way to assure the quality of the data. We also present some results we obtained in the western North Pacific and the equatorial Pacific. In the second part, we report the methods to collect and treat samples for the analysis of the isotopic ratio of radio carbon ( 14 C) in the atmospheric CO 2 and TCO 2 in sea water. (author)

  1. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  2. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  3. Sources and fluxes of inorganic carbon in a deep, oligotrophic lake (Loch Ness, Scotland)

    Science.gov (United States)

    Jones, R. I.; Grey, J.; Quarmby, Christopher; Sleep, Darren

    2001-12-01

    The main river inflows to Loch Ness and several depths in the water column within the loch were sampled over an annual cycle. The carbon isotope composition of total dissolved inorganic carbon (DIC) from the samples was determined as well as that of phytoplankton from the loch. Values of δ13C for DIC in the rivers indicated that this DIC was derived from soil respiration in the catchment and achieved only partial equilibrium with the atmosphere during river transport. Riverine loading accounted for most of the DIC in Loch Ness, and the great depth of the loch relative to its surface area allows only limited exchange with the atmosphere. Despite the low productivity in Loch Ness, DIC concentrations in the low alkalinity water are appreciably influenced by plankton metabolism, and seasonal fluctuations in δ13C of DIC and phytoplankton revealed the particular impact of photosynthetic carbon fixation on DIC. However, the photosynthetic depletion of DIC during summer does not offset the riverine loading sufficiently to prevent the loch waters being supersaturated with CO2 throughout the year. Annual efflux of CO2 from Loch Ness is estimated to be 253 × 106 mol yr-1, of which around one quarter may be due to net heterotrophic mineralization within the loch of organic carbon of terrestrial origin. The remainder is attributable to inorganic carbon input to the lake via river inflow and derived from prior mineralization of soil organic matter within the drainage area. This annual efflux of CO2 can represent around 6% of net ecosystem production in the catchment.

  4. Corrosion Protection of Carbon Steel Using Poly aniline Composite with Inorganic Pigments

    International Nuclear Information System (INIS)

    Al-Dulaimi, A.A.; Shahrir Hashim; Khan, M.I.

    2011-01-01

    Two inorganic pigments (TiO 2 and SiO 2 ) were used to prepare composites with poly aniline (PANI) by situ polymerization method. PANI and PANI composites with SiO 2 and TiO 2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO 2 and PANI-TiO 2 ) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO 2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments. (author)

  5. A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection.

    Science.gov (United States)

    Henríquez, Camelia; Horstkotte, Burkhard; Cerdà, Víctor

    2014-01-01

    In this work, a simple, economic, and miniaturized flow-based analyzer based on solenoid micropumps is presented. It was applied to determine two parameters of high environmental interest: ammonium and total inorganic carbon (TIC) in natural waters. The method is based on gas diffusion (GD) of CO₂ and NH3 through a hydrophobic gas permeable membrane from an acidic or alkaline donor stream, respectively. The analytes are trapped in an acceptor solution, being slightly alkaline for CO₂ and slightly acidic for NH₃. The analytes are quantified using a homemade stainless steel conductimetric cell. The proposed system required five solenoid micro-pumps, one for each reagent and sample. Two especially made air bubble traps were placed down-stream of the solendoid pumps, which provided the acceptor solutions, by this increasing the method's reproducibility. Values of RSD lower than 1% were obtained. Achieved limits of detection were 0.27 µmol L⁻¹ for NH₄⁺ and 50 µmol L⁻¹ for TIC. Add-recovery tests were used to prove the trueness of the method and recoveries of 99.5 ± 7.5% were obtained for both analytes. The proposed system proved to be adequate for monitoring purpose of TIC and NH₄⁺ due to its high sample throughput and repeatability. © 2013 Published by Elsevier B.V.

  6. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  7. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Directory of Open Access Journals (Sweden)

    A. Joesoef

    2017-11-01

    Full Text Available Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC, total alkalinity (TA, and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11 during high discharge and low (0.94 during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2, most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3− inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2

  8. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    Kato, Yukitaka; Yamada, Mitsuteru; Kanie, Toshihiro; Yoshizawa, Yoshio

    2001-01-01

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg -1 . The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO 2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  9. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    Science.gov (United States)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  10. Effect Of Geothermal Heat Pump On Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Ahmed F. Atwan

    2015-08-01

    Full Text Available In this research the calculations of carbon dioxide emissions CO2 in summer May to September 150 day and winter seasons December to February 90 day were performed by using the coefficient of performance for each air and ground source heat pump. The place of study case take relative to solar path in to account and the study case was three halls men women and surgery halls in Al-Musayyib hospital in Babylon.

  11. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    DEFF Research Database (Denmark)

    Moreau, Sebastien; Vancoppenolle, Martin; Delille, Bruno

    2015-01-01

    , of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equa- tions. Carbonate chemistry, the consumption, and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3ﰀ6H2O) and ice-air CO2 fluxes, are also...... included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice-tank experi- ment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary...

  12. Inorganic Carbon Utilization of the Freshwater Red Alga Compsopogon coeruleus (Balbis Montagne (Compsopogonaceae, Rhodophyta Evaluated by in situ Measurement of Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Shao-Lun Liu

    2004-09-01

    Full Text Available To explore the inorganic carbon utilization of the freshwater red alga Compsopogon coeruleus, photosynthetic rates in response to increasing of bicarbonate concentration, the addition of alkaline HEPES buffer (pH 8.8, acid HEPES buffer (pH 4.0 and the extracellular carbonic anhydrase inhibitor (acetazolamide, AZ, respectively, were examined in situ by using a submersible pulse amplitude modulated (PAM fluorometer. Among the treatments, adding acid HEPES buffer significantly reduced photosynthetic rates of the alga, while others showed no effect. Accordingly, we concluded that C. coeruleus had less or no inorganic carbon (Ci limitation in its natural habitat. The alga might have higher affinity for bicarbonate and directly uptake bicarbonate as main Ci source without the aid of extracellular carbonic anhydrase.

  13. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  14. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  15. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  16. Distribution of dissolved inorganic carbon and related parameters in the Thermaikos Gulf (Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    E. KRASAKOPOULOU

    2006-06-01

    Full Text Available Data on the distribution of dissolved inorganic carbon (measured as TCO2 and related parameters in the Thermaikos Gulf were obtained during May 1997. High TCO2 concentrations were recorded close to the bottom, especially in the northern part of the gulf, as a result of organic matter remineralisation. The positive relatively good correlation between TCO2 and both apparent oxygen utilisation (AOU and phosphate at the last sampling depth confi rmed the regenerative origin of a large proportion of TCO2. The comparatively conservative behaviour of alkalinity, together with the relatively low value of the homogenous buffer factor β (β = ∂lnfCO2/∂lnTCO2 revealed that calcifi cation or carbonate dissolution takes place on a very small scale, simultaneously with the organic carbon production. The correlations between fCO2 and chlorophyll α, as well as AOU and the surface temperature, revealed that the carbon dioxide fi xation through the biological activity is the principal factor that modulates the variability of fCO2. A rough first estimate of the magnitude of the air-sea CO2 exchange and the potential role of the Thermaikos Gulf in the transfer of atmospheric CO2 was also obtained. The results showed that during May 1997, the Thermaikos Gulf acted as a weak sink for atmospheric CO2 at a rate of -0.60 - -1.43 mmol m-2 d-1, depending on which formula for the gas transfer velocity was used, and in accordance to recent reports regarding other temperate continental shelves. Extensive study of the dissolved inorganic carbon and related parameters, and continuous shipboard measurements of fCO2 a and fCO2 w during all seasons are necessary to safely quantify the role of the Thermaikos Gulf in the context of the coastal margins CO2 dynamics.

  17. Understanding carbon regulation in aquatic systems - Bacteriophages as a model [v1; ref status: indexed, http://f1000r.es/4zd

    Directory of Open Access Journals (Sweden)

    Swapnil Sanmukh

    2015-06-01

    Full Text Available The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC into dissolved organic carbon (DOC by the microbial carbon pump (MCP has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems.

  18. Variations in the inorganic carbon components in the thermal fronts during winter in the Northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Delabehra, H.B.; Sudharani, P.; Remya, R.; Patil, J.S.; Desai, D.V.

    of high phytoplankton biomass. Dissolved inorganic carbon (DIC) was higher in the frontal zone by 3 to 41.5 Mu M than outside. The salinity normalized DIC displayed linear relation with Chl-a and inverse correlation with dissolved oxygen saturation...

  19. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon

    DEFF Research Database (Denmark)

    Hovland, Erlend Kjeldsberg; Dierssen, Heidi M.; Ferreira, Ana Sofia

    2013-01-01

    A more comprehensive understanding of how ocean temperatures influence coccolithophorid production of particulate inorganic carbon (PIC) will make it easier to constrain the effect of ocean acidification in the future. We studied the effect of temperature on Emiliania huxleyi PIC production...

  20. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats

    Science.gov (United States)

    Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G.

    2018-02-01

    The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio-optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy-pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.

  1. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    International Nuclear Information System (INIS)

    Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine

    2009-01-01

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO 2 and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO 2 , (II) bicarbonate plus continuous sparging of CO 2 , and (III) only bicarbonate. The pH-reducing nature of CO 2 showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO 3 - -N/g MLVSS/h for degrading 20 and 30 mg NO 3 - -N/L and 9.09 mg NO 3 - -N/g MLVSS/h for degrading 50 mg NO 3 - -N/L

  2. Particle balance analysis on carbon sheet pump applied to the GAMMA10 tandem mirror plasmas

    International Nuclear Information System (INIS)

    Ishimoto, Yuki; Nakashima, Yousuke; Ishinuki, Eiichi; Kobayashi, Shinji; Yoshikawa, Masayuki; Tamano, Teruo; Yatsu, Kiyoshi; Sagara, Akio

    2000-01-01

    Carbon Sheet Pump (CSP) is expected as a tool for reduction of hydrogen recycling. In this paper, particle balance in the CSP is described. The pumping efficiencies estimated from the time evolution of hydrogen pressures during plasma discharges and those estimated from the thermal desorption experiments have no remarkable difference between the cases of 30degC and 200degC within experimental errors. In cases that CSP is used in actual plasma conditions, we established a method which reduces adsorbed gases on the CSP surface with sustaining a sufficient pumping efficiency by continuously heating CSP. (author)

  3. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  4. Barium carbonate sediment sampling for inorganic dissolved carbon using isotope mass ratio spectrometer

    International Nuclear Information System (INIS)

    Kamaruzaman Mohamad; Rohaimah Demanah; Juhari Mohd Yusof; Roslanzairi Mostapa

    2009-01-01

    This paperwork explain the method of water sampling to obtain the precipitate of BaCO 3 solutions that will be used to analyze 13 C from field work in Kelana Jaya, Selangor, Langkawi, Kedah and Taiping, Perak. The sampling involves collecting of water samples for groundwater from boreholes and surface water from canal, river, pond and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemicals used. The main purpose of this sampling is to obtain the precipitate of BaCO 3 for 13 C analysis of dissolved inorganic carbon (DIC). A correct sampling method according to standard is very important to ensure an accurate and precise result. With this, the data from the laboratory analysis result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  5. Potential of Demand Side Management to Reduce Carbon Dioxide Emissions Associated with the Operation of Heat Pumps

    Directory of Open Access Journals (Sweden)

    Samuel J. G. Cooper

    2013-06-01

    Full Text Available This work considers the potential reduction in the carbon dioxide emissions associated with the operation of Air Source Heat Pump which could be achieved by using demand side management. In order to achieve significant reductions in carbon dioxide emissions, it is widely envisioned that electrification of the heating sector will need to be combined with decarbonisation of the electrical supply. By influencing the times at when electric heat pumps operate such that they coincide more with electricity generation which has a low marginal carbon emissions factor, it has been suggested that these emissions could be reduced further. In order to investigate this possibility, models of the UK electrical grid based on scenarios for 2020 to 2050 have been combined with a dynamic model of an air source heat pump unit and thermal models of a population of dwellings. The performance and carbon dioxide emissions associated with the heat pumps are compared both with and without demand side management interventions intended to give preference to operation when the marginal emissions factor of the electricity being generated is low. It is found that these interventions are unlikely to be effective at achieving further reductions in emissions. A reduction of around 3% was observed in scenarios based around 2035 but in other scenarios the reduction was insignificant. In the scenarios with high wind generation (2050, the DSM scheme considered here tends to improve thermal comfort (with minimal increases in emissions rather than achieving a decrease in emissions. The reasons for this are discussed and further recommendations are made.

  6. Microelectrode characterization of coral daytime interior pH and carbonate chemistry.

    Science.gov (United States)

    Cai, Wei-Jun; Ma, Yuening; Hopkinson, Brian M; Grottoli, Andréa G; Warner, Mark E; Ding, Qian; Hu, Xinping; Yuan, Xiangchen; Schoepf, Verena; Xu, Hui; Han, Chenhua; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Matsui, Yohei; Baumann, Justin H; Levas, Stephen; Ying, Ye; Wang, Yongchen

    2016-04-04

    Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.

  7. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    Science.gov (United States)

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Shahin; Hasan, Masitah [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Aroua, Mohamed Kheireddine [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-mail: mk_aroua@um.edu.my

    2009-03-15

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO{sub 2} and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO{sub 2}, (II) bicarbonate plus continuous sparging of CO{sub 2}, and (III) only bicarbonate. The pH-reducing nature of CO{sub 2} showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 20 and 30 mg NO{sub 3}{sup -}-N/L and 9.09 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 50 mg NO{sub 3}{sup -}-N/L.

  9. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  11. PV water pumping for carbon sequestration in dry land agriculture

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2015-01-01

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  12. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    Science.gov (United States)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  13. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  14. Growth limitation of three Arctic sea-ice algae species: effects of salinitty, pH and inorganic carbon availability

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Hansen, Per Juel; Rysgaard, Søren

    2011-01-01

    The effect of salinity, pH, and dissolved inorganic carbon (TCO(2)) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our res...

  15. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from time series and surface observations using Moored Autonomous Dissolved Inorganic Carbon (MADIC) System, Sunburst SAMI2 pH sensor, and other instruments from Kewalo Buoy near the coast of Honolulu, Hawaii from 2013-10-31 to 2014-06-15 (NCEI Accession 0132048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To expand the number of tools available for autonomous carbonate system observations, we have developed a robust surface ocean dissolved inorganic carbon (DIC)...

  16. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  17. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

    DEFF Research Database (Denmark)

    Rosén, Peter; Vogel, Hendrik; Cunningham, Laura

    2010-01-01

    We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples...... varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology....

  18. Nanostructured carbon materials based electrothermal air pump actuators

    Science.gov (United States)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with

  19. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.

    2014-01-01

    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...

  20. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin)

    NARCIS (Netherlands)

    Guerrero-Feijóo, E.; Sintes, E.; Herndl, G.J.; Varela, M.M.

    2018-01-01

    Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production

  1. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  2. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  3. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  4. Steady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew; Chaplen, Frank; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2016-06-01

    Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia

  5. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  6. Carbon source from the toroidal pumped limiter during long discharge operation in Tore Supra

    International Nuclear Information System (INIS)

    Dufour, E.; Brosset, C.; Lowry, C.; Bucalossi, J.; Chappuis, P.; Corre, Y.; Desgranges, C.; Guirlet, R.; Gunn, J.; Loarer, T.; Mitteau, R.; Monier-Garbet, P.; Pegourie, B.; Reichle, R.; Thomas, P.; Tsitrone, E.; Hogan, J.; Roubin, P.; Martin, C.; Arnas, C.

    2005-01-01

    A better understanding of deuterium retention mechanisms requires the knowledge of carbon sources in Tore-Supra. The main source of carbon in the vacuum vessel during long discharges is the toroidal pumped limiter (TPL). This work is devoted to the experimental characterisation of the carbon source from the TPL surface during long discharges using a visible spectroscopy diagnostic. Moreover, we present an attempt to perform a carbon balance over a typical campaign and we discuss it with regards to the deuterium in-vessel inventory deduced from particle balance and the deuterium content of the deposited layers. The study shows that only a third of the estimated deuterium trapped in the vessel is trapped in the carbon deposits. Thus, in the present state of our knowledge and characterisation of the permanent retention, one has to search for mechanisms other than co-deposition to explain the deuterium retention in Tore Supra. (A.C.)

  7. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  9. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  10. Carbon-concentrating mechanisms in seagrasses.

    Science.gov (United States)

    Larkum, Anthony William D; Davey, Peter A; Kuo, John; Ralph, Peter J; Raven, John A

    2017-06-01

    Seagrasses are unique angiosperms that carry out growth and reproduction submerged in seawater. They occur in at least three families of the Alismatales. All have chloroplasts mainly in the cells of the epidermis. Living in seawater, the supply of inorganic carbon (Ci) to the chloroplasts is diffusion limited, especially under unstirred conditions. Therefore, the supply of CO2 and bicarbonate across the diffusive boundary layer on the outer side of the epidermis is often a limiting factor. Here we discuss the evidence for mechanisms that enhance the uptake of Ci into the epidermal cells. Since bicarbonate is plentiful in seawater, a bicarbonate pump might be expected; however, the evidence for such a pump is not strongly supported. There is evidence for a carbonic anhydrase outside the outer plasmalemma. This, together with evidence for an outward proton pump, suggests the possibility that local acidification leads to enhanced concentrations of CO2 adjacent to the outer tangential epidermal walls, which enhances the uptake of CO2, and this could be followed by a carbon-concentrating mechanism (CCM) in the cytoplasm and/or chloroplasts. The lines of evidence for such an epidermal CCM are discussed, including evidence for special 'transfer cells' in some but not all seagrass leaves in the tangential inner walls of the epidermal cells. It is concluded that seagrasses have a CCM but that the case for concentration of CO2 at the site of Rubisco carboxylation is not proven. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2014-02-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  12. Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change

    Science.gov (United States)

    Sigman, D. M.

    2014-12-01

    In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand

  13. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  14. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  15. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  16. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso

    2018-02-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will

  17. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    J. Mol

    2018-02-01

    Full Text Available The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL onto the shelf. Profiles of DIC and total alkalinity (TA taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4 configuration of the Nucleus of European Modelling of the Ocean (NEMO framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2 water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d−1 m−2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10−3 Tg C d−1. TA and the oxygen isotope ratio of water (δ18O-H2O are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air–sea fluxes of carbon dioxide (CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis

  18. Inorganic carbon cycle in soil-rock-groundwater system in karst and fissured aquifers

    Directory of Open Access Journals (Sweden)

    Ajda Koceli

    2013-12-01

    Full Text Available The paper presents a systematic analysis of the isotopic composition of carbon (δ13CCaCO3 in carbonate rocks in central Slovenia, representing karst and fissured aquifers, and share of carbon contributions from carbonate dissolution and degradation of organic matter in aquifers, calculated from the mass balance equation. 59 samples of rocks (mainly dolomites from Upper Permian to Upper Triassic age were analyzed. Samples of carbonate rocks were pulverized and ground to fraction of 45 μm and for determination of δ13CCaCO3 analyzed with mass spectrometer for analyses of stable isotopes of light elements-IRMS. The same method was used for determination of isotopic composition of dissolved inorganic carbon (δ13CDIC in groundwater for 54 of 59 locations. Values of δ13CCaCO3 are in the range from -2.0 ‰ to +4.1 ‰, with an average δ13CCaCO3 value of +2.2 ‰. These values are typical for marine carbonates with δ13CCaCO3 around 0 ‰, although δ13CCaCO3 values differ between groups depending on the origin and age. Early diagenetic dolomites have relatively higher values of δ13CCaCO3 compared to other analyzed samples. The lowest values of δ13CCaCO3 were observed in Cordevolian and Bača dolomite, probably due to late diagenesis, during which meteoric water with lower isotopic carbon composition circulated in the process of sedimentation. Values of δ13CDIC range from -14.6 ‰ to -8.2 ‰. Higher δ13CDIC values (-8.2 ‰ indicate a low proportion of soil CO2 in the aquifer and rapid infiltration, while lower values (-14.6 ‰ indicate higher proportion of soil CO2 in the aquifer and slower infiltration. Calculated contributions of carbon from organic matter / dissolution of carbonates in the karstic and fissured aquifers s how a similar proportion (50 % : 50 %.

  19. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  20. Recent developments in inorganically filled carbon nanotubes: successes and challenges

    Directory of Open Access Journals (Sweden)

    Ujjal K Gautam, Pedro M F J Costa, Yoshio Bando, Xiaosheng Fang, Liang Li, Masataka Imura and Dmitri Golberg

    2010-01-01

    Full Text Available Carbon nanotubes (CNTs are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  1. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.

    2012-03-01

    We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.

  2. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  3. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  4. Electrochemical determination of inorganic mercury and arsenic--A review.

    Science.gov (United States)

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    Science.gov (United States)

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  6. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes.

    Science.gov (United States)

    Porowska, Dorota

    2015-05-01

    Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  8. On-line technique for preparingand measuring stable carbon isotopeof total dissolved inorganic carbonin water samples ( d13CTDIC

    Directory of Open Access Journals (Sweden)

    S. Inguaggiato

    2005-06-01

    Full Text Available A fast and completely automated procedure is proposed for the preparation and determination of d13C of total inorganic carbon dissolved in water ( d13CTDIC. This method is based on the acidification of water samples transforming the whole dissolved inorganic carbon species into CO2. Water samples are directly injected by syringe into 5.9 ml vials with screw caps which have a pierciable rubber septum. An Analytical Precision «Carbonate Prep System» was used both to flush pure helium into the vials and to automatically dispense a fixed amount of H3PO4. Full-equilibrium conditions between produced CO2 and water are reached at a temperature of 70°C (± 0.1°C in less than 24 h. Carbon isotope ratios (13C/ 12C were measured on an AP 2003 continuous flow mass spectrometer, connected on-line with the injection system. The precision and reproducibility of the proposed method was tested both on aqueous standard solutions prepared using Na2CO3 with d13C=-10.78 per mil versus PDB (1 s= 0.08, n = 11, and at five different concentrations (2, 3, 4, 5 and 20 mmol/l and on more than thirty natural samples. Mean d13CTDIC on standard solution samples is ?10.89 < per mil versus PDB (1 s= 0.18, n = 50, thus revealing both a good analytical precision and reproducibility. A comparison between average d13CTDIC values on a quadruplicate set of natural samples and those obtained following the chemical and physical stripping method highlights a good agreement between the two analytical methods.

  9. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    Science.gov (United States)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  10. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux

    Science.gov (United States)

    Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer

    2013-06-01

    The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.

  11. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    Directory of Open Access Journals (Sweden)

    Laurie C Hofmann

    Full Text Available Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA using microsensors. We measured pH, oxygen (O2, and calcium (Ca2+ dynamics and fluxes at the thallus surface under ambient (8.1 and low (7.8 seawater pH (pHSW and across a range of irradiances. Acetazolamide (AZ was used to inhibit extracellular carbonic anhydrase (CAext, which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

  12. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    Science.gov (United States)

    Hofmann, Laurie C; Koch, Marguerite; de Beer, Dirk

    2016-01-01

    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

  13. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  14. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  15. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  16. Corrosion performance of inorganic coatings in seawater

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.; Westing, E. van; Kowalski, L.

    2011-01-01

    Inorganic coatings are widely used to protect carbon steel hydraulic cylinder rods from wear and corrosion in aggressive offshore environment. Different types of lay-ers such as Ni/Cr, Al2O3, Cr2O3, TiO2, and Inconel 625 layers were applied to the carbon steels by plasma, High Velocity Oxygen Fuel

  17. Inorganic membranes for carbon capture and power generation

    Science.gov (United States)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  18. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  19. Form of inorganic carbon utilized for photosynthesis in Chlorella vulgaris 11h cells

    International Nuclear Information System (INIS)

    Miyachi, Shigetoh; Shiraiwa, Yoshihiro

    1979-01-01

    The rate of photosynthetic 14 CO 2 fixation in Chlorella vulgaris 11h cells in the presence of 0.55 mM NaH 14 CO 3 at pH 8.0 (20 0 C) was greatly enhanced by the addition of carbonic anhydrase (CA). However, when air containing 400 ppm 14 CO 2 was bubbled through the algal suspension, the rate of 14 CO 2 fixation immediately after the start of the bubbling was suppressed by CA. These effects of CA were observed in cells which had been grown in air containing 2% CO 2 (high-CO 2 cells) as well as those grown in ordinary air (containing 0.04% CO 2 , low-CO 2 cells). We therefore concluded that, irrespective of the CO 2 concentration given to the algal cells during growth, the active species of inorganic carbon absorbed by Chlorella cells is free CO 2 and they cannot utilize bicarbonate. The effects observed in the high-CO 2 cells were much more pronounced than those in the low-CO 2 cells. This difference was accounted for by the difference in the affinity for CO 2 in photosynthesis between the high- and low-CO 2 cells. (author)

  20. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired

  1. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  2. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  3. Proton Pumps: Mechanism of Action and Applications

    Science.gov (United States)

    Lanyi, Janos K.; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent progress in understanding molecular structures and mechanisms of action of proton pumps has paved the way to their novel applications in biotechnology. Proton pumps, in particular bacteriorhodopsin and ATP synthases, are capable of continuous, renewable conversion of light to chemical, mechanical or electrical energy, which can be used in macro- or nano-scale devices. The capability of protein systems incorporated into liposomes to generate ATP, which can be further used to drive chemical reactions, and to act as molecular motors has been already demonstrated. Other possible applications of such biochemical devices include targeted drug delivery and biocatalytic re actors. All these devices might prove superior to their inorganic alternatives.

  4. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  5. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  6. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  7. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  8. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  9. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  10. Functional polarity of the tentacle of the sea anemone Anemonia viridis: role in inorganic carbon acquisition.

    Science.gov (United States)

    Furla, P; Bénazet-Tambutté, S; Jaubert, J; Allemand, D

    1998-02-01

    The oral epithelial layers of anthozoans have a polarized morphology: photosynthetic endosymbionts live within endodermal cells facing the coelenteric cavity and are separated from the external seawater by the ectodermal layer and the mesoglea. To study if this morphology plays a role in the supply of inorganic carbon for symbiont photosynthesis, we measured the change in pH and the rate of OH- (H+) fluxes induced by each cell layer on a tentacle of the sea anemone Anemonia viridis. Light-induced pH increase of the medium bathing the endodermal layers led to the generation of a transepithelial pH gradient of approximately 0.8 pH units across the tentacle, whereas darkness induced acidification of this medium. The light-induced pH change was associated with an increase of total alkalinity. Only the endodermal layer was able to induce a net OH- secretion (H+ absorption). The light-induced OH- secretion by the endodermal cell layer was dependent on the presence of HCO3- in the compartment facing the ectoderm and was sensitive to several inhibitors of ion transport. [14C] HCO3- incorporation into photosynthates confirmed the ectodermal supply, the extent of which varied from 25 to > 90%, according to HCO3- availability. Our results suggest that the light-induced OH- secretion by the endodermal cell layer followed the polarized transport of HCO3- and its subsequent decarboxylation within the endodermal cell layer. This polarity may play a significant role both in inorganic carbon absorption and in the control of light-enhanced calcification in scleractinian corals.

  11. Controls on the Origin and Cycling of Riverine Dissolved Inorganic Carbon in the Brazos River, Texas

    Science.gov (United States)

    Zeng, F.; Masiello, C. A.; Hockaday, W. C.

    2008-12-01

    Rivers are generally supersaturated in CO2 with respect to the atmosphere. However, there is little agreement on the sources and turnover times of excess CO2 in river waters. This is likely due to varying dominant controls on carbon sources (e.g. geologic setting, climate, land use, or human activities). In this study, we measured carbon isotopic signatures (δ13C and Δ14C) of riverine dissolved inorganic carbon (DIC), as well as solid state cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) of particulate organic carbon (POC), to determine carbon sources fuelling respiration of the Brazos River in Texas. We found that sources of riverine CO2 varied significantly along the length of the Brazos. In the middle Brazos (between Graham and Waco), which is partially underlain by limestone, riverine DIC had average Δ14C of 74 ‰ and δ13C of -7.5 ‰, suggesting that riverine CO2 is derived almost entirely from contemporary carbon (less than 5 years old) with little evidence of carbonate input, probably due to the damming upstream of Waco. In the lower Brazos (downstream of Bryan), riverine DIC was highly depleted in 14C (average Δ14C = -148.5 ‰) and enriched in 13C (average δ13C= -9.32 ‰), indicative of the presence of old carbonate. Since there is no carbonate bedrock in contact with the river in this area, the most likely source of old carbonate is the shell used in road and building construction throughout the 19th century. Our results suggest that the effect of human activities superimposes and even surpasses the effect of natural controls (e.g. geologic setting and climate) on C cycling in the Brazos.

  12. Pumping speed offered by activated carbon at liquid helium temperatures by sorbents adhered to indigenously developed hydroformed cryopanel

    International Nuclear Information System (INIS)

    Gangradey, Ranjana; Mukherjee, Samiran Shanti; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Rana, Chirag; Kasthurirengan, S; Mishra, Jyoti Shankar; Patel, Haresh; Bairagi, Pawan; Lambade, Vrushabh; Sayani, Reena

    2015-01-01

    Towards the aim of developing a pump with large pumping speed of the order of 1 L/(s-cm 2 ) or above for gases like hydrogen and helium through physical adsorption, development of activated carbon based sorbents like granules, spheres, flocked fibres, knitted and non -knitted cloth was carried out. To investigate the pumping speed offered, a test facility SSCF (Small Scale Cryopump Facility) which can take samples of hydroformed cryopanel (a technology developed in India) of size ∼500 mm × 100 mm was set up as per international standards comprising a dome mounted with gauges, calibrated leak valve, gas analyser, sorbent adhered to cryopanel etc. The cryopanel was shielded by chevron baffles. Pumping speed measurements were carried out for gases like hydrogen, helium and argon at a constant panel temperature in the pressure range of 1×10 -7 to 1×10 -4 mbar, and pumping speed was found to be in the range of 2000 L/s for a pressure range 1×10 -6 to 1×10 -4 mbar, and 4000 L/s for pressure range 1×10 -7 mbar and below for a pumping surface area of ∼1000 cm 2 thus giving an average pumping speed of about 2 L/(s-cm 2 ). Using the Monte Carlo codes SSCF was modelled and simulation studies performed. Parameters like sticking coefficient, capture coefficients affecting the pumping speed were studied. This paper describes the experimental setup of SSCF, experimental results and its correlation with Monte-Carlo simulation. (paper)

  13. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers.

    Science.gov (United States)

    Chen, Yu; Yu, Minghuai; Ye, Shuai; Song, Jun; Qu, Junle

    2018-04-05

    Lead halide perovskite nanocrystals with efficient two-photon absorption and ease of achieving population inversion have been recognized as good candidates to achieve frequency up-conversion for biophotonics applications, but suffer from the limitation of the miniaturization of the device and its corresponding poor stability when exposed to atmospheric moisture. Here we demonstrate the miniaturization of plasmonic nanolasers via embedding perovskite quantum dots (QDs) in rationally designed dual-mesoporous silica with gold nanocore. The nanocomposite supports resonant surface plasmon-polaritons (SPPs), which overlap both spatially and spectrally with the CsPbBr3 QDs. The outcoupling between surface plasmon oscillations and photonics modes within a wavelength range completely overcomes the loss of localized surface plasmons, and finally contributes to a novel application of two-photon-pumped nanolasers. Large optical gain under two-photon excitation was observed as a result of resonant energy transfer from excited perovskite QDs to surface plasmon oscillations and stimulated emission of surface plasmons in a luminous mode. The outmost organic-inorganic hybrid shells of the dual-mesoporous silica nanocomposites act as a protective layer of the perovskite QDs against water and endow the nanocomposites with superhydrophobicity. This work provides an alternative inspiration for the design of new two-photon pumped nanolasers.

  14. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using Niskin bottle, flow-through pump and other instruments from F.G. Walton Smith in the Gulf of Mexico (east coast of Florida near the Keys) from 2014-12-03 to 2014-12-04 (NCEI Accession 0154383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurement of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen and nutrients from a transect off...

  15. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  16. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    Science.gov (United States)

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.

  17. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using flow-through pump and other instruments from NOAA Ship Henry B. Bigelow on the Northeast U.S. Shelf (Gulf of Maine and Mid-Atlantic Bight) from 2013-03-17 to 2013-05-09 (NCEI Accession 0154386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the Mid-Atlantic Bight and Gulf of...

  18. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1

    DEFF Research Database (Denmark)

    Arsène-Ploetze, Florence; Valérie Kugler, Valérie; Martinussen, Jan

    2006-01-01

    Inorganic carbon (IC), such as bicarbonate or carbon dioxide, stimulates the growth of Lactobacillus plantarum. At low IC levels, one-third of natural isolated L. plantarum strains are nutritionally dependent on exogenous arginine and pyrimidine, a phenotype previously defined as high-CO2-requiri...

  19. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Olesen, Jørgen E; Porter, John

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  20. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer

    International Nuclear Information System (INIS)

    Copping, A.E.; Lorenzen, C.J.

    1980-01-01

    Adult female and stage V Calanus pacificus were fed 14 C-labeled phytoplankton in the laboratory in the form of monospecific cultures and natural populations. A carbon budget was constructed by following the 14 C activity and the specific activity, over 48 h, in the phytoplankton, copepod, dissolved organic, dissolved inorganic, and fecal carbon compartments. The average incorporation of carbon into the copepod's body was 45% of the phytoplankton carbon available. Of the phytoplankton carbon, 27% appeared as dissolved organic carbon, 24% as dissolved inorganic carbon, and 3 to 4% in the form of fecal pellets. All of the tracer was recovered at the end of the experiments. The specific activity of the phytoplankton compartment was constant throughout each experiment. The other compartments had initial specific activities of zero, or close to zero, and increased throughout the experiment. In most experiments, the copepod specific activity equalled that of the phytoplankton at the end of 48 h, while the dissolved organic carbon, dissolved inorganic carbon, and fecal specific activities remained well below that of the phytoplankton

  1. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    Science.gov (United States)

    Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovich, Marie; Thomas, David; Geilfus, Nicolas-Xavier; Goosse, Hugues

    2015-04-01

    Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halo-thermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3•6H2O) and ice-air CO2 fluxes, are also included. The model is evaluated using observations from a 6-month field study at Point Barrow, Alaska and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 exchanges, sea ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore < 2 mmol m-2 day-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near surface TA/DIC ratios of ~2, sometimes used as an indicator of calcification, would rather suggest outgassing.

  2. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Boronat, C. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Virgos, M.D. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Garcia-Guinea, J. [CSIC, Museo Nacional Ciencias Naturales, José Gutiérrez Abascal 2, Madrid 28006 (Spain)

    2017-06-15

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  3. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    International Nuclear Information System (INIS)

    Boronat, C.; Correcher, V.; Virgos, M.D.; Garcia-Guinea, J.

    2017-01-01

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  4. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  5. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  6. A Comparison of Recent Organic and Inorganic Carbon Isotope Records: Why Do They Covary in Some Settings and Not In Others?

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2013-12-01

    Covariance between inorganic and organic δ13C records has been used to determine whether a deposit has been altered by diagenesis, how the dynamics of the global carbon cycle changed during the production of the sediments in the deposit, and also for chronostratigraphic correlations. Although covariant records are observed in the ancient geologic record in a variety of depositional environments, such comparisons are not widely applied to modern deposits where definitive data regarding sediment producers, sea level fluctuations, and changes in the global carbon cycle are available. This study uses paired δ13C records from cores collected by the Ocean Drilling Program from three modern periplatform settings (the Great Bahama Bank, the Great Australian Bight, and the Great Barrier Reef), and two pelagic settings (the Walvis Ridge, and the Madingley Rise). These sites were selected in order to assess the influence of several different environmental factors including; sediment and organic matter producers, sediment mineralogy, margin architecture, sea level oscillations, and sediment transport pathways. In the three periplatform settings, multiple cores arranged in a margin to basin transect were analyzed in order to provide insights into the effects of downslope sediment transport. The preliminary results of this study suggest that sea level oscillations and margin architecture may artificially generate a covarying relationship in periplatform sediments that is unrelated to changes in the global carbon cycle. Furthermore, preliminary results from the Walvis Ridge and the Madingley Rise sediments suggest that the relationship between inorganic and organic δ13C records may not always exhibit a positive covariance as is currently assumed for pelagic carbonates.

  7. Medicinal Uses of Inorganic Compounds - 1

    Indian Academy of Sciences (India)

    Worldwide sales of inorganic drugs are growing rapidly. Although about 26 elements in the periodic table are considered essential for mammalian life, both ... Lithium like alcohol can influence mood. Lithium drugs such as lithium carbonate Li2C03. , are used for the treatment of manic-depressive disorders, most likely ...

  8. Pumping of methane by an ionization assisted Zr/Al getter pump

    International Nuclear Information System (INIS)

    Shen, G.L.

    1987-01-01

    The pumping of methane by an ionization assisted Zr/Al getter pump has been investigated. This pump consists of 12 pieces of ring getters. A spiral shape W filament is located within the ring getters. A bias voltage is applied across the filament and the getter itself. The experiments have shown that (1) when the bias voltage is turned off, the pumping speed of the getter pump for methane increases exponentially with the filament temperature; (2) when the filament temperature is held constant, its pumping speed varies directly with the ionization electron current; (3) when the filament temperature is 2063 0 C and the electron current is 57 mA, the pumping speed of the Zr/Al getter pump is 475 ml/s, and the specific speed is 16.8 ml/s cm 2 ; and (4) an activation energy and critical temperature measured for methane molecules decomposition are, respectively, 47.4 kcal/mol and about 1700 0 C. Analysis of the results indicates that methane is pumped by an ionization assisted Zr/Al getter pump not because of the adsorption and the diffusion of methane molecules directly, but because methane molecules are decomposed as C and H 2 through a catalysis of the hot W filament, carbon is adsorbed on the surface of the W filament, and is diffused into the interior of the W lattice. H 2 is immediately absorbed by the Zr/Al getters. Besides, electron impact with CH 4 would result in the additional decomposition and ionization, then the effect of electron bombardment enhances methane pumping by the Zr/Al getters

  9. Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Mayes, Melanie A.; Heal, Katherine R.; Brice, Deanne J.; Wullschleger, Stan D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200–800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r 2 = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra. - Highlights: • This research has successfully identified the organic and inorganic carbon in soil. • Multivariate analysis was used to show success in building a statistical model. • Can be used to

  10. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using flow-through pump and other instruments from M/V Equinox in the North Atlantic ocean (east coast of Miami, FL, Bahamas, and Turks and Caicos Islands) from 2015-03-07 to 2015-03-09 (NCEI Accession 0154382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, and pH from the east coast of Florida to Puerto Rico....

  11. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  12. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    Science.gov (United States)

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Binary blend of carbon dioxide and fluoro ethane as working fluid in transcritical heat pump systems

    Directory of Open Access Journals (Sweden)

    Zhang Xian-Ping

    2015-01-01

    Full Text Available As an eco-friendly working fluid, carbon dioxide or R744 is expected to substitute for the existing working fluids used in heat pump systems. It is, however, challenged by the much higher heat rejection pressure in transcritical cycle compared with the traditional subcritical cycle using freons. There exists a worldwide tendency to utilize blend refrigerants as alternatives. Therefore, a new binary blend R744/R161 in this research is proposed in order to decrease the heat rejection pressure. Meanwhile, on mixing R744 with R161, the flammability and explosivity of R161 can be suppressed because of the extinguishing effect of R744. A transcritical thermodynamic model is developed, and then the system performances of heat pump using R744/R161 blend are investigated and compared with those of pure R744 system under the same operation conditions. The variations of heat rejection pressure, heating coefficient of performance, unit volumetric heating capacity, discharge temperature of compressor and the mass fraction of R744/R161 are researched. The results show that R744/R161 mixture can reduce the heat rejection pressure of transcritical heat pump system.

  14. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using flow through pump and other instruments from Explorer of the Seas (ID: 33KF) in the Caribbean Sea and North Atlantic ocean during the Ocean Acidification Cruise EX1507 from 2015-02-14 to 2015-02-15 (NCEI Accession 0154385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH in the Caribbean Sea. Increasing amounts of...

  15. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  16. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  17. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  18. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  19. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  20. Longtime variation of phytoplankton in the South China Sea from the perspective of carbon fixation

    Science.gov (United States)

    Li, Teng; Bai, Yan; Chen, Xiaoyan; Zhu, Qiankun; Gong, Fang; Wang, Difeng

    2017-10-01

    The ocean is a huge carbon pool in the earth, and about half of the anthropogenic emissions of carbon dioxide are absorbed by the ocean each year. By converting inorganic carbon into organic carbon, the photosynthesis process of phytoplankton affords an important way for carbon sequestration in the ocean. According to previous researches, primary production (NPP) and the structure of phytoplankton community are important in regulate the efficiency of biological carbon pump. This study examined the spatiotemporal variability of satellite remote sensing derived chlorophyll a concentration (Chla), phytoplankton carbon biomass (Carbon), composition ratio of micro-, nano- and pico- phytoplankton, NPP and integrated particulate organic carbon (IPOC) during 1998-2007 in the South China Sea (SCS). Micro-, nano-phytoplankton and NPP showed similar seasonal variation with highest values in winter (January) (especially in the western ocean of Luzon Strait) and lowest values in summer (July) in SCS. Chla, phytoplankton carbon biomass, and IPOC showed different seasonal trends with one peak values occurred in winter and lowest in spring. Two sampling areas (A, N:17-21°, E:117.5-120° and B, N:12.5-15°, E:112-119°) in SCS were selected based on spatial distribution of the standard deviation of research parameters mentioned above. Compared to Chla, phytoplankton carbon biomass, NPP and IPOC, the interannual changes of phytoplankton community structure were remarkable in the two areas. The fraction of micro- and nano- phytoplankton in SCS tend to rise when La Nina events occur. Our results contribute to an understanding of the response of phytoplankton to climate change in the marginal sea. To quantify the efficiency of biological carbon pump in this area, more attention should be paid to the development of remote sensing algorithms of export NPP (or POC export flux) as well as the regulate mechanism of export NPP.

  1. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  2. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    Science.gov (United States)

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.

  3. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  4. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  5. Carbonic anhydrase 2-like in the giant clam, Tridacna squamosa: characterization, localization, response to light, and possible role in the transport of inorganic carbon from the host to its symbionts.

    Science.gov (United States)

    Ip, Yuen K; Koh, Clarissa Z Y; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Neo, Mei L; Chew, Shit F

    2017-12-01

    The fluted giant clam, Tridacna squamosa , lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (C i ) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO 2 and HCO3-, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog ( CA2-like ) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa , to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2-like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2-like sequence denoted an animal origin. CA2-like was not detectable in the shell-facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2-like is unlikely to participate directly in light-enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2-like expression, and CA2-like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2-like in the outer mantle. Hence, CA2-like could probably take part in the increased supply of inorganic carbon (C i ) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix C i during light exposure. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt

    Science.gov (United States)

    Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.

    2010-11-01

    ABSTRACT The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding sea ice edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal ice zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during sea ice melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer sea ice melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its importance for the sea ice carbon pump.

  7. Designs for a TFTR full-power pumped limiter

    International Nuclear Information System (INIS)

    Budny, R.

    1986-10-01

    A pumped-limiter system which would provide increased particle control and enhance the performance of full-power discharges is being considered for TFTR. The system consists of two toroidal belts located near the Zirconium-Aluminium (ZrAl) getter panels. The limiter blades would be made of carbon/carbon composite in order to have a very thin profile, allowing a large fraction of the scrape-off flux to be pumped. Simulations of the plasma scrape-off and neutral transport indicate that the limiter pumping should reduce the recycling coefficient by 10 to 25%. Simulations of central plasma processes indicate that the lowered recycling could increase Q/sub fusion/ by more than 100%. This paper discusses the designs and the performance predictions for the system

  8. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  9. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic

    Science.gov (United States)

    Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.

    2011-09-01

    We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.

  10. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  11. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2008-03-01

    Full Text Available One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply. With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

  12. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  13. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  14. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na 2 SO 4 , Na 3 PO 4 , and Na 2 CO 3 have been investigated and are reported here. Results for NaCl and NaNO 3 have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants

  15. Stable isotope composition of inorganic carbonates from Lake Abiyata (Ethiopia): Attempt of reconstructing δ18O palaeohydrological changes during the Holocene

    International Nuclear Information System (INIS)

    Gibert, E.; Massault, M.; Travi, Y.; Chernet, T.

    2002-01-01

    Due to the sensitivity of its regional climate to the African monsoon seasonal shifting, Ethiopia has been designated as a key site for palaeoenvironmental reconstructions mainly within the IGBP-PAGES-PEPIII programme. Under the French-Ethiopian ERICA project, we focused on Lake Abiyata located in the Ziway-Shala basin (Central Ethiopia) which has experienced several lacustrine highstands during the Late Pleistocene and Holocene. At present, Lake Abiyata is a closed lake with a very flat catchment area, and corresponds to a half, deep graben infilled by 600-m of sedimentary deposits. In 1995, a 12.6-m-long sequence ABII was cored in Lake Abiyata. A reliable 14 C-AMS chronology was defined on both organic matter and inorganic carbonates. Both the modern hydrologeological and geochemical balances of the 'groundwater-lake' system indicate that (i) carbonate cristallization mainly occurs at the water-sediment interface via the mixing of lake water and 14 C-depleted groundwaters, and that (ii) modern algae form in equilibrium with the atmospheric reservoir. Phytoplankton is thus considered as an authigenic material, and Core ABII has registered 13,500 cal. yr B.P. of environmental history. The evidence of calcite precipitation at the water-sediment interface calls into question the direct palaeoclimatic reconstruction based on inorganic carbonates. Since the evolution of isotopic contents of carbonates might be linked to the variable proportion of the 'lake/groundwater' end-members in the mixing, calculations based on isotopic mass balance models may allow for the reconstruction of δ 18 O composition of the lake water. Two major changes can be highlighted: (i) the ∼12,000-5500 cal. yr B.P. period is associated to low 18 O contents of lake water, and corresponds to an open hydrological system, with a high lacustrine phytoplanktonic productivity, and (ii) from ∼5500 cal. yr B.P. to Present, regressive conditions are suggested by the δ 18 O enrichment of the lake

  16. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  17. Guidelines for determining inputs of inorganic contaminants into estuaries

    International Nuclear Information System (INIS)

    1987-01-01

    This publication describes sampling and sample preparation procedures suitable to obtain unpolluted samples for the purpose of determining river inputs of inorganic pollutants into estuaries. Emphasis is placed on heavy metal pollutants but procedures are suitable, with appropriate modifications for other inorganic pollutants. For example, the collection of samples for mercury may require modifications of handling procedures. River water samples are collected at the most down-river point where no estuarine influences effect results. Samples are collected using a peristaltic pump and separated into aqueous and particulate phases for pollutant analysis. As is the case of all trace pollutant analyses, meticulous care is required to prevent pollution of the sample and in addition to the precautions described in this method, great personal attention is required to minimize sample handling, pollution by smoke, hands, hair, dust, talc from gloves, etc., and to avoid all contact of the samples and reagents with skin and metallic objects. 1 ref., 3 figs, 1 tab

  18. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The microbial fate of carbon in high-latitude seas: Impact of the microbial loop on oceanic uptake of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yager, P.L.

    1996-12-31

    This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the extent to which marine biological processes in general impact the inorganic carbon cycle. The study area is the Northeast Water (NEW) Polynya, a seasonally-recurrent opening in the permanent ice situated over the northeastern Greenland continental shelf. This work was part of an international, multi-disciplinary research project studying carbon cycling in the coastal Arctic. The first chapter describes a simple model which links a complex marine food web to a simplified ocean and atmosphere. The second chapter investigates the inorganic carbon inventory of the summertime NEW Polynya surface waters to establish the effect of biological processes on the air-sea pCO{sub 2} gradient. The third and fourth chapters use a kinetic approach to examine microbial activities in the NEW Polynya as a function of temperature and dissolved organic substrate concentration, testing the so-called Pomeroy hypothesis that microbial activity is disproportionately reduced at low environmental temperatures owing to increased organic substrate requirements. Together, the suite of data collected on microbial activities, cell size, and grazing pressure suggest how unique survival strategies adopted by an active population of high-latitude bacteria may contribute to, rather than detract from, an efficient biological carbon pump.

  20. Multi-proxy approach (Thorium-234, excess Barium) of export and remineralisation fluxes of carbon and biogenic elements associated with the oceanic biological pump

    International Nuclear Information System (INIS)

    Lemaitre, Nolwenn

    2017-01-01

    The main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralisation fluxes were investigated using the thorium-234 ( 234 Th) and biogenic barium (Baxs) proxies. In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles. Export efficiency was generally low (≤ 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400 m, were driven by sinking particles ballasted by calcite or lithogenic minerals. The regional variation of meso-pelagic remineralisation was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (down-welling). Carbon remineralisation balanced, or even exceeded, POC export, highlighting the impact of meso-pelagic remineralisation on the biological pump with a near-zero, deep carbon sequestration for spring 2014. Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass. A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition. (author)

  1. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  2. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China.

    Science.gov (United States)

    Jin, Zhao; Dong, Yunshe; Wang, Yunqiang; Wei, Xiaorong; Wang, Yafeng; Cui, Buli; Zhou, Weijian

    2014-07-01

    Natural vegetation restoration and tree plantation are the two most important measures for ecosystem restoration on the Loess Plateau of China. However, few studies have compared the effects of the two contrasting measures on soil organic and inorganic carbon (SOC and SIC) sequestration or have further used SOC and SIC isotopes to analyze the inherent sequestration mechanism. This study examined a pair of neighboring small watersheds with similar topographical and geological backgrounds. Since 1954, natural vegetation restoration has been conducted in one of these watersheds, and tree plantation has been conducted in the other. The two watersheds have now formed completely different landscapes (naturally restored grassland and artificial forestland). Differences in soil bulk density, SOC and SIC content and storage, and SOC and SIC δ(13)C values were investigated in the two ecosystems in the upper 1m of the soil. We found that SOC storage was higher in the grassland than in the forestland, with a difference of 14.90 Mg ha(-1). The vertical changes in the δ(13)CSOC value demonstrated that the two ecosystems have different mechanisms of soil surface organic carbon accumulation. The SIC storage in the grassland was lower than that in the forestland, with a difference of 38.99 Mg ha(-1). The δ(13)CSIC values indicated that the grassland generates more secondary carbonate than the forestland and that SIC was most likely transported to the rivers from the grassland as dissolved inorganic carbon (DIC). The biogeochemical characteristics of the grassland were favorable for the formation of bicarbonate. Thus, more DIC derived from the dissolution of root and microbial respired CO2 into soil water could have been transported to the rivers through flood runoff. It is necessary to study further the transportation of DIC from the grassland because this process can produce a large potential carbon sink. Copyright © 2014. Published by Elsevier B.V.

  3. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  4. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  6. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  7. Adsorption of p-cresol on novel diatomite/carbon composites.

    Science.gov (United States)

    Hadjar, H; Hamdi, B; Ania, C O

    2011-04-15

    Hybrid inorganic/organic adsorbents were synthesized using mixtures of diatomite and carbon charcoal as precursors, and explored for the removal of p-cresol from aqueous solution. The carbon/diatomite composites displayed a bimodal and interconnected porous structure which was partially inherited from both precursors. They display moderate surface areas (between 100 and 400 m(2)g(-1)) due to their large inorganic content (between 70 and 90 wt.%), since the diatomite is a non-porous material. Compared to activated carbons with a more developed porosity, p-cresol adsorption on the prepared carbon/diatomite composites was much faster, showing adsorption capacities similar to those of conventional adsorbents over a wide pH range. These results show a good affinity of p-cresol molecules towards the hybrid inorganic/organic composites, and demonstrate the suitability of these novel materials for the removal of aromatic (polar) molecules, despite their dominant inorganic character. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor.

    Science.gov (United States)

    Zhang, Wenjie; Wang, Dunqiu; Jin, Yue

    2018-02-01

    Inorganic carbon (IC) is important for anaerobic ammonium oxidation (anammox). In this study, the effects of the IC concentration on N 2 O emissions and microbial diversity in an anammox reactor were investigated. N 2 O emissions were positively correlated with IC concentrations, and IC concentrations in the range of 55-130 mg/L were optimal, considering the nitrogen removal rate and N 2 O emissions. High IC concentrations resulted in the formation of CaCO 3 on the surface of anammox granules, which impacted the diffusion conditions of the substrate. Microbial community analysis indicated that high IC concentrations decreased the populations of specific bacteria, such as Achromobacter spanius strain YJART-7, Achromobacter xylosoxidans strain IHB B 6801, and Denitratisoma oestradiolicum clone 20b_15. D. oestradiolicum clone 20b_15 appeared to be the key contributor to N 2 O emissions. High N 2 O emissions may result from changes in organic carbon sources, which lead to denitrification by D. oestradiolicum clone 20b_15. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season

    Science.gov (United States)

    Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di

    2017-10-01

    We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes

  10. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  11. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  12. [Impact of Rocky Desertification Treatment on Underground Water Chemistry and Dissolved Inorganic Carbon Isotope in Karst Areas].

    Science.gov (United States)

    Xiao, Shi-zhen; Xiong, Kang-ning; Lan, Jia-cheng; Zhang, Hui; Yang, Long

    2015-05-01

    Five springs representing different land-use types and different karst rocky desertification treatment models were chosen at the Huajiang Karst Rocky Desertification Treatment Demonstration Site in Guanling-Zhenfeng Counties in Guizhou, to analyze the features of underground water chemistry and dissolved inorganic carbon isotopes (δ13C(DIC)) and reveal the effect of rocky desertification treatment on karstification and water quality. It was found that, the underground water type of the research area was HCO3-Ca; the water quality of the springs which were relatively less affected by human activities including Shuijingwan Spring (SJW) , Gebei Spring (GB), and Maojiawan Spring (MJW) was better than those relatively more affected by human activities including Diaojing Spring (DJ) and Tanjiazhai Spring (TJZ) , the main ion concentrations and electrical conductivity of which were higher; pH, SIc and pCO2 were sensitive to land-use types and rocky desertification treatment, which could be shown by the higher pH and SIc and lower pCO2 in MJW than those in the other four springs; (Ca(2+) + Mg2+)/HCO(3-) of SJW, MJW and GB were nearly 1:1, dominated by carbonate rock weathering by carbon acid, while the (Ca(2+) + Mg2+) of DJ and TJZ was much higher than HCO3-, suggesting that sulfate and nitrate might also dissolve carbonate rock because of the agricultural activities; δ13C(DIC) was lighter in wet season because of the higher biological activities; the average δ13C(DIC) was in the order of DJ (-12.79 per thousand) desertification and lighter after the rocky desertification are treated and controlled.

  13. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.

    1971-01-01

    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new

  14. Advanced inorganic fluorides. Proceedings of the Second International Siberian workshop INTERSIBFLUORINE-2006

    International Nuclear Information System (INIS)

    Volkov, V.V.; Mit'kin, V.N.; Bujnovskij, A.S.; Sofronov, V.L.

    2006-01-01

    Proceedings of the Second International Siberian workshop ISIF-2006 on modern inorganic fluorides contain full author's texts of 82 plenary reports and posters on the main trends in chemistry and technology of inorganic fluorides and their various applications. The following new trends are reflected in the ISIF-2006 Proceedings versus the ISIF-2003 ones: production and use of of nano-sized systems and materials based on fluoride phases and fluorinating systems; chemistry of fluorofullerenes, fluorides of graphite and carbon materials; development of research and technical principles of economically viable process of depleted uranium hexafluoride conversion; vitrifying systems based on metal fluorides possessing valuable functional optical properties; mechanochemical processes and phenomena in chemistry of inorganic fluorides [ru

  15. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean

    Science.gov (United States)

    Stukel, Michael R.; Ducklow, Hugh W.

    2017-09-01

    The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.

  16. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    Science.gov (United States)

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 2: Sampling capacity and breakthrough tests for sodium carbonate-impregnated filters.

    Science.gov (United States)

    Demange, Martine; Oury, Véronique; Rousset, Davy

    2011-11-01

    In France, the MétroPol 009 method used to measure workplace exposure to inorganic acids, such as HF, HCl, and HNO3, consists of a closed-face cassette fitted with a prefilter to collect particles, and two sodium carbonate-impregnated filters to collect acid vapor. This method was compared with other European methods during the development of a three-part standard (ISO 21438) on the determination of inorganic acids in workplace air by ion chromatography. Results of this work, presented in a companion paper, led to a need to go deeper into the performance of the MétroPol 009 method regarding evaluation of the breakthrough of the acids, both alone and in mixtures, interference from particulate salts, the amount of sodium carbonate required to impregnate the sampling filter, the influence of sampler components, and so on. Results enabled improvements to be made to the sampling device with respect to the required amount of sodium carbonate to sample high HCl or HNO3 concentrations (500 μL of 5% Na2CO3 on each of two impregnated filters). In addition, a PVC-A filter used as a prefilter in a sampling device showed a propensity to retain HNO3 vapor so a PTFE filter was considered more suitable for use as a prefilter. Neither the material of the sampling cassette (polystyrene or polypropylene) nor the sampling flowrate (1 L/min or 2 L/min) influenced the performance of the sampling device, as a recovery of about 100% was achieved in all experiments for HNO3, HCl, and HF, as well as HNO3+HF and HNO3+HCl mixtures, over a wide range of concentrations. However, this work points to the possibility of interference between an acid and salts of other acids. For instance, interference can occur through interaction of HNO3 with chloride salts: the stronger the acid, the greater the interference. Methods based on impregnated filters are reliable for quantitative recovery of inorganic volatile acids in workplace atmosphere but are valuable only in the absence of interferents.

  18. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  19. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  20. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    Science.gov (United States)

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-10-01

    Full Text Available MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011. The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2 has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter, as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860–2005 is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5.

  2. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  3. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    Science.gov (United States)

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  4. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  5. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  6. Domestic heat pumps in the UK. User behaviour, satisfaction and performance

    Energy Technology Data Exchange (ETDEWEB)

    Caird, S.; Roy, R.; Potter, S. [Design Innovation Group, Dept. Design, Development, Environment and Materials, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2012-08-15

    Consumer adoption of microgeneration technologies is part of the UK strategy to reduce carbon emissions from buildings. Domestic heat pumps are viewed as a potentially important carbon saving technology, given the ongoing decarbonisation of the electricity supply system. To address the lack of independent evaluation of heat pump performance, the Energy Saving Trust undertook the UK's first large-scale heat pump field trial, which monitored 83 systems in real installations. As part of the trial, the Open University studied the consumers' experience of using a domestic heat pump. An in-depth user survey investigated the characteristics, behaviour, and satisfactions of private householders and social housing residents using ground source and air source heat pumps for space and/or water heating, and examined the influence of user-related factors on measured heat pump system efficiency. The surveys found that most users were satisfied with the reliability, heating, hot water, warmth and comfort provided by their system. Analysis of user characteristics showed that higher system efficiencies were associated with greater user understanding of their heat pump system, and more continuous heat pump operation, although larger samples are needed for robust statistical confirmation. The analysis also found that the more efficient systems in the sample were more frequently located in the private dwellings than at the social housing sites and this difference was significant. This is explained by the interaction between differences in the systems, dwellings and users at the private and social housing sites. The implications for heat pump research, practice and policy are discussed.

  7. Replumbing of the Biological Pump caused by Millennial Climate Variability

    Science.gov (United States)

    Galbraith, E.; Sarmiento, J.

    2008-12-01

    It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.

  8. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    Science.gov (United States)

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  10. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  11. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  12. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  13. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  14. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources

    International Nuclear Information System (INIS)

    Raven, J.A.; Johnston, A.M.

    1991-01-01

    Most of the marine phytoplankton species for which data are available are rate saturated for photosynthesis and probably for growth with inorganic C at normal seawater concentrations; 2 of the 17 species are not saturated. Photosynthesis in these two species can probably be explained by the 17 species not saturated. Photosynthesis in these two species can probably be explained by assuming that CO 2 reaches the site of its reaction with RUBISCO (ribulose bisphosphate carboxylase-oxygenase) by passive diffusion. The kinetics of CO 2 fixation by intact cells are explicable by RUBISCO kinetics typical of algae, and a CO 2 -saturated in vivo RUBISCO activity not more than twice the in vivo light- and inorganic-C-saturated rate of photosynthesis. For the other species, the high affinity in vivo for inorganic C could be other species, the high affinity in vivo for inorganic C could be explained by postulating active influx of inorganic C yielding a higher concentration of CO 2 available to RUBISCO during steady state photosynthesis than in the medium. Although such a higher concentration of internal CO 2 in cells with high affinity for inorganic C is found at low levels of external inorganic C, the situation is more equivocal at normal seawater concentrations. In theory, the occurrence of a CO 2 -concentrating mechanism rather than passive CO 2 entry could reduce the photon, N, Fe, Mn, and Mo costs of growth, but increase the Zn and Se costs. Thus far, data on costs are available only for photons and N; these data generally agree with the predicted lower costs for cells with high affinity for inorganic C

  15. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    International Nuclear Information System (INIS)

    Tue-Ngeun, Orawan; Sandford, Richard C.; Jakmunee, Jaroon; Grudpan, Kate; McKelvie, Ian D.; Worsfold, Paul J.

    2005-01-01

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH 2 which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO 2 increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO 2 as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L -1 for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L -1 -5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L -1 -2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L -1 . Sample throughput for the automated system was 8 h -1 for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 μL per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  16. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tue-Ngeun, Orawan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sandford, Richard C. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: rsandford@plymouth.ac.uk; Jakmunee, Jaroon [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Grudpan, Kate [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, P.O. Box 23, Clayton Campus, Vic. 3800 (Australia); Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)

    2005-12-04

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH < 2), converted DIC to CO{sub 2} which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO{sub 2} increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO{sub 2} as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L{sup -1} for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L{sup -1}-5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L{sup -1}-2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L{sup -1}. Sample throughput for the automated system was 8 h{sup -1} for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 {mu}L per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  17. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  18. Optically pumped carbon dioxide laser mixtures. [using solar radiation

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1979-01-01

    This work explores the concept of blackbody radiation pumping of CO2 gas as a step toward utilization of solar radiation as a pumping source for laser action. To demonstrate this concept, an experiment was performed in which laser gas mixtures were exposed to 1500 K thermal radiation for brief periods of time. A gain of 2.8 x 10 to the -3rd reciprocal centimeters has been measured at 10.6 microns in a CO2-He gas mixture of 1 Torr pressure. A simple analytical model is used to describe the rate of change of energy of the vibrational modes of CO2 and to predict the gain. Agreement between the prediction and experiment is good.

  19. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    Science.gov (United States)

    Boronat, C.; Correcher, V.; Virgos, M. D.; Garcia-Guinea, J.

    2017-06-01

    As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle - littorina littorera - shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180-320 °C confirm a continuum in the trap system.

  20. Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean

    Science.gov (United States)

    Moutin, Thierry; Wagener, Thibaut; Caffin, Mathieu; Fumenia, Alain; Gimenez, Audrey; Baklouti, Melika; Bouruet-Aubertot, Pascale; Pujo-Pay, Mireille; Leblanc, Karine; Lefevre, Dominique; Helias Nunige, Sandra; Leblond, Nathalie; Grosso, Olivier; de Verneil, Alain

    2018-05-01

    Surface waters (0-200 m) of the western tropical South Pacific (WTSP) were sampled along a longitudinal 4000 km transect (OUTPACE cruise, DOI: 10.17600/15000900) during the austral summer (stratified) period (18 February to 3 April 2015) between the Melanesian Archipelago (MA) and the western part of the SP gyre (WGY). Two distinct areas were considered for the MA, the western MA (WMA), and the eastern MA (EMA). The main carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes provide a basis for the characterization of the expected trend from oligotrophy to ultra-oligotrophy, and the building of first-order budgets at the daily and seasonal timescales (using climatology). Sea surface chlorophyll a well reflected the expected oligotrophic gradient with higher values obtained at WMA, lower values at WGY, and intermediate values at EMA. As expected, the euphotic zone depth, the deep chlorophyll maximum, and nitracline depth deepen from west to east. Nevertheless, phosphaclines and nitraclines did not match. The decoupling between phosphacline and nitracline depths in the MA allows for excess P to be locally provided in the upper water by winter mixing. We found a significant biological soft tissue carbon pump in the MA sustained almost exclusively by dinitrogen (N2) fixation and essentially controlled by phosphate availability in this iron-rich environment. The MA appears to be a net sink for atmospheric CO2, while the WGY is in quasi-steady state. We suggest that the necessary excess P, allowing the success of nitrogen fixers and subsequent carbon production and export, is mainly brought to the upper surface by local deep winter convection at an annual timescale rather than by surface circulation. While the origin of the decoupling between phosphacline and nitracline remains uncertain, the direct link between local P upper water enrichment, N2 fixation, and organic carbon production and export, offers a possible shorter timescale than previously thought between

  1. Investigations of inorganic and hybrid inorganic-organic nanostructures

    Science.gov (United States)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  2. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Science.gov (United States)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  3. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using Variable Speed Control on Pump Application

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Aida Spahiu

    2012-06-01

    Full Text Available Pumps are one of the most common variable speed drive (VSD system applications and special interest has focused on improving their energy efficiency by using variable speed control instead of throttling or other less efficient flow control methods. Pumps are the single largest user of electricity in industry in the European Union, consuming 160 TWh per annum of electricity and accounting for 79 million tonnes of carbon dioxide (CO2 emissions [1]. Centrifugal pumps are the most likely pump style to provide a favorable return based on energy savings when applied with a variable speed drive. To help illustrate this, are conducted benchmark testing to document various head and flow scenarios and their corresponding effect on energy savings. Paper shows the relationship of static and friction head in the energy efficiency equation and the effect of motor, pump and VSD efficiencies. The received results are good reference points for engineers and managers of water sector in Albania to select the best prospects for maximizing efficiency and energy savings.

  5. CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoonhan; Lee, Jekyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa Univ. of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2013-05-15

    The research team is conducting a S-CO{sub 2} pump experiment to obtain fundamental data for the advanced pump design and measure the overall performance of the pump near the critical point. The S-CO{sub 2} pump testing loop configuration is similar to SNL and JAEA testing loop while the operating conditions and focus of experiment are different from other test facilities. This paper presents the methodology of a 3-dimensional flow analysis for the S-CO{sub 2} pump by using the commercial CFD code. In Figure 2, the results at the 1.5kg/s mass flow rate seems to be close agreement between the CFD efficiency and S-CO{sub 2} test results. In the low mass flow rate of 1.0kg/s, CFD predicted 17∼25% higher efficiency than the test result. In the real test facility, the steel structure of pump is not an adiabatic wall and also the mechanical losses such as suction, blade loading and leakage exist in the pump. The reason why CFD analysis showed higher pump efficiency at the low mass flow is the above mentioned losses were excluded from the model. However, as the mass flow rate increases these have less effect on the efficiency. If the heat transfer through the structure and pump losses are applied in the analysis, other losses can be estimated. From the S-CO{sub 2} pump experiment, more data will be obtained and compared to the CFD analyses under the methodology presented in this paper. After the fluid behavior in the pump are well understood, these analysis results will be used for optimizing impeller for advanced S-CO{sub 2} compressor design in the future. However, it is very encouraging that even at very small mass flow rate the efficiency of S-CO{sub 2} pump near the critical point operation is very high compared to the manufacturer water test. The reason behind such phenomenon will be more carefully studied in the future.

  6. Non-riverine pathways of terrigenous carbon to the ocean

    Science.gov (United States)

    Dittmar, T.

    2007-12-01

    The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of

  7. Voltammetric methods for determination and speciation of inorganic arsenic in the environment-A review

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Douglas E. [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States); Hussam, Abul, E-mail: ahussam@gmu.edu [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States)

    2009-07-30

    The measurement of inorganic arsenic in the environment has received considerable attention over the past 40+ years due to its toxicity and prevalence in drinking water. This paper provides an overview of voltammetric techniques used since 2001. More than fifty papers from refereed analytical chemistry journals on the speciation and measurement of inorganic arsenic (As(III) and As(V)) in practical and environmental samples are included. The present review shows that stripping voltammetry is a sensitive and inexpensive technique. The new approaches include development of novel measurement protocols through media variation, development and use of new boron doped diamond electrodes modified with metals, nano Au-modified electrodes on carbon or carbon nano-tubes, novel rotating disc and vibrating electrodes to enhance mass transfer, and modified Hg(l) and thin film Bi on carbon for cathodic stripping voltammetry are discussed. Although, majority of the papers were of exploratory in nature, the trend towards developing a commercial standalone instrument for field use is still in progress.

  8. Liquid Carbon Reflectivity at 19 nm

    Directory of Open Access Journals (Sweden)

    Riccardo Mincigrucci

    2015-01-01

    Full Text Available We hereby report on a pump-probe reflectivity experiment conducted on amorphous carbon, using a 780 nm laser as a pump and a 19 nm FEL emission as probe. Measurements were performed at 50 degrees with respect to the surface normal to have an un-pumped reflectivity higher than 0.5%. A sub-10 fs time synchronization error could be obtained exploiting the nearly jitter-free capabilities of FERMI. EUV FEL-based experiments open the way to study the behaviour of a liquid carbon phase being unaffected by plasma screening.

  9. Characterization and In Vitro Toxicity of Copper Nanoparticles (Cu-NPs) in Murine Neuroblastoma (N2A) Cells

    Science.gov (United States)

    2011-03-01

    polymers and dendrimers ), 2) inorganic nanoparticles (e.g. metallic nanoparticles), 3) organic/inorganic hybrids (e.g. nanocomposites), 4) carbon...use, transport , and excretion of copper from the body. Copper is an essential nutrient because it is incorporated as one of many metalloenzymes...discover cellular copper transporters in the last decade or so. For those individuals lacking the proper copper exporter pump, diseases such as Menkes

  10. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  11. Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte

    International Nuclear Information System (INIS)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2015-01-01

    Highlights: •Ce 2 (SO 4 ) 3 /H 2 SO 4 redox electrolyte as a new route to increase the energy density of SCs. •Increased operating cell voltage with no electrolyte decomposition. •Redox reactions on the battery-type electrode. •The negative electrode retains its capacitor behaviour. •Outstanding energy density values compared to those measured in H 2 SO 4 . -- ABSTRACT: The energy density of carbon based supercapacitors (CBSCs) was significantly increased by the addition of an inorganic redox species [Ce 2 (SO 4 ) 3 ] to an aqueous electrolyte (H 2 SO 4 ). The development of the faradaic processes on the positive electrode not only significantly increased the capacitance but also the operational cell voltage of these devices (up to 1.5 V) due to the high redox potentials at which the Ce 3+ /Ce 4+ reactions occur. Therefore, in asymmetric CBSCs assembled using an activated carbon as negative electrode and MWCNTs as the positive one, the addition of Ce 2 (SO 4 ) 3 moderately increases the energy density of the device (from 1.24 W h kg −1 to 5.08 W h kg −1 ). When a modified graphite felt is used as positive electrode the energy density of the cell reaches values as high as 13.84 W h kg −1 . The resultant systems become asymmetric hybrid devices where energy is stored due to the electrical double layer formation in the negative electrode and the development of the faradaic process in the positive electrode, which acts as a battery-type electrode

  12. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    International work on refrigerants is aiming at phasing out HFC. The solution might be natural refrigerants. Within 15-20 years, when present heat pumps for district heating in Sweden are likely not in service any longer, it might still be good economy to install new heat pumps since only the machines need to be replaced. This report describes the possibilities to use natural refrigerants. A first screening resulted in further study on some hydrocarbons, ammonia and carbon dioxide. Water was considered to require too large volumes. In present plants it is practically not possible to use any natural refrigerants, partly because the compressors are not adapted. In new plants the situation is different. Today it is technically possible to install new heat pumps in the studied size, 15 MW{sub th}, using ammonia or hydrocarbons as refrigerant. But likely it is very difficult to get permits from authorities since the refrigerants are toxic or highly flammable. There is substantial international research on using carbon dioxide, and this refrigerant is also used in some applications. Carbon dioxide is used at high pressure and in a trans-critical process. Surprisingly, it turned out that one compressor manufacturer considers it possible to supply a heat pump for district heating within 5 years. This development has taken place in Russia, mainly for domestic use. Thus, within 15 to 20 years there will probably exist a technique where carbon dioxide is used. However, more development is needed. Additionally, low district heating return temperatures are also needed to get an acceptable COP. The investment cost for a heat pump installation is considered to be approx. 30 % higher when using ammonia or propane compared to using R134a. When using carbon dioxide there is in the longer run potential to get lower cost than for R134a. The COPs are almost identical if the systems are properly designed. In the carbon dioxide case the COP is somewhat lower, but has a potential for

  13. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized for temperatures in the region of 300 to 900 0 C and partial pressure of carbon dioxide near 5 x 10 -7 Torr. Dynamic film pumping speeds were measured against a mercury diffusion pump of known pumping speed and conductance. A quadrupole mass spectrometer was used to monitor the carbon dioxide flow which originated from a calibrated leak in the 10 -6 standard cm 3 /s range. Data reduction was via a dedicated minicomputer with associated printer/plotter. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C. The reaction was preceded by the desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface

  14. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  15. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  16. Molecular Characterization of a Dual Domain Carbonic Anhydrase From the Ctenidium of the Giant Clam, Tridacna squamosa, and Its Expression Levels After Light Exposure, Cellular Localization, and Possible Role in the Uptake of Exogenous Inorganic Carbon

    Directory of Open Access Journals (Sweden)

    Clarissa Z. Y. Koh

    2018-03-01

    Full Text Available A Dual-Domain Carbonic Anhydrase (DDCA had been sequenced and characterized from the ctenidia (gills of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate HCO3- to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to HCO3- in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.

  17. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  18. Stimulated emission and lasing from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng

    We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.

  19. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  20. Heat pumps in Denmark - From ugly duckling to white swan

    DEFF Research Database (Denmark)

    Nyborg, Sophie; Røpke, Inge

    2015-01-01

    Over the last 10 years, the smart grid and heat pumps have increasingly gained attention in Denmark as an integral part of the low carbon transition of the energy system. The main reason being that the smart grid enables the integration of large amounts of intermittent wind energy...... into the electricity system via, among other things, intelligent interoperation with domestic heat pumps, which consume the 'green' electricity. Unfortunately, recent years' sales of heat pumps have been disappointing. Several studies have investigated the 'dissemination potential' of heat pumps in Denmark, primarily...... through conventional market research approaches. However, there is clearly a lack of studies that take a more socio-technical approach to understanding how technologies such as the heat pump develop and how they come to have a place in society as a result of contingent, emergent and complex historical...

  1. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Science.gov (United States)

    Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.

    2008-03-01

    Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  2. Complementary Constraints from Carbon (13C) and Nitrogen (15N) Isotopes on the Efficiency of the Glacial Ocean's Soft-Tissue Biological Pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-12-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which mimicks iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) than the pre-industrial control. Dissolved oxygen in the thermocline increase, which reduces water column denitrification and nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3. This simulation already fits observed carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the fit. Modest increases in μmax result in higher subpolar δ15NNO3 due to enhanced local nutrient utilization, and better agreement with reconstructions. Large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models with modest increases in μmax reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions

  3. Understanding the Burial and Migration Characteristics of Deep Geothermal Water Using Hydrogen, Oxygen, and Inorganic Carbon Isotopes

    Directory of Open Access Journals (Sweden)

    Xinyi Wang

    2017-12-01

    Full Text Available Geothermal water samples taken from deep aquifers within the city of Kaifeng at depths between 800 and 1650 m were analyzed for conventional water chemical compositions and stable isotopes. These results were then combined with the deuterium excess parameter (d value, and the contribution ratios of different carbon sources were calculated along with distributional characteristics and data on the migration and transformation of geothermal water. These results included the conventional water chemical group, hydrogen, and oxygen isotopes (δD-δ18O, dissolved inorganic carbon (DIC and associated isotopes (δ13CDIC. The results of this study show that geothermal water in the city of Kaifeng is weakly alkaline, water chemistry mostly comprises a HCO3-Na type, and the range of variation of δD is between −76.12‰ and −70.48‰, (average: −74.25‰, while the range of variation of δ18O is between −11.08‰ and −9.41‰ (average: −10.15‰. Data show that values of d vary between 1.3‰ and 13.3‰ (average: 6.91‰, while DIC content is between 91.523 and 156.969 mg/L (average: 127.158 mg/L. The recorded range of δ13CDIC was between −10.160‰ and −6.386‰ (average: −9.019‰. The results presented in this study show that as depth increases, so do δD and δ18O, while d values decrease and DIC content and δ13CDIC gradually increase. Thus, δD, δ18O, d values, DIC, and δ13CDIC can all be used as proxies for the burial characteristics of geothermal water. Because data show that the changes in d values and DIC content are larger along the direction of geothermal water flow, so these proxies can be used to indicate migration. This study also shows demonstrates that the main source of DIC in geothermal water is CO2thathas a biological origin in soils, as well as the dissolution of carbonate minerals in surrounding rocks. Thus, as depth increases, the contribution of soil biogenic carbon sources to DIC decreases while the influence

  4. Sizing and modelling of photovoltaic water pumping system

    Science.gov (United States)

    Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.

    2018-05-01

    With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.

  5. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.

    2010-09-08

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  6. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  7. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  8. Carbon isotope evidence for a vigorous biological pump in the wake of end-Permian mass extinction

    Science.gov (United States)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Payne, J.

    2009-12-01

    Ocean anoxia and euxinia have long been linked to the end-Permian mass extinction and the subsequent Early Triassic interval of delayed biotic recovery. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. To examine the nature of the end-Permian and Early Triassic biological production, we measured the carbon isotopic composition of carbonates from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. 13C of limestones from 5 stratigraphic sections displays a gradient of approximately 4‰ from shallow to deep water within the Lower Triassic. The limestones are systematically enriched in the platform interior relative to coeval slope and basin margin deposits by 2-4‰ at the peaks of correlative positive and negative δ13C excursions. This gradient subsequently collapses to less than 1‰ in the Middle Triassic, coincident with accelerated biotic recovery and cessation of δ13C excursions. Based on the relationship between δ18O and δ13C, trace metal analyses, and lithostratigraphic context, we conclude that the carbon isotope gradient is unlikely to reflect meteoric diagenesis, organic matter remineralization, or changes in the mixing ratio of sediment sources and minerals across the platform. Instead, we interpret the relatively depleted δ13C values toward the basin as reflecting DIC input from 13C-depleted deep waters during early diagenesis in a nutrient-rich, euxinic ocean. These observations suggest that a vigorous prokaryote-driven biological pump sustained Early Triassic ocean anoxia and inhibited recovery of animal ecosystems.

  9. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    Science.gov (United States)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  10. Canned motor pumps at Heavy Water Project, Baroda [Paper No.: II-2

    International Nuclear Information System (INIS)

    Batra, R.K.; Waishampayan, S.G.

    1981-01-01

    Heavy Water Project, Baroda is having special canned motor pumps for pumping ammonia and potassium amide. These pumps work under a pressure of 640 kg/cm 2 and are lubricated and cooled by the same fluid. These pumps are having special bearings consisting of mating surfaces of tungsten carbine Vs ceramic or stellite Vs carbon depending upon application. The total number of such pumps installed in the plant is around 52. These pumps being installed in high pressure vessels working at a pressure of 640 kg/cm 2 have special maintenance problems and need special care during maintenance. Pumps once boxed up are completely out of reach for immediate maintenance if needed. The failure of these pumps may mean a down time of one to two months for the plant. Besides above, there are multistage barrel type ammonia pumps with 24 stages developing a pressure of 140 kg/cm 2 . All these equipments need special maintenance methods as the problems faced are varied and difficult to solve. This paper deals with general and unique type of problems faced on these pumps. (author)

  11. Tritium evacuataion performance of a large oil-free reciprocating pump

    International Nuclear Information System (INIS)

    Hayashi, T.; Yamada, M.; Konishi, S.

    1994-01-01

    In fusion reactors large dry vacuum and transfer pumps are needed for various applications such as backing and roughing for torus evacuation, gas transfer and processing in the fuel cycle, and facility vacuum for safety systems. There are some commercial use oil-free pumps, however, most of all these pumps have low pumping function for hydrogen gases and also at high discharge pressure. A large oil-free reciprocating pump has been developed for high tritium services at the Tritium Process Laboratory (TPL) in the Japan Atomic Energy Research Institute (JAERI). This pump is mainly composed four-stage compression vertical cylinders, a single acting piston with piston rings made by carbon polyimide composite and two buffer tanks. Each stage in the cylinder has 16 special check valves. The process line is isolated completely to crank-case oil by dynamic metal bellows. Design pumping speed is 54 m 3 /hr for hydrogen gas at 5 Torr of discharge pressures. After cold testing in TPL, this pump was shipped and installed in the Tritium Systems Test Assembly (TSTA) loop of the Los Alamos National Laboratory under the US-Japan Collaboration program on fusion technology

  12. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  13. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  14. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  15. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  16. Simulation of a high efficiency multi-bed adsorption heat pump

    International Nuclear Information System (INIS)

    TeGrotenhuis, W.E.; Humble, P.H.; Sweeney, J.B.

    2012-01-01

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system. - Highlights: ► A multi-bed concept for adsorption heat pumps is capable of high efficiency. ► Modeling is used to simulate sorption compressor and overall heat pump performance. ► Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent. ► The majority of the efficiency benefit is obtained with four beds. ► Predicted COP as high as 1.24 for cooling is comparable to SEER 13 or 14 for electric heat pumps.

  17. IEA Annex 21. Global environmental benefits of industrial heat pumps; IEA Annex 21. Globala miljoefoerdelar med industriella vaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1996-12-01

    Industrial heat pumps uses heat from an industrial process as heat source (e.g. cooling water, waste steam, or flue gas). The study thus excludes heat pumps using natural heat sources as sea water or ambient air. The advantage of industrial heat pumps are high heat source temperature (often 30-100 deg C) and high operational time (industries are often operated during the whole year). Produced heat from the heat pump replaces oil or other fuels for process heating or is exported to a district heating network. The total number of industrial heat pumps in the 8 participating countries was approx. 4600. About 2700 are used for drying of wood products and are small by Swedish standards (50-150 kW/unit). Other sectors with large numbers of heat pumps are food industry (1100 units) and chemical industry (350 units). The remaining 460 units are used in textile industry, steel industry and pulp and paper industry. Sweden has relatively few industrial heat pumps (150 units). However, the produced heat is about 500 MW and in terms of installed capacity Sweden is among the leading countries for upgrading of industrial heat sources. The energy saving potential for industrial heat pumps was computed to 2-4 % of the industrial fuel consumption (if profitability has to be obtained). About the same reductions can be reached for carbon dioxide as well as sulphur dioxide, dust, nitric oxide and hydrocarbons. In Sweden heating alternatives with low carbon dioxide emission is already common (hydro power, nuclear power, biofuels, and heat pumps). The potential for further carbon dioxide savings by industrial heat pumps is therefore relatively less than in most other countries. 16 figs, 6 tabs

  18. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  19. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  20. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Directory of Open Access Journals (Sweden)

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  1. Raising the temperature of the UK heat pump market: Learning lessons from Finland

    International Nuclear Information System (INIS)

    Hannon, Matthew J.

    2015-01-01

    Heat pumps play a central role in decarbonising the UK's buildings sector as part of the Committee on Climate Change's (CCC) updated abatement scenario for meeting the UK's fourth carbon budget. However, the UK has one of the least developed heat pump markets in Europe and renewable heat output from heat pumps will need to increase by a factor of 50 over the next 15 years to be in line with the scenario. Therefore, this paper explores what lessons the UK might learn from Finland to achieve this aim considering that its current level of heat pump penetration is comparable with that outlined in the CCC scenario for 2030. Despite the two countries’ characteristic differences we argue they share sufficient similarities for the UK to usefully draw some policy-based lessons from Finland including: stimulating new-build construction and renovation of existing stock; incorporating renewable heat solutions in building energy performance standards; and bringing the cost of heat pumps in-line with gas fired heating via a combination of subsidies, taxes and energy RD&D. Finally, preliminary efforts to grow the heat pump market could usefully focus on properties unconnected to the gas-grid, considering these are typically heated by relatively expensive oil or electric heating technologies. -- Highlights: •Heat pumps are expected to play a key role in meeting the UK's 4th carbon budget. •Today, heat pump deployment per capita in the UK is one of the lowest in Europe. •Finland offers some policy lessons given its high level of heat pump deployment. •Policies: raising build rates, building standards and heat pump cost-effectiveness. •Deployment efforts should focus on buildings not heated by relatively low-cost gas

  2. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  3. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  4. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  5. Using Composite Materials in a Cryogenic Pump

    Science.gov (United States)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  6. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  7. Applications of inorganic Ion-conductor

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori [Science and Technology Agency, Tokyo (Japan)

    1989-03-01

    Physical properties and application of solid electrolyte, particularly of inorganic solid electrolyte, are described. Ion conductors have been widely used not only for electric power application but also for sensors, gas separators, display elements, Coulomb meters, storage elements, etc. The most extensively used pacemakers now employ Li/I{sub 2}(PVP) primary batteries. Thin film lithium secondary battery has a feature of providing comparatively large electric current, with 2.5 V charging, 1.8 V discharging, and 3 mA.cm{sup {minus}2} short circuit current. The capacity of about 4 mAh per 1 cm{sup 2} electrode has been achieved. The most widely used solid electrolyte for the oxygen sensor is the stabilized ZrO{sub 2}. The relation of air/fuel mix proportion with the change in electromotive force is shown. Although solid electrolyte fuel cell is not yet put to practical use, a result of an experiment is introduced. Brief explanations are made on the oxygen pump, electrochromic display elements, Coulomb meter and voltage storage element. 18 refs., 11 figs., 6 tabs.

  8. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  9. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  10. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  11. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination

    Science.gov (United States)

    Allen, Katherine A.; Sikes, Elisabeth L.; Hönisch, Bärbel; Elmore, Aurora C.; Guilderson, Thomas P.; Rosenthal, Yair; Anderson, Robert F.

    2015-08-01

    A greater amount of CO2 was stored in the deep sea during glacial periods, likely via greater efficiency of the biologic pump and increased uptake by a more alkaline ocean. Reconstructing past variations in seawater carbonate ion concentration (a major component of alkalinity) enables quantification of the relative roles of different oceanic CO2 storage mechanisms and also places constraints on the timing, magnitude, and location of subsequent deep ocean ventilation. Here, we present a record of deep-water inorganic carbon chemistry since the Last Glacial Maximum (LGM; ∼19-23 ka BP), derived from sediment core RR0503-83 raised from 1627 m in New Zealand's Bay of Plenty. The core site lies within the upper limit of southern-sourced Circumpolar Deep Water (CDW), just below the lower boundary of Antarctic Intermediate Water (AAIW). We reconstruct past changes in bottom water inorganic carbon chemistry from the trace element and stable isotopic composition of calcite shells of the epibenthic foraminifer Cibicidoides wuellerstorfi. A record of ΔCO32-(ΔCO32- = [COCO32-] in situ - [CO32-] saturation) derived from the foraminiferal boron to calcium ratio (B/Ca) provides evidence for greater ice-age storage of respired CO2 and reveals abrupt deglacial shifts in [CO32-] in situ of up to 30 μmol/kg (5 times larger than the difference between average LGM and Holocene values). The rapidity of these changes suggests the influence of changing water mass structure and atmospheric circulation in addition to a decrease in CO2 content of interior waters.

  12. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  13. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by

  14. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  15. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  16. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  17. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  18. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  19. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  20. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  1. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    Directory of Open Access Journals (Sweden)

    T. Hansen

    2013-10-01

    Full Text Available Total dissolved inorganic carbon (CT is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1 compared to natural open ocean seawater (~1950–2200 μmol kg−1. The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  2. Deforestation in Amazonia impacts riverine carbon dynamics

    Science.gov (United States)

    Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang

    2016-12-01

    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to

  3. All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots.

    Science.gov (United States)

    Mondal, Navendu; De, Apurba; Samanta, Anunay

    2018-01-03

    Excitation of semiconductor quantum dots (QDs) by photons possessing energy higher than the band-gap creates a hot electron-hole pair, which releases its excess energy as waste heat or under certain conditions (when hν > 2E g ) produces multiple excitons. Extraction of these hot carriers and multiple excitons is one of the key strategies for enhancing the efficiency of QD-based photovoltaic devices. However, this is a difficult task as competing carrier cooling and relaxation of multiple excitons (through Auger recombination) are ultrafast processes. Herein, we study the potential of all-inorganic perovskite nanocrystals (NCs) of CsPbX 3 (X = Cl, Br) as harvesters of these short-lived species from photo-excited CdTe QDs. The femtosecond transient absorption measurements show CsPbX 3 mediated extraction of both hot and thermalized electrons of the QDs (under a low pump power) and (under a high pump fluence) extraction of multiple excitons prior to their Auger assisted recombination. A faster timescale of thermalized electron transfer (∼2 ps) and a higher extraction efficiency of hot electrons (∼60%) are observed in the presence of CsPbBr 3 . These observations demonstrate the potential of all-inorganic perovskite NCs in the extraction of these short-lived energy rich species implying that complexes of the QDs and perovskite NCs are better suited for improving the efficiency of QD-sensitized solar cells.

  4. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  5. A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO{sub 2} and total dissolved inorganic carbon in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Valter; Balordi, Marcella; Ciceri, Giovanni [RSE SpA - Environment and Sustainable Development Department, Milan (Italy)

    2012-05-15

    A flow injection analyser coupled with a gas diffusion membrane and a conductometric microdetector was adapted for the field analysis of natural concentrations of free dissolved CO{sub 2} and dissolved inorganic carbon in natural waters and used in a number of field campaigns for marine water monitoring. The dissolved gaseous CO{sub 2} presents naturally, or that generated by acidification of the sample, is separated by diffusion using a hydrophobic semipermeable gas porous membrane, and the permeating gas is incorporated into a stream of deionised water and measured by means of an electrical conductometric microdetector. In order to make the system suitable and easy to use for in-field measurements aboard oceanographic ships, the single components of the analyser were compacted into a robust and easy to use system. The calibration of the system is carried out by using standard solutions of potassium bicarbonate at two concentration ranges. Calibration and sample measurements are carried out inside a temperature-constant chamber at 25 C and in an inert atmosphere (N{sub 2}). The detection and quantification limits of the method, evaluated as 3 and 10 times the standard deviation of a series of measurements of the matrix solution were 2.9 and 9.6 {mu}mol/kg of CO{sub 2}, respectively. Data quality for dissolved inorganic carbon was checked with replicate measurements of a certified reference material (A. Dickson, Scripps Institution of Oceanography, University of California, San Diego), both accuracy and repeatability were -3.3% and 10%, respectively. Optimization, performance qualification of the system and its application in various natural water samples are reported and discussed. In the future, the calibration step will be operated automatically in order to improve the analytical performance and the applicability will be increased in the course of experimental surveys carried out both in marine and freshwater ecosystems. Considering the present stage of

  6. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    Science.gov (United States)

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.

  7. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  8. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  9. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES

    Directory of Open Access Journals (Sweden)

    Sébastien Moreau

    2016-08-01

    Full Text Available Abstract The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs. Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC and total alkalinity (TA. Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr−1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO3 precipitation but also ice-atmosphere CO2 fluxes and net community production increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO2 fluxes by a few Tg C yr−1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr−1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO2 sink (2.6 ± 0.5 Pg C yr−1. However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used.

  10. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field

  11. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  12. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  13. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using Flow through pump and other instruments from M/V Skogafoss in the Northeastern U.S. continental shelf and off the southern coast of Greenland during the ocean acidification cruise SKO0313, SKO0406, SKO0410, SKO0414, SKO0510, SKO0604, SKO0611, SKO0721, SKO_1406, SKO_1501, SKO_1506, SKO_1509, SKO_1604 from 2003-12-06 to 2016-04-01 (NCEI Accession 0154380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface measurements of dissolved inorganic carbon, total alkalinity, pH in the North Atlantic Ocean. Increasing amounts of...

  14. Pumped storage - necessary and sensible

    International Nuclear Information System (INIS)

    Kiener, E.

    2006-01-01

    This comprehensive article takes a look at the long-established technique of using pumped storage schemes to temporarily store electricity. Here, excess power is used to pump water back into high-level reservoirs during low-load periods so that it can be used to generate electricity during peak periods. Ecological and energy-loss aspects are discussed as are the objections raised by environmental agencies. An overview of the present situation and the operation of such installations in Switzerland is provided. Future developments in this area and the role played in the European power system are discussed. Comparisons are made between hydro-electric peak power production and that using gas turbines and other systems. In particular, the efficiencies and the carbon dioxide loading involved are looked at. Also, the situation with power generation using new renewables is examined and the economic prerequisites for the operation of such schemes are looked at

  15. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments

    Science.gov (United States)

    Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao

    2015-09-01

    Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.

  16. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  17. Improving the Efficiency of the Heat Pump Control System of Carbon Di-oxide Heat Pump with Several Evaporators and Gas Coolers

    OpenAIRE

    Sit, M.L.; Juravliov, A.A.; Sit, B.M.; Timchenko, D.

    2016-01-01

    The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle o...

  18. Spatio-temporal variability of inorganic and organic nutrients in five Galician rias (NW Spain

    Directory of Open Access Journals (Sweden)

    María Dolores Doval

    2013-01-01

    Full Text Available The spatial variability of inorganic (nitrate, nitrite, ammonium, phosphate and silicate and organic (dissolved organic carbon nutrients in five Galician rias (Vigo, Pontevedra, Arousa, Muros and Ares-Betanzos was assessed by considering average values for the upwelling and downwelling periods. Inner stations were significantly different from middle and outer stations, especially during the downwelling period. Spatial differences between the five rías, tested by means of a multivariate analysis, were found in both periods. The behaviour of inorganic and organic nutrient variables was also significantly different between periods with and without shellfish harvesting closures due to the occurrence of toxic phytoplankton species.

  19. Impact of seawater carbonate chemistry on the calcification of marine bivalves

    Science.gov (United States)

    Thomsen, J.; Haynert, K.; Wegner, K. M.; Melzner, F.

    2015-07-01

    Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 μmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better

  20. Carbon sequestration potential for forage and pasture systems

    Science.gov (United States)

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  1. Nitrogen turnover in fresh Douglas fir litter directly after additions of moisture and inorganic nitrogen

    NARCIS (Netherlands)

    Raat, K.J.; Tietema, A.; Verstraten, J.M.

    2010-01-01

    The effects of wetting and drying and inorganic nitrogen (N) addition on carbon (C) and N turnover in fresh Douglas fir litter (Speuld forest, the Netherlands) were investigated. Litter was incubated for 9 days in the laboratory, receiving different moisture and N addition treatments. Following the

  2. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  3. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  4. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    Science.gov (United States)

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  5. Design of a high-pressure circulating pump for viscous liquids.

    Science.gov (United States)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  6. Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.

    Science.gov (United States)

    Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun

    2018-01-01

    Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  8. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  9. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  10. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO 2 , and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO 2 , and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO 2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  11. Fusion reactor high vacuum pumping

    International Nuclear Information System (INIS)

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M.

    1992-01-01

    This paper reports on recent experiments which have shown the practicality of using activated carbon (coconut charcoal) at 4K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were satisfactory. The long-term effects of tritium on the charcoal/cement system developed by Grumman and LLNL was now known; therefore a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77 K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately one-third way through, and after the exposure. Modest effects were noted which would not seriously restrict the use of charcoal as a cryosorber for fusion reactor high-vacuum pumping applications

  12. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  13. Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2010-05-01

    Full Text Available In order to assess the current state of net community production (NCP in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1 were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.

  14. Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts

    Directory of Open Access Journals (Sweden)

    M. Song

    2017-09-01

    Full Text Available Particles containing secondary organic material (SOM are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS occurs at high relative humidity (RH (greater than  ∼  95 % in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than  ∼  95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  15. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  16. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  17. The carbon count of 2000 years of rice cultivation.

    Science.gov (United States)

    Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid

    2013-04-01

    More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.

  18. Alloy-Controlled Work Function for Enhanced Charge Extraction in All-Inorganic CsPbBr3 Perovskite Solar Cells.

    Science.gov (United States)

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; He, Benlin; Tang, Qunwei

    2018-03-25

    All-inorganic CsPbX 3 (X=I, Br) perovskite solar cells are regarded as cost-effective and stable alternatives for next-generation photovoltaics. However, sluggish charge extraction at CsPbX 3 /charge-transporting material interfaces, which arises from large interfacial energy differences, have markedly limited the further enhancement of solar cell performance. In this work, the work function (WF) of the back electrode is tuned by doping alloyed PtNi nanowires in carbon ink to promote hole extraction from CsPbBr 3 halides, while an intermediate energy by setting carbon quantum dots (CQDs) at TiO 2 /CsPbBr 3 interface bridges electron transportation. The preliminary results demonstrate that the matching WFs and intermediate energy level markedly reduce charge recombination. A power conversion efficiency of 7.17 % is achieved for the WF-tuned all-inorganic perovskite solar cell, in comparison with 6.10 % for the pristine device, and this is further increased to 7.86 % by simultaneously modifying with CQDs. The high efficiency and improved stability make WF-controlled all-inorganic perovskite solar cells promising to develop advanced photovoltaic platforms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  20. Adsorption of carbon-14 on mortar

    International Nuclear Information System (INIS)

    Matsumoto, Junko; Banba, Tsunetaka; Muraoka, Susumu

    1995-01-01

    The sorption experiments of carbon-14 on the mortar grain (grain size: 0.50--1.0 mm) focused on the chemical form of the carbon-14 were carried out by the batch method. Three kinds of carbon-14 chemical form were used for the experiments: sodium carbonate (Na 2 14 CO 3 ) as the inorganic radiocarbon, and sodium acetate (CH 3 14 COONa) and acetaldehyde ( 14 CH 3 14 CHO) as the organic radiocarbons. 0.30 gram samples of mortar were soaked in the solution with carbon-14 at 15 C for periods of up to 160 days. At the end of each run, carbon-14 concentrations in the supernatants were determined before and after centrifugation (3,500 rpm., 1 hr). In the mortar-sodium carbonate system, the retention process of carbon-14 related to reaction on the surface of the mortar was speculated as follows. First, 3CaO-SiO 2 and 2CaO-SiO 2 of the mortar components contact with water and produce Ca(OH) 2 . Ca(OH) 2 produces Ca 2+ and OH - in the solution. Then, calcite forms from Ca 2+ and CO 3 2- in the solution. Thus, the sorption ratio of carbon-14 onto mortar will be high until mortar has been completely carbonated because Ca 2+ is rich in the mortar and the solubility of calcite is low. In the mortar-organic carbon system, the soluble organic carbon-14 is hardly sorbed on the surface of the mortar. Therefore, the cementitious materials may not inhibit the release of organic radiocarbons from the low-level radioactive wastes, contrary to the case of inorganic radiocarbon

  1. Continuously pumping and reactivating gas pump

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped

  2. Continuously pumping and reactivating gas pump

    Science.gov (United States)

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  3. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2009-11-01

    Full Text Available Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256 were grown in dilute batch culture at four CO2 levels ranging from ~200 μatm to ~1200 μatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.

  4. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  5. Dissolved inorganic carbon, total alkalinity, pH, phosphate, dissolved oxygen, and other variables collected from surface discrete observations using Niksin bottle and other instruments from R/V Sultana in the southwest coast of Puerto Rico from 2009-01-05 to 2016-02-01 (NCEI Accession 0145164)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This time series dataset includes weekly and bi-weekly discrete seawater samples of pH and total alkalinity, dissolved inorganic carbon, phosphates and profile...

  6. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  7. Effect of pump limiter throat on pumping efficiency

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-01-01

    The necessary control of plasma edge density has led to the development of pump limiters to achieve this task. On Tore Supra, where a large part of the program is devoted to plasma edge studies, two types of such density control apparatus have been implemented, a set of pump limiters and the pumps associated to the ergodic divertor (magnetically assisted pump limiters). Generally two different kinds of pump limiters can be used, those with a throat which drives the plasma from the open edge plasma (SOL) to the neutralizer plate, and those without or with a very short throat. We are interested here in this aspect of the pump limiter concept, i.e. on the throat effect on neutral density build-up in the vicinity of the pumping plates (and hence on pumping efficieny). The underlying idea of this throat effect can be readily understood; indeed while the neutral capture in pump limiters without throats is only a ballistic effect, on expects the plasma to improve the efficiency of pump-limiters via plasma-neutral-sidewall interactions in the throat. This problem has been studied both numerically and analytically. The paper is divided as follows. In section 2, we describe the basic features of pump-limiters which are modelized by the numerical code Cezanne. Section 3 is devoted to the throat length effect considering in particular the neutral density profile in the throat and the neutral density buil-up as a function of the throat lenght. In section 4, we show that the plugging effect occurs for reasonnable values of throat lengths. An analytical value of the plugging length is discussed and compared to the values obtained numerically

  8. Anthropogenic Carbon Pump in an Urbanized Estuary

    Science.gov (United States)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  9. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  10. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  11. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  12. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  13. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  14. Towards quantifying the response of the oceans’ biological pump to climate change

    Directory of Open Access Journals (Sweden)

    Philip Wallace Boyd

    2015-10-01

    Full Text Available The biological pump makes a major global contribution to the sequestration of carbon-rich particles in the oceans’ interior. This pump has many component parts from physics to ecology that together control its efficiency in exporting particles. Hence, the influence of climate change on the functioning and magnitude of the pump is likely to be complex and non-linear. Here, I employ a published 1-D coupled surface-subsurface Particulate Organic Carbon (POC export flux model to systematically explore the potential influence of changing oceanic conditions on each of the pump’s ‘moving parts’, in both surface and subsurface waters. These simulations were run for typical high (High Nutrient Low Chlorophyll, HNLC and low (Low Nutrient Low Chlorophyll, LNLC latitude sites. Next, I couple pump components that have common drivers, such as temperature, to investigate more complex scenarios involving concurrent climate-change mediated alteration of multiple ‘moving parts’ of the pump. Model simulations reveal that in the surface ocean, changes to algal community structure (i.e., a shift towards small cells has the greatest individual influence (decreased flux on downward POC flux in the coming decades. In subsurface waters, a shift in zooplankton community structure has the greatest single effect on POC flux (decreased in a future ocean. More complex treatments, in which up to ten individual factors (across both surface and subsurface processes were concurrently altered, ~ halved the POC flux at both high and low latitudes. In general climate-mediated changes to surface ocean processes had a greater effect on the magnitude of POC flux than alteration of subsurface processes, some of which negated one another. This relatively simple 1-D model provides initial insights into the most influential processes that may alter the future performance of this pump, and more importantly reveals many knowledge gaps that require urgent attention before we can

  15. Competition between autotrophic and heterotrophic microbial plankton for inorganic nutrients induced by variability in estuarine biophysicochemical conditions

    Science.gov (United States)

    Williams, A.; Quigg, A.

    2016-02-01

    Competition for inorganic nutrients between autotrophic and heterotrophic fractions of microbial plankton (0.2-20μm) was investigated at two stations in a sub-tropical estuary, Galveston Bay, Texas. Competition potential between these groups is enhanced because individuals are similar in size, reducing variability among their nutrient uptake efficiencies. Further, in estuaries, allochthonous supplements to autochthonous carbon may satisfy heterotrophic requirements, allowing alternative factors to limit abundance. The relative abundance of autotrophs and heterotrophs stained with SYBR Green I and enumerated on a Beckman Coulter Gallios flow cytometer were evaluated monthly during a year-long study. Shifts in the relative in situ abundance were significantly related to temperature, dissolved inorganic nitrogen (DIN), phosphorous (Pi), and total organic carbon (TOC) concentrations revealing opposing gradients of limitation by different abiotic factors. In corresponding in vitro nutrient enrichment bioassays the relative contribution of autotrophic or heterotrophic microbial plankton to significant enrichment responses varied. Only during macro- (>20μm) phytoplankton blooms do autotrophic microbial plankton respond to nutrient enrichment. Contrastingly, the heterotrophic microbial plankton responded to nutrient enrichment primarily when temperature limitation was alleviated. Therefore, the potential for autotrophic and heterotrophic microbial plankton competition for limiting nutrients is highest when autotrophic microbial plankton are also competing with larger phytoplankton during bloom events. Based on this evidence, we hypothesize that the autotrophic microbial fraction has a competitive advantage over the heterotrophs for inorganic nutrients in Galveston Bay. The observed microbial competition during estuarine phytoplankton blooms may have important consequences on biogeochemical processes including carbon and nutrient cycling.

  16. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    A. de Kluijver

    2013-03-01

    Full Text Available The effect of CO2 on carbon fluxes (production, consumption, and export in Arctic plankton communities was investigated during the 2010 EPOCA (European project on Ocean Acidification mesocosm study off Ny Ålesund, Svalbard. 13C labelled bicarbonate was added to nine mesocosms with a range in pCO2 (185 to 1420 μatm to follow the transfer of carbon from dissolved inorganic carbon (DIC into phytoplankton, bacterial and zooplankton consumers, and export. A nutrient–phytoplankton–zooplankton–detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community. The plankton community structure was characteristic for a post-bloom situation and retention food web and showed high bacterial production (∼31% of primary production, high abundance of mixotrophic phytoplankton, low mesozooplankton grazing (∼6% of primary production and low export (∼7% of primary production. Zooplankton grazing and export of detritus were sensitive to CO2: grazing decreased and export increased with increasing pCO2. Nutrient addition halfway through the experiment increased the export, but not the production rates. Although mixotrophs showed initially higher production rates with increasing CO2, the overall production of POC (particulate organic carbon after nutrient addition decreased with increasing CO2. Interestingly, and contrary to the low nutrient situation, much more material settled down in the sediment traps at low CO2. The observed CO2 related effects potentially alter future organic carbon flows and export, with possible consequences for the efficiency of the biological pump.

  17. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using Niskin bottle and other instruments from NOAA Ship Henry B. Bigelow in Gulf of Maine, Georges Bank, and Mid-Atlantic Bight from 2015-05-20 to 2015-06-02 (NCEI Accession 0157024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains profile discrete measurements of dissolved inorganic carbon, total alkalinity, nutrients, and chlorophyll a in Mid-Atlantic Bight and...

  18. Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping

    NARCIS (Netherlands)

    Thomas, H.; Bozec, Y.; Elkalay, K.; de Baar, H.J.W.

    2004-01-01

    Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide fromthe atmosphere to the North Atlantic Ocean. The bottom topography–controlled stratification separates production and respiration processes in the North Sea, causing a

  19. A method for processing the critical zone of a carbonate stratum

    Energy Technology Data Exchange (ETDEWEB)

    Dytyuk, L T; Barsukov, A V; Bragina, O A; Kalabina, A V; Samakayev, R Kh

    1982-01-01

    A method is proposed for processing the critical zone of a carbonate stratum by pumping a carbonate rock solvent into it. It is distinguished by the fact that in order to increase the penetration depth of the solvent into the stratum by reducing the speed of interaction of the solvent, a solution of beta-phenoxyvinylphosphonic acid is pumped into the critical zone of the stratum.

  20. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  1. Kinetics of canine dental calculus crystallization: an in vitro study on the influence of inorganic components of canine saliva.

    Science.gov (United States)

    Borah, Ballav M; Halter, Timothy J; Xie, Baoquan; Henneman, Zachary J; Siudzinski, Thomas R; Harris, Stephen; Elliott, Matthew; Nancollas, George H

    2014-07-01

    This work identifies carbonated hydroxyapatite (CAP) as the primary component of canine dental calculus, and corrects the long held belief that canine dental calculus is primarily CaCO3 (calcite). CAP is known to be the principal crystalline component of human dental calculus, suggesting that there are previously unknown similarities in the calcification that occurs in these two unique oral environments. In vitro kinetic experiments mimicking the inorganic components of canine saliva have examined the mechanisms of dental calculus formation. The solutions were prepared so as to mimic the inorganic components of canine saliva; phosphate, carbonate, and magnesium ion concentrations were varied individually to investigate the roll of these ions in controlling the nature of the phases that is nucleated. To date, the inorganic components of the canine oral systems have not been investigated at concentrations that mimic those in vivo. The mineral composition of the synthetic calculi grown under these conditions closely resembled samples excised from canines. This finding adds new information about calculus formation in humans and canines, and their sensitivity to chemicals used to treat these conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  3. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting

    DEFF Research Database (Denmark)

    Møller, Christian H; Steinbrüchel, Daniel A

    2014-01-01

    Coronary artery bypass grafting (CABG) remains the preferred treatment in patients with complex coronary artery disease. However, whether the procedure should be performed with or without the use of cardiopulmonary bypass, referred to as off-pump and on-pump CABG, is still up for debate....... Intuitively, avoidance of cardiopulmonary bypass seems beneficial as the systemic inflammatory response from extracorporeal circulation is omitted, but no single randomized trial has been able to prove off-pump CABG superior to on-pump CABG as regards the hard outcomes death, stroke or myocardial infarction....... In contrast, off-pump CABG is technically more challenging and may be associated with increased risk of incomplete revascularization. The purpose of the review is to summarize the current literature comparing outcomes of off-pump versus on-pump coronary artery bypass surgery....

  4. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Thornton, S.F.; Baker, K.M.; Bottrell, S.H.; Rolfe, S.A.; McNamee, P.; Forrest, F.; Duffield, P.; Wilson, R.D.; Fairburn, A.W.; Cieslak, L.A.

    2014-01-01

    Highlights: • Pumping reduces contaminant toxicity below levels which stimulate in situ biodegradation. • Pumping increases the mixing of background oxidants into the plume for anaerobic respiration. • Bacterial sulphate reduction is very sensitive to contaminant concentrations. • Stable isotope analysis confirms the contribution of different biodegradation processes. • Targeted pump and treatment can enhance the natural attenuation of complex plumes. - Abstract: This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ 34 S-SO 4 , δ 13 C-CH 4 , δ 13 C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L −1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L −1 to >350 mg L −1 , (ii) enhanced the activity of SO 4 -reducing microorganisms (marked by a declining SO 4 concentration with corresponding increase in SO 4 -δ 34 S to values >7–14‰ V-CDT relative to background values of 1.9–6.5‰ V-CDT ), and (iii) where the TDIC increase is greatest, has changed TDIC-δ 13 C from values of −10 to −15‰ V-PDB to ∼−20‰ V

  5. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  6. Pumped-limiter study for Alcator DCT

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Cha, Y.S.; Hassanein, A.M.; Majumdar, S.

    1983-06-01

    A study was performed for a pumped-limiter design for the proposed Alcator DCT device. The study focused on reactor-relevant issues. The main issues examined were configuration, surface erosion, thermal hydraulics, and the choice of structural and surface materials. A bottom, flat limiter, with a copper-alloy substrate, seems to be a reasonable design and should provide an opportunity to test high power and particle loadings. Carbon is recommended as a surface material if acceptable redeposition properties can be demonstrated

  7. Pumped-limiter study for Alcator DCT

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N.; Mattas, R.F.; Cha, Y.S.; Hassanein, A.M.; Majumdar, S.

    1983-06-01

    A study was performed for a pumped-limiter design for the proposed Alcator DCT device. The study focused on reactor-relevant issues. The main issues examined were configuration, surface erosion, thermal hydraulics, and the choice of structural and surface materials. A bottom, flat limiter, with a copper-alloy substrate, seems to be a reasonable design and should provide an opportunity to test high power and particle loadings. Carbon is recommended as a surface material if acceptable redeposition properties can be demonstrated.

  8. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  9. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  10. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  11. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  12. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A modelling exercise on the importance of ternary alkaline earth carbonate species of uranium(VI) in the inorganic speciation of natural waters

    International Nuclear Information System (INIS)

    Vercouter, Thomas; Reiller, Pascal E.; Ansoborlo, Eric; Février, Laureline; Gilbin, Rodolphe; Lomenech, Claire; Philippini, Violaine

    2015-01-01

    Highlights: • The U(VI) speciation in natural waters has been modelled through a modelling exercise. • The results evidence the importance of alkaline earth U(VI) carbonate complexes. • Possible solubility-controlling phases were reported and discussed. • The differences were related to the choice and reliability of thermodynamic data. • Databases need to be improved for reliable U(VI) speciation calculations. - Abstract: Predictive modelling of uranium speciation in natural waters can be achieved using equilibrium thermodynamic data and adequate speciation software. The reliability of such calculations is highly dependent on the equilibrium reactions that are considered as entry data, and the values chosen for the equilibrium constants. The working group “Speciation” of the CETAMA (Analytical methods establishment committee of the French Atomic Energy commission, CEA) has organized a modelling exercise, including four participants, in order to compare modellers’ selections of data and test thermodynamic data bases regarding the calculation of U(VI) inorganic speciation. Six different compositions of model waters were chosen so that to check the importance of ternary alkaline earth carbonate species of U(VI) on the aqueous speciation, and the possible uranium solid phases as solubility-limiting phases. The comparison of the results from the participants suggests (i) that it would be highly valuable for end-users to review thermodynamic constants of ternary carbonate species of U(VI) in a consistent way and implement them in available speciation data bases, and (ii) stresses the necessary care when using data bases to avoid biases and possible erroneous calculations

  14. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  15. Materials for water pump mechanical seals

    International Nuclear Information System (INIS)

    Brousse, P.

    1992-01-01

    In view of the continually increasing power ratings of conventional and nuclear power plants and the related reliability and safety problems, plant builders have had to develop seal systems compatible with current water pump performances. In 1970, EDF/R and DD was already concerned by this problem. It soon became obvious that the nature of the materials used for the friction surfaces was decisive for seal durability. Exceptional loads (transients, high vibration levels, etc...) hasten aging. To begin with, friction surfaces consisted of a hard material (tungsten carbide) mated with a soft material (carbon). Resistance was unpredictable and not compatible with industrial requirements. Tests performed on the EDF/R and DD test benches evidenced the same types of degradation. The mechanical seal manufacturers then began to use ceramic materials (silicon carbide), which raised high expectations. Unfortunately, these were recent materials and their manufacturing process was not thoroughly understood. Hopes were soon dashed in many applications, including that of mechanical seals. Fluctuating results were obtained over the next few years. The raw material suppliers made progress, especially with regard to reducing fragility. On a parallel, the mechanical seal manufacturers initiated comparative tests on the friction resistance of materials. It has also been established that ceramics have to be stringently supervised at all levels: part design, inspection, assembly, use. EDF has much insisted that mechanical seal suppliers guarantee the constant quality of their products. EDF/R and DD has systematically tested new sensitive devices, under normal and exceptional conditions, prior to their installation at the plants. At the present time, the silicon carbides proposed by the mechanical seal suppliers are entirely satisfactory. The carbon mating surface was far less problematic. The required reliability was obtained by replacing resin binder carbons by the more resistant

  16. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon

    Directory of Open Access Journals (Sweden)

    Radić Dejan B.

    2017-01-01

    Full Text Available High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000°C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215°C, maximum of exothermic processes (400-450°C, beginning of the second intense mass change phase (635-700°C, and maximum endothermic processes (800-815°C were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.

  17. The Nordic Seas carbon budget: Sources, sinks, and uncertainties

    OpenAIRE

    Jeansson, Emil; Olsen, Are; Eldevik, Tor; Skjelvan, Ingunn; Omar, Abdirahman M.; Lauvset, Siv K.; Nilsen, Jan Even Ø.; Bellerby, Richard G. J; Johannessen, Truls; Falck, Eva

    2011-01-01

    A carbon budget for the Nordic Seas is derived by combining recent inorganic carbon data from the CARINA database with relevant volume transports. Values of organic carbon in the Nordic Seas' water masses, the amount of carbon input from river runoff, and the removal through sediment burial are taken from the literature. The largest source of carbon to the Nordic Seas is the Atlantic Water that enters the area across the Greenland-Scotland Ridge; this is in particular true for the anthropogen...

  18. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  19. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Shujie; Tang, Rui; Yin, Longwei

    2017-11-01

    All-inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar-architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD-) sensitized all-inorganic CsPbBr 3 perovskite inverse opal (IO) films via a template-assisted, spin-coating method. CsPbBr 3 IO introduces slow-photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr 3 , slow-photon effect of CsPbBr 3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron-hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double-boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon-to-electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr 3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  1. An implantable centrifugal blood pump for long term circulatory support.

    Science.gov (United States)

    Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P

    1997-01-01

    A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.

  2. Dissolved organic and inorganic matter in bulk deposition of a coastal urban area: an integrated approach.

    Science.gov (United States)

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2014-12-01

    Bulk deposition can remove atmospheric organic and inorganic pollutants that may be associated with gaseous, liquid or particulate phases. To the best of our knowledge, few studies have been carried out, which simultaneously analyse the presence of organic and inorganic fractions in rainwater. In the present work, the complementarity of organic and inorganic data was assessed, through crossing data of some organic [DOC (dissolved organic carbon), absorbance at 250 nm (UV250nm), integrated fluorescence] and inorganic [H(+), NH4(+), NO3(-), non sea salt sulphate (NSS-SO4(2-))] parameters measured in bulk deposition in the coastal urban area of Aveiro. The organic and inorganic parameters analysed were positively correlated (pCDOM) came from anthropogenic sources. Furthermore, the inverse correlations observed for the organic and inorganic parameters with the precipitation amount suggest that organic and inorganic fractions were incorporated into the rainwater partially by below-cloud scavenging of airborne particulate matter. This is in accordance with the high values of DOC and NO3(-) found in samples associated with marine air masses, which were linked in part to the contribution of local emissions from vehicular traffic. DOC of bulk deposition was the predominant constituent when compared with the constituents H(+), NH4(+), NO3(-) and NSS-SO4(2-), and consequently bulk deposition flux was also highest for DOC, highlighting the importance of DOC and of anthropogenic ions being simultaneously removed from the atmosphere by bulk deposition. However, it was verified that the contribution of anthropogenic sources to the DOC of bulk deposition may be different for distinct urban areas. Thus, it is recommended that organic and inorganic fractions of bulk deposition are studied together. Copyright © 2014. Published by Elsevier Ltd.

  3. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  4. Pumping characteristics of sputter ion pump (SIP) and titanium sublimation pump (TSP) combination

    International Nuclear Information System (INIS)

    Ratnakala, K.C.; Patel, R.J.; Bhavsar, S.T.; Pandiyar, M.L.; Ramamurthi, S.S.

    1995-01-01

    For achieving hydrocarbon free, clean ultra high vacuum, SIP-TSP combination is one of the ideal choice for pumping. For the SRS facility in Centre for Advanced Technology (CAT), we are utilising this combination, enmass. For this purpose, two modules of these combination set-ups are assembled, one with the TSP as an integral part of SIP and the other, with TSP as a separate pump mounted on the top of SIP. The pump bodies were vacuum degassed at 700 degC at 10 -5 mbar for 3 hrs. An ultimate vacuum of 3 x 10 -11 mbar was achieved, after a bake-out at 250 degC for 4 hrs, followed by continuous SIP pumping for 48 hrs, with two TSP flashing at approximately 10 hrs interval. The pump-down patterns as well as the pressure-rise patterns are studied. (author). 2 refs., 5 figs

  5. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  6. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  7. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2015-01-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193

  8. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    2016-04-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  9. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    International Nuclear Information System (INIS)

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-01-01

    The addition of exogenous inorganic carbon (CaCO 3 ) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, 14 C-labeled rice straw addition, 14 C-labeled CaCO 3 addition, and a combination of 14 C-labeled rice straw and CaCO 3 . Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both 14 C-rice straw and Ca 14 CO 3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of 14 C-rice straw and Ca 14 CO 3 addition on positive priming effects of SOC mineralization. • Inorganic C is involved in soil C cycling with the participation of soil microbial

  10. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  11. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    OpenAIRE

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in t...

  12. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  13. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support.

    Science.gov (United States)

    Yamazaki, Kenji; Kihara, Shinichiro; Akimoto, Takehide; Tagusari, Osamu; Kawai, Akihiko; Umezu, Mitsuo; Tomioka, Jun; Kormos, Robert L; Griffith, Bartley P; Kurosawa, Hiromi

    2002-11-01

    We developed "EVAHEART": a compact centrifugal blood pump system as an implantable left ventricular assist device for long-term circulatory support. The 55 x 64 mm pump is made from pure titanium, and weighs 370 g. The entire blood-contacting surface is covered with an anti-thrombogenic coating of diamond like carbon (DLC) or 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve blood compatibility. Flows exceeding 12 L/min against 100 mmHg pressure at 2600 rpm was measured. A low-temperature mechanical seal with recirculating cooling system is used to seal the shaft. EVAHEART demonstrated an acceptably low hemolysis rate with normalized index of hemolysis of 0.005 +/- 0.002 g/100L. We evaluated the pump in long-term in-vivo experiments with seven calves. Via left thoracotomy, we conducted left ventricular apex-descending aorta bypass, placing the pump in the left thoracic cavity. Pump flow rates was maintained at 5-9 L/min, pump power consumption remained stable at 9-10 W in all cases, plasma free Hb levels were less than 15 mg/dl, and the seal system showed good seal capability throughout the experiments. The calves were sacrificed on schedule on postoperative day 200, 222, 142, 90, 151, 155, and 133. No thrombi formed on the blood contacting surface with either the DLC or MPC coating, and no major organ thromboembolisms occurred except for a few small renal infarcts. EVAHEART centrifugal blood pump demonstrated excellent performance in long-term in-vivo experiments.

  14. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  15. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  16. First pump limiter experiments in TORE SUPRA

    International Nuclear Information System (INIS)

    Chatelier, M.; Klepper, C.C.; Bruneau, J.L.; Chappuis, P.; Gil, C.; Guilhem, D.; Lipa, M.; Rodriguez, L.; Vallet, J.C.; Van Houtte, D.; Watkins, J.G.

    1989-01-01

    The operation of TORE SUPRA at full power (25MW, 30s) has led to the design of a full set of actively pumped carbon limiters to remove at least 8MW and to partially control the particle balance. An interim version is now installed, composed of 5 vertical and one horizontal outboard (OPL) pump limiters, semi-inertially water cooled. The latter is a result of a collaboration between the US DOE and the Association EUR-CEA, it is fully instrumented and therefore can serve as a reference for the final design. Ohmic discharges (1.85T, 740kA, 8.5s) in helium have been used to test the thermal load on and the particle exhaust efficiency of the OPL. In these experiments the plasma is formed on the inner wall (R = 232 cm, a = 76 cm) and subsequently displaced (6 cm) outward, early on the current plateau, to lean on the OPL (R = 238 cm, a = 75 cm). In addition to the limiters above, a non-pumped outboard (ONLP) limiter of identical shape to the OPL served to produce similar discharges for better comparison and determination of particle control. A comparison is made hereafter of the thermal load and particle pumping effects on the OPL when the plasma is in contact either with the OPL/ONPL alone or with the OPL and the vertical limiters together. 3 refs., 1 fig., 2 tabs

  17. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    Science.gov (United States)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  18. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  19. Carbon Nanotubes as Thermally Induced Water Pumps

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Megaridis, Constantine M

    2017-01-01

    Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry...

  20. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  1. Changes in the marine carbonate system of the western Arctic: patterns in a rescued data set

    Directory of Open Access Journals (Sweden)

    Lisa A. Miller

    2014-11-01

    Full Text Available A recently recovered and compiled set of inorganic carbon data collected in the Canadian Arctic since the 1970s has revealed substantial change, as well as variability, in the carbonate system of the Beaufort Sea and Canada Basin. Whereas the role of this area as a net atmospheric carbon sink has been confirmed, high pCO2 values in the upper halocline underscore the potential for CO2 outgassing as sea ice retreats and upwelling increases. In addition, increasing total inorganic carbon and decreasing alkalinity are increasing pCO2 and decreasing CaCO3 saturation states, such that undersaturation with respect to aragonite now occurs regularly in both deep waters and the upper halocline.

  2. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    Henrikson, Sture

    1989-12-01

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr 2 O 3 , TiO 2 and Al 2 O 3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  3. What can be done about corrosion in submersible pumps?

    Energy Technology Data Exchange (ETDEWEB)

    Minett, S.

    2000-09-01

    Useful advice and a survey of materials and techniques which can help counter corrosion risks in submersible pumps are provided. The greatest risk of corrosion is caused by sea water, hydrochloric acid, certain types of solvents, hydrogen sulphide, liquids with a high copper content, bases with a high pH value and certain liquids containing a mixture of acids. Counteractive strategies suggested include using a corrosion resistant material such as stainless steel, or other resistant coatings and materials for particular components that are exposed to high corrosion risks. Most submersible pumps are made of cast iron which should present no corrosion problems in normal domestic use. In mining and construction applications aluminum submersibles are common, which is resistant to a pH value of about 8. The use of stainless steel is recommended as the main material in submersible pumps when used for pumping acidic liquids, and when purity of the liquid pumped is of prime consideration. Coatings and anodes on conventional cast iron pumps are a less expensive and more flexible alternative against salt water corrosion. Among coatings epoxy coating is the most widely used. Zinc anodes are used in conjunction with epoxy coatings, which by setting up a micro current by contact with the cast iron prevent corrosion of areas of the cast iron that may be exposed as a result of post-production scratching. By being sacrificially corroded, the zinc anodes thus significantly extend the life of a coated pump. Impressed current from an external power source, is an effective, but more expensive alternative to the implanted anode method. Using resistant materials such as nitrile rubber, fluoro-carbon rubber, corrosion resistant cemented carbide, or chlorinated rubber for various components (rotating shaft seals, rubber 'O' rings, cable sheathing, etc) are other alternatives that may be depending on the application and the degree of exposure.

  4. Method for imparting improved surface properties to carbon fibers and composite

    International Nuclear Information System (INIS)

    Ueno, S.; Kamata, H.

    1984-01-01

    The invention provides a means for solving the problem of poor affinity between the surface of carbon fibers and a synthetic resin in a resin-based composite material reinforced with the carbon fibers. The method comprises subjecting the surface of the carbon fibers in advance to exposure to low temperature plasma in a low pressure atomosphere of an inorganic gas generated by applying an electric voltage between electrodes. It was unexpectedly discovered that the discharge voltage between the electrodes is very critical and satisfactory results can be obtained when the peak-to-peak value of the discharge voltage between electrodes is 4000 volts or higher. The composition of the atmospheric inorganic gas is also important and the gas is preferably oxygen gas or a gaseous mixture containing at least 10% by volume of oxygen

  5. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  6. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H 2 , D 2 and He) and for N 2 , in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m 3 /s), two EH250s (ibid. 250 m 3 /s) and a backing pump (ibid. 100 m 3 /s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D 2 and N 2 were 1200 and 1300 m 3 /h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  7. Inorganic-Organic hybrid materials for uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    El-Mourabit, Sabah

    2013-01-01

    Phosphate rocks are industrially processed in large quantities to produce phosphoric acid and fertilisers. These rocks contain significant concentration of uranium (50 to 300 ppm) which could be interesting for nuclear industry. This work deals with the valorisation of uranium as a by-product from fertiliser industry. The aim of this study is to develop a hybrid material, constituted of an inorganic solid support grafted with an extractant (complexing molecule), which can extract selectively uranium from phosphoric acid medium. The first step of our approach was to identify an inorganic support which is stable under these particular conditions (strong acidity and complexing medium). The chemical and mechanical stability of different meso-porous materials, such as silica, glass and carbon was studied. In a second phase, we focused on the identification and the optimisation of complexing molecules, specific of uranium in phosphoric acid. These ligands were then grafted on the most stable solids. Finally, the efficiency of these hybrid systems was evaluated through different tests of extraction, selectivity and de-extraction. (author) [fr

  8. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  9. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using Niskin bottle and other instruments from R/V F. G. Walton Smith in the west coast of Florida within Gulf of Mexico from 2015-09-23 to 2015-09-24 (NCEI Accession 0157025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the west coast of Florida near...

  10. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    Science.gov (United States)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  11. Chronic Obstructive Pulmonary Disease and Off-Pump Coronary Surgery.

    Science.gov (United States)

    Ovalı, Cengiz; Şahin, Aykut

    2018-05-18

    To determine to what extent chronic obstructive pulmonary disease (COPD) affects mortality and morbidity rates in patients treated with off-pump coronary artery bypass graft (CABG). A total of 321 patients treated with off-pump CABG were included in the present study. Of the 321 patients, 46 patients had COPD and they were designated as Group 1 and the remaining 275 patients did not have COPD and they were considered as Group 2. We compared the data obtained from the patients in both groups. While preoperative spirometry values and arterial blood gas oxygen saturation levels were significantly lower, the partial values of carbon dioxide were higher in Group 1. Likewise, extubation time, the amount of drainage and blood transfusion, inotropic support, prolonged intubation, pulmonary complications, the use of bronchodilators, and steroids were statistically higher in Group 1 when compared with Group 2. Overall, there was no marked difference between the two groups in terms of mortality incidence. We found similar morbidity and mortality rates among the patients with COPD and without COPD when they were treated with off-pump CABG. Therefore, the present results indicate that the presence of COPD is not associated with in-hospital mortality or severe morbidity post-CABG by off-pump approach.

  12. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  13. Sources of CO{sub 2} in the Gulf of Trieste (N. Adriatic). Stable Carbon Isotope Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Ogrinc, N.; Zavadlav, S. [Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana (Slovenia); Turk, D. [Department of Oceanography, Dalhousie University, Halifax, Nova Scotia (Canada); Lamont-Doherty Earth Observatory, Earth Institute at Columbia University, Palisades, NY (United States); Faganeli, J. [Marine Biological Station National Institute of Biology, Piran (Slovenia)

    2013-07-15

    In the present study the influence of freshwater intrusions on the net carbon dynamics in the Gulf of Trieste (northern Adriatic Sea) were investigated. Carbonate mineral weathering dominates the inorganic carbon geochemical flux of the N Adriatic rivers and thus the origin of dissolved inorganic carbon (DIC) in the gulf seawater. Based on {delta}{sup 13}C{sub DIC} values and isotopic mass balance it was estimated that rivers represents about 20% of DIC in spring, while the riverine contribution in autumn is less pronounced probably due to intensive water mixing. The results, therefore, suggest that river inputs play a significant role in the carbon cycling in the Gulf of Trieste due to mixing of higher DIC riverine water with lower seawater DIC. The observed higher summer {delta}{sup 13}C{sub DIC} values were due to more pronounced photosynthetic carbon fractionation. (author)

  14. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    Science.gov (United States)

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  15. Dissolved inorganic carbon, total alkalinity, temperature, salinity and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship HI'IALAKAI and NOAA Ship OSCAR ELTON SETTE in the U.S. Pacific Reefs from 2012-03-02 to 2014-05-05 (NCEI Accession 0131502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains data from samples collected and analyzed for total alkalinity (TA) and dissolved inorganic carbon (DIC). From these constituents,...

  16. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  17. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  18. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  19. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  20. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  1. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as

  2. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  3. Assessing the energy efficiency of pumps and pump units background and methodology

    CERN Document Server

    Bernd Stoffel, em Dr-Ing

    2015-01-01

    Assessing the Energy Efficiency of Pumps and Pump Units, developed in cooperation with Europump, is the first book available providing the background, methodology, and assessment tools for understanding and calculating energy efficiency for pumps and extended products (pumps+motors+drives). Responding to new EU requirements for pump efficiency, and US DOE exploratory work in setting pump energy efficiency guidelines, this book provides explanation, derivation, and illustration of PA and EPA methods for assessing energy efficiency. It surveys legislation related to pump energy eff

  4. Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes

    DEFF Research Database (Denmark)

    Vidal, L. O.; Graneli, W.; Daniel, C. B.

    2011-01-01

    This study focused on how phosphorus and carbon control pelagic bacteria in lakes over a gradient of dissolved organic carbon (DOC from 6.7 to 29.5 mg C L(-1)) and phosphorus (P-tot from 5 to 19 mu g L(-1)). Five oligotrophic lakes in southern Sweden were sampled in late autumn. Phosphate...... carbon mineralization in this kind of system during autumn is conditioned by the combined availability of labile carbon and phosphorus, with the assimilated carbon mainly transformed to inorganic carbon in respiration, contributing to CO(2) supersaturation in these systems....

  5. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  6. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs

  7. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Directory of Open Access Journals (Sweden)

    Reza Fatahialkouhi

    2018-03-01

    Full Text Available The ram pump is a device which pumps a portion of input discharge to the pumping system in a significant height by using renewable energy of water hammer. The complexities of flow hydraulic on one hand and on the other hand the use of simplifying assumptions in ram pumps have caused errors in submitted analytical models for analyzing running cycle of these pumps. In this study it has been tried to modify the governing analytical model on hydraulic performance of these pumps in pumping stage. In this study by creating a logical division, the cycle of the ram pump was divided into three stages of acceleration, pumping and recoil and the governing equations on each stage of cycling are presented by using method of characteristics. Since the closing of impulse valve is nonlinear, velocity loss in pumping stage is considered nonlinearly. Also the governing equations in pumping stage were modified by considering disc elasticity of impulse valve and changing volume of the pump body when the water hammer phenomenon is occurred. In order to evaluate results and determine empirical factors of the proposed analytical model, a physical model of the ram pump is made with internal diameter of 51 mm. Results of this study are divided into several parts. In the first part, loss coefficients of the impulse valve were measured experimentally and empirical equations of drag coefficient and friction coefficient of the impulse valve were submitted by using nonlinear regression. In the second part, results were evaluated by using experimental data taken from this study. Evaluation of statistical error functions showed that the proposed model has good accuracy for predicting experimental observations. In the third part, in order to validate the results in pumping stage, the analytical models of Lansford and Dugan (1941 and Tacke (1988 were used and the error functions resulted from prediction of experimental observations were investigated through analytical models of

  8. Divertor characteristics and control on the W-shaped divertor with pump of JT-60U

    International Nuclear Information System (INIS)

    Hosogane, N.; Kubo, H.; Higashijima, S.

    1999-01-01

    Roles of the inner leg pumping and the private dome, which are special features of the W-shaped divertor of JT-60U, have been investigated. The following observations were made: The inner leg pumping functions well in attached states or partially detached states with weak X-point MARFE where the inner particle recycling is enhanced. A combination of main gas puff and inner leg pump is effective in reduction of intrinsic carbon impurity. Geometrical effects of the private dome on transport of hydrocarbons in the private flux region was confirmed by spectroscopic measurements of CD-band intensity profile and impurity transport simulation code using experimental data. (author)

  9. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    Science.gov (United States)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  10. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  11. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  12. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    Science.gov (United States)

    Kapoor, Vikram; Wendell, David

    2013-05-08

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization.

  13. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  14. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob

    2012-01-01

    Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  15. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  16. Modeling carbon cycle process of soil profile in Loess Plateau of China

    Science.gov (United States)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  17. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide

    International Nuclear Information System (INIS)

    Wazne, Mahmoud; Meng, Xiaoguang; Korfiatis, George P.; Christodoulatos, Christos

    2006-01-01

    A novel nanocrystalline titanium dioxide was used to treat depleted uranium (DU)-contaminated water under neutral and alkaline conditions. The novel material had a total surface area of 329 m 2 /g, total surface site density of 11.0 sites/nm 2 , total pore volume of 0.415 cm 3 /g and crystallite size of 6.0 nm. It was used in batch tests to remove U(VI) from synthetic solutions and contaminated water. However, the capacity of the nanocrystalline titanium dioxide to remove U(VI) from water decreased in the presence of inorganic carbonate at pH > 6.0. Adsorption isotherms, Fourier transform infrared (FTIR) spectroscopy, and surface charge measurements were used to investigate the causes of the reduced capacity. The surface charge and the FTIR measurements suggested that the adsorbed U(VI) species was not complexed with carbonate at neutral pH values. The decreased capacity of titanium dioxide to remove U(VI) from water in the presence of carbonate at neutral to alkaline pH values was attributed to the aqueous complexation of U(VI) by inorganic carbonate. The nanocrystalline titanium dioxide had four times the capacity of commercially available titanium dixoide (Degussa P-25) to adsorb U(VI) from water at pH 6 and total inorganic carbonate concentration of 0.01 M. Consequently, the novel material was used to treat DU-contaminated water at a Department of Defense (DOD) site

  18. The evolving policy regime for pumped storage hydroelectricity in China: A key support for low-carbon energy

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Perera, Pradeep

    2015-01-01

    Highlights: • Highlights the role of pumped storage hydroelectricity in renewable energy integration. • Examines the development of pumped storage hydroelectricity in China. • Reviews the regulatory policies on pumped storage hydroelectricity in China. • Analyzes the operation and pricing regime for pumped storage hydroelectricity in China. • Makes policy recommendations for promoting pumped storage hydroelectricity in China. - Abstract: As part of its energy transition strategy, China has set ambitious targets for increasing the contribution of renewable energy and, in particular, of wind power. However, the Chinese power sector has not undergone the necessary reforms to facilitate the integration and absorption of a larger share of variable renewable energy. This is evident from the difficulties in absorbing wind power from already commissioned wind farms and the resultant curtailment of wind power. Pumped storage hydroelectricity (PSH) is a flexible power source that can facilitate higher penetration levels of wind power as well as complement China’s growing nuclear power capacity. However, regulatory policy constraints have restricted the effective utilization of existing PSH capacity and discouraged investment in new PSH capacity. This paper examines these constraints and assesses the likely impact of new policies designed to address them. Finally, policy recommendations and concluding remarks are provided. This paper contributes to the literature on renewable energy integration from a new perspective. The lessons from China are relevant to other countries going through the energy transition

  19. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  20. Burial fluxes and source apportionment of carbon in culture areas of Sanggou Bay over the past 200 years

    Institute of Scientific and Technical Information of China (English)

    LIU Sai; HUANG Jiansheng; YANG Qian; YANG Shu; YANG Guipeng; SUN Yao

    2015-01-01

    In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes (BFTIC). The average content of total carbon (TC) in the Sanggou Bay was 2.14%. Total organic carbon (TOC) accounted for a small proportion in TC, more than 65% of which derived from terrigenous organic carbon (Ct), and while the proportion of marine-derived organic carbon (Ca) increased significantly since the beginning of large-scale aquaculture. Total inorganic carbon (TIC) accounted for 60%–75%of TC, an average of which was 60%, with a maximum up to 90% during flourishing periods (1880–1948) of small natural shellfish derived from seashells inorganic carbon (Shell-IC). The TC burial fluxes ranged from 31 g/(m2·a) to 895 g/(m2·a) with an average of 227 g/(m2·a), which was dominated by TIC (about 70%). Shell-IC was the main source of TIC and even TC. As the main food of natural shellfish, biogenic silica (BSi) negatively correlated with BFTIC through affecting shellfish breeding. BFTIC of Sta. S1, influenced greatly by the Yellow Sea Coastal Current, had a certain response to Pacific Decadal Oscillation (PDO) in some specific periods.

  1. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  2. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  3. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  4. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  5. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  6. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    Science.gov (United States)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  7. Textural and isotopic evidence for Ca-Mg carbonate pedogenesis

    Science.gov (United States)

    Diaz-Hernandez, J. L.; Sánchez-Navas, A.; Delgado, A.; Yepes, J.; Garcia-Casco, A.

    2018-02-01

    Models for evaluating the terrestrial carbon cycle must take into account not only soil organic carbon, represented by a mixture of plant and animal remains, but also soil inorganic carbon, contained in minerals, mainly in calcite and dolomite. Thick soil caliches derived from weathering of mafic and ultramafic rocks must be considered as sinks for carbon storage in soils. The formation of calcite and dolomite from pedogenic alteration of volcanic tephras under an aridic moisture regime is studied in an unusually thick 3-m soil profile on Gran Canaria island (Canary Islands, Spain). The biological activity of the pedogenic environment (soil respiration) releases CO2 incorporated as dissolved inorganic carbon (DIC) in waters. It drives the formation of low-magnesian calcite and calcian dolomite over basaltic substrates, with a δ13C negative signature (-8 to -6‰ vs. V-PDB). Precipitation of authigenic carbonates in the soil is accompanied by the formation of Mg-rich clay minerals and quartz after the weathering of basalts. Mineralogical, textural, compositional, and isotopic variations throughout the soil profile studied indicate that dolomite formed at greater depths and earlier than the calcite. The isotopic signatures of the surficial calcite and deeper dolomite crusts are primary and resulted from the dissolution-precipitation cycles that led to the formation of both types of caliches under different physicochemical conditions. Dolomite formed within a clay-rich matrix through diffusive transport of reactants. It is precipitated from water with more negative δ18O values (-1.5 to -3.5‰ vs. V-SMOW) in the subsoil compared to those of water in equilibrium with surficial calcite. Thus, calcite precipitated after dolomite, and directly from percolating solutions in equilibrium with vadose water enriched in δ18O (-0.5 to +1.5‰) due to the evaporation processes. The accumulation of inorganic carbon reaches 586.1 kg m-2 in the soil studied, which means that the

  8. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  9. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  10. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Science.gov (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy

    2018-03-01

    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  11. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen

    2018-03-01

    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  12. A Review on Recent Patents and Applications of Inorganic Material Binding Peptides.

    Science.gov (United States)

    Thota, Veeranjaneyulu; Perry, Carole C

    2017-01-01

    Although the popularity of using combinatorial display techniques for recognising unique peptides having high affinity for inorganic (nano) particles has grown rapidly, there are no systematic reviews showcasing current developments or patents on binding peptides specific to these materials. In this review, we summarize and discuss recent progress in patents on material binding peptides specifically exploring inorganic nano surfaces such as metals, metal oxides, minerals, carbonbased materials, polymer based materials, magnetic materials and semiconductors. We consider both the peptide display strategies used and the exploitation of the identified peptides in the generation of advanced nanomaterials. In order to get a clear picture on the number of patents and literature present to date relevant to inorganic material binding biomolecules and their applications, a thorough online search was conducted using national and worldwide databases. The literature search include standard bibliographic databases while patents included EPO Espacenet, WIPO patent scope, USPTO, Google patent search, Patent lens, etc. along with commercial databases such as Derwent and Patbase. Both English and American spellings were included in the searches. The initial number of patents found related to material binders were 981. After reading and excluding irrelevant patents such as organic binding peptides, works published before 2001, repeated patents, documents not in English etc., 51 highly relevant patents published from 2001 onwards were selected and analysed. These patents were further separated into six categories based on their target inorganic material and combinatorial library used. They include relevant patents on metal, metal oxide or combination binding peptides (19), magnetic and semiconductor binding peptides (8), carbon based (3), mineral (5), polymer (8) and other binders (9). Further, how these material specific binders have been used to synthesize simple to complex bio- or

  13. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  14. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  15. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Science.gov (United States)

    Meyer, Friedrich W; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana

    2016-01-01

    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future

  16. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC and organic carbon (DOC concentrations due to ocean acidification (OA and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm and DOC (added as 833 μmol L-1 of glucose on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected

  17. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  18. Biocompatibility of bio based calcium carbonate nanocrystals ...

    African Journals Online (AJOL)

    Background: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance ...

  19. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  20. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Petersen, Gene; Viviani, Donn; Magrini-Bair, Kim; Kelley, Stephen; Moens, Luc; Shepherd, Phil; DuBois, Dan

    2005-01-01

    Carbon dioxide (CO 2 ) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO 2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO 2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO 2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  1. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shuzhen [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Huang, Yuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Yunhui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Su, Yirong [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Xu, Xinwen; Wang, Yongdong [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); He, Xunyang, E-mail: hbhpjhn@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China)

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO{sub 3}) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, {sup 14}C-labeled rice straw addition, {sup 14}C-labeled CaCO{sub 3} addition, and a combination of {sup 14}C-labeled rice straw and CaCO{sub 3}. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition on positive priming effects of SOC mineralization. • Inorganic C is involved in

  2. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  3. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  4. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2014-01-01

    Full Text Available Energy dispersive X-ray spectroscopy microanalysis (EDX, scanning electron microscopy (SEM, and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C, Hydrogum 5 (H5, Hydrogum (H, Orthoprint (O, and Jeltrate Plus (JP. The different alginate powders (0.5 mg were fixed on plastic stubs (n=5 and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt. The filler fractions in volume (vt were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  5. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  6. Epizoic zoanthids reduce pumping in two Caribbean vase sponges

    Science.gov (United States)

    Lewis, T. B.; Finelli, C. M.

    2015-03-01

    Sponges are common sessile benthic suspension feeders that play a critical role in carbon and nitrogen cycling within reef ecosystems via their filtration capabilities. Due to the contribution of sponges in benthic-pelagic coupling, it is critical to assess factors that may affect their role in the healthy function of coral reefs. Several factors can influence the rate at which an individual sponge pumps water, including body size, environmental conditions, mechanical blockage, and reduction of inhalant pores (ostia). Symbiotic zoanthid colonization is a common occurrence on Caribbean sponges, and the presence of zoanthids on the surface of a sponge may occlude or displace the inhalant ostia. We quantified pumping rates of the giant barrel sponge, Xestospongia muta ( N = 22 uncolonized, 37 colonized) and the common vase sponge, Niphates digitalis ( N = 21 uncolonized, 17 colonized), with and without zoanthid symbionts, Parazoanthus catenularis and Parazoanthus parasiticus, respectively. For X. muta, biovolume-normalized pumping rates of individuals colonized by zoanthids were approximately 75 % lower than those of uncolonized sponges. Moreover, colonization with zoanthids was related to a difference in morphology relative to uncolonized individuals: Colonized sponges exhibited an osculum area to biovolume ratio that was nearly 65 % less than uncolonized sponges. In contrast, the presence of zoanthids on N. digitalis resulted in only a marginal decrease in pumping rates and no detectable difference in morphology. The difference in zoanthid effects between X. muta and N. digitalis is likely due to the differences in wall thickness and architecture between the two species. The probable cause of reduced pumping in affected sponges is occupation of the sponge surface that leads to blockage or displacement of inhalant ostia. To partially test this hypothesis, zoanthid colonization on specimens of X. muta was simulated by wrapping sponges with plastic mesh of varying

  7. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0159428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample...

  8. The role of mixotrophic protists in the biological carbon pump

    DEFF Research Database (Denmark)

    Mitra, Aditee; Flynn, K.J.; Burkholder, J.M.

    2014-01-01

    at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative new paradigm, which sees the bulk of the base of this food web supported by protist plankton communities that are mixotrophic...... – combining phototrophy and phagotrophy within a single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only during the developmental phases of ecosystems (e.g. spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists...

  9. Breastfeeding FAQs: Pumping

    Science.gov (United States)

    ... of pump is best? You can buy or rent a breast pump from lactation consultants, hospitals, retail ... place to do it. Many companies offer their employees pumping and nursing areas. If yours doesn't, ...

  10. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    Science.gov (United States)

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  11. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Science.gov (United States)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  12. Biogrout, ground improvement by microbial induced carbonate precipitation

    NARCIS (Netherlands)

    Van Paassen, L.A.

    2009-01-01

    Biogrout is a new ground improvement method based on microbially induced precipitation of calcium carbonate (MICP). When supplied with suitable substrates, micro-organisms can catalyze biochemical conversions in the subsurface resulting in precipitation of inorganic minerals, which change the

  13. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    Science.gov (United States)

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  14. Development and evaluation of cryosorption pump and cryotrapping pump for CTR applications

    International Nuclear Information System (INIS)

    Kuribayashi, S.; Ota, H.; Sato, H.

    1986-01-01

    In order to obtain the engineering data to design compound cryopump for CTR, the authors tested the cryosorption pump and cryotrapping pump. The cryosorption panel was consisted of coconut charcoal metallically bonded to 4.2K cryopanel by brazing. The initial pumping speed of helium of cryosorption pump was found to be ≅2.2 iota/scm/sup 2/. The speed dropped off with loading (about 8 Torr iota/cm/sup 2/) to 1.5 iota/scm/sup 2/. The initial helium pumping speed of the 4.2K cryotrapping pump by argon spray was found to be ≅6 iota/scm/sup 2/. The speed, however, dropped off with loading (≅0.3 Torr iota/cm/sup 2/) to less than 5%. These results indicate that the cryosorption pump by coconut charcoal is superior to the cryotrapping pump, because the capacity of the former is larger than the latter

  15. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  16. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin).

    Science.gov (United States)

    Guerrero-Feijóo, Elisa; Sintes, Eva; Herndl, Gerhard J; Varela, Marta M

    2018-02-01

    Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production throughout the water column, however, more prominently in the bathypelagic waters. Microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) allowed us to identify several microbial groups involved in dark DIC uptake. The contribution of SAR406 (Marinimicrobia), SAR324 (Deltaproteobacteria) and Alteromonas (Gammaproteobacteria) to the dark DIC fixation was significantly higher than that of SAR202 (Chloroflexi) and Thaumarchaeota, in agreement with their contribution to microbial abundance. Q-PCR on the gene encoding for the ammonia monooxygenase subunit A (amoA) from the putatively high versus low ammonia concentration ecotypes revealed their depth-stratified distribution pattern. Taken together, our results indicate that chemoautotrophy is widespread among microbes in the dark ocean, particularly in bathypelagic waters. This chemolithoautotrophic biomass production in the dark ocean, depleted in bio-available organic matter, might play a substantial role in sustaining the dark ocean's food web. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Science.gov (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  19. Pumping station design for a pumped-storage wind-hydro power plant

    International Nuclear Information System (INIS)

    Anagnostopoulos, John S.; Papantonis, Dimitris E.

    2007-01-01

    This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential

  20. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.